X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;ds=sidebyside;f=ITS%2FAliITSsimulationSSD.cxx;h=fc4d5ca2d41a06e07dcf61f0d8b524e08db15df3;hb=66b8907967ecdea7c6dc6bc926337c794c756236;hp=dee880f3789564bbedae6757e8d0576221176a98;hpb=57817f7cf4b14753c0c57c2d1fbe671e0eb21f55;p=u%2Fmrichter%2FAliRoot.git diff --git a/ITS/AliITSsimulationSSD.cxx b/ITS/AliITSsimulationSSD.cxx index dee880f3789..fc4d5ca2d41 100644 --- a/ITS/AliITSsimulationSSD.cxx +++ b/ITS/AliITSsimulationSSD.cxx @@ -12,271 +12,574 @@ * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ + /* $Id$ */ #include #include -#include -#include +#include #include #include -#include +#include #include "AliITSmodule.h" #include "AliITSMapA2.h" +#include "AliITSpList.h" +#include "AliITSCalibrationSSD.h" #include "AliITSsegmentationSSD.h" -#include "AliITSresponseSSD.h" -#include "AliITSdcsSSD.h" +//#include "AliITSdcsSSD.h" #include "AliITS.h" +#include "AliITShit.h" +#include "AliITSdigitSSD.h" #include "AliRun.h" +#include "AliMagF.h" #include "AliITSgeom.h" #include "AliITSsimulationSSD.h" +#include "AliITSTableSSD.h" +#include +#include "AliMathBase.h" -ClassImp(AliITSsimulationSSD); +ClassImp(AliITSsimulationSSD) +//////////////////////////////////////////////////////////////////////// +// // +// Author: Enrico Fragiacomo // +// enrico.fragiacomo@ts.infn.it // +// Last revised: june 2008 // +// // +// AliITSsimulationSSD is the simulation of SSD. // //////////////////////////////////////////////////////////////////////// -// Version: 0 -// Written by Enrico Fragiacomo -// July 2000 -// -// AliITSsimulationSSD is the simulation of SSDs. //---------------------------------------------------------------------- -AliITSsimulationSSD::AliITSsimulationSSD(){ +AliITSsimulationSSD::AliITSsimulationSSD():AliITSsimulation(), + //fDCS(0), +fMapA2(0), +fIonE(0.0), +fDifConst(), +fDriftVel(), +fTimeResponse(NULL), +fLorentz(kFALSE), +fTanLorAngP(0), +fTanLorAngN(0) +{ //default Constructor - - fDCS = 0; - fNstrips = GetSegmentation()->Npx(); - fPitch = GetSegmentation()->Dpx(0); - fDifConst[0] = fDifConst[1] = 0.0; - fDriftVel[0] = fDriftVel[1] = 0.0; - fMapA2 = 0; + //Inputs: + // none. + // Outputs: + // none. + // Return: + // A default construction AliITSsimulationSSD class } //---------------------------------------------------------------------- -AliITSsimulationSSD::AliITSsimulationSSD(AliITSsegmentation *seg, - AliITSresponse *resp){ - // Constructor - - fSegmentation = seg; - fResponse = resp; - Float_t noise[2] = {0.,0.}; - fResponse->GetNoiseParam(noise[0],noise[1]); // retrieves noise parameters - fDCS = new AliITSdcsSSD(seg,resp); - - fNstrips = GetSegmentation()->Npx(); - fPitch = GetSegmentation()->Dpx(0); - SetDriftVelocity(); // use default values in .h file - SetIonizeE(); // use default values in .h file - SetDiffConst(); // use default values in .h file - fMapA2 = new AliITSMapA2(fSegmentation); +AliITSsimulationSSD::AliITSsimulationSSD(AliITSDetTypeSim* dettyp): +AliITSsimulation(dettyp), +//fDCS(0), +fMapA2(0), +fIonE(0.0), +fDifConst(), +fDriftVel(), +fTimeResponse(NULL), +fLorentz(kFALSE), +fTanLorAngP(0), +fTanLorAngN(0) +{ + // Constructor + // Input: + // AliITSDetTypeSim Pointer to the SSD dettype to be used + // Outputs: + // none. + // Return + // A standard constructed AliITSsimulationSSD class + + fTimeResponse = new TF1("ftimeresponse",".5*x*exp(1.-.5*x)"); + Init(); +} +//---------------------------------------------------------------------- +void AliITSsimulationSSD::Init(){ + // Inilizer, Inilizes all of the variable as needed in a standard place. + // Input: + // AliITSsegmentationSSD *seg Pointer to the SSD segmentation to be used + // AliITSCalibrationSSD *resp Pointer to the SSD responce class to be used + // Outputs: + // none. + // Return + // none. + AliITSsegmentationSSD* seg = (AliITSsegmentationSSD*)GetSegmentationModel(2); + AliITSSimuParam* simpar = fDetType->GetSimuParam(); + + SetDriftVelocity(); // use default values in .h file + SetIonizeE(); // use default values in .h file + SetDiffConst(); // use default values in .h file + fpList = new AliITSpList(2,GetNStrips()); + fMapA2 = new AliITSMapA2(seg); + SetLorentzDrift(simpar->GetSSDLorentzDrift()); + if (fLorentz) SetTanLorAngle(); +} + +//______________________________________________________________________ +Bool_t AliITSsimulationSSD::SetTanLorAngle() { + // This function set the Tangent of the Lorentz angles. + // output: Bool_t : kTRUE in case of success + // + + if(!fDetType) { + AliError("AliITSsimulationSPD::SetTanLorAngle: AliITSDetTypeSim* fDetType not set "); + return kFALSE;} + + AliITSSimuParam* simpar = fDetType->GetSimuParam(); + AliMagF* fld = (AliMagF*)TGeoGlobalMagField::Instance()->GetField(); + if (!fld) AliFatal("The field is not initialized"); + Double_t bz = fld->SolenoidField(); + + fTanLorAngN = TMath::Tan( simpar->LorentzAngleElectron(bz) ); + fTanLorAngP = TMath::Tan( simpar->LorentzAngleHole(bz) ); + + return kTRUE; } + //______________________________________________________________________ AliITSsimulationSSD& AliITSsimulationSSD::operator=( - const AliITSsimulationSSD &s){ - // Operator = - - if(this==&s) return *this; - - this->fDCS = new AliITSdcsSSD(*(s.fDCS)); - this->fMapA2 = s.fMapA2; - this->fNstrips = s.fNstrips; - this->fPitch = s.fPitch; - this->fIonE = s.fIonE; - this->fDifConst[0] = s.fDifConst[0]; - this->fDifConst[1] = s.fDifConst[1]; - this->fDriftVel[0] = s.fDriftVel[0]; - this->fDriftVel[1] = s.fDriftVel[1]; - return *this; + const AliITSsimulationSSD &s){ + // Operator = + + if(this==&s) return *this; + + // this->fDCS = new AliITSdcsSSD(*(s.fDCS)); + this->fMapA2 = s.fMapA2; + this->fIonE = s.fIonE; + this->fDifConst[0] = s.fDifConst[0]; + this->fDifConst[1] = s.fDifConst[1]; + this->fDriftVel[0] = s.fDriftVel[0]; + this->fDriftVel[1] = s.fDriftVel[1]; + this->fTimeResponse = s.fTimeResponse; + this->fLorentz = s.fLorentz; + this->fTanLorAngP = s.fTanLorAngP; + this->fTanLorAngN = s.fTanLorAngN; + return *this; } +/* //______________________________________________________________________ -AliITSsimulationSSD::AliITSsimulationSSD(const AliITSsimulationSSD &source){ - // copy constructor +AliITSsimulation& AliITSsimulationSSD::operator=( + const AliITSsimulation &s){ + // Operator = - *this = source; + if(this==&s) return *this; + Error("AliITSsimulationSSD","Not allowed to make a = with " + "AliITSsimulationSSD Using default creater instead"); + + return *this; +} +*/ +//______________________________________________________________________ +AliITSsimulationSSD::AliITSsimulationSSD(const AliITSsimulationSSD &source): + AliITSsimulation(source), +fMapA2(source.fMapA2), +fIonE(source.fIonE), +fDifConst(), +fDriftVel(), +fTimeResponse(source.fTimeResponse), +fLorentz(source.fLorentz), +fTanLorAngP(source.fTanLorAngP), +fTanLorAngN(source.fTanLorAngN) +{ + // copy constructor + fDifConst[0] = source.fDifConst[0]; + fDifConst[1] = source.fDifConst[1]; + fDriftVel[0] = source.fDriftVel[0]; + fDriftVel[1] = source.fDriftVel[1]; } //______________________________________________________________________ AliITSsimulationSSD::~AliITSsimulationSSD() { - // destructor - delete fMapA2; - delete fDCS; + // destructor + delete fMapA2; + delete fTimeResponse; + //delete fDCS; } //______________________________________________________________________ -void AliITSsimulationSSD::DigitiseModule(AliITSmodule *mod,Int_t module, - Int_t dummy) { - // Digitizes hits for one SSD module - - Int_t lay, lad, detect; - AliITS *aliITS = (AliITS*)gAlice->GetModule("ITS"); - AliITSgeom *geom = aliITS->GetITSgeom(); - geom->GetModuleId(module,lay, lad, detect); - if ( lay == 6 ) GetSegmentation()->SetLayer(6); - if ( lay == 5 ) GetSegmentation()->SetLayer(5); - - TObjArray *hits = mod->GetHits(); - Int_t nhits = hits->GetEntriesFast(); - if (!nhits) return; +void AliITSsimulationSSD::InitSimulationModule(Int_t module,Int_t event){ + // Creates maps to build the list of tracks for each sumable digit + // Inputs: + // Int_t module // Module number to be simulated + // Int_t event // Event number to be simulated + // Outputs: + // none. + // Return + // none. + + SetModuleNumber(module); + SetEventNumber(event); + fMapA2->ClearMap(); + fpList->ClearMap(); +} +//______________________________________________________________________ +void AliITSsimulationSSD::FinishSDigitiseModule(){ + // Does the Sdigits to Digits work + // Inputs: + // none. + // Outputs: + // none. + // Return: + // none. + + FillMapFrompList(fpList); // need to check if needed here or not???? + SDigitToDigit(fModule,fpList); + fpList->ClearMap(); + fMapA2->ClearMap(); +} +//______________________________________________________________________ +void AliITSsimulationSSD::DigitiseModule(AliITSmodule *mod,Int_t,Int_t) { + // Digitizes hits for one SSD module + SetModuleNumber(mod->GetIndex()); - Double_t x0=0.0, y0=0.0, z0=0.0; - Double_t x1=0.0, y1=0.0, z1=0.0; - Double_t de=0.0; - Int_t maxNdigits = 2*fNstrips; - Float_t **pList = new Float_t* [maxNdigits]; - memset(pList,0,sizeof(Float_t*)*maxNdigits); - Int_t indexRange[4] = {0,0,0,0}; - static Bool_t first = kTRUE; - Int_t lasttrack = -2; - Int_t idtrack = -2; - - for(Int_t i=0; iLineSegmentL(i, x0, x1, y0, y1, z0, z1, de, idtrack)) { - HitToDigit(module, x0, y0, z0, x1, y1, z1, de, indexRange, first); - - if (lasttrack != idtrack || i==(nhits-1)) { - GetList(idtrack,pList,indexRange); - first=kTRUE; - } // end if - lasttrack=idtrack; - } // end if - } // end loop over hits + HitsToAnalogDigits(mod,fpList); + SDigitToDigit(GetModuleNumber(),fpList); - ApplyNoise(); - ApplyCoupling(); + fpList->ClearMap(); + fMapA2->ClearMap(); +} +//______________________________________________________________________ +void AliITSsimulationSSD::SDigitiseModule(AliITSmodule *mod,Int_t,Int_t) { + // Produces Summable/Analog digits and writes them to the SDigit tree. - ChargeToSignal(pList); + HitsToAnalogDigits(mod,fpList); + WriteSDigits(fpList); + + fpList->ClearMap(); fMapA2->ClearMap(); } +//______________________________________________________________________ +void AliITSsimulationSSD::SDigitToDigit(Int_t module,AliITSpList *pList){ + // Takes the pList and finishes the digitization. + + ApplyNoise(pList,module); + ApplyCoupling(pList,module); + ApplyDeadChannels(module); + + ChargeToSignal(module,pList); +} +//______________________________________________________________________ +void AliITSsimulationSSD::HitsToAnalogDigits(AliITSmodule *mod, + AliITSpList *pList){ + // Loops over all hits to produce Analog/floating point digits. This + // is also the first task in producing standard digits. + Int_t lasttrack = -2; + Int_t idtrack = -2; + Double_t x0=0.0, y0=0.0, z0=0.0; + Double_t x1=0.0, y1=0.0, z1=0.0; + Double_t de=0.0; + Int_t module = mod->GetIndex(); + Double_t tof = 0.; + + + AliITSsegmentationSSD* seg = (AliITSsegmentationSSD*)GetSegmentationModel(2); + + TObjArray *hits = mod->GetHits(); + Int_t nhits = hits->GetEntriesFast(); + if (nhits<=0) return; + AliITSTableSSD * tav = new AliITSTableSSD(GetNStrips()); + module = mod->GetIndex(); + if ( mod->GetLayer() == 6 ) seg->SetLayer(6); + if ( mod->GetLayer() == 5 ) seg->SetLayer(5); + + for(Int_t i=0; iGetHit(i)->GetXL() << " "<GetHit(i)->GetYL(); + cout << " " << mod->GetHit(i)->GetZL(); + cout << endl; + } // end if + if (mod->LineSegmentL(i, x0, x1, y0, y1, z0, z1, de, idtrack)) { + + // Scale down dE/dx according to the hit's TOF wrt to the trigger + // Necessary for pileup simulation + // EF - 21/04/09 + tof = mod->GetHit(i)->GetTOF(); + tof *= 1.E+6; // convert time in microsecond + if(tof<2.) de = de * fTimeResponse->Eval(-1.*tof+2.); + else de = 0.; + // + + HitToDigit(module, x0, y0, z0, x1, y1, z1, de,tav); + if (lasttrack != idtrack || i==(nhits-1)) { + GetList(idtrack,i,module,pList,tav); + } // end if + lasttrack=idtrack; + } // end if + } // end loop over hits + delete tav; tav=0; + return; +} //---------------------------------------------------------------------- void AliITSsimulationSSD::HitToDigit(Int_t module, Double_t x0, Double_t y0, - Double_t z0, Double_t x1, Double_t y1, - Double_t z1, Double_t de, - Int_t *indexRange, Bool_t first) { - // Turns hits in SSD module into one or more digits. - - Float_t tang[2] = {0.0,0.0}; - GetSegmentation()->Angles(tang[0], tang[1]);//stereo<<->tan(stereo)~=stereo - Double_t x, y, z; - Double_t dex=0.0, dey=0.0, dez=0.0; - Double_t pairs; // pair generation energy per step. - Double_t sigma[2] = {0.,0.};// standard deviation of the diffusion gaussian - Double_t tdrift[2] = {0.,0.}; // time of drift - Double_t w; - Double_t inf[2], sup[2], par0[2]; - - // Steps in the module are determined "manually" (i.e. No Geant) - // NumOfSteps divide path between entering and exiting hits in steps - Int_t numOfSteps = NumOfSteps(x1, y1, z1, dex, dey, dez); + Double_t z0, Double_t x1, Double_t y1, + Double_t z1, Double_t de, + AliITSTableSSD *tav) { + + // hit to digit conversion - // Enery loss is equally distributed among steps - de = de/numOfSteps; - pairs = de/GetIonizeE(); // e-h pairs generated - - for(Int_t j=0; j (GetSegmentation()->Dy()/2+10)*1.0E-4 ) { - // check if particle is within the detector - cout<<"AliITSsimulationSSD::HitToDigit: Warning: hit " - "out of detector y0,y,dey,j =" - <Dy()*1.0E-4)/2)/GetDriftVelocity(0); - tdrift[1] = ((GetSegmentation()->Dy()*1.0E-4)/2-y)/GetDriftVelocity(1); - - for(Int_t k=0; k<2; k++) { // both sides remember: 0=Pside 1=Nside - - tang[k]=TMath::Tan(tang[k]); - - // w is the coord. perpendicular to the strips - if(k==0) { - w = (x+(GetSegmentation()->Dx()*1.0E-4)/2) - - (z+(GetSegmentation()->Dz()*1.0E-4)/2)*tang[k]; - }else{ - w = (x+(GetSegmentation()->Dx()*1.0E-4)/2) + - (z-(GetSegmentation()->Dz()*1.0E-4)/2)*tang[k]; - } // end if - w = w / (fPitch*1.0E-4); // w is converted in units of pitch - - if((w<(-0.5)) || (w>(fNstrips-0.5))) { - // this check rejects hits in regions not covered by strips - // 0.5 takes into account boundaries - if(k==0) cout<<"AliITSsimulationSSD::HitToDigit: " - "Warning: no strip in this region of P side" - <Angles(tang[0], tang[1]);//stereo<<->tan(stereo)~=stereo + Double_t x, y, z; + Double_t dex=0.0, dey=0.0, dez=0.0; + Double_t pairs; // pair generation energy per step. + Double_t sigma[2] = {0.,0.};// standard deviation of the diffusion gaussian + Double_t tdrift[2] = {0.,0.}; // time of drift + Double_t w; + Double_t inf[2], sup[2], par0[2]; + + // Set up corrections for Lorentz drift (ExB) + Double_t TanLorAngP = fTanLorAngP; + Double_t TanLorAngN = fTanLorAngN; + if(seg->GetLayer()==6) { + TanLorAngP = -1.*fTanLorAngP; + TanLorAngN = -1.*fTanLorAngN; + } + + // Steps in the module are determined "manually" (i.e. No Geant) + // NumOfSteps divide path between entering and exiting hits in steps + Int_t numOfSteps = NumOfSteps(x1, y1, z1, dex, dey, dez); + // Enery loss is equally distributed among steps + de = de/numOfSteps; + pairs = de/GetIonizeE(); // e-h pairs generated + + //----------------------------------------------------- + // stepping + //----------------------------------------------------- + for(Int_t j=0; j (seg->Dy()/2+10)*1.0E-4 ) { + // check if particle is within the detector + Warning("HitToDigit", + "hit out of detector y0=%e,y=%e,dey=%e,j =%d module=%d, exceed=%e", + y0,y,dey,j,module, y-(seg->Dy()/2+10)*1.0E-4); + return; + } // end if + z = z0 + (j+0.5)*dez; + + if(GetDebug(4)) cout <<"HitToDigit "<GetLayer()==6) { + y=-y; // Lay6 module has sensor up-side-down!!! + } + + Int_t k; + //--------------------------------------------------------- + // Pside + //------------------------------------------------------------ + k=0; + + // w is the coord. perpendicular to the strips + // Float_t xp=x*1.e+4,zp=z*1.e+4; // microns + Float_t xp=x,zp=z; + + // correction for the Lorentz's angle + if(fLorentz) { + Float_t deltaxp = (y+(seg->Dy()*1.0E-4)/2)*TanLorAngP; + xp+=deltaxp; + } + + seg->GetPadTxz(xp,zp); + + // calculate drift time + // y is the minimum path + tdrift[0] = (y+(seg->Dy()*1.0E-4)/2)/GetDriftVelocity(0); + + w = xp; // P side strip number + + if((w<(-0.5)) || (w>(GetNStrips()-0.5))) { + // this check rejects hits in regions not covered by strips + // 0.5 takes into account boundaries + if(GetDebug(4)) cout << "Dead SSD region, x,z="<Dy()*1.0E-4)/2-y)*TanLorAngN; + xp+=deltaxn; + } + + + seg->GetPadTxz(xp,zp); + + tdrift[1] = ((seg->Dy()*1.0E-4)/2-y)/GetDriftVelocity(1); + + //tang[k]=TMath::Tan(tang[k]); + + w = zp; // N side strip number + + if((w<(-0.5)) || (w>(GetNStrips()-0.5))) { + // this check rejects hits in regions not covered by strips + // 0.5 takes into account boundaries + if(GetDebug(4)) cout << "Dead SSD region, x,z="<Gaus(0,res->GetNoiseP(ix)); + + // need to calibrate noise + // NOTE. noise from the calibration database comes uncalibrated, + // it needs to be calibrated in order to be added + // to the signal. It will be decalibrated later on together with the noise + noise *= (Double_t) res->GetGainP(ix); + + // noise comes in ADC channels from the calibration database + // It needs to be converted back to electronVolts + noise /= res->GetSSDDEvToADC(1.); + + // Finally, noise is added to the signal + signal = noise + fMapA2->GetSignal(0,ix);//get signal from map + fMapA2->SetHit(0,ix,signal); // give back signal to map + if(signal>0.0) pList->AddNoise(0,ix,module,noise); + } // loop over strip + + // Nside + for(ix=0;ixGaus(0,res->GetNoiseN(ix));// give noise to signal + noise *= (Double_t) res->GetGainN(ix); + noise /= res->GetSSDDEvToADC(1.); + signal = noise + fMapA2->GetSignal(1,ix);//get signal from map + fMapA2->SetHit(1,ix,signal); // give back signal to map + if(signal>0.0) pList->AddNoise(1,ix,module,noise); + } // loop over strip - Double_t signal; - Double_t noise[2] = {0.,0.}; - Float_t a,b; - fResponse->GetNoiseParam(a,b); // retrieves noise parameters - noise[0] = (Double_t) a; noise[1] = (Double_t) b; - for(Int_t k=0;k<2;k++){ // both sides (0=Pside, 1=Nside) - for(Int_t ix=0;ixGetSignal(k,ix); // retrieves signal from map - signal += gRandom->Gaus(0,noise[k]);// add noise to signal - if(signal<0.) signal=0.0; // in case noise is negative... - fMapA2->SetHit(k,ix,signal); // give back signal to map - } // loop over strip - } // loop over k (P or N side) } //______________________________________________________________________ -void AliITSsimulationSSD::ApplyCoupling() { - // Apply the effect of electronic coupling between channels - Double_t signalLeft=0, signalRight=0; - - for(Int_t ix=0;ix0.)signalLeft = fMapA2->GetSignal(0,ix-1)*fDCS->GetCouplingPL(); - else signalLeft = 0.0; - if(ix<(fNstrips-1)) signalRight = fMapA2->GetSignal(0,ix+1)* - fDCS->GetCouplingPR(); - else signalRight = 0.0; - fMapA2->AddSignal(0,ix,signalLeft + signalRight); +void AliITSsimulationSSD::ApplyCoupling(AliITSpList *pList,Int_t module) { + // Apply the effect of electronic coupling between channels + Int_t ix; + Double_t signal=0; + //AliITSCalibrationSSD* res =(AliITSCalibrationSSD*)GetCalibrationModel(module); + AliITSSimuParam* res = fDetType->GetSimuParam(); - if(ix>0.) signalLeft = fMapA2->GetSignal(1,ix-1)*fDCS->GetCouplingNL(); - else signalLeft = 0.0; - if(ix<(fNstrips-1)) signalRight = fMapA2->GetSignal(1,ix+1)* - fDCS->GetCouplingNR(); - else signalRight = 0.0; - fMapA2->AddSignal(1,ix,signalLeft + signalRight); - } // loop over strips + Double_t *contrLeft = new Double_t[GetNStrips()]; + Double_t *contrRight = new Double_t[GetNStrips()]; + + // P side coupling + for(ix=0;ix0) contrLeft[ix] = fMapA2->GetSignal(0,ix-1)*res->GetSSDCouplingPL(); + else contrLeft[ix] = 0.0; + if(ix<(GetNStrips()-1)) contrRight[ix] = fMapA2->GetSignal(0,ix+1)*res->GetSSDCouplingPR(); + else contrRight[ix] = 0.0; + } // loop over strips + + for(ix=0;ixGetSSDCouplingPL() * fMapA2->GetSignal(0,ix) + - res->GetSSDCouplingPR() * fMapA2->GetSignal(0,ix); + fMapA2->AddSignal(0,ix,signal); + if(signal>0.0) pList->AddNoise(0,ix,module,signal); + } // loop over strips + + // N side coupling + for(ix=0;ix0) contrLeft[ix] = fMapA2->GetSignal(1,ix-1)*res->GetSSDCouplingNL(); + else contrLeft[ix] = 0.0; + if(ix<(GetNStrips()-1)) contrRight[ix] = fMapA2->GetSignal(1,ix+1)*res->GetSSDCouplingNR(); + else contrRight[ix] = 0.0; + } // loop over strips + + for(ix=0;ixGetSSDCouplingNL() * fMapA2->GetSignal(0,ix) + - res->GetSSDCouplingNR() * fMapA2->GetSignal(0,ix); + fMapA2->AddSignal(1,ix,signal); + if(signal>0.0) pList->AddNoise(1,ix,module,signal); + } // loop over strips + + + delete [] contrLeft; + delete [] contrRight; +} + +//______________________________________________________________________ +void AliITSsimulationSSD::ApplyDeadChannels(Int_t module) { + // Kill dead channels setting gain to zero + + AliITSCalibrationSSD* res = (AliITSCalibrationSSD*)GetCalibrationModel(module); + + for(Int_t i=0;iIsPChannelBad(i)) res->SetGainP(i,0.0); + if(res->IsNChannelBad(i)) res->SetGainN(i,0.0); + + } // loop over strips + } + //______________________________________________________________________ Float_t AliITSsimulationSSD::F(Float_t av, Float_t x, Float_t s) { // Computes the integral of a gaussian using Error Function @@ -284,14 +587,14 @@ Float_t AliITSsimulationSSD::F(Float_t av, Float_t x, Float_t s) { Float_t sigm2 = sqrt2*s; Float_t integral; - integral = 0.5 * TMath::Erf( (x - av) / sigm2); + integral = 0.5 * AliMathBase::ErfFast( (x - av) / sigm2); return integral; } //______________________________________________________________________ void AliITSsimulationSSD::IntegrateGaussian(Int_t k,Double_t par, Double_t w, - Double_t sigma, - Double_t inf, Double_t sup, - Int_t *indexRange, Bool_t first) { + Double_t sigma, + Double_t inf, Double_t sup, + AliITSTableSSD *tav) { // integrate the diffusion gaussian // remind: inf and sup are w-3sigma and w+3sigma // we could define them here instead of passing them @@ -303,90 +606,71 @@ void AliITSsimulationSSD::IntegrateGaussian(Int_t k,Double_t par, Double_t w, // Watch that we only involve at least two strips // Numbers greater than 2 of strips in a cluster depend on // geometry of the track and delta rays, not charge diffusion! - - Double_t strip = TMath::Floor(w); // clostest strip on the left - - if ( TMath::Abs((strip - w)) < 0.5) { - // gaussian mean is closer to strip on the left - a = inf; // integration starting point - if((strip+0.5)<=sup) { - // this means that the tail of the gaussian goes beyond - // the middle point between strips ---> part of the signal - // is given to the strip on the right - b = strip + 0.5; // integration stopping point - dXCharge1 = F( w, b, sigma) - F(w, a, sigma); - dXCharge2 = F( w, sup, sigma) - F(w ,b, sigma); - }else { - // this means that all the charge is given to the strip on the left - b = sup; - dXCharge1 = 0.9973; // gaussian integral at 3 sigmas - dXCharge2 = 0.0; - } // end if - - dXCharge1 = par * dXCharge1;// normalize by mean of number of carriers - dXCharge2 = par * dXCharge2; - - // for the time being, signal is the charge - // in ChargeToSignal signal is converted in ADC channel - fMapA2->AddSignal(k,strip,dXCharge1); - if(((Int_t) strip) < (fNstrips-1)) { - // strip doesn't have to be the last (remind: last=fNstrips-1) - // otherwise part of the charge is lost - fMapA2->AddSignal(k,(strip+1),dXCharge2); - } // end if - - if(dXCharge1 > 1.) { - if (first) { - indexRange[k*2+0] = indexRange[k*2+1]=(Int_t) strip; - first=kFALSE; - } // end if first - indexRange[k*2+0]=TMath::Min(indexRange[k*2+0],(Int_t) strip); - indexRange[k*2+1]=TMath::Max(indexRange[k*2+1],(Int_t) strip); - } // dXCharge > 1 e- + Double_t strip = TMath::Floor(w); // closest strip on the left + if ( TMath::Abs((strip - w)) < 0.5) { + // gaussian mean is closer to strip on the left + a = inf; // integration starting point + if((strip+0.5)<=sup) { + // this means that the tail of the gaussian goes beyond + // the middle point between strips ---> part of the signal + // is given to the strip on the right + b = strip + 0.5; // integration stopping point + dXCharge1 = F( w, b, sigma) - F(w, a, sigma); + dXCharge2 = F( w, sup, sigma) - F(w ,b, sigma); + }else { + // this means that all the charge is given to the strip on the left + b = sup; + dXCharge1 = 0.9973; // gaussian integral at 3 sigmas + dXCharge2 = 0.0; + } // end if + dXCharge1 = par * dXCharge1;// normalize by mean of number of carriers + dXCharge2 = par * dXCharge2; + + // for the time being, signal is the charge + // in ChargeToSignal signal is converted in ADC channel + fMapA2->AddSignal(k,(Int_t)strip,dXCharge1); + tav->Add(k,(Int_t)strip); + if(((Int_t) strip) < (GetNStrips()-1)) { + // strip doesn't have to be the last (remind: last=GetNStrips()-1) + // otherwise part of the charge is lost + fMapA2->AddSignal(k,((Int_t)strip+1),dXCharge2); + tav->Add(k,((Int_t)(strip+1))); + } // end if }else{ - // gaussian mean is closer to strip on the right - strip++; // move to strip on the rigth - b = sup; // now you know where to stop integrating - if((strip-0.5)>=inf) { - // tail of diffusion gaussian on the left goes left of - // middle point between strips - a = strip - 0.5; // integration starting point - dXCharge1 = F(w, b, sigma) - F(w, a, sigma); - dXCharge2 = F(w, a, sigma) - F(w, inf, sigma); - }else { - a = inf; - dXCharge1 = 0.9973; // gaussian integral at 3 sigmas - dXCharge2 = 0.0; - } // end if - - dXCharge1 = par * dXCharge1; // normalize by means of carriers - dXCharge2 = par * dXCharge2; - - // for the time being, signal is the charge - // in ChargeToSignal signal is converted in ADC channel - fMapA2->AddSignal(k,strip,dXCharge1); - if(((Int_t) strip) > 0) { - // strip doesn't have to be the first - // otherwise part of the charge is lost - fMapA2->AddSignal(k,(strip-1),dXCharge2); - } // end if - - if(dXCharge1 > 1.) { - if (first) { - indexRange[k*2+0]=indexRange[k*2+1]=(Int_t) strip; - first=kFALSE; - } // end if first - - indexRange[k*2+0]=TMath::Min(indexRange[k*2+0],(Int_t) strip); - indexRange[k*2+1]=TMath::Max(indexRange[k*2+1],(Int_t) strip); - } // dXCharge > 1 e- + // gaussian mean is closer to strip on the right + strip++; // move to strip on the rigth + b = sup; // now you know where to stop integrating + if((strip-0.5)>=inf) { + // tail of diffusion gaussian on the left goes left of + // middle point between strips + a = strip - 0.5; // integration starting point + dXCharge1 = F(w, b, sigma) - F(w, a, sigma); + dXCharge2 = F(w, a, sigma) - F(w, inf, sigma); + }else { + a = inf; + dXCharge1 = 0.9973; // gaussian integral at 3 sigmas + dXCharge2 = 0.0; + } // end if + dXCharge1 = par * dXCharge1; // normalize by means of carriers + dXCharge2 = par * dXCharge2; + // for the time being, signal is the charge + // in ChargeToSignal signal is converted in ADC channel + fMapA2->AddSignal(k,(Int_t)strip,dXCharge1); + tav->Add(k,(Int_t)strip); + if(((Int_t) strip) > 0) { + // strip doesn't have to be the first + // otherwise part of the charge is lost + fMapA2->AddSignal(k,((Int_t)strip-1),dXCharge2); + tav->Add(k,((Int_t)(strip-1))); + } // end if } // end if } //______________________________________________________________________ Int_t AliITSsimulationSSD::NumOfSteps(Double_t x, Double_t y, Double_t z, - Double_t & dex,Double_t & dey,Double_t & dez){ + Double_t &dex,Double_t &dey, + Double_t &dez){ // number of steps // it also returns steps for each coord //AliITSsegmentationSSD *seg = new AliITSsegmentationSSD(); @@ -396,136 +680,135 @@ Int_t AliITSsimulationSSD::NumOfSteps(Double_t x, Double_t y, Double_t z, Int_t numOfSteps = (Int_t) (TMath::Sqrt(x*x+y*y+z*z)/step); if (numOfSteps < 1) numOfSteps = 1; // one step, at least + //numOfSteps=1; // we could condition the stepping depending on the incident angle // of the track dex = x/numOfSteps; dey = y/numOfSteps; dez = z/numOfSteps; - + return numOfSteps; } //---------------------------------------------------------------------- -void AliITSsimulationSSD::GetList(Int_t label,Float_t **pList, - Int_t *indexRange) { +void AliITSsimulationSSD::GetList(Int_t label,Int_t hit,Int_t mod, + AliITSpList *pList,AliITSTableSSD *tav) { // loop over nonzero digits - Int_t ix,globalIndex; - Float_t signal=0.; - Float_t highest,middle,lowest; + Int_t ix,i; + Double_t signal=0.; for(Int_t k=0; k<2; k++) { - for(ix=indexRange[k*2+0];ixGetSignal(k,ix); - - globalIndex = k*fNstrips+ix; // globalIndex starts from 0! - if(!pList[globalIndex]){ - // - //Create new list (6 elements-3 signals and 3 tracks+total sig) - // - pList[globalIndex] = new Float_t [6]; - // set list to -1 - *pList[globalIndex] = -2.; - *(pList[globalIndex]+1) = -2.; - *(pList[globalIndex]+2) = -2.; - *(pList[globalIndex]+3) = 0.; - *(pList[globalIndex]+4) = 0.; - *(pList[globalIndex]+5) = 0.; - *pList[globalIndex] = (float)label; - *(pList[globalIndex]+3) = signal; - }else{ - // check the signal magnitude - highest = *(pList[globalIndex]+3); - middle = *(pList[globalIndex]+4); - lowest = *(pList[globalIndex]+5); - signal -= (highest+middle+lowest); - // - // compare the new signal with already existing list - // - if(signalhighest){ - *(pList[globalIndex]+5) = middle; - *(pList[globalIndex]+4) = highest; - *(pList[globalIndex]+3) = signal; - *(pList[globalIndex]+2) = *(pList[globalIndex]+1); - *(pList[globalIndex]+1) = *pList[globalIndex]; - *pList[globalIndex] = label; - }else if (signal>middle){ - *(pList[globalIndex]+5) = middle; - *(pList[globalIndex]+4) = signal; - *(pList[globalIndex]+2) = *(pList[globalIndex]+1); - *(pList[globalIndex]+1) = label; - }else{ - *(pList[globalIndex]+5) = signal; - *(pList[globalIndex]+2) = label; - } // end if - } // end if - } // end of loop pixels in x - } // end of loop over pixels in z + ix=tav->Use(k); + while(ix>-1){ + signal = fMapA2->GetSignal(k,ix); + if(signal==0.0) { + ix=tav->Use(k); + continue; + } // end if signal==0.0 + // check the signal magnitude + for(i=0;iGetNSignals(k,ix);i++){ + signal -= pList->GetTSignal(k,ix,i); + } // end for i + // compare the new signal with already existing list + if(signal>0)pList->AddSignal(k,ix,label,hit,mod,signal); + ix=tav->Use(k); + } // end of loop on strips + } // end of loop on P/N side + tav->Clear(); } //---------------------------------------------------------------------- -void AliITSsimulationSSD::ChargeToSignal(Float_t **pList) { +void AliITSsimulationSSD::ChargeToSignal(Int_t module,AliITSpList *pList) { // charge to signal - AliITS *aliITS = (AliITS*)gAlice->GetModule("ITS"); + static AliITS *aliITS = (AliITS*)gAlice->GetModule("ITS"); Float_t threshold = 0.; - Int_t digits[3], tracks[3],hits[3],gi,j1; - Float_t charges[3]; - Float_t signal,phys; - Float_t noise[2] = {0.,0.}; + Int_t size = AliITSdigitSSD::GetNTracks(); + Int_t * digits = new Int_t[size]; + Int_t * tracks = new Int_t[size]; + Int_t * hits = new Int_t[size]; + Int_t j1; + Float_t charges[3] = {0.0,0.0,0.0}; + Float_t signal; + AliITSCalibrationSSD* res =(AliITSCalibrationSSD*)GetCalibrationModel(module); + AliITSSimuParam* simpar = fDetType->GetSimuParam(); - fResponse->GetNoiseParam(noise[0],noise[1]); - for(Int_t k=0;k<2;k++){ // both sides (0=Pside, 1=Nside) - - // Threshold for zero-suppression - // It can be defined in AliITSresponseSSD - // threshold = (Float_t)fResponse->MinVal(k); - // I prefer to think adjusting the threshold "manually", looking - // at the scope, and considering noise standard deviation - threshold = 4.0*noise[k]; // 4 times noise is a choice - for(Int_t ix=0;ixGetSignal(k,ix); - gi =k*fNstrips+ix; // global index - if (signal > threshold) { - digits[0]=k; - digits[1]=ix; - - // convert to ADC signal - // conversion factor are rather arbitrary (need tuning) - // minimum ionizing particle--> ~30000 pairs--> ADC channel 50 - signal = signal*50.0/30000.0; - if(signal>1000.) signal = 1000.0;//if exceeding, accumulate - // last one - digits[2]=(Int_t) signal; - for(j1=0;j1<3;j1++){ - if (pList[gi]) { - tracks[j1] = (Int_t)(*(pList[gi]+j1)); - } else { - tracks[j1]=-2; //noise - } // end if pList - charges[j1] = 0; - } // end for j1 - - phys=0; - - hits[0]=0; - hits[1]=0; - hits[2]=0; - // finally add digit - aliITS->AddSimDigit(2,phys,digits,tracks,hits,charges); - } // end if signal > threshold - if(pList[gi]) delete [] pList[gi]; - } // end for ix + for(Int_t ix=0;ix gain=0 + if( ((k==0)&&(res->GetGainP(ix)==0)) || ((k==1)&&(res->GetGainN(ix)==0))) continue; + + signal = fMapA2->GetSignal(k,ix); + // signal has to be uncalibrated + // In real life, gains are supposed to be calculated from calibration runs, + // stored in the calibration DB and used in the reconstruction + // (see AliITSClusterFinderSSD.cxx) + if(k==0) signal /= res->GetGainP(ix); + else signal /= res->GetGainN(ix); + + // signal is converted in unit of ADC + signal = res->GetSSDDEvToADC(signal); + if(signal>4095.) signal = 4095.;//if exceeding, accumulate last one + + // threshold for zero suppression is set on the basis of the noise + // A good value is 3*sigma_noise + if(k==0) threshold = res->GetNoiseP(ix); + else threshold = res->GetNoiseN(ix); + + threshold *= simpar->GetSSDZSThreshold(); // threshold at 3 sigma noise + + if(signal < threshold) continue; + //cout<GetNEntries()){ + // only three in digit. + tracks[j1] = pList->GetTrack(k,ix,j1); + hits[j1] = pList->GetHit(k,ix,j1); + }else{ + tracks[j1] = -3; + hits[j1] = -1; + } // end for j1 + // finally add digit + aliITS->AddSimDigit(2,0,digits,tracks,hits,charges); + } // end for ix } // end for k - delete [] pList; + delete [] digits; + delete [] tracks; + delete [] hits; +} +//______________________________________________________________________ +void AliITSsimulationSSD::WriteSDigits(AliITSpList *pList){ + // Fills the Summable digits Tree + Int_t i,ni,j,nj; + static AliITS *aliITS = (AliITS*)gAlice->GetModule("ITS"); + + pList->GetMaxMapIndex(ni,nj); + for(i=0;iGetSignalOnly(i,j)>0.0){ + aliITS->AddSumDigit(*(pList->GetpListItem(i,j))); + if(GetDebug(4)) cout << "pListSSD: "<<*(pList->GetpListItem(i,j)) + << endl; + } // end if + } // end for i,j + return; +} +//______________________________________________________________________ +void AliITSsimulationSSD::FillMapFrompList(AliITSpList *pList){ + // Fills fMap2A from the pList of Summable digits + Int_t k,ix; + + for(k=0;k<2;k++)for(ix=0;ixAddSignal(k,ix,pList->GetSignal(k,ix)); + return; } //______________________________________________________________________ void AliITSsimulationSSD::Print(ostream *os){ //Standard output format for this class //AliITSsimulation::Print(os); - *os << fNstrips <<","<< fPitch <<","<< fIonE <<","; + *os << fIonE <<","; *os << fDifConst[0] <<","<< fDifConst[1] <<","; *os << fDriftVel[0] <<","<< fDriftVel[1]; //*os <<","; fDCS->Print(os); @@ -536,7 +819,7 @@ void AliITSsimulationSSD::Read(istream *is){ // Standard output streaming function. //AliITSsimulation::Read(is); - *is >> fNstrips >> fPitch >> fIonE; + *is >> fIonE; *is >> fDifConst[0] >> fDifConst[1]; *is >> fDriftVel[0] >> fDriftVel[1]; //fDCS->Read(is); @@ -556,3 +839,7 @@ istream &operator>>(istream &os,AliITSsimulationSSD &source){ source.Read(&os); return os; } +//______________________________________________________________________ + + +