X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;ds=sidebyside;f=ITS%2FAliITSv11GeometrySPD.cxx;h=9f669647884d3be0c3b2bc2bf98491cecbdba645;hb=2b4460a661242a16f30e5be7346f719cfd2680ed;hp=d015c757751cfca0232f9b8a8ec2c473a430860d;hpb=1b2b32e7592cdff4c2e173a54885728b846472f7;p=u%2Fmrichter%2FAliRoot.git diff --git a/ITS/AliITSv11GeometrySPD.cxx b/ITS/AliITSv11GeometrySPD.cxx index d015c757751..9f669647884 100644 --- a/ITS/AliITSv11GeometrySPD.cxx +++ b/ITS/AliITSv11GeometrySPD.cxx @@ -14,2934 +14,4347 @@ **************************************************************************/ // // This class Defines the Geometry for the ITS services and support cones -// outside of the ceneteral volume (except for the Ceneteral support -// cylinders. Other classes define the rest of the ITS. Specificaly the ITS -// The SSD support cone, SSD Support central cylinder, SDD support cone, -// The SDD cupport central cylinder, the SPD Thermal Sheald, The supports +// outside of the central volume (except for the Central support +// cylinders). Other classes define the rest of the ITS, specifically the +// SSD support cone, the SSD Support central cylinder, the SDD support cone, +// the SDD support central cylinder, the SPD Thermal Shield, The supports // and cable trays on both the RB26 (muon dump) and RB24 sides, and all of // the cabling from the ladders/stave ends out past the TPC. // +// Here is the calling sequence associated with this file +// SPDSector(TGeoVolume *moth,TGeoManager *mgr) +// -----CarbonFiberSector(TGeoVolume *moth,Double_t &xAAtubeCenter0, +// Double_t &yAAtubeCenter0,TGeoManager *mgr) +// -----2* SPDsectorShape(Int_t n,const Double_t *xc,const Double_t *yc, +// | const Double_t *r,const Double_t *ths, +// | const Double_t *the,Int_t npr,Int_t &m, +// | Double_t **xp,Double_t **yp) +// -----StavesInSector(TGeoVolume *moth,TGeoManager *mgr) +// -----3* CreaeStave(Int_t layer,TArrayD &sizes,Bool_t addClips, +// | TGeoManager *mgr) +// | -----2* CreateHalfStave(Boot_t isRight,Int_t layer, +// | Int_t idxCentral,Int_t idxSide, +// | TArrayD &sizes,Bool_t addClips, +// | TGeoManager *mgr) +// | -----CreateGrondingFoil(Bool_t isRight,TArrayD &sizes, +// | | TGeoManager *mgr) +// | | -----4* CreateGroundingFoilSingle(Int_t type, +// | | TArrayD &sizes, +// | | TGeoManger *mgr) +// | |----CreateLadder(Int_t layer, TArrayD &sizes, +// | | TGeoManager *mgr) +// | |----CreateMCM(Bool_t isRight,TArrayD &sizes, +// | | TGeoManger *mgr) +// | |----CreatePixelBus(Bool_t isRight,TArrayD &sizes, +// | | TGeoManager *mgr) +// | -----CreateClip(TArrayD &sizes,TGeoManager *mgr) +// |----GetSectorMountingPoints(Int_t index,Double_t &x0, +// | Double_t &y0,Double_t &x1, +// | Double_t y1) +// -----3* ParallelPosition(Double_t dist1,Double_t dist2, +// Double_t phi,Double_t &x,Double_t &y) +// +// Obsoleate or presently unused routines are: setAddStave(Bool_t *mask), +// CreatePixelBusAndExtensions(...) which calles CreateExtender(...). + +/* $Id$ */ + + +// General Root includes +#include +#include +#include +#include +#include +#include + +// Root Geometry includes +#include +#include +#include +#include +#include +#include +#include // contains TGeoTubeSeg +#include +#include +#include +#include +#include + +// AliRoot includes +#include "AliLog.h" +#include "AliMagF.h" +#include "AliRun.h" + +// Declaration file +#include "AliITSv11GeometrySPD.h" +#include "AliITSv11GeomCableRound.h" + +// Constant definistions +const Double_t AliITSv11GeometrySPD::fgkGapLadder = + AliITSv11Geometry::fgkmicron*75.; // 75 microns +const Double_t AliITSv11GeometrySPD::fgkGapHalfStave = + AliITSv11Geometry::fgkmicron*120.; // 120 microns + +using std::endl; +using std::cout; +using std::ios; +ClassImp(AliITSv11GeometrySPD) +//______________________________________________________________________ +AliITSv11GeometrySPD::AliITSv11GeometrySPD(/*Double_t gap*/): +AliITSv11Geometry(),// Default constructor of base class +fAddStave(), // [DEBUG] must be TRUE for all staves which will be + // mounted in the sector (used to check overlaps) +fSPDsectorX0(0), // X of first edge of sector plane for stave +fSPDsectorY0(0), // Y of first edge of sector plane for stave +fSPDsectorX1(0), // X of second edge of sector plane for stave +fSPDsectorY1(0), // Y of second edge of sector plane for stave +fTubeEndSector() // coordinate of cooling tube ends +{ + // + // Default constructor. + // This does not initialize anything and is provided just for + // completeness. It is recommended to use the other one. + // The alignment gap is specified as argument (default = 0.0075 cm). + // Inputs: + // none. + // Outputs: + // none. + // Return: + // A default constructed AliITSv11GeometrySPD class. + // + Int_t i = 0,j=0,k=0; + + for (i = 0; i < 6; i++) fAddStave[i] = kTRUE; + for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){ + this->fTubeEndSector[k][0][i][j] = 0.0; + this->fTubeEndSector[k][1][i][j] = 0.0; + } // end for i,j +} +//______________________________________________________________________ +AliITSv11GeometrySPD::AliITSv11GeometrySPD(Int_t debug/*, Double_t gap*/): +AliITSv11Geometry(debug),// Default constructor of base class +fAddStave(), // [DEBUG] must be TRUE for all staves which will be + // mounted in the sector (used to check overlaps) +fSPDsectorX0(0), // X of first edge of sector plane for stave +fSPDsectorY0(0), // Y of first edge of sector plane for stave +fSPDsectorX1(0), // X of second edge of sector plane for stave +fSPDsectorY1(0), // Y of second edge of sector plane for stave +fTubeEndSector() // coordinate of cooling tube ends +{ + // + // Constructor with debug setting argument + // This is the constructor which is recommended to be used. + // It sets a debug level, and initializes the name of the object. + // The alignment gap is specified as argument (default = 0.0075 cm). + // Inputs: + // Int_t debug Debug level, 0= no debug output. + // Outputs: + // none. + // Return: + // A default constructed AliITSv11GeometrySPD class. + // + Int_t i = 0,j=0,k=0; + + for (i = 0; i < 6; i++) fAddStave[i] = kTRUE; + for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){ + this->fTubeEndSector[k][0][i][j] = 0.0; + this->fTubeEndSector[k][1][i][j] = 0.0; + } // end for i,j +} +//______________________________________________________________________ +AliITSv11GeometrySPD::AliITSv11GeometrySPD(const AliITSv11GeometrySPD &s): +AliITSv11Geometry(s),// Base Class Copy constructor +fAddStave(), // [DEBUG] must be TRUE for all staves which will be + // mounted in the sector (used to check overlaps) +fSPDsectorX0(s.fSPDsectorX0), // X of first edge of sector plane for stave +fSPDsectorY0(s.fSPDsectorY0), // Y of first edge of sector plane for stave +fSPDsectorX1(s.fSPDsectorX1), // X of second edge of sector plane for stave +fSPDsectorY1(s.fSPDsectorY1) // Y of second edge of sector plane for stave +{ + // + // Copy Constructor + // Inputs: + // AliITSv11GeometrySPD &s source class + // Outputs: + // none. + // Return: + // A copy of a AliITSv11GeometrySPD class. + // + Int_t i=0,j=0,k=0; + + for (i = 0; i < 6; i++) this->fAddStave[i] = s.fAddStave[i]; + for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){ + this->fTubeEndSector[k][0][i][j] = s.fTubeEndSector[k][0][i][j]; + this->fTubeEndSector[k][1][i][j] = s.fTubeEndSector[k][1][i][j]; + } // end for i,j +} +//______________________________________________________________________ +AliITSv11GeometrySPD& AliITSv11GeometrySPD::operator=(const + AliITSv11GeometrySPD &s) +{ + // + // = operator + // Inputs: + // AliITSv11GeometrySPD &s source class + // Outputs: + // none. + // Return: + // A copy of a AliITSv11GeometrySPD class. + // + Int_t i=0,j=0,k=0; + + if(this==&s) return *this; + for (i = 0; i < 6; i++) this->fAddStave[i] = s.fAddStave[i]; + this->fSPDsectorX0=s.fSPDsectorX0; + this->fSPDsectorY0=s.fSPDsectorY0; + this->fSPDsectorX1=s.fSPDsectorX1; + this->fSPDsectorY1=s.fSPDsectorY1; + for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){ + this->fTubeEndSector[k][0][i][j] = s.fTubeEndSector[k][0][i][j]; + this->fTubeEndSector[k][1][i][j] = s.fTubeEndSector[k][1][i][j]; + } // end for i,j + return *this; +} +//______________________________________________________________________ +TGeoMedium* AliITSv11GeometrySPD::GetMedium(const char* mediumName, + const TGeoManager *mgr) const +{ + // + // This function is used to recovery any medium + // used to build the geometry volumes. + // If the required medium does not exists, + // a NULL pointer is returned, and an error message is written. + // + Char_t itsMediumName[30]; + + snprintf(itsMediumName, 30, "ITS_%s", mediumName); + TGeoMedium* medium = mgr->GetMedium(itsMediumName); + if (!medium) AliError(Form("Medium <%s> not found", mediumName)); + + return medium; +} + +//______________________________________________________________________ +void AliITSv11GeometrySPD::SPDSector(TGeoVolume *moth, TGeoManager *mgr) +{ + // + // Creates a single SPD carbon fiber sector and places it + // in a container volume passed as first argument ('moth'). + // Second argument points to the TGeoManager which coordinates + // the overall volume creation. + // The position of the sector is based on distance of + // closest point of SPD stave to beam pipe + // (figures all-sections-modules.ps) of 7.22mm at section A-A. + // + + // Begin_Html + /* + +

The SPD Sector definition. In + HPGL format. + +

The SPD all sector end view with thermal sheald. + +

SPD side view cross section with condes and thermal shealds. +

Cross section A-A. +

Cross updated section A-A. +

Cross section B-B. +

Cross section C-C. +

Cross section D-D. +

Cross section E-E. +

Cross section F-F. +

Cross section G-G. + */ + // End_Html + + // Inputs: + // TGeoVolume *moth Pointer to mother volume where this object + // is to be placed in + // TGeoManager *mgr Pointer to the TGeoManager used, defaule is + // gGeoManager. + // Outputs: + // none. + // Return: + // none. + // Updated values for kSPDclossesStaveAA, kBeamPipeRadius, and + // staveThicknessAA are taken from + // http://physics.mps.ohio-state.edu/~nilsen/ITSfigures/Sezione_layerAA.pdf + // + const Double_t kSPDclossesStaveAA = 7.25* fgkmm; + const Double_t kSectorStartingAngle = -72.0 * fgkDegree; + const Int_t kNSectorsTotal = 10; + const Double_t kSectorRelativeAngle = 36.0 * fgkDegree; // = 360.0 / 10 + const Double_t kBeamPipeRadius = 0.5 * 59.6 * fgkmm; // diam. = 59.6 mm + //const Double_t staveThicknessAA = 0.9 *fgkmm; // nominal thickness + const Double_t staveThicknessAA = 1.02 * fgkmm; // get from stave geometry. + + Int_t i, j, k; + Double_t angle, radiusSector, xAAtubeCenter0, yAAtubeCenter0; + TGeoCombiTrans *secRot = new TGeoCombiTrans(), *comrot; + TGeoVolume *vCarbonFiberSector[10]; + TGeoMedium *medSPDcf; + + // Define an assembly and fill it with the support of + // a single carbon fiber sector and staves in it + medSPDcf = GetMedium("SPD C (M55J)$", mgr); + for(Int_t is=0; is<10; is++) + { + vCarbonFiberSector[is] = new TGeoVolumeAssembly("ITSSPDCarbonFiberSectorV"); + vCarbonFiberSector[is]->SetMedium(medSPDcf); + CarbonFiberSector(vCarbonFiberSector[is], is, xAAtubeCenter0, yAAtubeCenter0, mgr); + } + + // Compute the radial shift out of the sectors + radiusSector = kBeamPipeRadius + kSPDclossesStaveAA + staveThicknessAA; + radiusSector = GetSPDSectorTranslation(fSPDsectorX0.At(1), fSPDsectorY0.At(1), + fSPDsectorX1.At(1), fSPDsectorY1.At(1), radiusSector); + //radiusSector *= radiusSector; // squaring; + //radiusSector -= xAAtubeCenter0 * xAAtubeCenter0; + //radiusSector = -yAAtubeCenter0 + TMath::Sqrt(radiusSector); + + AliDebug(1, Form("SPDSector : radiusSector=%f\n",radiusSector)); + i = 1; + AliDebug(1, Form("i= %d x0=%f y0=%f x1=%f y1=%f\n", i, + fSPDsectorX0.At(i), fSPDsectorY0.At(i), + fSPDsectorX1.At(i),fSPDsectorY1.At(i))); + + // add 10 single sectors, by replicating the virtual sector defined above + // and placing at different angles + Double_t shiftX, shiftY, tub[2][6][3]; + for(i=0;i<2;i++)for(j=0;j<6;j++)for(k=0;k<3;k++) tub[i][j][k] = fTubeEndSector[0][i][j][k]; + angle = kSectorStartingAngle; + secRot->RotateZ(angle); + TGeoVolumeAssembly *vcenteral = new TGeoVolumeAssembly("ITSSPD"); + moth->AddNode(vcenteral, 1, 0); + for(i = 0; i < kNSectorsTotal; i++) { + shiftX = -radiusSector * TMath::Sin(angle/fgkRadian); + shiftY = radiusSector * TMath::Cos(angle/fgkRadian); + //cout << "ANGLE = " << angle << endl; + shiftX += 0.1094 * TMath::Cos((angle + 196.)/fgkRadian); + shiftY += 0.1094 * TMath::Sin((angle + 196.)/fgkRadian); + //shiftX -= 0.105; + //shiftY -= 0.031; + //shiftX -= 0.11 * TMath::Cos(angle/fgkRadian); // add by Alberto + //shiftY -= 0.11 * TMath::Sin(angle/fgkRadian); // don't ask me where that 0.11 comes from! + secRot->SetDx(shiftX); + secRot->SetDy(shiftY); + comrot = new TGeoCombiTrans(*secRot); + vcenteral->AddNode(vCarbonFiberSector[i],i+1,comrot); + for(j=0;j<2;j++)for(k=0;k<6;k++) // Transform Tube ends for each sector + comrot->LocalToMaster(tub[j][k],fTubeEndSector[i][j][k]); + if(GetDebug(5)) { + AliInfo(Form("i=%d angle=%g angle[rad]=%g radiusSector=%g " + "x=%g y=%g \n",i, angle, angle/fgkRadian, + radiusSector, shiftX, shiftY)); + } // end if GetDebug(5) + angle += kSectorRelativeAngle; + secRot->RotateZ(kSectorRelativeAngle); + } // end for i + if(GetDebug(3)) moth->PrintNodes(); + delete secRot; + + CreateCones(moth); + CreateServices(moth); +} +//______________________________________________________________________ +void AliITSv11GeometrySPD::CarbonFiberSector(TGeoVolume *moth, Int_t sect, + Double_t &xAAtubeCenter0, Double_t &yAAtubeCenter0, TGeoManager *mgr) +{ + // The method has been modified in order to build a support sector + // whose shape is dependent on the sector number; the aim is to get + // as close as possible to the shape inferred from alignment + // and avoid as much as possible overlaps generated by alignment. + // + // Define the detail SPD Carbon fiber support Sector geometry. + // Based on the drawings: + /* + http:///QA-construzione-profilo-modulo.ps + */ + // - ALICE-Pixel "Costruzione Profilo Modulo" (march 25 2004) + // - ALICE-SUPPORTO "Costruzione Profilo Modulo" + // --- + // Define outside radii as negative, where "outside" means that the + // center of the arc is outside of the object (feb 16 2004). + // --- + // Arguments [the one passed by ref contain output values]: + // Inputs: + // TGeoVolume *moth the voulme which will contain this object + // TGeoManager *mgr TGeo builder defauls is gGeoManager + // Outputs: + // Double_t &xAAtubeCenter0 (by ref) x location of the outer surface + // of the cooling tube center for tube 0. + // Double_t &yAAtubeCenter0 (by ref) y location of the outer surface + // of the cooling tube center for tube 0. + // Return: + // none. + // --- + // Int the two variables passed by reference values will be stored + // which will then be used to correctly locate this sector. + // The information used for this is the distance between the + // center of the #0 detector and the beam pipe. + // Measurements are taken at cross section A-A. + // + + //TGeoMedium *medSPDfs = 0;//SPD support cone inserto stesalite 4411w + //TGeoMedium *medSPDfo = 0;//SPD support cone foam, Rohacell 50A. + //TGeoMedium *medSPDal = 0;//SPD support cone SDD mounting bracket Al + TGeoMedium *medSPDcf = GetMedium("SPD C (M55J)$", mgr); + TGeoMedium *medSPDss = GetMedium("INOX$", mgr); + TGeoMedium *medSPDair = GetMedium("AIR$", mgr); + TGeoMedium *medSPDcoolfl = GetMedium("Freon$", mgr); //ITSspdCoolingFluid + // + const Double_t ksecDz = 0.5 * 500.0 * fgkmm; + //const Double_t ksecLen = 30.0 * fgkmm; + const Double_t ksecCthick = 0.2 * fgkmm; + const Double_t ksecDipLength = 3.2 * fgkmm; + const Double_t ksecDipRadii = 0.4 * fgkmm; + //const Double_t ksecCoolingTubeExtraDepth = 0.86 * fgkmm; + // + // The following positions ('ksecX#' and 'ksecY#') and radii ('ksecR#') + // are the centers and radii of curvature of all the rounded corners + // between the straight borders of the SPD sector shape. + // To draw this SPD sector, the following steps are followed: + // 1) the (ksecX, ksecY) points are plotted + // and circles of the specified radii are drawn around them. + // 2) each pair of consecutive circles is connected by a line + // tangent to them, in accordance with the radii being "internal" + // or "external" with respect to the closed shape which describes + // the sector itself. + // The resulting connected shape is the section + // of the SPD sector surface in the transverse plane (XY). + // + const Double_t ksecX0 = -10.725 * fgkmm; + const Double_t ksecY0 = -14.853 * fgkmm; + const Double_t ksecR0 = -0.8 * fgkmm; // external + + const Double_t ksecR1 = +0.6 * fgkmm; + const Double_t ksecR2 = +0.6 * fgkmm; + const Double_t ksecR3 = -0.6 * fgkmm; + const Double_t ksecR4 = +0.8 * fgkmm; + const Double_t ksecR5 = +0.8 * fgkmm; + const Double_t ksecR6 = +0.6 * fgkmm; + const Double_t ksecR7 = -0.6 * fgkmm; + const Double_t ksecR8 = +0.6 * fgkmm; + const Double_t ksecR9 = -0.6 * fgkmm; + const Double_t ksecR10 = +0.6 * fgkmm; + const Double_t ksecR11 = -0.6 * fgkmm; + const Double_t ksecR12 = +0.85 * fgkmm; + +// // IDEAL GEOMETRY +// const Double_t ksecX1[10] ={-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187}; +// const Double_t ksecY1[10] ={-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964}; +// const Double_t ksecX2[10] ={-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833}; +// const Double_t ksecY2[10] ={-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805}; +// const Double_t ksecX3[10] ={-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123}; +// const Double_t ksecY3[10] ={-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618}; +// const Double_t ksecX4[10] ={+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280}; +// const Double_t ksecY4[10] ={-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473}; +// const Double_t ksecX5[10] ={+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544}; +// const Double_t ksecY5[10] ={+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961}; +// const Double_t ksecX6[10] ={+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830}; +// const Double_t ksecY6[10] ={+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868}; +// const Double_t ksecX7[10] ={+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581}; +// const Double_t ksecY7[10] ={+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317}; +// const Double_t ksecX8[10] ={-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733}; +// const Double_t ksecY8[10] ={+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486}; +// const Double_t ksecX9[10] ={+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562}; +// const Double_t ksecY9[10] ={+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107}; +// const Double_t ksecX10[10]={-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252}; +// const Double_t ksecY10[10]={+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298}; +// const Double_t ksecX11[10]={-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445}; +// const Double_t ksecY11[10]={+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162}; +// const Double_t ksecX12[10]={-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276}; +// const Double_t ksecY12[10]={+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948}; + + +// MODIFIED GEOMETRY according with partial alignment of Staves relative to Sectors +// last numbers: 2010/06/11 (ML) + + const Double_t ksecX1[10]={-1.305917, -1.322242, -1.300649, -1.298700, -1.290830, -1.274307, -1.276433, -1.286468, -1.274381, -1.314864}; + const Double_t ksecY1[10]={-1.997857, -2.018611, -2.005854, -2.004897, -1.995517, -2.002552, -1.995860, -2.021062, -2.012931, -2.043967}; + const Double_t ksecX2[10]={-0.366115, -0.385562, -0.372689, -0.365682, -0.348432, -0.348442, -0.342468, -0.354071, -0.346900, -0.381275}; + const Double_t ksecY2[10]={-1.801679, -1.808306, -1.759315, -1.778851, -1.811655, -1.747888, -1.773811, -1.792427, -1.764514, -1.820324}; +// const Double_t ksecX1[10]={-1.305917, -1.322242, -1.300649, -1.298700, -1.290830, -1.274307, -1.276433, -1.286468, -1.274381, -1.325864}; +// const Double_t ksecY1[10]={-1.997857, -2.018611, -2.005854, -2.004897, -1.995517, -2.002552, -1.995860, -2.021062, -2.012931, -2.032967}; +// const Double_t ksecX2[10]={-0.366115, -0.385562, -0.372689, -0.365682, -0.348432, -0.348442, -0.342468, -0.354071, -0.346900, -0.392275}; +// const Double_t ksecY2[10]={-1.801679, -1.808306, -1.759315, -1.778851, -1.811655, -1.747888, -1.773811, -1.792427, -1.764514, -1.809324}; + const Double_t ksecX3[10]={-0.314030, -0.315531, -0.347521, -0.337675, -0.300420, -0.378487, -0.330729, -0.330850, -0.362360, -0.321097}; + const Double_t ksecY3[10]={-1.452488, -1.460418, -1.447060, -1.443146, -1.472410, -1.430019, -1.469073, -1.472048, -1.462010, -1.444355}; + const Double_t ksecX4[10]={1.124299, 1.124162, 1.089523, 1.095520, 1.136171, 1.058616, 1.105626, 1.106433, 1.077455, 1.117946}; + const Double_t ksecY4[10]={-1.458714, -1.452649, -1.465297, -1.492717, -1.494665, -1.447732, -1.493369, -1.488126, -1.452925, -1.443447}; + const Double_t ksecX5[10]={1.951621, 1.939284, 1.931830, 1.935235, 1.952206, 1.939082, 1.924822, 1.940114, 1.918160, 1.960017}; + const Double_t ksecY5[10]={1.092731, 1.118870, 1.129765, 1.129422, 1.081511, 1.127387, 1.103960, 1.101784, 1.121428, 1.150110}; + const Double_t ksecX6[10]={1.070070, 1.048297, 1.035920, 1.049049, 1.083621, 1.045882, 1.050399, 1.067823, 1.037967, 1.070850}; + const Double_t ksecY6[10]={1.667590, 1.678571, 1.681383, 1.696892, 1.676520, 1.683470, 1.689988, 1.691111, 1.698432, 1.712770}; + const Double_t ksecX7[10]={1.139398, 1.150471, 1.150074, 1.132807, 1.150192, 1.124064, 1.124335, 1.137723, 1.143056, 1.130568}; + const Double_t ksecY7[10]={1.345588, 1.356062, 1.342468, 1.320467, 1.335807, 1.334477, 1.328622, 1.347184, 1.319861, 1.308420}; + const Double_t ksecX8[10]={-0.096963, -0.098603, -0.095286, -0.099990, -0.075132, -0.121593, -0.108673, -0.104237, -0.092082, -0.104044}; + const Double_t ksecY8[10]={1.751207, 1.731467, 1.726908, 1.734219, 1.766159, 1.718203, 1.741891, 1.739743, 1.728288, 1.718046}; + const Double_t ksecX9[10]={0.047615, 0.087875, 0.034917, 0.071603, 0.026468, 0.091619, 0.051994, 0.059947, 0.079785, 0.043443}; + const Double_t ksecY9[10]={1.414699, 1.403187, 1.399061, 1.403430, 1.435056, 1.384557, 1.397692, 1.420269, 1.391372, 1.398954}; + const Double_t ksecX10[10]={-1.233255, -1.186874, -1.246702, -1.213368, -1.259425, -1.190067, -1.225655, -1.224171, -1.197833, -1.237182}; + const Double_t ksecY10[10]={1.635767, 1.646249, 1.617336, 1.608928, 1.636944, 1.602583, 1.630504, 1.629065, 1.624295, 1.620934}; + const Double_t ksecX11[10]={-1.018270, -1.031317, -0.960524, -1.001155, -1.045437, -0.986867, -1.002685, -1.017369, -1.005614, -0.985385}; + const Double_t ksecY11[10]={1.318108, 1.330683, 1.301572, 1.314410, 1.326680, 1.295226, 1.306372, 1.309414, 1.306542, 1.307086}; + const Double_t ksecX12[10]={-2.199004, -2.214964, -2.139247, -2.180547, -2.224505, -2.165324, -2.175883, -2.193485, -2.183227, -2.161570}; + const Double_t ksecY12[10]={1.317677, 1.303982, 1.317057, 1.324766, 1.339537, 1.312715, 1.359642, 1.343638, 1.330234, 1.340836}; + + + const Double_t ksecR13 = -0.8 * fgkmm; // external + const Double_t ksecAngleSide13 = 36.0 * fgkDegree; + // + const Int_t ksecNRadii = 20; + const Int_t ksecNPointsPerRadii = 4; + const Int_t ksecNCoolingTubeDips = 6; + // + // Since the rounded parts are approximated by a regular polygon + // and a cooling tube of the propper diameter must fit, a scaling factor + // increases the size of the polygon for the tube to fit. + //const Double_t ksecRCoolScale = 1./TMath::Cos(TMath::Pi()/ + // (Double_t)ksecNPointsPerRadii); + const Double_t ksecZEndLen = 30.000 * fgkmm; + //const Double_t ksecZFlangLen = 45.000 * fgkmm; + const Double_t ksecTl = 0.860 * fgkmm; + const Double_t ksecCthick2 = 0.600 * fgkmm; + //const Double_t ksecCthick3 = 1.80 * fgkmm; + //const Double_t ksecSidelen = 22.0 * fgkmm; + //const Double_t ksecSideD5 = 3.679 * fgkmm; + //const Double_t ksecSideD12 = 7.066 * fgkmm; + const Double_t ksecRCoolOut = 2.400 * fgkmm; + const Double_t ksecRCoolIn = 2.000 * fgkmm; + const Double_t ksecDl1 = 5.900 * fgkmm; + const Double_t ksecDl2 = 8.035 * fgkmm; + const Double_t ksecDl3 = 4.553 * fgkmm; + const Double_t ksecDl4 = 6.978 * fgkmm; + const Double_t ksecDl5 = 6.978 * fgkmm; + const Double_t ksecDl6 = 6.978 * fgkmm; + const Double_t ksecCoolTubeThick = 0.04 * fgkmm; + const Double_t ksecCoolTubeROuter = 2.6 * fgkmm; + const Double_t ksecCoolTubeFlatX = 3.696 * fgkmm; + const Double_t ksecCoolTubeFlatY = 0.68 * fgkmm; + //const Double_t ksecBeamX0 = 0.0 * fgkmm; // guess + //const Double_t ksecBeamY0 = (15.223 + 40.) * fgkmm; // guess + // + // redefine some of the points already defined above + // in the format of arrays (???) + const Int_t ksecNPoints = (ksecNPointsPerRadii + 1) * ksecNRadii + 8; + Double_t secX[ksecNRadii] = { + ksecX0, ksecX1[sect], -1000.0, + ksecX2[sect], ksecX3[sect], -1000.0, + ksecX4[sect], ksecX5[sect], -1000.0, + ksecX6[sect], ksecX7[sect], -1000.0, + ksecX8[sect], ksecX9[sect], -1000.0, + ksecX10[sect], ksecX11[sect], -1000.0, + ksecX12[sect], -1000.0 + }; + Double_t secY[ksecNRadii] = { + ksecY0, ksecY1[sect], -1000.0, + ksecY2[sect], ksecY3[sect], -1000.0, + ksecY4[sect], ksecY5[sect], -1000.0, + ksecY6[sect], ksecY7[sect], -1000.0, + ksecY8[sect], ksecY9[sect], -1000.0, + ksecY10[sect], ksecY11[sect], -1000.0, + ksecY12[sect], -1000.0 + }; + Double_t secR[ksecNRadii] = { + ksecR0, ksecR1, -.5 * ksecDipLength - ksecDipRadii, + ksecR2, ksecR3, -.5 * ksecDipLength - ksecDipRadii, + ksecR4, ksecR5, -.5 * ksecDipLength - ksecDipRadii, + ksecR6, ksecR7, -.5 * ksecDipLength - ksecDipRadii, + ksecR8, ksecR9, -.5 * ksecDipLength - ksecDipRadii, + ksecR10, ksecR11, -.5 * ksecDipLength - ksecDipRadii, + ksecR12, ksecR13 + }; + + Double_t secX2[ksecNRadii]; + Double_t secY2[ksecNRadii]; + Double_t secR2[ksecNRadii] = { + ksecR0, ksecR1, ksecRCoolOut, + ksecR2, ksecR3, ksecRCoolOut, + ksecR4, ksecR5, ksecRCoolOut, + ksecR6, ksecR7, ksecRCoolOut, + ksecR8, ksecR9, ksecRCoolOut, + ksecR10, ksecR11, ksecRCoolOut, + ksecR12, ksecR13 + }; + Double_t secDip2[ksecNCoolingTubeDips] = { + ksecDl1, ksecDl2, ksecDl3, + ksecDl4, ksecDl5, ksecDl6 + }; + Double_t secX3[ksecNRadii]; + Double_t secY3[ksecNRadii]; + const Int_t ksecDipIndex[ksecNCoolingTubeDips] = {2, 5, 8, 11, 14, 17}; + Double_t secAngleStart[ksecNRadii]; + Double_t secAngleEnd[ksecNRadii]; + for(Int_t i = 0; i < ksecNRadii; i++)secAngleEnd[i] = 0.; + Double_t secAngleStart2[ksecNRadii]; + Double_t secAngleEnd2[ksecNRadii]; + Double_t secAngleTurbo[ksecNCoolingTubeDips] = {0., 0., 0., 0., 0., 0.0}; + //Double_t secAngleStart3[ksecNRadii]; + //Double_t secAngleEnd3[ksecNRadii]; + Double_t xpp[ksecNPoints], ypp[ksecNPoints]; + Double_t xpp2[ksecNPoints], ypp2[ksecNPoints]; + Double_t *xp[ksecNRadii], *xp2[ksecNRadii]; + Double_t *yp[ksecNRadii], *yp2[ksecNRadii]; + TGeoXtru *sA0, *sA1, *sB0, *sB1; + TGeoCompositeShape *sB2; + TGeoBBox *sB3; + TGeoEltu *sTA0, *sTA1; + TGeoTube *sTB0, *sTB1; //,*sM0; + TGeoRotation *rot; + TGeoTranslation *trans; + TGeoCombiTrans *rotrans; + Double_t t, t0, t1, a, b, x0, y0,z0, x1, y1; + Int_t i, j, k, m; + Bool_t tst; + + if(!moth) { + AliError("Container volume (argument) is NULL"); + return; + } // end if(!moth) + for(i = 0; i < ksecNRadii; i++) { + xp[i] = &(xpp[i*(ksecNPointsPerRadii+1)]); + yp[i] = &(ypp[i*(ksecNPointsPerRadii+1)]); + xp2[i] = &(xpp2[i*(ksecNPointsPerRadii+1)]); + yp2[i] = &(ypp2[i*(ksecNPointsPerRadii+1)]); + secX2[i] = secX[i]; + secY2[i] = secY[i]; + secX3[i] = secX[i]; + secY3[i] = secY[i]; + } // end for i + // + // find starting and ending angles for all but cooling tube sections + secAngleStart[0] = 0.5 * ksecAngleSide13; + for(i = 0; i < ksecNRadii - 2; i++) { + tst = kFALSE; + for(j=0;j 0.0 && secR[j] > 0.0) { + if(secAngleStart[i] > secAngleEnd[i]) secAngleEnd[i] += 360.0; + } // end if(secR[i]>0.0 && secR[j]>0.0) + secAngleStart2[i] = secAngleStart[i]; + secAngleEnd2[i] = secAngleEnd[i]; + } // end for i + secAngleEnd[ksecNRadii-2] = secAngleStart[ksecNRadii-2] + + (secAngleEnd[ksecNRadii-5] - secAngleStart[ksecNRadii-5]); + if (secAngleEnd[ksecNRadii-2] < 0.0) secAngleEnd[ksecNRadii-2] += 360.0; + secAngleStart[ksecNRadii-1] = secAngleEnd[ksecNRadii-2] - 180.0; + secAngleEnd[ksecNRadii-1] = secAngleStart[0]; + secAngleStart2[ksecNRadii-2] = secAngleStart[ksecNRadii-2]; + secAngleEnd2[ksecNRadii-2] = secAngleEnd[ksecNRadii-2]; + secAngleStart2[ksecNRadii-1] = secAngleStart[ksecNRadii-1]; + secAngleEnd2[ksecNRadii-1] = secAngleEnd[ksecNRadii-1]; + // + // find location of circle last rounded corner. + i = 0; + j = ksecNRadii - 2; + t0 = TanD(secAngleStart[i]-90.); + t1 = TanD(secAngleEnd[j]-90.); + t = secY[i] - secY[j]; + // NOTE: secR[i=0] < 0; secR[j=18] > 0; and secR[j+1=19] < 0 + t += (-secR[i]+secR[j+1]) * SinD(secAngleStart[i]); + t -= (secR[j]-secR[j+1]) * SinD(secAngleEnd[j]); + t += t1 * secX[j] - t0*secX[i]; + t += t1 * (secR[j] - secR[j+1]) * CosD(secAngleEnd[j]); + t -= t0 * (-secR[i]+secR[j+1]) * CosD(secAngleStart[i]); + secX[ksecNRadii-1] = t / (t1-t0); + secY[ksecNRadii-1] = TanD(90.0+0.5*ksecAngleSide13)* + (secX[ksecNRadii-1]-secX[0])+secY[0]; + secX2[ksecNRadii-1] = secX[ksecNRadii-1]; + secY2[ksecNRadii-1] = secY[ksecNRadii-1]; + secX3[ksecNRadii-1] = secX[ksecNRadii-1]; + secY3[ksecNRadii-1] = secY[ksecNRadii-1]; + + // find location of cooling tube centers + for(i = 0; i < ksecNCoolingTubeDips; i++) { + j = ksecDipIndex[i]; + x0 = secX[j-1] + TMath::Abs(secR[j-1]) * CosD(secAngleEnd[j-1]); + y0 = secY[j-1] + TMath::Abs(secR[j-1]) * SinD(secAngleEnd[j-1]); + x1 = secX[j+1] + TMath::Abs(secR[j+1]) * CosD(secAngleStart[j+1]); + y1 = secY[j+1] + TMath::Abs(secR[j+1]) * SinD(secAngleStart[j+1]); + t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1)); + t = secDip2[i] / t0; + a = x0+(x1-x0) * t; + b = y0+(y1-y0) * t; + if(i == 0) { + // get location of tube center->Surface for locating + // this sector around the beam pipe. + // This needs to be double checked, but I need my notes for that. + // (Bjorn Nilsen) + xAAtubeCenter0 = x0 + (x1 - x0) * t * 0.5; + yAAtubeCenter0 = y0 + (y1 - y0) * t * 0.5; + }// end if i==0 + if(a + b*(a - x0) / (b - y0) > 0.0) { + secX[j] = a + TMath::Abs(y1-y0) * 2.0 * ksecDipRadii/t0; + secY[j] = b - TMath::Sign(2.0*ksecDipRadii,y1-y0) * (x1-x0)/t0; + secX2[j] = a + TMath::Abs(y1-y0) * ksecTl/t0; + secY2[j] = b - TMath::Sign(ksecTl,y1-y0) * (x1-x0) / t0; + secX3[j] = a + TMath::Abs(y1-y0) * + (2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY)/t0; + secY3[j] = b - TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY, + y1-y0)*(x1-x0)/t0; + } else { + secX[j] = a - TMath::Abs(y1-y0)*2.0*ksecDipRadii/t0; + secY[j] = b + TMath::Sign(2.0*ksecDipRadii,y1-y0)*(x1-x0)/t0; + secX2[j] = a - TMath::Abs(y1-y0)*ksecTl/t0; + secY2[j] = b + TMath::Sign(ksecTl,y1-y0)*(x1-x0)/t0; + secX3[j] = a - TMath::Abs(y1-y0)*(2.0*ksecDipRadii-0.5* + ksecCoolTubeFlatY)/t0; + secY3[j] = b + TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY, + y1-y0)*(x1-x0)/t0; + } // end if(a+b*(a-x0)/(b-y0)>0.0) + + // Set up Start and End angles to correspond to start/end of dips. + t1 = (secDip2[i]-TMath::Abs(secR[j])) / t0; + secAngleStart[j] =TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j], + x0+(x1-x0)*t1-secX[j]); + if (secAngleStart[j]<0.0) secAngleStart[j] += 360.0; + secAngleStart2[j] = secAngleStart[j]; + t1 = (secDip2[i]+TMath::Abs(secR[j]))/t0; + secAngleEnd[j] = TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j], + x0+(x1-x0)*t1-secX[j]); + if (secAngleEnd[j]<0.0) secAngleEnd[j] += 360.0; + secAngleEnd2[j] = secAngleEnd[j]; + if (secAngleEnd[j]>secAngleStart[j]) secAngleEnd[j] -= 360.0; + secR[j] = TMath::Sqrt(secR[j]*secR[j]+4.0*ksecDipRadii*ksecDipRadii); + } // end for i + + // Special cases + secAngleStart2[8] -= 360.; + secAngleStart2[11] -= 360.; + + SPDsectorShape(ksecNRadii, secX, secY, secR, secAngleStart, secAngleEnd, + ksecNPointsPerRadii, m, xp, yp); + + // Fix up dips to be square. + for(i = 0; i < ksecNCoolingTubeDips; i++) { + j = ksecDipIndex[i]; + t = 0.5*ksecDipLength+ksecDipRadii; + t0 = TMath::RadToDeg()*TMath::ATan(2.0*ksecDipRadii/t); + t1 = secAngleEnd[j] + t0; + t0 = secAngleStart[j] - t0; + x0 = xp[j][1] = secX[j] + t*CosD(t0); + y0 = yp[j][1] = secY[j] + t*SinD(t0); + x1 = xp[j][ksecNPointsPerRadii-1] = secX[j] + t*CosD(t1); + y1 = yp[j][ksecNPointsPerRadii-1] = secY[j] + t*SinD(t1); + t0 = 1./((Double_t)(ksecNPointsPerRadii-2)); + for(k = 2; k < ksecNPointsPerRadii - 1; k++) { + // extra points spread them out. + t = ((Double_t)(k-1)) * t0; + xp[j][k] = x0+(x1-x0) * t; + yp[j][k] = y0+(y1-y0) * t; + } // end for k + secAngleTurbo[i] = -TMath::RadToDeg() * TMath::ATan2(y1-y0, x1-x0); + if(GetDebug(3)) { + AliInfo( + Form("i=%d -- angle=%f -- x0,y0=(%f, %f) -- x1,y1=(%f, %f)", + i, secAngleTurbo[i], x0, y0, x1, y1)); + } // end if GetDebug(3) + } // end for i + sA0 = new TGeoXtru(2); + sA0->SetName("ITS SPD Carbon fiber support Sector A0"); + sA0->DefinePolygon(m, xpp, ypp); + sA0->DefineSection(0, -ksecDz); + sA0->DefineSection(1, ksecDz); + + // store the edges of each XY segment which defines + // one of the plane zones where staves will have to be placed + fSPDsectorX0.Set(ksecNCoolingTubeDips); + fSPDsectorY0.Set(ksecNCoolingTubeDips); + fSPDsectorX1.Set(ksecNCoolingTubeDips); + fSPDsectorY1.Set(ksecNCoolingTubeDips); + Int_t ixy0, ixy1; + for(i = 0; i < ksecNCoolingTubeDips; i++) { + // Find index in xpp[] and ypp[] corresponding to where the + // SPD ladders are to be attached. Order them according to + // the ALICE numbering schema. Using array of indexes (+-1 for + // cooling tubes. For any "bend/dip/edge, there are + // ksecNPointsPerRadii+1 points involved. + if(i == 0) j = 1; + else if (i == 1) j = 0; + else j = i; + ixy0 = (ksecDipIndex[j]-1)*(ksecNPointsPerRadii+1)+ + (ksecNPointsPerRadii); + ixy1 = (ksecDipIndex[j]+1) * (ksecNPointsPerRadii+1); + fSPDsectorX0[i] = sA0->GetX(ixy0); + fSPDsectorY0[i] = sA0->GetY(ixy0); + fSPDsectorX1[i] = sA0->GetX(ixy1); + fSPDsectorY1[i] = sA0->GetY(ixy1); + } // end for i + + //printf("SectorA#%d ",0); + InsidePoint(xpp[m-1],ypp[m-1],xpp[0],ypp[0],xpp[1],ypp[1],ksecCthick, + xpp2[0],ypp2[0]); + for(i = 1; i < m - 1; i++) { + j = i / (ksecNPointsPerRadii+1); + //printf("SectorA#%d ",i); + InsidePoint(xpp[i-1],ypp[i-1],xpp[i],ypp[i],xpp[i+1],ypp[i+1], + ksecCthick,xpp2[i],ypp2[i]); + } // end for i + //printf("SectorA#%d ",m); + InsidePoint(xpp[m-2],ypp[m-2],xpp[m-1],ypp[m-1],xpp[0],ypp[0], + ksecCthick,xpp2[m-1],ypp2[m-1]); + // Fix center value of cooling tube dip and + // find location of cooling tube centers + for(i = 0; i < ksecNCoolingTubeDips; i++) { + j = ksecDipIndex[i]; + x0 = xp2[j][1]; + y0 = yp2[j][1]; + x1 = xp2[j][ksecNPointsPerRadii-1]; + y1 = yp2[j][ksecNPointsPerRadii-1]; + t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1)); + t = secDip2[i]/t0; + for(k = 2; k < ksecNPointsPerRadii - 1; k++) { + // extra points spread them out. + t = ((Double_t)(k-1)) * t0; + xp2[j][k] = x0+(x1-x0) * t; + yp2[j][k] = y0+(y1-y0) * t; + } // end for k + } // end for i + sA1 = new TGeoXtru(2); + sA1->SetName("ITS SPD Carbon fiber support Sector Air A1"); + sA1->DefinePolygon(m, xpp2, ypp2); + sA1->DefineSection(0, -ksecDz); + sA1->DefineSection(1, ksecDz); + // + // Error in TGeoEltu. Semi-axis X must be < Semi-axis Y (?). + sTA0 = new TGeoEltu("ITS SPD Cooling Tube TA0", 0.5 * ksecCoolTubeFlatY, + 0.5 * ksecCoolTubeFlatX, ksecDz); + sTA1 = new TGeoEltu("ITS SPD Cooling Tube coolant TA1", + sTA0->GetA() - ksecCoolTubeThick, + sTA0->GetB()-ksecCoolTubeThick,ksecDz); + SPDsectorShape(ksecNRadii,secX2,secY2,secR2,secAngleStart2,secAngleEnd2, + ksecNPointsPerRadii, m, xp, yp); + sB0 = new TGeoXtru(2); + sB0->SetName("EndB0"); + sB0->DefinePolygon(m, xpp, ypp); + sB0->DefineSection(0, ksecDz); + sB0->DefineSection(1, ksecDz + ksecZEndLen); + + //printf("SectorB#%d ",0); + // Points around the most sharpened tips have to be avoided - M.S. 24 feb 09 + const Int_t nSpecialPoints = 5; + const Int_t kSpecialPoints[nSpecialPoints] = {7, 17, 47, 62, 77}; + Int_t i2 = 0; + InsidePoint(xpp[m-1],ypp[m-1],xpp[0],ypp[0],xpp[1],ypp[1], + ksecCthick2,xpp2[i2],ypp2[i2]); + for(i = 1; i < m - 1; i++) { + t = ksecCthick2; + for(k = 0; k < ksecNCoolingTubeDips; k++) + if((i/(ksecNPointsPerRadii+1))==ksecDipIndex[k]) + if(!(ksecDipIndex[k]*(ksecNPointsPerRadii+1) == i || + ksecDipIndex[k]*(ksecNPointsPerRadii+1) + + ksecNPointsPerRadii == i)) + t = ksecRCoolOut-ksecRCoolIn; + //printf("SectorB#%d ",i); + Bool_t useThisPoint = kTRUE; + for(Int_t ii = 0; ii < nSpecialPoints; ii++) + if ( (i == kSpecialPoints[ii] - 1) || + (i == kSpecialPoints[ii] + 1) ) useThisPoint = kFALSE; + if (useThisPoint) { + i2++; + InsidePoint(xpp[i-1],ypp[i-1],xpp[i],ypp[i],xpp[i+1],ypp[i+1],t, + xpp2[i2],ypp2[i2]); + } + }// end for i + //printf("SectorB#%d ",m); + i2++; + InsidePoint(xpp[m-2],ypp[m-2],xpp[m-1],ypp[m-1],xpp[0],ypp[0], + ksecCthick2,xpp2[i2],ypp2[i2]); + sB1 = new TGeoXtru(2); + sB1->SetName("EndB1"); + sB1->DefinePolygon(i2+1, xpp2, ypp2); + sB1->DefineSection(0,sB0->GetZ(0)-ksecCthick2); + sB1->DefineSection(1,sB0->GetZ(1)+ksecCthick2); + + sB2 = new TGeoCompositeShape("ITS SPD Carbon fiber support Sector End B0", + "EndB0-EndB1"); + // SPD sector mount blocks + const Double_t kMountBlock[3] = {0.5*(1.8-0.2)*fgkmm,0.5*22.0*fgkmm, + 0.5*45.0*fgkmm}; + sB3 = new TGeoBBox((Double_t*)kMountBlock); + // SPD sector mount block screws and nuts (M.S. - 27 oct 2012) + const Double_t kMountBlockM3ScrewR = 0.5*3.0*fgkmm; // Metric screw + const Double_t kMountBlockHead1R = 0.5*8.0*fgkmm; + const Double_t kMountBlockHead1H = 1.0*fgkmm; + const Double_t kMountBlockHead2R = 0.5*6.0*fgkmm; + const Double_t kMountBlockHead2H = 2.7*fgkmm; + const Double_t kMountBlockM3NutR = 1.8*kMountBlockM3ScrewR; // Metric nut + const Double_t kMountBlockM3NutH = kMountBlockM3NutR; // Metric nut + TGeoTube *sM3 = new TGeoTube(0, kMountBlockM3ScrewR, sB3->GetDX()); + TGeoTube *sD1 = new TGeoTube(0, kMountBlockHead1R,kMountBlockHead1H/2); + TGeoTube *sD2 = new TGeoTube(0, kMountBlockHead2R,kMountBlockHead2H/2); + TGeoPgon *sN3 = new TGeoPgon(0, 360, 6, 2); + sN3->DefineSection(0,-kMountBlockM3NutH/2, 0, kMountBlockM3NutR); + sN3->DefineSection(1, kMountBlockM3NutH/2, 0, kMountBlockM3NutR); + // SPD sector cooling tubes + sTB0 = new TGeoTube("ITS SPD Cooling Tube End TB0", 0.0, + 0.5*ksecCoolTubeROuter,0.5*(sB0->GetZ(1)-sB0->GetZ(0))); + sTB1 = new TGeoTube("ITS SPD Cooling Tube End coolant TB0", 0.0, + sTB0->GetRmax() - ksecCoolTubeThick,sTB0->GetDz()); + // + if(GetDebug(3)) { + if(medSPDcf) medSPDcf->Dump(); else AliInfo("medSPDcf = 0"); + if(medSPDss) medSPDss->Dump(); else AliInfo("medSPDss = 0"); + if(medSPDair) medSPDair->Dump(); else AliInfo("medSPDAir = 0"); + if(medSPDcoolfl) medSPDcoolfl->Dump();else AliInfo("medSPDcoolfl = 0"); + sA0->InspectShape(); + sA1->InspectShape(); + sB0->InspectShape(); + sB1->InspectShape(); + sB2->InspectShape(); + } // end if(GetDebug(3)) + + // create the assembly of the support and place staves on it + TGeoVolumeAssembly *vM0 = new TGeoVolumeAssembly( + "ITSSPDSensitiveVirtualvolumeM0"); + StavesInSector(vM0); + // create other volumes with some graphical settings + TGeoVolume *vA0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorA0", + sA0, medSPDcf); + vA0->SetVisibility(kTRUE); + vA0->SetLineColor(4); // Blue + vA0->SetLineWidth(1); + vA0->SetFillColor(vA0->GetLineColor()); + vA0->SetFillStyle(4010); // 10% transparent + TGeoVolume *vA1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorAirA1", + sA1, medSPDair); + vA1->SetVisibility(kTRUE); + vA1->SetLineColor(7); // light Blue + vA1->SetLineWidth(1); + vA1->SetFillColor(vA1->GetLineColor()); + vA1->SetFillStyle(4090); // 90% transparent + TGeoVolume *vTA0 = new TGeoVolume("ITSSPDCoolingTubeTA0", sTA0, medSPDss); + vTA0->SetVisibility(kTRUE); + vTA0->SetLineColor(15); // gray + vTA0->SetLineWidth(1); + vTA0->SetFillColor(vTA0->GetLineColor()); + vTA0->SetFillStyle(4000); // 0% transparent + TGeoVolume *vTA1 = new TGeoVolume("ITSSPDCoolingTubeFluidTA1", + sTA1, medSPDcoolfl); + vTA1->SetVisibility(kTRUE); + vTA1->SetLineColor(6); // Purple + vTA1->SetLineWidth(1); + vTA1->SetFillColor(vTA1->GetLineColor()); + vTA1->SetFillStyle(4000); // 0% transparent + TGeoVolume *vB0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndB0", + sB2, medSPDcf); + vB0->SetVisibility(kTRUE); + vB0->SetLineColor(1); // Black + vB0->SetLineWidth(1); + vB0->SetFillColor(vB0->GetLineColor()); + vB0->SetFillStyle(4000); // 0% transparent + TGeoVolume *vB3 = new TGeoVolume( + "ITSSPDCarbonFiberSupportSectorMountBlockB3",sB3, medSPDcf); + vB3->SetVisibility(kTRUE); + vB3->SetLineColor(26); // Brown shade + vB3->SetLineWidth(1); + vB3->SetFillColor(vB3->GetLineColor()); + vB3->SetFillStyle(4000); // 0% transparent + TGeoVolume *vM3 = new TGeoVolume( + "ITSSPDCarbonFiberSupportSectorMountBlockScrewM3",sM3, medSPDss); + vM3->SetVisibility(kTRUE); + vM3->SetLineColor(kGray); // Gray + vM3->SetLineWidth(1); + vM3->SetFillColor(vM3->GetLineColor()); + vM3->SetFillStyle(4000); // 0% transparent + TGeoVolume *vD1 = new TGeoVolume( + "ITSSPDCarbonFiberSupportSectorMountBlockScrewHead1",sD1, medSPDss); + vD1->SetVisibility(kTRUE); + vD1->SetLineColor(kGray); // Gray + vD1->SetLineWidth(1); + vD1->SetFillColor(vD1->GetLineColor()); + vD1->SetFillStyle(4000); // 0% transparent + TGeoVolume *vD2 = new TGeoVolume( + "ITSSPDCarbonFiberSupportSectorMountBlockScrewHead2",sD2, medSPDss); + vD2->SetVisibility(kTRUE); + vD2->SetLineColor(kGray); // Gray + vD2->SetLineWidth(1); + vD2->SetFillColor(vD2->GetLineColor()); + vD2->SetFillStyle(4000); // 0% transparent + TGeoVolume *vN3 = new TGeoVolume( + "ITSSPDCarbonFiberSupportSectorMountBlockScrewNut",sN3, medSPDss); + vN3->SetVisibility(kTRUE); + vN3->SetLineColor(kGray); // Gray + vN3->SetLineWidth(1); + vN3->SetFillColor(vN3->GetLineColor()); + vN3->SetFillStyle(4000); // 0% transparent + TGeoVolume *vTB0 = new TGeoVolume("ITSSPDCoolingTubeEndTB0",sTB0,medSPDss); + vTB0->SetVisibility(kTRUE); + vTB0->SetLineColor(15); // gray + vTB0->SetLineWidth(1); + vTB0->SetFillColor(vTB0->GetLineColor()); + vTB0->SetFillStyle(4000); // 0% transparent + TGeoVolume *vTB1 = new TGeoVolume("ITSSPDCoolingTubeEndFluidTB1",sTB1, + medSPDcoolfl); + vTB1->SetVisibility(kTRUE); + vTB1->SetLineColor(7); // light blue + vTB1->SetLineWidth(1); + vTB1->SetFillColor(vTB1->GetLineColor()); + vTB1->SetFillStyle(4050); // 0% transparent + + // add volumes to mother container passed as argument of this method + moth->AddNode(vM0,1,0); // Add virtual volume to mother + vA0->AddNode(vA1,1,0); // Put air inside carbon fiber. + vTA0->AddNode(vTA1,1,0); // Put cooling liquid indide tube middel. + vTB0->AddNode(vTB1,1,0); // Put cooling liquid inside tube end. + Double_t tubeEndLocal[3]={0.0,0.0,sTA0->GetDz()}; + for(i = 0; i < ksecNCoolingTubeDips; i++) { + x0 = secX3[ksecDipIndex[i]]; + y0 = secY3[ksecDipIndex[i]]; + t = 90.0 - secAngleTurbo[i]; + z0 = 0.5*(sB1->GetZ(0)+sB1->GetZ(1)); + trans = new TGeoTranslation("",x0,y0,z0); + vM0->AddNode(vTB0, i+1, trans); + // Find location of tube ends for later use. + trans->LocalToMaster(tubeEndLocal,fTubeEndSector[0][0][i]); + trans = new TGeoTranslation("",x0,y0,-z0); + vM0->AddNode(vTB0, i+1+ksecNCoolingTubeDips, trans); + rot = new TGeoRotation("", 0.0, 0.0, t); + rotrans = new TGeoCombiTrans("", x0, y0, 0.0, rot); + vM0->AddNode(vTA0, i+1, rotrans); + } // end for i + vM0->AddNode(vA0, 1, 0); + vM0->AddNode(vB0, 1, 0); + // Reflection. + rot = new TGeoRotation("", 90., 0., 90., 90., 180., 0.); + vM0->AddNode(vB0,2,rot); + // Find location of tube ends for later use. + for(i=0;iLocalToMaster( + fTubeEndSector[0][0][i],fTubeEndSector[0][1][i]); + // Put screws inside the mounting block + const Double_t kMountingBlockScrew1ZPos = 0.7 *fgkcm; + const Double_t kMountingBlockScrew2ZPos = 2.01*fgkcm; + const Double_t kMountingBlockScrew34Pos = 0.51*fgkcm; + vB3->AddNode(vM3, 1, new TGeoCombiTrans(0, 0, + (sB3->GetDZ()-kMountingBlockScrew1ZPos), + new TGeoRotation("",90,90,90))); + vB3->AddNode(vM3, 2, new TGeoCombiTrans(0, 0, + (sB3->GetDZ()-kMountingBlockScrew2ZPos), + new TGeoRotation("",90,90,90))); + vB3->AddNode(vM3, 3, new TGeoCombiTrans(0,-kMountingBlockScrew34Pos, + -(sB3->GetDZ()-kMountingBlockScrew34Pos), + new TGeoRotation("",90,90,90))); + vB3->AddNode(vM3, 4, new TGeoCombiTrans(0, kMountingBlockScrew34Pos, + -(sB3->GetDZ()-kMountingBlockScrew34Pos), + new TGeoRotation("",90,90,90))); + // left side + t = -TMath::RadToDeg()*TMath::ATan2( + sB0->GetX(0)-sB0->GetX(sB0->GetNvert()-1), + sB0->GetY(0)-sB0->GetY(sB0->GetNvert()-1)); + rot = new TGeoRotation("",t,0.0,0.0);// z axis rotation + x0 = 0.5*(sB0->GetX(0)+sB0->GetX(sB0->GetNvert()-1))+ + sB3->GetDX()*TMath::Cos(t*TMath::DegToRad()); + y0 = 0.5*(sB0->GetY(0)+sB0->GetY(sB0->GetNvert()-1))+ + sB3->GetDX()*TMath::Sin(t*TMath::DegToRad()); + z0 = sB0->GetZ(0)+sB3->GetDZ(); + rotrans = new TGeoCombiTrans("",x0,y0,z0,rot); + vM0->AddNode(vB3,1,rotrans); // Put Mounting bracket on sector + // the screw heads and nuts + Double_t h = sM3->GetDz() + sD1->GetDz(); + Double_t zt = sB3->GetDZ()-kMountingBlockScrew1ZPos; + vM0->AddNode(vD1, 1, new TGeoCombiTrans(x0+h*CosD(180+t), y0+h*SinD(180+t), + z0+zt, + new TGeoRotation("",90+t,90,90))); + h = sM3->GetDz() + sD2->GetDz() + ksecCthick2 + 0.06; + zt = sB3->GetDZ()-kMountingBlockScrew2ZPos; + vM0->AddNode(vD2, 1, new TGeoCombiTrans(x0+h*CosD(180+t), y0+h*SinD(180+t), + z0+zt, + new TGeoRotation("",90+t,90,90))); + Double_t loc[3],mas[3]; + loc[0]=0; + loc[1]=-kMountingBlockScrew34Pos; + loc[2]=-(sB3->GetDZ()-kMountingBlockScrew34Pos); + rotrans->LocalToMaster(loc,mas); + vM0->AddNode(vD2, 2, new TGeoCombiTrans(mas[0]+h*CosD(180+t), + mas[1]+h*SinD(180+t), + mas[2], + new TGeoRotation("",90+t,90,90))); + loc[1]=kMountingBlockScrew34Pos; + rotrans->LocalToMaster(loc,mas); + vM0->AddNode(vD2, 3, new TGeoCombiTrans(mas[0]+h*CosD(180+t), + mas[1]+h*SinD(180+t), + mas[2], + new TGeoRotation("",90+t,90,90))); + + rot = new TGeoRotation("",t,180.0,0.0);// z & x axis rotation + rotrans = new TGeoCombiTrans("",x0,y0,-z0,rot); + vM0->AddNode(vB3,2,rotrans); // Put Mounting bracket on sector + h = sM3->GetDz() + sN3->GetZ(1); + zt = sB3->GetDZ()-kMountingBlockScrew1ZPos; + vM0->AddNode(vN3, 1, new TGeoCombiTrans(x0+h*CosD(180+t), y0+h*SinD(180+t), + -z0-zt, + new TGeoRotation("",90+t,90,90))); + h += ksecCthick2 + 0.06; + zt = sB3->GetDZ()-kMountingBlockScrew2ZPos; + vM0->AddNode(vN3, 2, new TGeoCombiTrans(x0+h*CosD(180+t), y0+h*SinD(180+t), + -z0-zt, + new TGeoRotation("",90+t,90,90))); + loc[1]=-kMountingBlockScrew34Pos; + rotrans->LocalToMaster(loc,mas); + vM0->AddNode(vN3, 3, new TGeoCombiTrans(mas[0]+h*CosD(180+t), + mas[1]+h*SinD(180+t), + mas[2], + new TGeoRotation("",90+t,90,90))); + loc[1]=kMountingBlockScrew34Pos; + rotrans->LocalToMaster(loc,mas); + vM0->AddNode(vN3, 4, new TGeoCombiTrans(mas[0]+h*CosD(180+t), + mas[1]+h*SinD(180+t), + mas[2], + new TGeoRotation("",90+t,90,90))); + + t *= -1.0; + rot = new TGeoRotation("",t,0.0,0.0); // z axis rotation + x0 = -0.5*(sB0->GetX(0)+sB0->GetX(sB0->GetNvert()-1))-3.5* + sB3->GetDX()*TMath::Cos(t*TMath::DegToRad()); + y0 = 0.5*(sB0->GetY(0)+sB0->GetY(sB0->GetNvert()-1))-3.5* + sB3->GetDX()*TMath::Sin(t*TMath::DegToRad()); + rotrans = new TGeoCombiTrans("",1.01*x0,y0,z0,rot); + vM0->AddNode(vB3,3,rotrans); // Put Mounting bracket on sector + h = sM3->GetDz() + sN3->GetZ(1); + zt = sB3->GetDZ()-kMountingBlockScrew1ZPos; + vM0->AddNode(vN3, 5, new TGeoCombiTrans(x0-h*CosD(180-t), y0+h*SinD(180-t), + z0+zt, + new TGeoRotation("",90+t,90,90))); + h += ksecCthick2 + 0.02; + zt = sB3->GetDZ()-kMountingBlockScrew2ZPos; + vM0->AddNode(vN3, 6, new TGeoCombiTrans(x0-h*CosD(180-t), y0+h*SinD(180-t), + z0+zt, + new TGeoRotation("",90+t,90,90))); + loc[1]=-kMountingBlockScrew34Pos; + rotrans->LocalToMaster(loc,mas); + vM0->AddNode(vN3, 7, new TGeoCombiTrans(mas[0]-h*CosD(180-t), + mas[1]+h*SinD(180-t), + mas[2], + new TGeoRotation("",90+t,90,90))); + loc[1]=kMountingBlockScrew34Pos; + rotrans->LocalToMaster(loc,mas); + vM0->AddNode(vN3, 8, new TGeoCombiTrans(mas[0]-h*CosD(180-t), + mas[1]+h*SinD(180-t), + mas[2], + new TGeoRotation("",90+t,90,90))); + + rot = new TGeoRotation("",t,180.0,0.0); // z & x axis rotation + rotrans = new TGeoCombiTrans("",1.01*x0,y0,-z0,rot); + vM0->AddNode(vB3,4,rotrans); // Put Mounting bracket on sector + h = sM3->GetDz() + sD1->GetDz(); + zt = sB3->GetDZ()-kMountingBlockScrew1ZPos; + vM0->AddNode(vD1, 2, new TGeoCombiTrans(x0-h*CosD(180-t), y0+h*SinD(180-t), + -z0-zt, + new TGeoRotation("",90+t,90,90))); + h = sM3->GetDz() + sD2->GetDz() + ksecCthick2 + 0.02; + zt = sB3->GetDZ()-kMountingBlockScrew2ZPos; + vM0->AddNode(vD2, 4, new TGeoCombiTrans(x0-h*CosD(180-t), y0+h*SinD(180-t), + -z0-zt, + new TGeoRotation("",90+t,90,90))); + loc[1]=-kMountingBlockScrew34Pos; + rotrans->LocalToMaster(loc,mas); + vM0->AddNode(vD2, 5, new TGeoCombiTrans(mas[0]-h*CosD(180-t), + mas[1]+h*SinD(180-t), + mas[2], + new TGeoRotation("",90+t,90,90))); + loc[1]=kMountingBlockScrew34Pos; + rotrans->LocalToMaster(loc,mas); + vM0->AddNode(vD2, 6, new TGeoCombiTrans(mas[0]-h*CosD(180-t), + mas[1]+h*SinD(180-t), + mas[2], + new TGeoRotation("",90+t,90,90))); + + if(GetDebug(3)){ + vM0->PrintNodes(); + vA0->PrintNodes(); + vA1->PrintNodes(); + vB0->PrintNodes(); + vB3->PrintNodes(); + vTA0->PrintNodes(); + vTA1->PrintNodes(); + vTB0->PrintNodes(); + vTB1->PrintNodes(); + } // end if(GetDebug(3)) +} +//______________________________________________________________________ +Bool_t AliITSv11GeometrySPD::CFHolePoints(Double_t s,Double_t r1, + Double_t r2,Double_t l,Double_t &x,Double_t &y) const +{ + // + // Step along arck a distancs ds and compute boundry of + // two holes (radius r1 and r2) a distance l apart (along + // x-axis). + // Inputs: + // Double_t s fractional Distance along arcs [0-1] + // where 0-> alpha=beta=0, 1-> alpha=90 degrees. + // Double_t r1 radius at center circle + // Double_t r2 radius of displaced circle + // Double_t l Distance displaced circle is displaces (x-axis) + // Output: + // Double_t x x coordinate along double circle. + // Double_t y y coordinate along double circle. + // Return: + // logical, kFALSE if an error + // + Double_t alpha,beta; + Double_t ac,bc,scb,sca,t,alphac,betac; // at intersection of two circles + + x=y=0.0; + ac = r1*r1-l*l-r2*r2; + bc = 2.*l*r2; + if(bc==0.0) {printf("bc=0 l=%e r2=%e\n",l,r2);return kFALSE;} + betac = TMath::ACos(ac/bc); + alphac = TMath::Sqrt((bc-ac)*(bc+ac))/(2.*l*r1); + scb = r2*betac; + sca = r1*alphac; + t = r1*0.5*TMath::Pi() - sca + scb; + if(s<= scb/t){ + beta = s*t/r2; + x = r2*TMath::Cos(beta) + l; + y = r2*TMath::Sin(beta); + //printf("betac=%e scb=%e t=%e s=%e beta=%e x=%e y=%e\n", + // betac,scb,t,s,beta,x,y); + return kTRUE; + }else{ + beta = (s*t-scb+sca)/(r1*0.5*TMath::Pi()); + alpha = beta*0.5*TMath::Pi(); + x = r1*TMath::Cos(alpha); + y = r1*TMath::Sin(alpha); + //printf("alphac=%e sca=%e t=%e s=%e beta=%e alpha=%e x=%e y=%e\n", + // alphac,sca,t,s,beta,alpha,x,y); + return kTRUE; + } // end if + return kFALSE; +} +//______________________________________________________________________ +Bool_t AliITSv11GeometrySPD::GetSectorMountingPoints(Int_t index,Double_t &x0, + Double_t &y0, Double_t &x1, Double_t &y1) const +{ + // + // Returns the edges of the straight borders in the SPD sector shape, + // which are used to mount staves on them. + // Coordinate system is that of the carbon fiber sector volume. + // --- + // Index numbering is as follows: + // /5 + // /\/4 + // 1\ \/3 + // 0|___\/2 + // --- + // Arguments [the ones passed by reference contain output values]: + // Int_t index --> location index according to above scheme [0-5] + // Double_t &x0 --> (by ref) x0 location or the ladder sector [cm] + // Double_t &y0 --> (by ref) y0 location of the ladder sector [cm] + // Double_t &x1 --> (by ref) x1 location or the ladder sector [cm] + // Double_t &y1 --> (by ref) y1 location of the ladder sector [cm] + // TGeoManager *mgr --> The TGeo builder + // --- + // The location is described by a line going from (x0, y0) to (x1, y1) + // --- + // Returns kTRUE if no problems encountered. + // Returns kFALSE if a problem was encountered (e.g.: shape not found). + // + Int_t isize = fSPDsectorX0.GetSize(); + + x0 = x1 = y0 = y1 = 0.0; + if(index < 0 || index > isize) { + AliError(Form("index = %d: allowed 0 --> %d", index, isize)); + return kFALSE; + } // end if(index<0||index>isize) + x0 = fSPDsectorX0[index]; + x1 = fSPDsectorX1[index]; + y0 = fSPDsectorY0[index]; + y1 = fSPDsectorY1[index]; + return kTRUE; +} +//______________________________________________________________________ +void AliITSv11GeometrySPD::SPDsectorShape(Int_t n,const Double_t *xc, + const Double_t *yc, const Double_t *r, + const Double_t *ths, const Double_t *the, + Int_t npr, Int_t &m, Double_t **xp, Double_t **yp) const +{ + // + // Code to compute the points that make up the shape of the SPD + // Carbon fiber support sections + // Inputs: + // Int_t n size of arrays xc,yc, and r. + // Double_t *xc array of x values for radii centers. + // Double_t *yc array of y values for radii centers. + // Double_t *r array of signed radii values. + // Double_t *ths array of starting angles [degrees]. + // Double_t *the array of ending angles [degrees]. + // Int_t npr the number of lines segments to aproximate the arc. + // Outputs (arguments passed by reference): + // Int_t m the number of enetries in the arrays *xp[npr+1] + // and *yp[npr+1]. + // Double_t **xp array of x coordinate values of the line segments + // which make up the SPD support sector shape. + // Double_t **yp array of y coordinate values of the line segments + // which make up the SPD support sector shape. + // + Int_t i, k; + Double_t t, t0, t1; + + m = n*(npr + 1); + if(GetDebug(2)) { + cout <<" X \t Y \t R \t S \t E" << m << endl; + for(i = 0; i < n; i++) { + cout << "{" << xc[i] << ", "; + cout << yc[i] << ", "; + cout << r[i] << ", "; + cout << ths[i] << ", "; + cout << the[i] << "}, " << endl; + } // end for i + } // end if(GetDebug(2)) + if (GetDebug(3)) cout << "Double_t sA0 = [" << n*(npr+1)+1<<"]["; + if (GetDebug(4)) cout << "3] {"; + else if(GetDebug(3)) cout <<"2] {"; + t0 = (Double_t)npr; + for(i = 0; i < n; i++) { + t1 = (the[i] - ths[i]) / t0; + if(GetDebug(5)) cout << "t1 = " << t1 << endl; + for(k = 0; k <= npr; k++) { + t = ths[i] + ((Double_t)k) * t1; + xp[i][k] = TMath::Abs(r[i]) * CosD(t) + xc[i]; + yp[i][k] = TMath::Abs(r[i]) * SinD(t) + yc[i]; + if(GetDebug(3)) { + cout << "{" << xp[i][k] << "," << yp[i][k]; + if (GetDebug(4)) cout << "," << t; + cout << "},"; + } // end if GetDebug + } // end for k + if(GetDebug(3)) cout << endl; + } // end of i + if(GetDebug(3)) cout << "{" << xp[0][0] << ", " << yp[0][0]; + if(GetDebug(4)) cout << "," << ths[0]; + if(GetDebug(3)) cout << "}}" << endl; +} + +//______________________________________________________________________ +TGeoVolume* AliITSv11GeometrySPD::CreateLadder(Int_t layer,TArrayD &sizes, + TGeoManager *mgr) const +{ + // + // Creates the "ladder" = silicon sensor + 5 chips. + // Returns a TGeoVolume containing the following components: + // - the sensor (TGeoBBox), whose name depends on the layer + // - 5 identical chips (TGeoBBox) + // - a guard ring around the sensor (subtraction of TGeoBBoxes), + // which is separated from the rest of sensor because it is not + // a sensitive part + // - bump bondings (TGeoBBox stripes for the whole width of the + // sensor, one per column). + // --- + // Arguments: + // 1 - the owner layer (MUST be 1 or 2 or a fatal error is raised) + // 2 - a TArrayD passed by reference, which will contain relevant + // dimensions related to this object: + // size[0] = 'thickness' (the smallest dimension) + // size[1] = 'length' (the direction along the ALICE Z axis) + // size[2] = 'width' (extension in the direction perp. to the + // above ones) + // 3 - the used TGeoManager + + // ** CRITICAL CHECK ** + // layer number can be ONLY 1 or 2 + if (layer != 1 && layer != 2) AliFatal("Layer number MUST be 1 or 2"); + + // ** MEDIA ** + TGeoMedium *medAir = GetMedium("AIR$",mgr); + TGeoMedium *medSPDSiChip = GetMedium("SPD SI CHIP$",mgr); // SPD SI CHIP + TGeoMedium *medSi = GetMedium("SI$",mgr); + TGeoMedium *medBumpBond = GetMedium("COPPER$",mgr); // ??? BumpBond + + // ** SIZES ** + Double_t chipThickness = fgkmm * 0.150; + Double_t chipWidth = fgkmm * 15.950; + Double_t chipLength = fgkmm * 13.600; + Double_t chipSpacing = fgkmm * 0.400; // separation of chips along Z + Double_t sensThickness = fgkmm * 0.200; + Double_t sensLength = fgkmm * 69.600; + Double_t sensWidth = fgkmm * 12.800; + Double_t guardRingWidth = fgkmm * 0.560; // a border of this thickness + // all around the sensor + Double_t bbLength = fgkmm * 0.042; + Double_t bbWidth = sensWidth; + Double_t bbThickness = fgkmm * 0.012; + Double_t bbPos = 0.080; // Z position w.r. to left pixel edge + // compute the size of the container volume which + // will also be returned in the referenced TArrayD; + // for readability, they are linked by reference to a more meaningful name + sizes.Set(3); + Double_t &thickness = sizes[0]; + Double_t &length = sizes[1]; + Double_t &width = sizes[2]; + // the container is a box which exactly enclose all the stuff; + width = chipWidth; + length = sensLength + 2.0*guardRingWidth; + thickness = sensThickness + chipThickness + bbThickness; + + // ** VOLUMES ** + // While creating this volume, since it is a sensitive volume, + // we must respect some standard criteria for its local reference frame. + // Local X must correspond to x coordinate of the sensitive volume: + // this means that we are going to create the container with a local + // reference system that is **not** in the middle of the box. + // This is accomplished by calling the shape constructor with an + // additional option ('originShift'): + Double_t xSens = 0.5 * (width - sensWidth - 2.0*guardRingWidth); + Double_t originShift[3] = {-xSens, 0., 0.}; + TGeoBBox *shapeContainer = new TGeoBBox(0.5*width,0.5*thickness, + 0.5*length,originShift); + // then the volume is made of air, and using this shape + TGeoVolume *container = new TGeoVolume(Form("ITSSPDlay%d-Ladder",layer), + shapeContainer, medAir); + // the chip is a common box + TGeoVolume *volChip = mgr->MakeBox("ITSSPDchip",medSPDSiChip, + 0.5*chipWidth,0.5*chipThickness,0.5*chipLength); + // the sensor as well + TGeoVolume *volSens = mgr->MakeBox(GetSenstiveVolumeName(layer),medSi, + 0.5*sensWidth,0.5*sensThickness,0.5*sensLength); + // the guard ring shape is the subtraction of two boxes with the + // same center. + TGeoBBox *shIn = new TGeoBBox(0.5*sensWidth,sensThickness,0.5*sensLength); + TGeoBBox *shOut = new TGeoBBox(0.5*sensWidth+guardRingWidth, + 0.5*sensThickness,0.5*sensLength+guardRingWidth); + shIn->SetName("ITSSPDinnerBox"); + shOut->SetName("ITSSPDouterBox"); + TGeoCompositeShape *shBorder = new TGeoCompositeShape( + "ITSSPDgaurdRingBorder",Form("%s-%s",shOut->GetName(),shIn->GetName())); + TGeoVolume *volBorder = new TGeoVolume("ITSSPDgaurdRing",shBorder,medSi); + // bump bonds for one whole column + TGeoVolume *volBB = mgr->MakeBox("ITSSPDbb",medBumpBond,0.5*bbWidth, + 0.5*bbThickness,0.5*bbLength); + // set colors of all objects for visualization + volSens->SetLineColor(kYellow + 1); + volChip->SetLineColor(kGreen); + volBorder->SetLineColor(kYellow + 3); + volBB->SetLineColor(kGray); + + // ** MOVEMENTS ** + // sensor is translated along thickness (X) and width (Y) + Double_t ySens = 0.5 * (thickness - sensThickness); + Double_t zSens = 0.0; + // we want that the x of the ladder is the same as the one of + // its sensitive volume + TGeoTranslation *trSens = new TGeoTranslation(0.0, ySens, zSens); + // bump bonds are translated along all axes: + // keep same Y used for sensors, but change the Z + TGeoTranslation *trBB[160]; + Double_t x = 0.0; + Double_t y = 0.5 * (thickness - bbThickness) - sensThickness; + Double_t z = -0.5 * sensLength + guardRingWidth + fgkmm*0.425 - bbPos; + Int_t i; + for (i = 0; i < 160; i++) { + trBB[i] = new TGeoTranslation(x, y, z); + switch(i) { + case 31:case 63:case 95:case 127: + z += fgkmm * 0.625 + fgkmm * 0.2; + break; + default: + z += fgkmm * 0.425; + } // end switch + } // end for i + // the chips are translated along the length (Z) and thickness (X) + TGeoTranslation *trChip[5] = {0, 0, 0, 0, 0}; + x = -xSens; + y = 0.5 * (chipThickness - thickness); + z = 0.0; + for (i = 0; i < 5; i++) { + z = -0.5*length + guardRingWidth + + (Double_t)i*chipSpacing + ((Double_t)(i) + 0.5)*chipLength; + trChip[i] = new TGeoTranslation(x, y, z); + } // end ofr i + + // add nodes to container + container->AddNode(volSens, 1, trSens); + container->AddNode(volBorder, 1, trSens); + for (i = 0; i < 160; i++) container->AddNode(volBB,i+1,trBB[i]); + for (i = 0; i < 5; i++) container->AddNode(volChip,i+3,trChip[i]); + // return the container + return container; +} + +//______________________________________________________________________ +TGeoVolume* AliITSv11GeometrySPD::CreateClip(TArrayD &sizes,Bool_t isDummy, + TGeoManager *mgr) const +{ + // + // Creates the carbon fiber clips which are added to the central ladders. + // They have a complicated shape which is approximated by a TGeoXtru + // Implementation of a single clip over an half-stave. + // It has a complicated shape which is approximated to a section like this: + // + // 6 + // /\ . + // 7 //\\ 5 + // / 1\\___________________4 + // 0 \___________________ + // 2 3 + // with a finite thickness for all the shape + // Its local reference frame is such that point A corresponds to origin. + // + + // MODIFIED geometry + Double_t sposty = fgkmm * -0.5; // lower internal side to avoid overlaps with modified geometry + + Double_t fullLength = fgkmm * 12.6; // = x4 - x0 + Double_t flatLength = fgkmm * 5.4; // = x4 - x3 + Double_t inclLongLength = fgkmm * 5.0; // = 5-6 + Double_t inclShortLength = fgkmm * 2.0; // = 6-7 + Double_t fullHeight = fgkmm * 2.8; // = y6 - y3 + Double_t thickness = fgkmm * 0.18; // thickness + Double_t totalLength = fgkmm * 52.0; // total length in Z + Double_t holeSize = fgkmm * 5.0; // dimension of cubic + // hole inserted for pt1000 + Double_t angle1 = 27.0; // supplementary of angle DCB + Double_t angle2; // angle DCB + Double_t angle3; // angle of GH with vertical + + angle2 = 0.5 * (180.0 - angle1); + angle3 = 90.0 - TMath::ACos(fullLength - flatLength - + inclLongLength*TMath::Cos(angle1)) * + TMath::RadToDeg(); + angle1 *= TMath::DegToRad(); + angle2 *= TMath::DegToRad(); + angle3 *= TMath::DegToRad(); + + Double_t x[8], y[8]; + + x[0] = 0.0; + x[1] = x[0] + fullLength - flatLength - inclLongLength*TMath::Cos(angle1); + x[2] = x[0] + fullLength - flatLength; + x[3] = x[0] + fullLength; + x[4] = x[3]; + x[5] = x[4] - flatLength + thickness * TMath::Cos(angle2); + x[6] = x[1]; + x[7] = x[0]; + + y[0] = 0.0; + y[1] = y[0] + inclShortLength * TMath::Cos(angle3); + y[2] = y[1] - inclLongLength * TMath::Sin(angle1); + y[3] = y[2]; + y[4] = y[3] + thickness; + y[5] = y[4]; + y[6] = y[1] + thickness; + y[7] = y[0] + thickness; + + y[0] += sposty; + y[7] += sposty; + + sizes.Set(7); + sizes[0] = totalLength; + sizes[1] = fullHeight; + sizes[2] = y[2]; + sizes[3] = y[6]; + sizes[4] = x[0]; + sizes[5] = x[3]; + sizes[6] = x[2]; + + if(isDummy){// use this argument when on ewant just the + // positions without create any volume + return NULL; + } // end if isDummy + + TGeoXtru *shClip = new TGeoXtru(2); + shClip->SetName("ITSSPDshclip"); + shClip->DefinePolygon(8, x, y); + shClip->DefineSection(0, -0.5*totalLength, 0., 0., 1.0); + shClip->DefineSection(1, 0.5*totalLength, 0., 0., 1.0); + + TGeoBBox *shHole = new TGeoBBox("ITSSPDSHClipHole",0.5*holeSize, + 0.5*holeSize,0.5*holeSize); + TGeoTranslation *tr1 = new TGeoTranslation("ITSSPDTRClipHole1",x[2],0.0, + fgkmm*14.); + TGeoTranslation *tr2 = new TGeoTranslation("ITSSPDTRClipHole2",x[2],0.0, + 0.0); + TGeoTranslation *tr3 = new TGeoTranslation("ITSSPDTRClipHole3",x[2],0.0, + -fgkmm*14.); + tr1->RegisterYourself(); + tr2->RegisterYourself(); + tr3->RegisterYourself(); + + //TString strExpr("ITSSPDshclip-("); + TString strExpr(shClip->GetName()); + strExpr.Append("-("); + strExpr.Append(Form("%s:%s+", shHole->GetName(), tr1->GetName())); + strExpr.Append(Form("%s:%s+", shHole->GetName(), tr2->GetName())); + strExpr.Append(Form("%s:%s)", shHole->GetName(), tr3->GetName())); + TGeoCompositeShape *shClipHole = new TGeoCompositeShape( + "ITSSPDSHClipHoles",strExpr.Data()); + + TGeoMedium *mat = GetMedium("SPD C (M55J)$", mgr); + TGeoVolume *vClip = new TGeoVolume("ITSSPDclip", shClipHole, mat); + vClip->SetLineColor(kGray + 2); + return vClip; +} + +//______________________________________________________________________ +TGeoVolume* AliITSv11GeometrySPD::CreatePatchPanel(TArrayD &sizes, + TGeoManager *mgr) const +{ + // + // Creates the patch panel approximated with a "L"-shaped TGeoXtru + // with a finite thickness for all the shape + // Its local reference frame is such that point A corresponds to origin. + // + Double_t hLength = fgkmm * 50.0; // horizontal length + Double_t vLength = fgkmm * 50.0; // vertical length + Double_t angle = 88.3; // angle between hor and vert + Double_t thickness = fgkmm * 4.0; // thickness + Double_t width = fgkmm * 100.0; // width looking from cone + + Double_t x[7], y[7]; + + y[0] = 0.0; + y[1] = y[0] + hLength; + y[2] = y[1]; + y[3] = y[0] + thickness; + y[4] = y[3] + vLength * TMath::Cos(angle*TMath::DegToRad()); + y[5] = y[4] - thickness / TMath::Sin(angle*TMath::DegToRad()); + y[6] = y[0]; + + x[0] = 0.0; + x[1] = x[0]; + x[2] = x[1] + thickness; + x[3] = x[2]; + x[4] = x[3] + vLength * TMath::Sin(angle*TMath::DegToRad()); + x[5] = x[4]; + x[6] = x[0] + thickness; + + sizes.Set(3); + sizes[0] = hLength; + sizes[1] = vLength; + sizes[2] = thickness; + + TGeoXtru *shPatch = new TGeoXtru(2); + shPatch->SetName("ITSSPDpatchShape1"); + shPatch->DefinePolygon(7, x, y); + shPatch->DefineSection(0, -0.5*width, 0., 0., 1.0); + shPatch->DefineSection(1, 0.5*width, 0., 0., 1.0); + + /* + Double_t subThickness = 10.0 * fgkmm; + Double_t subWidth = 55.0 * fgkmm; + new TGeoBBox("ITSSPDpatchShape2", 0.5*subThickness, 60.0 * fgkmm, 0.5*subWidth); + TGeoRotation *rotSub = new TGeoRotation(*gGeoIdentity); + rotSub->SetName("shPatchSubRot"); + rotSub->RotateZ(50.0); + rotSub->RegisterYourself(); + TGeoCombiTrans *trSub = new TGeoCombiTrans(0.26*hLength, 0.26*vLength, 0.0, rotSub); + trSub->SetName("shPatchSubTr"); + trSub->RegisterYourself(); + + TGeoCompositeShape *shPatchFinal = new TGeoCompositeShape("ITSSPDpatchShape1-(ITSSPDpatchShape2:shPatchSubTr)"); + */ + + TGeoMedium *mat = GetMedium("AL$", mgr); + //TGeoVolume *vPatch = new TGeoVolume("ITSSPDpatchPanel", shPatchFinal, mat); + TGeoVolume *vPatch = new TGeoVolume("ITSSPDpatchPanel", shPatch, mat); + vPatch->SetLineColor(kAzure); + + return vPatch; +} + +//___________________________________________________________________ +TGeoCompositeShape* AliITSv11GeometrySPD::CreateGroundingFoilShape + (Int_t itype,Double_t &length,Double_t &width, + Double_t thickness,TArrayD &sizes) +{ + // + // Creates the typical composite shape of the grounding foil: + // + // +---------------------------------------------------------+ + // | 5 6 9 | + // | +-----------+ +------------+ 10 + // | O | | | + // | 3 /-----+ 4 +------+ + // | 1 / 7 8 + // | /----------/ + // +-----/ 2 + + // 0 + // Z + 11 + // + // This shape is used 4 times: two layers of glue, one in kapton + // and one in aluminum, taking into account that the aliminum + // layer has small differences in the size of some parts. + // --- + // In order to overcome problems apparently due to a large number + // of points, the shape creation is done according the following + // steps: + // 1) a TGeoBBox is created with a size right enough to contain + // the whole shape (0-1-X-13) + // 2) holes are defined as other TGeoBBox which are subtracted + // from the main shape + // 3) a TGeoXtru is defined connecting the points (0-->11-->0) + // and is also subtracted from the main shape + // --- + // The argument ("type") is used to choose between all these + // possibilities: + // - type = 0 --> kapton layer + // - type = 1 --> aluminum layer + // - type = 2 --> glue layer between support and GF + // - type = 3 --> glue layer between GF and ladders + // Returns: a TGeoCompositeShape which will then be used to shape + // several volumes. Since TGeoXtru is used, the local reference + // frame of this object has X horizontal and Y vertical w.r to + // the shape drawn above, and Z axis going perpendicularly to the screen. + // This is not the correct reference for the half stave, for which + // the "long" dimension is Z and the "short" is X, while Y goes in + // the direction of thickness. This will imply some rotations when + // using the volumes created with this shape. + + // suffix to differentiate names + Char_t type[10]; + + // size of the virtual box containing exactly this volume + length = fgkmm * 243.18; + width = fgkmm * 15.95; + if (itype == 1) { + length -= fgkmm * 0.4; + width -= fgkmm * 0.4; + } // end if itype==1 + switch (itype) { + case 0: + snprintf(type,10,"Kap"); + break; + case 1: + snprintf(type,10, "Alu"); + break; + case 2: + snprintf(type,10,"Glue1"); + break; + case 3: + snprintf(type,10,"Glue2"); + break; + } + // we divide the shape in several slices along the horizontal + // direction (local X) here we define define the length of all + // sectors (from leftmost to rightmost) + Int_t i; + Double_t sliceLength[] = { 140.71, 2.48, 26.78, 4.00, + 10.00, 24.40, 10.00, 24.81 }; + for (i = 0; i < 8; i++) sliceLength[i] *= fgkmm; + if (itype == 1) { + sliceLength[0] -= fgkmm * 0.2; + sliceLength[4] -= fgkmm * 0.2; + sliceLength[5] += fgkmm * 0.4; + sliceLength[6] -= fgkmm * 0.4; + } // end if itype ==1 + + // as shown in the drawing, we have four different widths + // (along local Y) in this shape: + Double_t widthMax = fgkmm * 15.95; + Double_t widthMed1 = fgkmm * 15.00; + Double_t widthMed2 = fgkmm * 11.00; + Double_t widthMin = fgkmm * 4.40; + if (itype == 1) { + widthMax -= fgkmm * 0.4; + widthMed1 -= fgkmm * 0.4; + widthMed2 -= fgkmm * 0.4; + widthMin -= fgkmm * 0.4; + } // end if itype==1 + + // create the main shape + TGeoBBox *shGroundFull = 0; + shGroundFull = new TGeoBBox(Form("ITSSPDSHgFoil%sFull", type), + 0.5*length,0.5*width, 0.5*thickness); + + if(GetDebug(5)) shGroundFull->Print(); // Avoid Coverity warning + + // create the polygonal shape to be subtracted to give the correct + // shape to the borders its vertices are defined in sugh a way that + // this polygonal will be placed in the correct place considered + // that the origin of the local reference frame is in the center + // of the main box: we fix the starting point at the lower-left + // edge of the shape (point 12), and add all points in order, + // following a clockwise rotation + + Double_t x[13], y[13]; + x[ 0] = -0.5 * length + sliceLength[0]; + y[ 0] = -0.5 * widthMax; + + x[ 1] = x[0] + sliceLength[1]; + y[ 1] = y[0] + (widthMax - widthMed1); + + x[ 2] = x[1] + sliceLength[2]; + y[ 2] = y[1]; + + x[ 3] = x[2] + sliceLength[3]; + y[ 3] = y[2] + (widthMed1 - widthMed2); + + x[ 4] = x[3] + sliceLength[4]; + y[ 4] = y[3]; + + x[ 5] = x[4]; + y[ 5] = y[4] + (widthMed2 - widthMin); + + x[ 6] = x[5] + sliceLength[5]; + y[ 6] = y[5]; + + x[ 7] = x[6]; + y[ 7] = y[4]; + + x[ 8] = x[7] + sliceLength[6]; + y[ 8] = y[7]; + + x[ 9] = x[8]; + y[ 9] = y[6]; + + x[10] = x[9] + sliceLength[7] + 0.5; + y[10] = y[9]; + + x[11] = x[10]; + y[11] = y[0] - 0.5; + + x[12] = x[0]; + y[12] = y[11]; + + // create the shape + TGeoXtru *shGroundXtru = new TGeoXtru(2); + shGroundXtru->SetName(Form("ITSSPDSHgFoil%sXtru", type)); + shGroundXtru->DefinePolygon(13, x, y); + shGroundXtru->DefineSection(0, -thickness, 0., 0., 1.0); + shGroundXtru->DefineSection(1, thickness, 0., 0., 1.0); + + // define a string which will express the algebric operations among volumes + // and add the subtraction of this shape from the main one + TString strComposite(Form("ITSSPDSHgFoil%sFull-(%s+", type, + shGroundXtru->GetName())); + + // define the holes according to size information coming from drawings: + Double_t holeLength = fgkmm * 10.00; + Double_t holeWidth = fgkmm * 7.50; + Double_t holeSepX0 = fgkmm * 7.05; // separation between center + // of first hole and left border + Double_t holeSepXC = fgkmm * 14.00; // separation between the centers + // of two consecutive holes + Double_t holeSepX1 = fgkmm * 15.42; // separation between centers of + // 5th and 6th hole + Double_t holeSepX2 = fgkmm * 22.00; // separation between centers of + // 10th and 11th hole + if (itype == 1) { + holeSepX0 -= fgkmm * 0.2; + holeLength += fgkmm * 0.4; + holeWidth += fgkmm * 0.4; + } // end if itype==1 + sizes.Set(7); + sizes[0] = holeLength; + sizes[1] = holeWidth; + sizes[2] = holeSepX0; + sizes[3] = holeSepXC; + sizes[4] = holeSepX1; + sizes[5] = holeSepX2; + sizes[6] = fgkmm * 4.40; + + // X position of hole center (will change for each hole) + Double_t holeX = -0.5*length; + // Y position of center of all holes (= 4.4 mm from upper border) + Double_t holeY = 0.5*(width - holeWidth) - widthMin; + + // create a shape for the holes (common) + new TGeoBBox(Form("ITSSPD%sGfoilHole", type),0.5*holeLength, + 0.5*holeWidth, thickness); + + // insert the holes in the XTRU shape: + // starting from the first value of X, they are simply + // shifted along this axis + char name[200]; + TGeoTranslation *transHole[11]; + for (i = 0; i < 11; i++) { + // set the position of the hole, depending on index + if (i == 0) { + holeX += holeSepX0; + }else if (i < 5) { + holeX += holeSepXC; + }else if (i == 5) { + holeX += holeSepX1; + }else if (i < 10) { + holeX += holeSepXC; + }else { + holeX += holeSepX2; + } // end if else if's + //cout << i << " --> X = " << holeX << endl; + snprintf(name,200,"ITSSPDTRgFoil%sHole%d", type, i); + transHole[i] = new TGeoTranslation(name, holeX, holeY, 0.0); + transHole[i]->RegisterYourself(); + strComposite.Append(Form("ITSSPD%sGfoilHole:%s", type, name)); + if (i < 10) strComposite.Append("+"); else strComposite.Append(")"); + } // end for i + + // create composite shape + TGeoCompositeShape *shGround = new TGeoCompositeShape( + Form("ITSSPDSHgFoil%s", type), strComposite.Data()); + + return shGround; +} +//______________________________________________________________________ +TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateGroundingFoil(Bool_t isRight, + TArrayD &sizes, TGeoManager *mgr) +{ + // + // Create a volume containing all parts of the grounding foil a + // for a half-stave. + // It consists of 4 layers with the same shape but different thickness: + // 1) a layer of glue + // 2) the aluminum layer + // 3) the kapton layer + // 4) another layer of glue + // --- + // Arguments: + // 1: a boolean value to know if it is the grounding foir for + // the right or left side + // 2: a TArrayD which will contain the dimension of the container box: + // - size[0] = length along Z (the beam line direction) + // - size[1] = the 'width' of the stave, which defines, together + // with Z, the plane of the carbon fiber support + // - size[2] = 'thickness' (= the direction along which all + // stave components are superimposed) + // 3: the TGeoManager + // --- + // The return value is a TGeoBBox volume containing all grounding + // foil components. + // to avoid strange behaviour of the geometry manager, + // create a suffix to be used in the names of all shapes + // + char suf[5]; + if (isRight) strncpy(suf, "R", 5); else strncpy(suf, "L", 5); + // this volume will be created in order to ease its placement in + // the half-stave; then, it is added here the small distance of + // the "central" edge of each volume from the Z=0 plane in the stave + // reference (which coincides with ALICE one) + Double_t dist = fgkmm * 0.71; + + // define materials + TGeoMedium *medKap = GetMedium("SPD KAPTON(POLYCH2)$", mgr); + TGeoMedium *medAlu = GetMedium("AL$", mgr); + TGeoMedium *medGlue = GetMedium("EPOXY$", mgr); //??? GLUE_GF_SUPPORT + + // compute the volume shapes (thicknesses change from one to the other) + Double_t kpLength, kpWidth, alLength, alWidth; + TArrayD kpSize, alSize, glSize; + Double_t kpThickness = fgkmm * 0.04; + Double_t alThickness = fgkmm * 0.01; +//cout << "AL THICKNESS" << alThickness << endl; + //Double_t g0Thickness = fgkmm * 0.1175 - fgkGapHalfStave; + //Double_t g1Thickness = fgkmm * 0.1175 - fgkGapLadder; + Double_t g0Thickness = fgkmm * 0.1275 - fgkGapHalfStave; + Double_t g1Thickness = fgkmm * 0.1275 - fgkGapLadder; + TGeoCompositeShape *kpShape = CreateGroundingFoilShape(0,kpLength,kpWidth, + kpThickness, kpSize); + TGeoCompositeShape *alShape = CreateGroundingFoilShape(1,alLength,alWidth, + alThickness, alSize); + TGeoCompositeShape *g0Shape = CreateGroundingFoilShape(2,kpLength,kpWidth, + g0Thickness, glSize); + TGeoCompositeShape *g1Shape = CreateGroundingFoilShape(3,kpLength,kpWidth, + g1Thickness, glSize); + // create the component volumes and register their sizes in the + // passed arrays for readability reasons, some reference variables + // explicit the meaning of the array slots + TGeoVolume *kpVol = new TGeoVolume(Form("ITSSPDgFoilKap%s",suf), + kpShape, medKap); + TGeoVolume *alVol = new TGeoVolume(Form("ITSSPDgFoilAlu%s",suf), + alShape, medAlu); + TGeoVolume *g0Vol = new TGeoVolume(Form("ITSSPDgFoilGlue%s",suf), + g0Shape, medGlue); + TGeoVolume *g1Vol = new TGeoVolume(Form("ITSSPDgFoilGlue%s",suf), + g1Shape, medGlue); + // set colors for the volumes + kpVol->SetLineColor(kRed); + alVol->SetLineColor(kGray); + g0Vol->SetLineColor(kYellow); + g1Vol->SetLineColor(kYellow); + // create references for the final size object + if (sizes.GetSize() != 3) sizes.Set(3); + Double_t &fullThickness = sizes[0]; + Double_t &fullLength = sizes[1]; + Double_t &fullWidth = sizes[2]; + // kapton leads the larger dimensions of the foil + // (including the cited small distance from Z=0 stave reference plane) + // the thickness is the sum of the ones of all components + fullLength = kpLength + dist; + fullWidth = kpWidth; + fullThickness = kpThickness + alThickness + g0Thickness + g1Thickness; + // create the container +// TGeoMedium *air = GetMedium("AIR$", mgr); + TGeoVolumeAssembly *container = new TGeoVolumeAssembly(Form("ITSSPDgFOIL-%s",suf)); +// TGeoVolume *container = mgr->MakeBox(Form("ITSSPDgFOIL-%s",suf), +// air, 0.5*fullThickness, 0.5*fullWidth, 0.5*fullLength); + // create the common correction rotation (which depends of what side + // we are building) + TGeoRotation *rotCorr = new TGeoRotation(*gGeoIdentity); + if (isRight) rotCorr->RotateY(90.0); + else rotCorr->RotateY(-90.0); + // compute the translations, which are in the length and + // thickness directions + Double_t x, y, z, shift = 0.0; + if (isRight) shift = dist; + // glue (bottom) + x = -0.5*(fullThickness - g0Thickness); + z = 0.5*(fullLength - kpLength) - shift; + TGeoCombiTrans *glTrans0 = new TGeoCombiTrans(x, 0.0, z, rotCorr); + // kapton + x += 0.5*(g0Thickness + kpThickness); + TGeoCombiTrans *kpTrans = new TGeoCombiTrans(x, 0.0, z, rotCorr); + // aluminum + x += 0.5*(kpThickness + alThickness); + z = 0.5*(fullLength - alLength) - shift - 0.5*(kpLength - alLength); + TGeoCombiTrans *alTrans = new TGeoCombiTrans(x, 0.0, z, rotCorr); + // glue (top) + x += 0.5*(alThickness + g1Thickness); + z = 0.5*(fullLength - kpLength) - shift; + TGeoCombiTrans *glTrans1 = new TGeoCombiTrans(x, 0.0, z, rotCorr); + + //cout << fgkGapHalfStave << endl; + //cout << g0Thickness << endl; + //cout << kpThickness << endl; + //cout << alThickness << endl; + //cout << g1Thickness << endl; + + // add to container + container->SetLineColor(kMagenta-10); + container->AddNode(kpVol, 1, kpTrans); + container->AddNode(alVol, 1, alTrans); + container->AddNode(g0Vol, 1, glTrans0); + container->AddNode(g1Vol, 2, glTrans1); + // to add the grease we remember the sizes of the holes, stored as + // additional parameters in the kapton layer size: + // - sizes[3] = hole length + // - sizes[4] = hole width + // - sizes[5] = position of first hole center + // - sizes[6] = standard separation between holes + // - sizes[7] = separation between 5th and 6th hole + // - sizes[8] = separation between 10th and 11th hole + // - sizes[9] = separation between the upper hole border and + // the foil border + Double_t holeLength = kpSize[0]; + Double_t holeWidth = kpSize[1]; + Double_t holeFirstZ = kpSize[2]; + Double_t holeSepZ = kpSize[3]; + Double_t holeSep5th6th = kpSize[4]; + Double_t holeSep10th11th = kpSize[5]; + Double_t holeSepY = kpSize[6]; + // volume (common) + // Grease has not been defined to date. Need much more information + // no this material! + TGeoMedium *grease = GetMedium("SPD KAPTON(POLYCH2)$", mgr); // ??? GREASE + TGeoVolume *hVol = mgr->MakeBox("ITSSPDGrease", grease, + 0.5*fullThickness, 0.5*holeWidth, 0.5*holeLength); + hVol->SetLineColor(kBlue); + // displacement of volumes in the container + Int_t idx = 1; // copy numbers start from 1. + x = 0.0; + y = 0.5*(fullWidth - holeWidth) - holeSepY; + if (isRight) z = holeFirstZ - 0.5*fullLength + dist; + else z = 0.5*fullLength - holeFirstZ - dist; + for (Int_t i = 0; i < 11; i++) { + TGeoTranslation *t = 0; + t = new TGeoTranslation(x, y, -z); + container->AddNode(hVol, idx++, t); + if (i < 4) shift = holeSepZ; + else if (i == 4) shift = holeSep5th6th; + else if (i < 9) shift = holeSepZ; + else shift = holeSep10th11th; + if (isRight) z += shift; + else z -= shift; + } // end for i + return container; +} +//___________________________________________________________________ +TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateMCM(Bool_t isRight, + TArrayD &sizes, TGeoManager *mgr) const +{ + // + // Create a TGeoAssembly containing all the components of the MCM. + // The TGeoVolume container is rejected due to the possibility of overlaps + // when placing this object on the carbon fiber sector. + // The assembly contains: + // - the thin part of the MCM (integrated circuit) + // - the MCM chips (specifications from EDMS) + // - the cap which covers the zone where chips are bound to MCM + // --- + // The local reference frame of this assembly is defined in such a way + // that all volumes are contained in a virtual box whose center + // is placed exactly in the middle of the occupied space w.r to all + // directions. This will ease the positioning of this object in the + // half-stave. The sizes of this virtual box are stored in + // the array passed by reference. + // --- + // Arguments: + // - a boolean flag to know if this is the "left" or "right" MCM, when + // looking at the stave from above (i.e. the direction from which + // one sees bus over ladders over grounding foil) and keeping the + // continuous border in the upper part, one sees the thicker part + // on the left or right. + // - an array passed by reference which will contain the size of + // the virtual container. + // - a pointer to the used TGeoManager. + // + + // to distinguish the "left" and "right" objects, a suffix is created + char suf[5]; + if (isRight) strncpy(suf, "R", 5); else strncpy(suf, "L", 5); + + // ** MEDIA ** + TGeoMedium *medBase = GetMedium("SPD KAPTON(POLYCH2)$",mgr);// ??? MCM BASE + TGeoMedium *medChip = GetMedium("SPD SI CHIP$",mgr); + TGeoMedium *medCap = GetMedium("AL$",mgr); + + // The shape of the MCM is divided into 3 sectors with different + // widths (Y) and lengths (X), like in this sketch: + // + // 0 1 2 + // +---------------------+-----------------------------------+ + // | 4 sect 2 | + // | 6 sect 1 /-------------------+ + // | sect 0 /--------------/ 3 + // +--------------------/ 5 + // 8 7 + // + // the inclination of all oblique borders (6-7, 4-5) is always 45 degrees. + // From drawings we can parametrize the dimensions of all these sectors, + // then the shape of this part of the MCM is implemented as a + // TGeoXtru centerd in the virtual XY space. + // The first step is definig the relevant sizes of this shape: + Int_t i, j; + Double_t mcmThickness = fgkmm * 0.35; + Double_t sizeXtot = fgkmm * 105.6; // total distance (0-2) + // resp. 7-8, 5-6 and 3-4 + Double_t sizeXsector[3] = {fgkmm * 28.4, fgkmm * 41.4, fgkmm * 28.8}; + // resp. 0-8, 1-6 and 2-3 + Double_t sizeYsector[3] = {fgkmm * 15.0, fgkmm * 11.0, fgkmm * 8.0}; + Double_t sizeSep01 = fgkmm * 4.0; // x(6)-x(7) + Double_t sizeSep12 = fgkmm * 3.0; // x(4)-x(5) + + // define sizes of chips (last is the thickest) + Double_t chipLength[5] = { 4.00, 6.15, 3.85, 5.60, 18.00 }; + Double_t chipWidth[5] = { 3.00, 4.10, 3.85, 5.60, 5.45 }; + Double_t chipThickness[5] = { 0.60, 0.30, 0.30, 1.00, 1.20 }; + TString name[5]; + name[0] = "ITSSPDanalog"; + name[1] = "ITSSPDpilot"; + name[2] = "ITSSPDgol"; + name[3] = "ITSSPDrx40"; + name[4] = "ITSSPDoptical"; + Color_t color[5] = { kCyan, kGreen, kYellow, kBlue, kOrange }; + + // define the sizes of the cover + Double_t capThickness = fgkmm * 0.3; + Double_t capHeight = fgkmm * 1.7; + + // compute the total size of the virtual container box + sizes.Set(3); + Double_t &thickness = sizes[0]; + Double_t &length = sizes[1]; + Double_t &width = sizes[2]; + length = sizeXtot; + width = sizeYsector[0]; + thickness = mcmThickness + capHeight; + + // define all the relevant vertices of the polygon + // which defines the transverse shape of the MCM. + // These values are used to several purposes, and + // for each one, some points must be excluded + Double_t xRef[9], yRef[9]; + xRef[0] = -0.5*sizeXtot; + yRef[0] = 0.5*sizeYsector[0]; + xRef[1] = xRef[0] + sizeXsector[0] + sizeSep01; + yRef[1] = yRef[0]; + xRef[2] = -xRef[0]; + yRef[2] = yRef[0]; + xRef[3] = xRef[2]; + yRef[3] = yRef[2] - sizeYsector[2]; + xRef[4] = xRef[3] - sizeXsector[2]; + yRef[4] = yRef[3]; + xRef[5] = xRef[4] - sizeSep12; + yRef[5] = yRef[4] - sizeSep12; + xRef[6] = xRef[5] - sizeXsector[1]; + yRef[6] = yRef[5]; + xRef[7] = xRef[6] - sizeSep01; + yRef[7] = yRef[6] - sizeSep01; + xRef[8] = xRef[0]; + yRef[8] = -yRef[0]; + + // the above points are defined for the "right" MCM (if ve view the + // stave from above) in order to change to the "left" one, we must + // change the sign to all X values: + if (isRight) for (i = 0; i < 9; i++) xRef[i] = -xRef[i]; + + // the shape of the MCM and glue layer are done excluding point 1, + // which is not necessary and cause the geometry builder to get confused + j = 0; + Double_t xBase[8], yBase[8]; + for (i = 0; i < 9; i++) { + if (i == 1) continue; + xBase[j] = xRef[i]; + yBase[j] = yRef[i]; + j++; + } // end for i + + // the MCM cover is superimposed over the zones 1 and 2 only + Double_t xCap[6], yCap[6]; + j = 0; + for (i = 1; i <= 6; i++) { + xCap[j] = xRef[i]; + yCap[j] = yRef[i]; + j++; + } // end for i + + // define positions of chips, + // which must be added to the bottom-left corner of MCM + // and divided by 1E4; + Double_t chipX[5], chipY[5]; + if (isRight) { + chipX[0] = 666320.; + chipX[1] = 508320.; + chipX[2] = 381320.; + chipX[3] = 295320.; + chipX[4] = 150320.; + chipY[0] = 23750.; + chipY[1] = 27750.; + chipY[2] = 20750.; + chipY[3] = 42750.; + chipY[4] = 39750.; + } else { + chipX[0] = 389730.; + chipX[1] = 548630.; + chipX[2] = 674930.; + chipX[3] = 761430.; + chipX[4] = 905430.; + chipY[0] = 96250.; + chipY[1] = 91950.; + chipY[2] = 99250.; + chipY[3] = 107250.; + chipY[4] = 109750.; + } // end if isRight + for (i = 0; i < 5; i++) { + chipX[i] *= 0.00001; + chipY[i] *= 0.00001; + if (isRight) { + chipX[i] += xRef[3]; + chipY[i] += yRef[3]; + } else { + chipX[i] += xRef[8]; + chipY[i] += yRef[8]; + } // end for isRight + chipLength[i] *= fgkmm; + chipWidth[i] *= fgkmm; + chipThickness[i] *= fgkmm; + } // end for i + + // create shapes for MCM + Double_t z1, z2; + TGeoXtru *shBase = new TGeoXtru(2); + z1 = -0.5*thickness; + z2 = z1 + mcmThickness; + shBase->DefinePolygon(8, xBase, yBase); + shBase->DefineSection(0, z1, 0., 0., 1.0); + shBase->DefineSection(1, z2, 0., 0., 1.0); + + // create volumes of MCM + TGeoVolume *volBase = new TGeoVolume("ITSSPDbase", shBase, medBase); + volBase->SetLineColor(kRed); + + // to create the border of the MCM cover, it is required the + // subtraction of two shapes the outer is created using the + // reference points defined here + TGeoXtru *shCapOut = new TGeoXtru(2); + shCapOut->SetName(Form("ITSSPDshCAPOUT%s", suf)); + z1 = z2; + z2 = z1 + capHeight - capThickness; + shCapOut->DefinePolygon(6, xCap, yCap); + shCapOut->DefineSection(0, z1, 0., 0., 1.0); + shCapOut->DefineSection(1, z2, 0., 0., 1.0); + // the inner is built similarly but subtracting the thickness + Double_t angle, cs; + Double_t xin[6], yin[6]; + if (!isRight) { + angle = 45.0; + cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) ); + xin[0] = xCap[0] + capThickness; + yin[0] = yCap[0] - capThickness; + xin[1] = xCap[1] - capThickness; + yin[1] = yin[0]; + xin[2] = xin[1]; + yin[2] = yCap[2] + capThickness; + xin[3] = xCap[3] - capThickness*cs; + yin[3] = yin[2]; + xin[4] = xin[3] - sizeSep12; + yin[4] = yCap[4] + capThickness; + xin[5] = xin[0]; + yin[5] = yin[4]; + } else { + angle = 45.0; + cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) ); + xin[0] = xCap[0] - capThickness; + yin[0] = yCap[0] - capThickness; + xin[1] = xCap[1] + capThickness; + yin[1] = yin[0]; + xin[2] = xin[1]; + yin[2] = yCap[2] + capThickness; + xin[3] = xCap[3] - capThickness*cs; + yin[3] = yin[2]; + xin[4] = xin[3] + sizeSep12; + yin[4] = yCap[4] + capThickness; + xin[5] = xin[0]; + yin[5] = yin[4]; + } // end if !isRight + TGeoXtru *shCapIn = new TGeoXtru(2); + shCapIn->SetName(Form("ITSSPDshCAPIN%s", suf)); + shCapIn->DefinePolygon(6, xin, yin); + shCapIn->DefineSection(0, z1 - 0.01, 0., 0., 1.0); + shCapIn->DefineSection(1, z2 + 0.01, 0., 0., 1.0); + // compose shapes + TGeoCompositeShape *shCapBorder = new TGeoCompositeShape( + Form("ITSSPDshBORDER%s", suf), + Form("%s-%s", shCapOut->GetName(), + shCapIn->GetName())); + // create volume + TGeoVolume *volCapBorder = new TGeoVolume("ITSSPDcapBoarder", + shCapBorder,medCap); + volCapBorder->SetLineColor(kGreen); + // finally, we create the top of the cover, which has the same + // shape of outer border and a thickness equal of the one othe + // cover border one + TGeoXtru *shCapTop = new TGeoXtru(2); + z1 = z2; + z2 = z1 + capThickness; + shCapTop->DefinePolygon(6, xCap, yCap); + shCapTop->DefineSection(0, z1, 0., 0., 1.0); + shCapTop->DefineSection(1, z2, 0., 0., 1.0); + TGeoVolume *volCapTop = new TGeoVolume("ITSSPDcapTop", shCapTop, medCap); + volCapTop->SetLineColor(kBlue); + + // create container assembly with right suffix + TGeoVolumeAssembly *mcmAssembly = new TGeoVolumeAssembly( + Form("ITSSPDmcm%s", suf)); + + // add mcm layer + mcmAssembly->AddNode(volBase, 1, gGeoIdentity); + // add chips + for (i = 0; i < 5; i++) { + TGeoVolume *box = gGeoManager->MakeBox(name[i],medChip, + 0.5*chipLength[i], 0.5*chipWidth[i], 0.5*chipThickness[i]); + TGeoTranslation *tr = new TGeoTranslation(chipX[i],chipY[i], + 0.5*(-thickness + chipThickness[i]) + mcmThickness); + box->SetLineColor(color[i]); + mcmAssembly->AddNode(box, 1, tr); + } // end for i + // add cap border + mcmAssembly->AddNode(volCapBorder, 1, gGeoIdentity); + // add cap top + mcmAssembly->AddNode(volCapTop, 1, gGeoIdentity); + + return mcmAssembly; +} + +//______________________________________________________________________ +TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBus +(Bool_t isRight, Int_t ilayer, TArrayD &sizes, TGeoManager *mgr) const +{ + // + // The pixel bus is implemented as a TGeoBBox with some objects on it, + // which could affect the particle energy loss. + // --- + // In order to avoid confusion, the bus is directly displaced + // according to the axis orientations which are used in the final stave: + // X --> thickness direction + // Y --> width direction + // Z --> length direction + // + + // ** CRITICAL CHECK ****************************************************** + // layer number can be ONLY 1 or 2 + if (ilayer != 1 && ilayer != 2) AliFatal("Layer number MUST be 1 or 2"); + + // ** MEDIA ** + //PIXEL BUS + TGeoMedium *medBus = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr); + TGeoMedium *medPt1000 = GetMedium("CERAMICS$",mgr); // ??? PT1000 + // Capacity + TGeoMedium *medCap = GetMedium("SDD X7R capacitors$",mgr); + // ??? Resistance + //TGeoMedium *medRes = GetMedium("SDD X7R capacitors$",mgr); + TGeoMedium *medRes = GetMedium("ALUMINUM$",mgr); + //TGeoMedium *medExt = GetMedium("SDDKAPTON (POLYCH2)$", mgr); + TGeoMedium *medExt = GetMedium("SPD-MIX CU KAPTON$", mgr); + // ** SIZES & POSITIONS ** + Double_t busLength = 170.501 * fgkmm; // length of plane part + Double_t busWidth = 13.800 * fgkmm; // width + Double_t busThickness = 0.280 * fgkmm; // thickness + Double_t pt1000Length = fgkmm * 1.50; + Double_t pt1000Width = fgkmm * 3.10; + Double_t pt1000Thickness = fgkmm * 0.60; + Double_t pt1000Y, pt1000Z[10];// position of the pt1000's along the bus + Double_t capLength = fgkmm * 2.55; + Double_t capWidth = fgkmm * 1.50; + Double_t capThickness = fgkmm * 1.35; + Double_t capY[2], capZ[2]; + + Double_t resLength = fgkmm * 2.20; + Double_t resWidth = fgkmm * 0.80; + Double_t resThickness = fgkmm * 0.35; + Double_t resY[2], resZ[2]; + + Double_t extThickness = fgkmm * 0.25; + Double_t ext1Length = fgkmm * (26.7 - 10.0); + Double_t ext2Length = fgkmm * 284.0 - ext1Length + extThickness; + Double_t ext2LengthL2 = fgkmm * 130.0; + Double_t ext4Length = fgkmm * 40.0; + Double_t ext4Twist = 66.54; //deg + Double_t extWidth = fgkmm * 11.0; + Double_t extHeight = fgkmm * 2.5; + + // position of pt1000, resistors and capacitors depends on the + // bus if it's left or right one + if (!isRight) { + pt1000Y = 64400.; + pt1000Z[0] = 66160.; + pt1000Z[1] = 206200.; + pt1000Z[2] = 346200.; + pt1000Z[3] = 486200.; + pt1000Z[4] = 626200.; + pt1000Z[5] = 776200.; + pt1000Z[6] = 916200.; + pt1000Z[7] = 1056200.; + pt1000Z[8] = 1196200.; + pt1000Z[9] = 1336200.; + resZ[0] = 1397500.; + resY[0] = 26900.; + resZ[1] = 682500.; + resY[1] = 27800.; + capZ[0] = 1395700.; + capY[0] = 45700.; + capZ[1] = 692600.; + capY[1] = 45400.; + } else { + pt1000Y = 66100.; + pt1000Z[0] = 319700.; + pt1000Z[1] = 459700.; + pt1000Z[2] = 599700.; + pt1000Z[3] = 739700.; + pt1000Z[4] = 879700.; + pt1000Z[5] = 1029700.; + pt1000Z[6] = 1169700.; + pt1000Z[7] = 1309700.; + pt1000Z[8] = 1449700.; + pt1000Z[9] = 1589700.; + capY[0] = 44500.; + capZ[0] = 266700.; + capY[1] = 44300.; + capZ[1] = 974700.; + resZ[0] = 266500.; + resY[0] = 29200.; + resZ[1] = 974600.; + resY[1] = 29900.; + } // end if isRight + Int_t i; + pt1000Y *= 1E-4 * fgkmm; + for (i = 0; i < 10; i++) { + pt1000Z[i] *= 1E-4 * fgkmm; + if (i < 2) { + capZ[i] *= 1E-4 * fgkmm; + capY[i] *= 1E-4 * fgkmm; + resZ[i] *= 1E-4 * fgkmm; + resY[i] *= 1E-4 * fgkmm; + } // end if iM2 + } // end for i + + Double_t &fullLength = sizes[1]; + Double_t &fullWidth = sizes[2]; + Double_t &fullThickness = sizes[0]; + fullLength = busLength; + fullWidth = busWidth; + // add the thickness of the thickest component on bus (capacity) + fullThickness = busThickness + capThickness; + + // ** VOLUMES ** + TGeoVolumeAssembly *container = new TGeoVolumeAssembly("ITSSPDpixelBus"); + TGeoVolume *bus = mgr->MakeBox("ITSSPDbus", medBus, 0.5*busThickness, + 0.5*busWidth, 0.5*busLength); + TGeoVolume *pt1000 = mgr->MakeBox("ITSSPDpt1000",medPt1000, + 0.5*pt1000Thickness,0.5*pt1000Width, 0.5*pt1000Length); + TGeoVolume *res = mgr->MakeBox("ITSSPDresistor", medRes, 0.5*resThickness, + 0.5*resWidth, 0.5*resLength); + TGeoVolume *cap = mgr->MakeBox("ITSSPDcapacitor", medCap, 0.5*capThickness, + 0.5*capWidth, 0.5*capLength); + + char extname[12]; + snprintf(extname,12,"Extender1l%d",ilayer); + TGeoVolume *ext1 = mgr->MakeBox(extname, medExt, 0.5*extThickness, 0.5*extWidth, 0.5*ext1Length); + snprintf(extname,12,"Extender2l%d",ilayer); + TGeoVolume *ext2 = mgr->MakeBox(extname, medExt, 0.5*extHeight - 2.*extThickness, 0.5*extWidth, 0.5*extThickness); + TGeoVolume *ext3=0; + snprintf(extname,12,"Extender3l%d",ilayer); + TGeoVolume *ext4=0; + snprintf(extname,12,"Extender3l%d",ilayer); + if (ilayer==1) { + Double_t halflen=(0.5*ext2Length + extThickness); + Double_t xprof[6],yprof[6]; + Double_t alpha=24; + xprof[0] = -halflen; + yprof[0] = -0.5*extThickness; + xprof[1] = halflen/2; + yprof[1] = yprof[0]; + xprof[2] = xprof[1] + 0.5*halflen*CosD(alpha); + yprof[2] = yprof[1] + 0.5*halflen*SinD(alpha); + xprof[3] = xprof[2] - extThickness*SinD(alpha); + yprof[3] = yprof[2] + extThickness*CosD(alpha); + InsidePoint(xprof[0], yprof[0], xprof[1], yprof[1], xprof[2], yprof[2], + extThickness, xprof[4], yprof[4]); + xprof[5] = xprof[0]; + yprof[5] = 0.5*extThickness; + TGeoXtru *ext3sh = new TGeoXtru(2); + ext3sh->DefinePolygon(6, xprof, yprof); + ext3sh->DefineSection(0, -0.5*(extWidth-0.8*fgkmm)); + ext3sh->DefineSection(1, 0.5*(extWidth-0.8*fgkmm)); + ext3 = new TGeoVolume(extname, ext3sh, medExt); + } else { + ext3 = mgr->MakeBox(extname, medExt, 0.5*extThickness, 0.5*(extWidth-0.8*fgkmm), 0.5*ext2LengthL2 + extThickness); // Hardcode fix of a small overlap + ext4= mgr->MakeGtra("Extender4l2", medExt, 0.5*ext4Length, 0, 0, ext4Twist, 0.5*(extWidth-0.8*fgkmm), 0.5*extThickness, 0.5*extThickness, 0, 0.5*(extWidth-0.8*fgkmm), 0.5*extThickness, 0.5*extThickness, 0); + ext4->SetLineColor(kGray); + } + bus->SetLineColor(kYellow + 2); + pt1000->SetLineColor(kGreen + 3); + res->SetLineColor(kRed + 1); + cap->SetLineColor(kBlue - 7); + ext1->SetLineColor(kGray); + ext2->SetLineColor(kGray); + ext3->SetLineColor(kGray); + + // ** MOVEMENTS AND POSITIONEMENT ** + // bus + TGeoTranslation *trBus = new TGeoTranslation(0.5 * (busThickness - + fullThickness), 0.0, 0.0); + container->AddNode(bus, 1, trBus); + Double_t zRef, yRef, x, y, z; + if (isRight) { + zRef = -0.5*fullLength; + yRef = -0.5*fullWidth; + } else { + zRef = -0.5*fullLength; + yRef = -0.5*fullWidth; + } // end if isRight + // pt1000 + x = 0.5*(pt1000Thickness - fullThickness) + busThickness; + for (i = 0; i < 10; i++) { + y = yRef + pt1000Y; + z = zRef + pt1000Z[i]; + TGeoTranslation *tr = new TGeoTranslation(x, y, z); + container->AddNode(pt1000, i+1, tr); + } // end for i + // capacitors + x = 0.5*(capThickness - fullThickness) + busThickness; + for (i = 0; i < 2; i++) { + y = yRef + capY[i]; + z = zRef + capZ[i]; + TGeoTranslation *tr = new TGeoTranslation(x, y, z); + container->AddNode(cap, i+1, tr); + } // end for i + // resistors + x = 0.5*(resThickness - fullThickness) + busThickness; + for (i = 0; i < 2; i++) { + y = yRef + resY[i]; + z = zRef + resZ[i]; + TGeoTranslation *tr = new TGeoTranslation(x, y, z); + container->AddNode(res, i+1, tr); + } // end for i + + // extender + if (ilayer == 2) { + if (isRight) { + y = 0.5 * (fullWidth - extWidth) - 0.1; + z = 0.5 * (-fullLength + fgkmm * 10.0); + } + else { + y = 0.5 * (fullWidth - extWidth) - 0.1; + z = 0.5 * ( fullLength - fgkmm * 10.0); + } + } + else { + if (isRight) { + y = -0.5 * (fullWidth - extWidth); + z = 0.5 * (-fullLength + fgkmm * 10.0); + } + else { + y = -0.5 * (fullWidth - extWidth); + z = 0.5 * ( fullLength - fgkmm * 10.0); + } + } + x = 0.5 * (extThickness - fullThickness) + busThickness; + //y = 0.5 * (fullWidth - extWidth); + TGeoTranslation *trExt1 = new TGeoTranslation(x, y, z); + if (isRight) { + z -= 0.5 * (ext1Length - extThickness); + } + else { + z += 0.5 * (ext1Length - extThickness); + } + x += 0.5*(extHeight - 3.*extThickness); + TGeoTranslation *trExt2 = new TGeoTranslation(x, y, z); + if (isRight) { + if (ilayer==1) + z -= 0.5 * (ext2Length - extThickness) + 2.5*extThickness; + else + z -= 0.5 * (ext2LengthL2 - extThickness) + 2.5*extThickness; + } + else { + if (ilayer==1) + z += 0.5 * (ext2Length - extThickness) + 2.5*extThickness; + else + z += 0.5 * (ext2LengthL2 - extThickness) + 2.5*extThickness; + } + x += 0.5*(extHeight - extThickness) - 2.*extThickness; + TGeoCombiTrans *trExt3=0; + if (ilayer==1) { + if (isRight) + trExt3 = new TGeoCombiTrans(x, y, z, new TGeoRotation("",0.,-90.,90.)); + else + trExt3 = new TGeoCombiTrans(x, y, z, new TGeoRotation("",0., 90.,90.)); + } else + trExt3 = new TGeoCombiTrans(x, y, z, 0); + container->AddNode(ext1, 0, trExt1); + container->AddNode(ext2, 0, trExt2); + container->AddNode(ext3, 0, trExt3); + if (ilayer==2) { + TGeoCombiTrans *trExt4=0; + if (isRight) { + z -= ( ((TGeoBBox*)ext3->GetShape())->GetDZ() + ((TGeoGtra*)ext4->GetShape())->GetDZ() ); + trExt4 = new TGeoCombiTrans(x, y, z, new TGeoRotation("", ext4Twist/2,0,0)); + } else { + z += ( ((TGeoBBox*)ext3->GetShape())->GetDZ() + ((TGeoGtra*)ext4->GetShape())->GetDZ() ); + trExt4 = new TGeoCombiTrans(x, y, z, new TGeoRotation("",-ext4Twist/2,0,0)); + } + container->AddNode(ext4, 0, trExt4); + } + sizes[3] = yRef + pt1000Y; + sizes[4] = zRef + pt1000Z[2]; + sizes[5] = zRef + pt1000Z[7]; + + return container; +} + +//______________________________________________________________________ +TList* AliITSv11GeometrySPD::CreateConeModule(Bool_t sideC, const Double_t angrot, + TGeoManager *mgr) const +{ + // + // Creates all services modules and places them in a TList + // angrot is the rotation angle (passed as an argument to avoid + // defining the same quantity in two different places) + // + // Created: ?? ??? 2008 A. Pulvirenti + // Updated: 03 May 2010 M. Sitta + // Updated: 20 Jun 2010 A. Pulvirenti Optical patch panels + // Updated: 22 Jun 2010 M. Sitta Fiber cables + // Updated: 04 Jul 2010 M. Sitta Water cooling + // Updated: 08 Jul 2010 A. Pulvirenti Air cooling on Side C + // + + TGeoMedium *medInox = GetMedium("INOX$",mgr); + //TGeoMedium *medExt = GetMedium("SDDKAPTON (POLYCH2)$", mgr); + TGeoMedium *medExtB = GetMedium("SPD-BUS CU KAPTON$", mgr); + TGeoMedium *medExtM = GetMedium("SPD-MCM CU KAPTON$", mgr); + TGeoMedium *medPlate = GetMedium("SPD C (M55J)$", mgr); + TGeoMedium *medFreon = GetMedium("Freon$", mgr); + TGeoMedium *medGas = GetMedium("GASEOUS FREON$", mgr); + TGeoMedium *medFibs = GetMedium("SDD OPTICFIB$",mgr); + TGeoMedium *medCopper= GetMedium("COPPER$",mgr); + TGeoMedium *medPVC = GetMedium("PVC$",mgr); + + Double_t extThickness = fgkmm * 0.25; + Double_t ext1Length = fgkmm * (26.7 - 10.0); +// Double_t ext2Length = fgkmm * (285.0 - ext1Length + extThickness); + Double_t ext2Length = fgkmm * 285.0 - ext1Length + extThickness; + + const Double_t kCableThickness = 1.5 *fgkmm; + Double_t cableL0 = 10.0 * fgkmm; + Double_t cableL1 = 340.0 * fgkmm - extThickness - ext1Length - ext2Length; + Double_t cableL2 = 300.0 * fgkmm; + //Double_t cableL3 = 570.0 * fgkmm; + Double_t cableL3 = 57.0 * fgkmm; + Double_t cableW1 = 11.0 * fgkmm; + Double_t cableW2 = 30.0 * fgkmm; + Double_t cableW3 = 50.0 * fgkmm; + + const Double_t kMCMLength = cableL0 + cableL1 + cableL2 + cableL3; + const Double_t kMCMWidth = cableW1; + const Double_t kMCMThickness = 1.2 *fgkmm; + + const Double_t kPlateLength = 200.0 *fgkmm; + const Double_t kPlateWidth = 50.0 *fgkmm; + const Double_t kPlateThickness = 5.0 *fgkmm; + + const Double_t kConeTubeRmin = 2.0 *fgkmm; + const Double_t kConeTubeRmax = 3.0 *fgkmm; + + const Double_t kHorizTubeLen = 150.0 *fgkmm; + const Double_t kYtoHalfStave = 9.5 *fgkmm; + + const Double_t kWaterCoolRMax = 2.6 *fgkmm; + const Double_t kWaterCoolThick = 0.04 *fgkmm; + const Double_t kWaterCoolLen = 250.0 *fgkmm; + const Double_t kWCPlateThick = 0.5 *fgkmm; + const Double_t kWCPlateWide = 33.0 *fgkmm; + const Double_t kWCPlateLen = 230.0 *fgkmm; + const Double_t kWCFittingRext1 = 2.4 *fgkmm; + const Double_t kWCFittingRext2 = 3.7 *fgkmm; + const Double_t kWCFittingRint1 = 1.9 *fgkmm; + const Double_t kWCFittingRint2 = kWaterCoolRMax; + const Double_t kWCFittingLen1 = 7.0 *fgkmm; + const Double_t kWCFittingLen2 = 8.0 *fgkmm; + + const Double_t kCollWidth = 40.0 *fgkmm; + const Double_t kCollLength = 60.0 *fgkmm; + const Double_t kCollThickness = 10.0 *fgkmm; + const Double_t kCollTubeThick = 1.0 *fgkmm; + const Double_t kCollTubeRadius = 7.0 *fgkmm; + const Double_t kCollTubeLength = 205.0 *fgkmm; + + const Double_t kOptFibDiamet = 4.5 *fgkmm; + + Double_t x[12], y[12]; + Double_t xloc, yloc, zloc; + + Int_t kPurple = 6; // Purple (Root does not define it) + + TGeoVolumeAssembly* container[5]; + if (sideC) + container[0] = new TGeoVolumeAssembly("ITSSPDConeModuleC"); + else + container[0] = new TGeoVolumeAssembly("ITSSPDConeModuleA"); + container[1] = new TGeoVolumeAssembly("ITSSPDCoolingModuleSideA"); + container[2] = new TGeoVolumeAssembly("ITSSPDCoolingModuleSideC"); + container[3] = new TGeoVolumeAssembly("ITSSPDPatchPanelModule"); + container[4] = new TGeoVolumeAssembly("ITSSPDWaterCooling"); + + // The extender on the cone as a Xtru + x[0] = -cableL0; + y[0] = 0.0 + 0.5 * cableW1; + + x[1] = x[0] + cableL0 + cableL1 - 0.5*(cableW2 - cableW1); + y[1] = y[0]; + + x[2] = x[0] + cableL0 + cableL1; + y[2] = y[1] + 0.5*(cableW2 - cableW1); + + x[3] = x[2] + cableL2; + y[3] = y[2]; + + x[4] = x[3] + 0.5*(cableW3 - cableW2); + y[4] = y[3] + 0.5*(cableW3 - cableW2); + + x[5] = x[4] + cableL3 - 0.5*(cableW3 - cableW2); + y[5] = y[4]; + + for (Int_t i = 6; i < 12; i++) { + x[i] = x[11 - i]; + y[i] = -y[11 - i]; + } + + TGeoXtru *shCable = new TGeoXtru(2); + shCable->DefinePolygon(12, x, y); + shCable->DefineSection(0, 0.0); + shCable->DefineSection(1, kCableThickness); + + TGeoVolume *volCable = new TGeoVolume("ITSSPDExtender", shCable, medExtB); + volCable->SetLineColor(kGreen); + + // The MCM extender on the cone as a Xtru + TGeoBBox *shMCMExt = new TGeoBBox(0.5*kMCMLength, + 0.5*kMCMWidth, + 0.5*kMCMThickness); + + TGeoVolume *volMCMExt = new TGeoVolume("ITSSPDExtenderMCM", + shMCMExt, medExtM); + volMCMExt->SetLineColor(kGreen+3); + + // The support plate on the cone as a composite shape + Double_t thickness = kCableThickness + kMCMThickness; + TGeoBBox *shOut = new TGeoBBox("ITSSPD_shape_plateout", + 0.5*kPlateLength, + 0.5*kPlateWidth, + 0.5*kPlateThickness); + TGeoBBox *shIn = new TGeoBBox("ITSSPD_shape_platein" , + 0.5*kPlateLength, + 0.5*cableW2, + 0.5*thickness); + Char_t string[255]; + snprintf(string, 255, "%s-%s", shOut->GetName(), shIn->GetName()); + TGeoCompositeShape *shPlate = new TGeoCompositeShape("ITSSPDPlate_shape", + string); + + TGeoVolume *volPlate = new TGeoVolume("ITSSPDPlate", + shPlate, medPlate); + volPlate->SetLineColor(kRed); + + // The air cooling tubes + TGeoBBox *shCollBox = new TGeoBBox("ITSSPD_shape_collector_box", 0.5*kCollLength, 0.5*kCollWidth, 0.5*kCollThickness); + TGeoTube *shCollTube = new TGeoTube("ITSSPD_shape_collector_tube",kCollTubeRadius - kCollTubeThick, kCollTubeRadius, 0.5*kCollTubeLength); + TGeoVolume *volCollBox = new TGeoVolume("ITSSPDCollectorBox", shCollBox, medPVC); + TGeoVolume *volCollTube = new TGeoVolume("ITSSPDCollectorTube", shCollTube, medPVC); + volCollBox->SetLineColor(kAzure); + volCollTube->SetLineColor(kAzure); + + // The cooling tube on the cone as a Ctub + Double_t tubeLength = shCable->GetX(5) - shCable->GetX(0) + kYtoHalfStave -0.85; + TGeoCtub *shTube = new TGeoCtub(0, kConeTubeRmax, 0.5*tubeLength, 0, 360, + 0, SinD(angrot/2), -CosD(angrot/2), + 0, 0, 1); + + TGeoVolume *volTubeA = new TGeoVolume("ITSSPDCoolingTubeOnConeA", + shTube, medInox); + volTubeA->SetLineColor(kGray); + + TGeoVolume *volTubeC = new TGeoVolume("ITSSPDCoolingTubeOnConeC", + shTube, medInox); + volTubeC->SetLineColor(kGray); + + // The freon in the cooling tubes on the cone as a Ctub + TGeoCtub *shFreon = new TGeoCtub(0, kConeTubeRmin, 0.5*tubeLength, 0, 360, + 0, SinD(angrot/2), -CosD(angrot/2), + 0, 0, 1); + + TGeoVolume *volFreon = new TGeoVolume("ITSSPDCoolingFreonOnCone", + shFreon, medFreon); + volFreon->SetLineColor(kPurple); + + TGeoVolume *volGasFr = new TGeoVolume("ITSSPDCoolingFreonGasOnCone", + shFreon, medGas); + volGasFr->SetLineColor(kPurple); + + // The cooling tube inside the cylinder as a Ctub + TGeoCtub *shCylTub = new TGeoCtub(0, kConeTubeRmax, + 0.5*kHorizTubeLen, 0, 360, + 0, 0, -1, + 0, SinD(angrot/2), CosD(angrot/2)); + + TGeoVolume *volCylTubA = new TGeoVolume("ITSSPDCoolingTubeOnCylA", + shCylTub, medInox); + volCylTubA->SetLineColor(kGray); + + TGeoVolume *volCylTubC = new TGeoVolume("ITSSPDCoolingTubeOnCylC", + shCylTub, medInox); + volCylTubC->SetLineColor(kGray); + + // The freon in the cooling tubes in the cylinder as a Ctub + TGeoCtub *shCylFr = new TGeoCtub(0, kConeTubeRmin, + 0.5*kHorizTubeLen, 0, 360, + 0, 0, -1, + 0, SinD(angrot/2), CosD(angrot/2)); + + TGeoVolume *volCylFr = new TGeoVolume("ITSSPDCoolingFreonOnCyl", + shCylFr, medFreon); + volCylFr->SetLineColor(kPurple); + + TGeoVolume *volCylGasFr = new TGeoVolume("ITSSPDCoolingFreonGasOnCyl", + shCylFr, medGas); + volCylGasFr->SetLineColor(kPurple); + + // The optical fibers bundle on the cone as a Tube + Double_t optLength = shCable->GetX(5) - shCable->GetX(0) + kYtoHalfStave -0.85; + TGeoTube *shOptFibs = new TGeoTube(0., 0.5*kOptFibDiamet, 0.5*optLength); + + TGeoVolume *volOptFibs = new TGeoVolume("ITSSPDOpticalFibersOnCone", + shOptFibs, medFibs); + volOptFibs->SetLineColor(kOrange); + + // The optical patch panels + TArrayD psizes; + TGeoVolume *volPatch = CreatePatchPanel(psizes, mgr); + + // The water cooling tube as a Tube + TGeoTube *shWatCool = new TGeoTube(kWaterCoolRMax-kWaterCoolThick, + kWaterCoolRMax, kWaterCoolLen/2); + + TGeoVolume *volWatCool = new TGeoVolume("ITSSPDWaterCoolingOnCone", + shWatCool, medInox); + volWatCool->SetLineColor(kGray); + + // The support plate for the water tubes: a Tubs and a BBox + TGeoTubeSeg *shWCPltT = new TGeoTubeSeg(kWaterCoolRMax, + kWaterCoolRMax+kWCPlateThick, + kWCPlateLen/2, 180., 360.); + + Double_t plateBoxWide = (kWCPlateWide - 2*kWaterCoolRMax)/2; + TGeoBBox *shWCPltB = new TGeoBBox(plateBoxWide/2, + kWCPlateThick/2, + kWCPlateLen/2); + + TGeoVolume *volWCPltT = new TGeoVolume("ITSSPDWaterCoolingTubsPlate", + shWCPltT, medPlate); + volWCPltT->SetLineColor(kRed); + + TGeoVolume *volWCPltB = new TGeoVolume("ITSSPDWaterCoolingBoxPlate", + shWCPltB, medPlate); + volWCPltB->SetLineColor(kRed); + + // The fitting for the water cooling tube: a Pcon + TGeoPcon *shFitt = new TGeoPcon(0., 360., 4); + shFitt->Z(0) = -kWCFittingLen1; + shFitt->Rmin(0) = kWCFittingRint1; + shFitt->Rmax(0) = kWCFittingRext1; + + shFitt->Z(1) = 0; + shFitt->Rmin(1) = kWCFittingRint1; + shFitt->Rmax(1) = kWCFittingRext1; + + shFitt->Z(2) = 0; + shFitt->Rmin(2) = kWCFittingRint2; + shFitt->Rmax(2) = kWCFittingRext2; + + shFitt->Z(3) = kWCFittingLen2; + shFitt->Rmin(3) = kWCFittingRint2; + shFitt->Rmax(3) = kWCFittingRext2; + + TGeoVolume *volFitt = new TGeoVolume("ITSSPDWaterCoolingFitting", + shFitt, medCopper); + volFitt->SetLineColor(kOrange); + + // Now place everything in the containers + volTubeA->AddNode(volGasFr, 1, 0); + volTubeC->AddNode(volFreon, 1, 0); + + volCylTubA->AddNode(volCylGasFr, 1, 0); + volCylTubC->AddNode(volCylFr , 1, 0); + + container[0]->AddNode(volCable, 1, 0); + + xloc = shMCMExt->GetDX() - cableL0; + zloc = shMCMExt->GetDZ(); + container[0]->AddNode(volMCMExt, 1, + new TGeoTranslation( xloc, 0.,-zloc)); + + xloc = shMCMExt->GetDX(); + zloc = shCable->GetZ(1)/2 - shMCMExt->GetDZ(); + container[0]->AddNode(volPlate, 1, + new TGeoTranslation( xloc, 0., zloc)); + + TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity); + rot2->SetName("rotPatch"); + rot2->RotateX(90.0); + rot2->RotateY(163.0); + //rot2->RotateZ(132.5); + + // add collectors only on side C + if (sideC) + { + TGeoTranslation *trCollBox = new TGeoTranslation(xloc - 0.5*kPlateLength + 0.5*kCollLength, 0.0, +0.5*(kPlateThickness+1.1*kCollThickness)); + TGeoRotation *rotCollTube = new TGeoRotation(*gGeoIdentity); + rotCollTube->RotateY(90.0); + TGeoCombiTrans *trCollTube = new TGeoCombiTrans(xloc + 0.5*kCollTubeLength - (0.5*kPlateLength - kCollLength), 0.0, +0.5*(kPlateThickness+2.0*kCollTubeRadius+kCollTubeThick), rotCollTube); + container[0]->AddNode(volCollBox, 1, trCollBox); + container[0]->AddNode(volCollTube, 1, trCollTube); + } + + Double_t dxPatch = 2.75; + Double_t dzPatch = 2.8; + TGeoCombiTrans *tr2 = new TGeoCombiTrans(1.7*ext2Length - dxPatch, 0.0, dzPatch, rot2); + container[3]->AddNode(volPatch, 0, tr2); + + xloc = shTube->GetRmax(); + yloc = shTube->GetRmax(); + zloc = shTube->GetDz() - shTube->GetRmax() - kYtoHalfStave; + container[1]->AddNode(volTubeA, 1, + new TGeoTranslation(-xloc, -yloc, zloc)); + container[2]->AddNode(volTubeC, 1, + new TGeoTranslation(-xloc, -yloc, zloc)); + + xloc = shTube->GetRmax(); + yloc = (shCylTub->GetDz())*SinD(angrot) - shTube->GetRmax(); + zloc = (shCylTub->GetDz())*CosD(angrot) + shTube->GetRmax() +kYtoHalfStave; + container[1]->AddNode(volCylTubA, 1, + new TGeoCombiTrans(-xloc, yloc,-zloc, + new TGeoRotation("",0.,angrot,0.))); + container[2]->AddNode(volCylTubC, 1, + new TGeoCombiTrans(-xloc, yloc,-zloc, + new TGeoRotation("",0.,angrot,0.))); + + xloc = shOptFibs->GetRmax() + 2*shTube->GetRmax(); + yloc = 1.6*shOptFibs->GetRmax(); + zloc = shOptFibs->GetDZ() - shTube->GetRmax() - kYtoHalfStave; + container[1]->AddNode(volOptFibs, 1, + new TGeoTranslation(-xloc, -yloc, zloc)); + container[2]->AddNode(volOptFibs, 1, + new TGeoTranslation(-xloc, -yloc, zloc)); + + yloc = shWatCool->GetRmax(); + zloc = (2*shTube->GetDz() - shTube->GetRmax() - kYtoHalfStave)/2; + container[4]->AddNode(volWatCool, 1, + new TGeoTranslation(0, -yloc, zloc)); + + container[4]->AddNode(volWCPltT, 1, + new TGeoTranslation(0, -yloc, zloc)); + + yloc -= shWCPltB->GetDY(); + xloc = shWatCool->GetRmax() + shWCPltB->GetDX(); + container[4]->AddNode(volWCPltB, 1, + new TGeoTranslation( xloc, -yloc, zloc)); + container[4]->AddNode(volWCPltB, 2, + new TGeoTranslation(-xloc, -yloc, zloc)); + + yloc = shWatCool->GetRmax(); + zloc -= shWatCool->GetDz(); + container[4]->AddNode(volFitt, 1, + new TGeoTranslation(0, -yloc, zloc)); + + // Finally create the list of assemblies and return it to the caller + TList* conemodulelist = new TList(); + conemodulelist->Add(container[0]); + conemodulelist->Add(container[1]); + conemodulelist->Add(container[2]); + conemodulelist->Add(container[3]); + conemodulelist->Add(container[4]); + + return conemodulelist; +} + +//______________________________________________________________________ +void AliITSv11GeometrySPD::CreateCones(TGeoVolume *moth) const +{ + // + // Places all services modules in the mother reference system + // + // Created: ?? ??? 2008 Alberto Pulvirenti + // Updated: 03 May 2010 Mario Sitta + // Updated: 04 Jul 2010 Mario Sitta Water cooling + // + + const Int_t kNumberOfModules = 10; + + const Double_t kInnerRadius = 80.775*fgkmm; + const Double_t kZTrans = 451.800*fgkmm; + const Double_t kAlphaRot = 46.500*fgkDegree; + const Double_t kAlphaSpaceCool = 9.200*fgkDegree; + + TList* modulelistA = CreateConeModule(kFALSE, 90-kAlphaRot); + TList* modulelistC = CreateConeModule(kTRUE , 90-kAlphaRot); + TList* &modulelist = modulelistC; + TGeoVolumeAssembly* module, *moduleA, *moduleC; + + Double_t xloc, yloc, zloc; + + //Double_t angle[10] = {18., 54., 90., 126., 162., -18., -54., -90., -126., -162.}; + // anglem for cone modules (cables and cooling tubes) + // anglep for pathc panels + Double_t anglem[10] = {18., 54., 90., 126., 162., 198., 234., 270., 306., 342.}; + Double_t anglep[10] = {18., 62., 90., 115., 162., 198., 242., 270., 295., 342.}; +// Double_t angle1m[10] = {23., 53., 90., 127., 157., 203.0, 233.0, 270.0, 307.0, 337.0}; +// Double_t angle2m[10] = {18., 53., 90., 126., 162., 198.0, 233.0, 270.0, 309.0, 342.0}; +// Double_t angle1c[10] = {23., 53., 90., 124., 157., 203.0, 233.0, 270.0, 304.0, 337.0}; +// Double_t angle2c[10] = {18., 44., 90., 126., 162., 198.0, 223.0, 270.0, 309.0, 342.0}; + + // First add the cables + moduleA = (TGeoVolumeAssembly*)modulelistA->At(0); + moduleC = (TGeoVolumeAssembly*)modulelistC->At(0); + for (Int_t i = 0; i < kNumberOfModules; i++) { + TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity); + rot1->RotateY(-kAlphaRot); + rot1->RotateZ(anglem[i]); + xloc = kInnerRadius*CosD(anglem[i]); + yloc = kInnerRadius*SinD(anglem[i]); + zloc = kZTrans; + moth->AddNode(moduleA, 2*i+2, + new TGeoCombiTrans( xloc, yloc, zloc, rot1)); + + TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity); + rot2->RotateY(180.-kAlphaRot); + rot2->RotateZ(anglem[i]); + xloc = kInnerRadius*CosD(anglem[i]); + yloc = kInnerRadius*SinD(anglem[i]); + zloc = kZTrans; + moth->AddNode(moduleC, 2*i+1, + new TGeoCombiTrans(-xloc,-yloc,-zloc, rot2)); + } + + // Then the cooling tubes on Side A + module = (TGeoVolumeAssembly*)modulelist->At(1); + Double_t anglec; + for (Int_t i = 0; i < kNumberOfModules; i++) { + anglec = anglem[i] + kAlphaSpaceCool; + TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity); + rot1->RotateX(-90.0+kAlphaRot-0.04); // 0.04 fixes small overlap + rot1->RotateZ(-90.0+anglec); + xloc = kInnerRadius*CosD(anglec); + yloc = kInnerRadius*SinD(anglec); + zloc = kZTrans+0.162; // 0.162 fixes small overlap + moth->AddNode(module, 2*i+2, + new TGeoCombiTrans( xloc, yloc, zloc, rot1)); + } + + // And the cooling tubes on Side C + module = (TGeoVolumeAssembly*)modulelist->At(2); + for (Int_t i = 0; i < kNumberOfModules; i++) { + anglec = anglem[i] - kAlphaSpaceCool; + TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity); + rot2->RotateX(-90.0+kAlphaRot-0.04); // 0.04 fixes small overlap + rot2->RotateY(180.); + rot2->RotateZ(90.0+anglec); + xloc = kInnerRadius*CosD(anglec); + yloc = kInnerRadius*SinD(anglec); + zloc = kZTrans+0.162; // 0.162 fixes small overlap + moth->AddNode(module, 2*i+1, + new TGeoCombiTrans(-xloc,-yloc,-zloc, rot2)); + } + + // Then the water cooling tubes + module = (TGeoVolumeAssembly*)modulelist->At(4); + for (Int_t i = 1; i < kNumberOfModules; i++) { // i = 1,2,...,9 + if (i != 5) { // There is no tube in this position + anglec = (anglem[i-1]+anglem[i])/2; + TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity); + rot1->RotateX(-90.0+kAlphaRot); + rot1->RotateZ(-90.0+anglec); + xloc = kInnerRadius*CosD(anglec); + yloc = kInnerRadius*SinD(anglec); + zloc = kZTrans; + moth->AddNode(module, 2*i+2, + new TGeoCombiTrans( xloc, yloc, zloc, rot1)); + + TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity); + rot2->RotateX(-90.0+kAlphaRot); + rot2->RotateY(180.); + rot2->RotateZ(90.0+anglec); + xloc = kInnerRadius*CosD(anglec); + yloc = kInnerRadius*SinD(anglec); + zloc = kZTrans; + moth->AddNode(module, 2*i+1, + new TGeoCombiTrans(-xloc,-yloc,-zloc, rot2)); + } + } + + // Finally the optical patch panels + module = (TGeoVolumeAssembly*)modulelist->At(3); + for (Int_t i = 0; i < kNumberOfModules; i++) { + TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity); + rot1->RotateY(-kAlphaRot); + rot1->RotateZ(anglep[i]); + xloc = kInnerRadius*CosD(anglep[i]); + yloc = kInnerRadius*SinD(anglep[i]); + zloc = kZTrans; + moth->AddNode(module, 2*i+2, + new TGeoCombiTrans( xloc, yloc, zloc, rot1)); + + TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity); + rot2->RotateY(180.-kAlphaRot); + rot2->RotateZ(anglep[i]); + xloc = kInnerRadius*CosD(anglep[i]); + yloc = kInnerRadius*SinD(anglep[i]); + zloc = kZTrans; + moth->AddNode(module, 2*i+1, + new TGeoCombiTrans(-xloc,-yloc,-zloc, rot2)); + } + +} + + +//______________________________________________________________________ +void AliITSv11GeometrySPD::CreateServices(TGeoVolume *moth) const +{ + // + // New method to implement SPD services + // + // Created: 25 Jul 2012 Mario Sitta + // + // Data provided by C.Gargiulo from CAD + + // Cooling manifolds + const Double_t kCoolManifWidth = fgkmm * 22.0; + const Double_t kCoolManifLength = fgkmm * 50.0; + const Double_t kCoolManifThick = fgkmm * 7.0; + const Double_t kCoolManifFitR1out = fgkmm * 4.0; + const Double_t kCoolManifFitH1 = fgkmm * 2.5; + const Double_t kCoolManifFitR2out = fgkmm * 4.0; + const Double_t kCoolManifFitR2in = fgkmm * 3.2; + const Double_t kCoolManifFitH2 = fgkmm * 7.0; + const Double_t kCoolManifFitZPos = fgkmm * 2.0; // TO BE CHECKED! + const Double_t kCoolManifCollR1 = fgkmm * 3.0; + const Double_t kCoolManifCollH1 = fgkmm * 2.5; + const Double_t kCoolManifCollR2 = fgkmm * 1.5; + const Double_t kCoolManifCollH2 = fgkmm * 5.0; + const Double_t kCoolManifCollXPos = fgkmm * 5.0; + const Double_t kCoolManifCollDZ = fgkmm * 13.0; + const Double_t kCoolManifCollZ0 = fgkmm * 9.0; + + const Double_t kCoolManifRPosCAD = fgkmm * 76.2; + const Double_t kCoolManifZPos = fgkcm * 33.97;// 34.0 - 0.03 toll. + // Manifold supports + const Double_t kManifSuppWidth = fgkmm * 24.0; // TO BE CHECKED! + const Double_t kManifSuppLen1 = fgkmm * 17.9; + const Double_t kManifSuppLen2 = fgkmm * 54.2; + const Double_t kManifSuppLen3 = fgkmm * 7.9; + const Double_t kManifSuppThick = fgkmm * 1.5; + const Double_t kSuppScrewXPos = fgkmm * 4.0; + const Double_t kSuppScrewZPos = fgkmm * 3.0; + const Double_t kRThermalShield = fgkcm * 9.9255; // MUST match with GeometrySupport + // Sector supports + const Double_t kSectSuppWidth = fgkmm * 15.0; + const Double_t kSectSuppLen1 = fgkmm * 16.9; // TO BE CHECKED! + const Double_t kSectSuppLen2 = fgkmm * 35.1; // TO BE CHECKED! + const Double_t kSectSuppThick = fgkmm * 1.5; + const Double_t kSectSuppDepth = fgkmm * 17.78; // MUST match with GeometrySupport + const Double_t kSectScrewZPos = fgkmm * 5.1; // TO BE CHECKED! + + const Double_t kSectSuppZPos = fgkcm * 26.5; + // Sector clips + const Double_t kSectClipLength = fgkmm * 30.0; + const Double_t kSectClipWidth = fgkmm * 28.53; + const Double_t kSectClipThick1 = fgkmm * 2.0; + const Double_t kSectClipThick2 = fgkmm * 0.715; + const Double_t kSectClipInStave = fgkmm * 11.0; // Tuned + const Double_t kSectClipAngle = 29.0; // Degree. Tuned + // M3 screws + const Double_t kScrewM3Diam = fgkmm * 3.0; + const Double_t kScrewM3HeadThick = fgkmm * 2.0; + const Double_t kScrewM3HeadRmin = fgkmm * 1.5; + const Double_t kScrewM3HeadRmax = fgkmm * 2.5; + const Double_t kScrewM3OutManifH = fgkmm * 1.5; + // Central set pin (in sector support) + const Double_t kSetPinDiam = fgkmm * 6.0; + const Double_t kSetPinHeadDiam = fgkmm * 8.0; + const Double_t kSetPinHeadRmin = fgkmm * 1.5; + const Double_t kSetPinHeadThick = fgkmm * 1.5; + const Double_t kSetPinOutClipH = fgkmm * 1.0; + // Cooling pipes + const Double_t kCoolPipeSideARin = fgkmm * 1.5; + const Double_t kCoolPipeSideARout = fgkmm * 1.8; + const Double_t kCoolPipeSideCRin = fgkmm * 0.5; + const Double_t kCoolPipeSideCRout = fgkmm * 0.85; + const Double_t kCoolPipeHeight[3] = {11.0, 14.0, 18.0}; // TO BE CHECKED! + const Double_t kCoolPipeRadius[3] = {12.0, 14.0, 15.0}; // TO BE CHECKED! + const Double_t kCoolPipeZSPD = fgkcm * 8.45; // TO BE CHECKED! + + Int_t kPurple = 6; // Purple (Root does not define it) + + // Local variables + Double_t xprof[12], yprof[12]; + Double_t radius, theta; + Double_t xpos, ypos, zpos; + Double_t tmp; + + + // The cooling manifold: an Assembly + TGeoVolumeAssembly *coolmanifA = new TGeoVolumeAssembly("ITSSPDCoolManifSideA"); + TGeoVolumeAssembly *coolmanifC = new TGeoVolumeAssembly("ITSSPDCoolManifSideC"); + + // The various parts of the manifold + TGeoBBox *manifblksh = new TGeoBBox(kCoolManifWidth/2, + kCoolManifThick/2, + kCoolManifLength/2); + + TGeoBBox *manifinscubesh = new TGeoBBox(kCoolManifFitR2out, + kCoolManifFitR2out, + kCoolManifFitR2out); + + TGeoTube *manifinscyl1sh = new TGeoTube(0, // TO BE CHECKED! + kCoolManifFitR1out, + kCoolManifFitH1/2); + + TGeoTube *manifinscyl2sh = new TGeoTube(kCoolManifFitR2in, + kCoolManifFitR2out, + kCoolManifFitH2/2); + + TGeoTube *manifcollcyl1sh = new TGeoTube(0, + kCoolManifCollR1, + kCoolManifCollH1/2); + + TGeoTube *manifcollcyl2sh = new TGeoTube(0, + kCoolManifCollR2, + kCoolManifCollH2/2); + + // The cooling manifold supports + const Double_t kCoolManifRPos = kCoolManifRPosCAD + + (manifinscubesh->GetDY() + + 2*manifinscyl1sh->GetDz() + + manifblksh->GetDY() ); + + const Double_t kManifSuppDepth = kRThermalShield - + (kCoolManifRPos + manifblksh->GetDY()); + + TGeoXtru *suppmanifsh = new TGeoXtru(2); + + xprof[ 0] = kManifSuppLen2/2 + kManifSuppThick; + yprof[ 0] = 0; + xprof[ 1] = xprof[0]; + yprof[ 1] = kManifSuppDepth; + xprof[ 2] = kManifSuppLen2/2 + kManifSuppLen3; + yprof[ 2] = yprof[1]; + xprof[ 3] = xprof[2]; + yprof[ 3] = yprof[2] + kManifSuppThick; + xprof[ 4] = kManifSuppLen2/2; + yprof[ 4] = yprof[3]; + xprof[ 5] = xprof[4]; + yprof[ 5] = kManifSuppThick; + xprof[ 6] = -xprof[5]; + yprof[ 6] = yprof[5]; + xprof[ 7] = -xprof[4]; + yprof[ 7] = yprof[4]; + xprof[ 8] = -(kManifSuppLen2/2 + kManifSuppLen1); + yprof[ 8] = yprof[3]; + xprof[ 9] = xprof[8]; + yprof[ 9] = yprof[2]; + xprof[10] = -xprof[1]; + yprof[10] = yprof[1]; + xprof[11] = -xprof[0]; + yprof[11] = yprof[0]; + + suppmanifsh->DefinePolygon(12,xprof,yprof); + suppmanifsh->DefineSection(0,-kManifSuppWidth/2); + suppmanifsh->DefineSection(1, kManifSuppWidth/2); + + // The screw head and body + TGeoTube *suppscrewbodysh = new TGeoTube(0, kScrewM3Diam/2, + kManifSuppThick/2); + + TGeoPcon *suppscrewheadsh = new TGeoPcon(0, 360, 4); + suppscrewheadsh->DefineSection(0,-kScrewM3HeadThick/2,0, kScrewM3HeadRmax); + suppscrewheadsh->DefineSection(1, 0, 0, kScrewM3HeadRmax); + suppscrewheadsh->DefineSection(2, 0, kScrewM3HeadRmin, kScrewM3HeadRmax); + suppscrewheadsh->DefineSection(3, kScrewM3HeadThick/2, + kScrewM3HeadRmin, kScrewM3HeadRmax); + + TGeoTube *clipscrewbodysh = new TGeoTube(0, kScrewM3Diam/2, + kSectClipThick1/2); + + // The screw segment below the manifold and the sector clip + TGeoTube *screwoutmanifsh = new TGeoTube(0, kScrewM3Diam/2, + kScrewM3OutManifH/2); + + // The sector supports + TGeoXtru *suppsectsh = new TGeoXtru(2); + + xprof[ 0] = kSectSuppLen2/2 + kSectSuppThick; + yprof[ 0] = 0; + xprof[ 1] = xprof[0]; + yprof[ 1] = kSectSuppDepth; + xprof[ 2] = kSectSuppLen2/2 + kSectSuppLen1; + yprof[ 2] = yprof[1]; + xprof[ 3] = xprof[2]; + yprof[ 3] = yprof[2] + kSectSuppThick; + xprof[ 4] = kSectSuppLen2/2; + yprof[ 4] = yprof[3]; + xprof[ 5] = xprof[4]; + yprof[ 5] = kSectSuppThick; + xprof[ 6] = -xprof[5]; + yprof[ 6] = yprof[5]; + xprof[ 7] = -xprof[4]; + yprof[ 7] = yprof[4]; + xprof[ 8] = -xprof[3]; + yprof[ 8] = yprof[3]; + xprof[ 9] = -xprof[2]; + yprof[ 9] = yprof[2]; + xprof[10] = -xprof[1]; + yprof[10] = yprof[1]; + xprof[11] = -xprof[0]; + yprof[11] = yprof[0]; + + suppsectsh->DefinePolygon(12,xprof,yprof); + suppsectsh->DefineSection(0,-kSectSuppWidth/2); + suppsectsh->DefineSection(1, kSectSuppWidth/2); + + // The sector clips + TGeoXtru *sectclipsh = new TGeoXtru(2); + + xprof[ 0] = kSectClipWidth/2; + yprof[ 0] = 0; + xprof[ 1] = -kSectClipWidth/2; + yprof[ 1] = yprof[0]; + xprof[ 2] = xprof[1]; + yprof[ 2] = -kSectClipThick1; + xprof[ 3] = kSectClipWidth/2 - kSectClipThick2; + yprof[ 3] = yprof[2]; + xprof[ 4] = xprof[3] + kSectClipInStave*SinD(kSectClipAngle); + yprof[ 4] = -kSectClipInStave*CosD(kSectClipAngle); + xprof[ 5] = xprof[4] + kSectClipThick2*CosD(kSectClipAngle); + yprof[ 5] = yprof[4] + kSectClipThick2*SinD(kSectClipAngle); + + sectclipsh->DefinePolygon(6,xprof,yprof); + sectclipsh->DefineSection(0,-kSectClipLength/2); + sectclipsh->DefineSection(1, kSectClipLength/2); + + // The central set pin head and body + TGeoTube *setpinbodysh = new TGeoTube(0, kSetPinDiam/2, + kSectSuppThick/2); + + TGeoTube *setpinheadsh = new TGeoTube(kSetPinHeadRmin, kSetPinHeadDiam/2, + kSetPinHeadThick/2); + + TGeoTube *pinclipbodysh = new TGeoTube(0, kSetPinDiam/2, + kSectClipThick1/2); + + // The set pin segment below the sector clip + TGeoTube *setpinoutclipsh = new TGeoTube(0, kSetPinDiam/2, + kSetPinOutClipH/2); + + + // We have the shapes: now create the real volumes + TGeoMedium *medInox = GetMedium("INOX$"); + TGeoMedium *medCu = GetMedium("COPPER$"); + TGeoMedium *medFreon = GetMedium("Freon$"); + TGeoMedium *medGasFr = GetMedium("GASEOUS FREON$"); + TGeoMedium *medSPDcf = GetMedium("SPD shield$"); + + TGeoVolume *manifblk = new TGeoVolume("ITSSPDBlkManif", + manifblksh,medInox); + manifblk->SetLineColor(kGreen+2); + + TGeoVolume *manifinscube = new TGeoVolume("ITSSPDInsCubeManif", + manifinscubesh,medCu); + manifinscube->SetLineColor(kYellow); + + TGeoVolume *manifinscyl1 = new TGeoVolume("ITSSPDInsCyl1Manif", + manifinscyl1sh,medCu); + manifinscyl1->SetLineColor(kYellow); + + TGeoVolume *manifinscyl2 = new TGeoVolume("ITSSPDInsCyl2Manif", + manifinscyl2sh,medCu); + manifinscyl2->SetLineColor(kYellow); + + TGeoVolume *manifcollcyl1 = new TGeoVolume("ITSSPDCollCyl1Manif", + manifcollcyl1sh,medCu); + manifcollcyl1->SetLineColor(kYellow); + + TGeoVolume *manifcollcyl2 = new TGeoVolume("ITSSPDCollCyl2Manif", + manifcollcyl2sh,medCu); + manifcollcyl2->SetLineColor(kYellow); + + TGeoVolume *suppmanif = new TGeoVolume("ITSSPDCoolManifSupp", + suppmanifsh,medSPDcf); + suppmanif->SetLineColor(7); + + TGeoVolume *suppscrewbody = new TGeoVolume("ITSSPDSuppScrewBody", + suppscrewbodysh,medInox); + suppscrewbody->SetLineColor(kGray); + + xpos = kCoolManifLength/2 - kSuppScrewZPos; + ypos = suppscrewbodysh->GetDz(); + zpos = kCoolManifWidth/2 - kSuppScrewXPos; + suppmanif->AddNode(suppscrewbody, 1, new TGeoCombiTrans( xpos, ypos, zpos, + new TGeoRotation("",0,90,0))); + suppmanif->AddNode(suppscrewbody, 2, new TGeoCombiTrans( xpos, ypos,-zpos, + new TGeoRotation("",0,90,0))); + suppmanif->AddNode(suppscrewbody, 3, new TGeoCombiTrans(-xpos, ypos, zpos, + new TGeoRotation("",0,90,0))); + suppmanif->AddNode(suppscrewbody, 4, new TGeoCombiTrans(-xpos, ypos,-zpos, + new TGeoRotation("",0,90,0))); + + TGeoVolume *suppscrewhead = new TGeoVolume("ITSSPDSuppScrewHead", + suppscrewheadsh,medInox); + suppscrewhead->SetLineColor(kGray); + + TGeoVolume *screwoutmanif = new TGeoVolume("ITSSPDSuppScrewOutManif", + screwoutmanifsh,medInox); + screwoutmanif->SetLineColor(kGray); + + TGeoVolume *suppsect = new TGeoVolume("ITSSPDCoolSectorSupp", + suppsectsh,medSPDcf); + suppsect->SetLineColor(7); + + xpos = kSectSuppLen2/2 - kSectScrewZPos; + ypos = suppscrewbodysh->GetDz(); + suppsect->AddNode(suppscrewbody, 1, new TGeoCombiTrans( xpos, ypos, 0, + new TGeoRotation("",0,90,0))); + suppsect->AddNode(suppscrewbody, 2, new TGeoCombiTrans(-xpos, ypos, 0, + new TGeoRotation("",0,90,0))); + + TGeoVolume *setpinbody = new TGeoVolume("ITSSPDSetPinBody", + setpinbodysh,medInox); + setpinbody->SetLineColor(kGray); + + ypos = setpinbodysh->GetDz(); + suppsect->AddNode(setpinbody, 1, new TGeoCombiTrans( 0, ypos, 0, + new TGeoRotation("",0,90,0))); + + TGeoVolume *setpinhead = new TGeoVolume("ITSSPDSetPinHead", + setpinheadsh,medInox); + setpinhead->SetLineColor(kGray); + + TGeoVolume *sectclip = new TGeoVolume("ITSSPDCoolSectorClip", + sectclipsh,medSPDcf); + sectclip->SetLineColor(7); -/* $Id$ */ + TGeoVolume *clipscrewbody = new TGeoVolume("ITSSPDClipScrewBody", + clipscrewbodysh,medInox); + clipscrewbody->SetLineColor(kGray); -// General Root includes -#include -#include -#include -#include -#include -#include + ypos = -clipscrewbodysh->GetDz(); + zpos = kSectSuppLen2/2 - kSectScrewZPos; + sectclip->AddNode(clipscrewbody, 1, new TGeoCombiTrans( 0, ypos, zpos, + new TGeoRotation("",0,90,0))); + sectclip->AddNode(clipscrewbody, 2, new TGeoCombiTrans( 0, ypos,-zpos, + new TGeoRotation("",0,90,0))); -// Root Geometry includes -#include -#include -#include -#include // contains TGeoTubeSeg -#include -#include -#include -#include -#include -#include -#include + TGeoVolume *pinclipbody = new TGeoVolume("ITSSPDClipPinBody", + pinclipbodysh,medInox); + pinclipbody->SetLineColor(kGray); -// AliRoot includes -#include "AliLog.h" -#include "AliMagF.h" -#include "AliRun.h" + ypos = -pinclipbodysh->GetDz(); + sectclip->AddNode(pinclipbody, 1, new TGeoCombiTrans( 0, ypos, 0, + new TGeoRotation("",0,90,0))); -// Declaration file -#include "AliITSv11GeometrySPD.h" + TGeoVolume *setpinoutclip = new TGeoVolume("ITSSPDSetPinOutClip", + setpinoutclipsh,medInox); + setpinoutclip->SetLineColor(kGray); -ClassImp(AliITSv11GeometrySPD) -//#define SQ(A) (A)*(A) + // Add all volumes in the assemblies + coolmanifA->AddNode(manifblk,1,0); + coolmanifC->AddNode(manifblk,1,0); + + ypos = manifblksh->GetDY() + manifinscyl1sh->GetDz(); + zpos = manifblksh->GetDZ() - manifinscyl1sh->GetRmax() - kCoolManifFitZPos; + coolmanifA->AddNode(manifinscyl1, 1, new TGeoCombiTrans(0, -ypos, zpos, + new TGeoRotation("",0,90,0))); + coolmanifC->AddNode(manifinscyl1, 1, new TGeoCombiTrans(0, -ypos, zpos, + new TGeoRotation("",0,90,0))); + + ypos += (manifinscyl1sh->GetDz() + manifinscubesh->GetDY()); + coolmanifA->AddNode(manifinscube, 1, new TGeoTranslation(0, -ypos, zpos)); + coolmanifC->AddNode(manifinscube, 1, new TGeoTranslation(0, -ypos, zpos)); + + zpos += (manifinscubesh->GetDZ() + manifinscyl2sh->GetDz()); + coolmanifA->AddNode(manifinscyl2, 1, new TGeoTranslation(0, -ypos, zpos)); + coolmanifC->AddNode(manifinscyl2, 1, new TGeoTranslation(0, -ypos, zpos)); + + ypos = manifblksh->GetDY(); + coolmanifA->AddNode(suppmanif, 1, new TGeoCombiTrans(0, ypos, 0, + new TGeoRotation("",-90,90,90))); + coolmanifC->AddNode(suppmanif, 1, new TGeoCombiTrans(0, ypos, 0, + new TGeoRotation("",-90,90,90))); + + ypos += (kManifSuppThick + kScrewM3HeadThick/2); + xpos = kCoolManifWidth/2 - kSuppScrewXPos; + zpos = kCoolManifLength/2 - kSuppScrewZPos; + coolmanifA->AddNode(suppscrewhead, 1, new TGeoCombiTrans( xpos, ypos, zpos, + new TGeoRotation("",0,-90,0))); + coolmanifC->AddNode(suppscrewhead, 1, new TGeoCombiTrans( xpos, ypos, zpos, + new TGeoRotation("",0,-90,0))); + coolmanifA->AddNode(suppscrewhead, 2, new TGeoCombiTrans( xpos, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + coolmanifC->AddNode(suppscrewhead, 2, new TGeoCombiTrans( xpos, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + coolmanifA->AddNode(suppscrewhead, 3, new TGeoCombiTrans(-xpos, ypos, zpos, + new TGeoRotation("",0,-90,0))); + coolmanifC->AddNode(suppscrewhead, 3, new TGeoCombiTrans(-xpos, ypos, zpos, + new TGeoRotation("",0,-90,0))); + coolmanifA->AddNode(suppscrewhead, 4, new TGeoCombiTrans(-xpos, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + coolmanifC->AddNode(suppscrewhead, 4, new TGeoCombiTrans(-xpos, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + + ypos = manifblksh->GetDY() + screwoutmanifsh->GetDz(); + coolmanifA->AddNode(screwoutmanif, 1, new TGeoCombiTrans( xpos,-ypos, zpos, + new TGeoRotation("",0,-90,0))); + coolmanifC->AddNode(screwoutmanif, 1, new TGeoCombiTrans( xpos,-ypos, zpos, + new TGeoRotation("",0,-90,0))); + coolmanifA->AddNode(screwoutmanif, 2, new TGeoCombiTrans( xpos,-ypos,-zpos, + new TGeoRotation("",0,-90,0))); + coolmanifC->AddNode(screwoutmanif, 2, new TGeoCombiTrans( xpos,-ypos,-zpos, + new TGeoRotation("",0,-90,0))); + coolmanifA->AddNode(screwoutmanif, 3, new TGeoCombiTrans(-xpos,-ypos, zpos, + new TGeoRotation("",0,-90,0))); + coolmanifC->AddNode(screwoutmanif, 3, new TGeoCombiTrans(-xpos,-ypos, zpos, + new TGeoRotation("",0,-90,0))); + coolmanifA->AddNode(screwoutmanif, 4, new TGeoCombiTrans(-xpos,-ypos,-zpos, + new TGeoRotation("",0,-90,0))); + coolmanifC->AddNode(screwoutmanif, 4, new TGeoCombiTrans(-xpos,-ypos,-zpos, + new TGeoRotation("",0,-90,0))); + + ypos = manifblksh->GetDY() + suppmanifsh->GetY(1) - suppsectsh->GetY(1); + zpos = manifblksh->GetDZ() + (kCoolManifZPos - kSectSuppZPos); + coolmanifA->AddNode(suppsect, 1, new TGeoCombiTrans(0, ypos,-zpos, + new TGeoRotation("",-90,90,90))); + coolmanifC->AddNode(suppsect, 1, new TGeoCombiTrans(0, ypos,-zpos, + new TGeoRotation("",-90,90,90))); + + tmp = ypos; // Save it to avoid recomputing + + ypos += (kSectSuppThick + kScrewM3HeadThick/2); + zpos += (kSectSuppLen2/2 - kSectScrewZPos); + coolmanifA->AddNode(suppscrewhead, 5, new TGeoCombiTrans( 0, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + coolmanifC->AddNode(suppscrewhead, 5, new TGeoCombiTrans( 0, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + zpos -= 2*(kSectSuppLen2/2 - kSectScrewZPos); + coolmanifA->AddNode(suppscrewhead, 6, new TGeoCombiTrans( 0, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + coolmanifC->AddNode(suppscrewhead, 6, new TGeoCombiTrans( 0, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + + ypos = tmp + kSectSuppThick + kSetPinHeadThick/2; + zpos += (kSectSuppLen2/2 - kSectScrewZPos); + coolmanifA->AddNode(setpinhead, 1, new TGeoCombiTrans( 0, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + coolmanifC->AddNode(setpinhead, 1, new TGeoCombiTrans( 0, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + + ypos = tmp - 8.e-5; // Avoid microscopic overlap + tmp = ypos; + coolmanifA->AddNode(sectclip, 1, new TGeoTranslation( 0, ypos,-zpos)); + coolmanifC->AddNode(sectclip, 1, new TGeoCombiTrans ( 0, ypos,-zpos, + new TGeoRotation("",-90,180,90))); + + ypos -= (kSectClipThick1 + setpinoutclipsh->GetDz()); + coolmanifA->AddNode(setpinoutclip, 1, new TGeoCombiTrans( 0, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + coolmanifC->AddNode(setpinoutclip, 1, new TGeoCombiTrans( 0, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + + ypos = tmp - (kSectClipThick1 + screwoutmanifsh->GetDz()); + zpos += (kSectSuppLen2/2 - kSectScrewZPos); + coolmanifA->AddNode(screwoutmanif, 5, new TGeoCombiTrans( 0, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + coolmanifC->AddNode(screwoutmanif, 5, new TGeoCombiTrans( 0, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + zpos -= 2*(kSectSuppLen2/2 - kSectScrewZPos); + coolmanifA->AddNode(screwoutmanif, 6, new TGeoCombiTrans( 0, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + coolmanifC->AddNode(screwoutmanif, 6, new TGeoCombiTrans( 0, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + + // We create here the cooling pipes because it's easier to place them now + AliITSv11GeomCableRound *coolpipeA[6]; + AliITSv11GeomCableRound *coolpipeC[6]; + + for (Int_t i = 0; i<6; i++) { + Char_t pipename[11]; + snprintf(pipename,11,"coolPipeA%d",i+1); + coolpipeA[i] = new AliITSv11GeomCableRound(pipename,kCoolPipeSideARout); + snprintf(pipename,11,"coolPipeC%d",i+1); + coolpipeC[i] = new AliITSv11GeomCableRound(pipename,kCoolPipeSideCRout); + + coolpipeA[i]->SetNLayers(2); + coolpipeA[i]->SetLayer(0, kCoolPipeSideARin, medGasFr, kPurple); + coolpipeA[i]->SetLayer(1,(kCoolPipeSideARout-kCoolPipeSideARin), + medCu, kYellow); + + coolpipeC[i]->SetNLayers(2); + coolpipeC[i]->SetLayer(0, kCoolPipeSideCRin, medFreon, kPurple); + coolpipeC[i]->SetLayer(1,(kCoolPipeSideCRout-kCoolPipeSideCRin), + medCu, kYellow); + } + + xpos = manifblksh->GetDX() - kCoolManifCollXPos; + ypos = manifblksh->GetDY() + manifcollcyl1sh->GetDz(); + zpos =-manifblksh->GetDZ() + kCoolManifCollZ0; + for (Int_t i=0; i<3; i++) { + coolmanifA->AddNode(manifcollcyl1, 2*i+1, + new TGeoCombiTrans( xpos, -ypos, zpos, + new TGeoRotation("",0,90,0))); + coolmanifA->AddNode(manifcollcyl1, 2*i+2, + new TGeoCombiTrans(-xpos, -ypos, zpos, + new TGeoRotation("",0,90,0))); + coolmanifC->AddNode(manifcollcyl1, 2*i+1, + new TGeoCombiTrans( xpos, -ypos, zpos, + new TGeoRotation("",0,90,0))); + coolmanifC->AddNode(manifcollcyl1, 2*i+2, + new TGeoCombiTrans(-xpos, -ypos, zpos, + new TGeoRotation("",0,90,0))); + Double_t y = ypos + manifcollcyl1sh->GetDz() + manifcollcyl2sh->GetDz(); + coolmanifA->AddNode(manifcollcyl2, 2*i+1, + new TGeoCombiTrans( xpos, -y, zpos, + new TGeoRotation("",0,90,0))); + coolmanifA->AddNode(manifcollcyl2, 2*i+2, + new TGeoCombiTrans(-xpos, -y, zpos, + new TGeoRotation("",0,90,0))); + coolmanifC->AddNode(manifcollcyl2, 2*i+1, + new TGeoCombiTrans( xpos, -y, zpos, + new TGeoRotation("",0,90,0))); + coolmanifC->AddNode(manifcollcyl2, 2*i+2, + new TGeoCombiTrans(-xpos, -y, zpos, + new TGeoRotation("",0,90,0))); + + y += manifcollcyl2sh->GetDz(); + Double_t coordL[3] = { xpos,-y,zpos}; + Double_t coordR[3] = {-xpos,-y,zpos}; + Double_t vect[3] = {0, 1, 0}; + coolpipeA[2*i]->AddCheckPoint(coolmanifA, 0, coordL, vect); + coolpipeC[2*i]->AddCheckPoint(coolmanifC, 0, coordL, vect); + coolpipeA[2*i+1]->AddCheckPoint(coolmanifA, 0, coordR, vect); + coolpipeC[2*i+1]->AddCheckPoint(coolmanifC, 0, coordR, vect); + coordL[1] -= kCoolPipeHeight[i]*fgkmm; + coordR[1] = coordL[1]; + coolpipeA[2*i]->AddCheckPoint(coolmanifA, 1, coordL, vect); + coolpipeC[2*i]->AddCheckPoint(coolmanifC, 1, coordL, vect); + coolpipeA[2*i+1]->AddCheckPoint(coolmanifA, 1, coordR, vect); + coolpipeC[2*i+1]->AddCheckPoint(coolmanifC, 1, coordR, vect); + coordL[1] -= kCoolPipeRadius[i]*fgkmm; + coordL[2] -= kCoolPipeRadius[i]*fgkmm; + coordR[1] = coordL[1]; + coordR[2] = coordL[2]; + vect[1] = 0; + vect[2] = -1; + coolpipeA[2*i]->AddCheckPoint(coolmanifA, 2, coordL, vect); + coolpipeC[2*i]->AddCheckPoint(coolmanifC, 2, coordL, vect); + coolpipeA[2*i+1]->AddCheckPoint(coolmanifA, 2, coordR, vect); + coolpipeC[2*i+1]->AddCheckPoint(coolmanifC, 2, coordR, vect); + coordL[2] = -kCoolPipeZSPD; + coordR[2] = -kCoolPipeZSPD; + coolpipeA[2*i]->AddCheckPoint(coolmanifA, 3, coordL, vect); + coolpipeC[2*i]->AddCheckPoint(coolmanifC, 3, coordL, vect); + coolpipeA[2*i+1]->AddCheckPoint(coolmanifA, 3, coordR, vect); + coolpipeC[2*i+1]->AddCheckPoint(coolmanifC, 3, coordR, vect); + + zpos += kCoolManifCollDZ; + } + + for (Int_t i=0; i<6; i++) { + coolpipeA[i]->SetInitialNode((TGeoVolume *)coolmanifA); + coolpipeC[i]->SetInitialNode((TGeoVolume *)coolmanifC); + + coolpipeA[i]->CreateAndInsertTubeSegment(1); + coolpipeC[i]->CreateAndInsertTubeSegment(1); + coolpipeA[i]->CreateAndInsertTorusSegment(2,180); + coolpipeC[i]->CreateAndInsertTorusSegment(2,180); + coolpipeA[i]->CreateAndInsertTubeSegment(3); + coolpipeC[i]->CreateAndInsertTubeSegment(3); + } + + + // Finally put everything in the mother volume + radius = kCoolManifRPos + 1.e-5; // Avoid microscopic overlap + zpos = kCoolManifZPos + manifblksh->GetDZ(); + for (Int_t i=0; i<10; i++) { + theta = 36.*i; + moth->AddNode(coolmanifA, i+1, new TGeoCombiTrans(radius*SinD(theta), + radius*CosD(theta), + zpos, + new TGeoRotation("",-theta,0,0))); + moth->AddNode(coolmanifC, i+1, new TGeoCombiTrans(radius*SinD(theta), + radius*CosD(theta), + -zpos, + new TGeoRotation("",90-theta,180,-90))); + } -AliITSv11GeometrySPD::AliITSv11GeometrySPD(Double_t gap) : - AliITSv11Geometry(), fAlignmentGap(gap), - fSPDsectorX0(0), fSPDsectorY0(0), fSPDsectorX1(0), fSPDsectorY1(0) -{ - // - // Default constructor. - // This does not initialize anything and is provided just for completeness. - // It is recommended to use the other one. - // The alignment gap is specified as argument (default = 0.0075 cm). - // - Int_t i = 0; - for (i = 0; i < 6; i++) fAddStave[i] = kTRUE; -} -// -//__________________________________________________________________________________________ -AliITSv11GeometrySPD::AliITSv11GeometrySPD(Int_t debug, Double_t gap): - AliITSv11Geometry(debug), fAlignmentGap(gap), - fSPDsectorX0(0), fSPDsectorY0(0), fSPDsectorX1(0), fSPDsectorY1(0) -{ - // - // Constructor with debug setting argument - // This is the constructor which is recommended to be used. - // It sets a debug level, and initializes the name of the object. - // The alignment gap is specified as argument (default = 0.0075 cm). - // - Int_t i = 0; - for (i = 0; i < 6; i++) fAddStave[i] = kTRUE; -} -// -//__________________________________________________________________________________________ -TGeoMedium* AliITSv11GeometrySPD::GetMedium(const char* mediumName, TGeoManager *mgr) const -{ - // - // This function is used to recovery any medium - // used to build the geometry volumes. - // If the required medium does not exists, - // a NULL pointer is returned, and an error message is written. - // - - Char_t itsMediumName[30]; - sprintf(itsMediumName, "ITS_%s", mediumName); - TGeoMedium* medium = mgr->GetMedium(itsMediumName); - if (!medium) AliError(Form("Medium <%s> not found", mediumName)); - - return medium; -} -// -//__________________________________________________________________________________________ -Int_t AliITSv11GeometrySPD::CreateSPDCentralMaterials(Int_t &medOffset, Int_t &matOffset) const -{ - // - // Define the specific materials used for the ITS SPD central detectors. - // --- - // NOTE: These are the same old names. - // By the ALICE naming conventions, they start with "ITS SPD ...." - // Data taken from ** AliITSvPPRasymmFMD::CreateMaterials() **. - // --- - // Arguments [the ones passed by reference contain output values]: - // - medOffset --> (by ref) starting number of the list of media - // - matOffset --> (by ref) starting number of the list of Materials - // --- - // Return value: - // - the last material index used + 1 (= next avaiable material index) - // --- - // Begin_Html - /* - -

The SPD Sector definition. In - HPGL format. - -

The SPD all sector end view with thermal sheald. - -

SPD side view cross section with condes and thermal shealds. -

Cross section A-A. -

Cross section B-B. -

Cross section C-C. -

Cross section D-D. -

Cross section E-E. -

Cross section F-F. -

Cross section G-G. - */ - // End_Html - // - const Double_t ktmaxfd = 0.1 * fgkDegree; // Degree - const Double_t kstemax = 1.0 * fgkcm; // cm - const Double_t kdeemax = 0.1;//Fraction of particle's energy 0Field()->Integ()); - Double_t fieldm = (gAlice->Field()->Max()); - Double_t params[8] = {8 * 0.0}; - params[1] = (Double_t) ifield; - params[2] = fieldm; - params[3] = ktmaxfdSi; - params[4] = kstemaxSi; - params[5] = kdeemaxSi; - params[6] = kepsilSi; - params[7] = kstminSi; - - // - // Definition of materials and mediums. - // Last argument in material definition is its pressure, - // which is initialized to ZERO. - // For better readability, it is simply set to zero. - // Then the writing "0.0 * fgkPascal" is replaced by "0." - // (Alberto) - // - - // silicon definition for ITS (overall) - mat = new TGeoMaterial("ITS_SI", 28.086, 14.0, 2.33 * fgkgcm3, - TGeoMaterial::kMatStateSolid, 25.0 * fgkCelsius, 0.); - mat->SetIndex(matindex); - med = new TGeoMedium("SI", medindex++, mat, params); - - // silicon for ladder chips - mat = new TGeoMaterial("SPD SI CHIP", 28.086, 14.0, 2.33 * fgkgcm3, - TGeoMaterial::kMatStateSolid, 25.0 * fgkCelsius, 0.); - mat->SetIndex(matindex); - med = new TGeoMedium("SPD SI CHIP", medindex++, mat, params); - - // silicon for pixel bus - mat = new TGeoMaterial("SPD SI BUS", 28.086, 14.0, 2.33 * fgkgcm3, - TGeoMaterial::kMatStateSolid, 25.0 * fgkCelsius, 0.); - mat->SetIndex(matindex); - med = new TGeoMedium("SPD SI BUS", medindex++, mat, params); - - // carbon fiber material is defined as a mix of C-O-N-H - // defined in terms of fractional weights according to 'C (M55J)' - // it is used for the support and clips - mix = new TGeoMixture("C (M55J)", 4, 1.9866 * fgkgcm3); - mix->SetIndex(matindex); - mix->DefineElement(0, 12.01070, 6.0, 0.908508078); // C by fractional weight - mix->DefineElement(1, 14.00670, 7.0, 0.010387573); // N by fractional weight - mix->DefineElement(2, 15.99940, 8.0, 0.055957585); // O by fractional weight - mix->DefineElement(3, 1.00794, 1.0, 0.025146765); // H by fractional weight - mix->SetPressure(0.0 * fgkPascal); - mix->SetTemperature(25.0 * fgkCelsius); - mix->SetState(TGeoMaterial::kMatStateSolid); - params[3] = ktmaxfd; - params[4] = kstemax; - params[5] = kdeemax; - params[6] = kepsil; - params[7] = kstmin; - med = new TGeoMedium("ITSspdCarbonFiber", medindex++, mix, params); - - // air defined as a mixture of C-N-O-Ar: - // it is used to fill all containers - mix = new TGeoMixture("Air", 4, 1.20479E-3 * fgkgcm3); - mix->SetIndex(matindex); - mix->DefineElement(0, 12.0107, 6.0, 0.000124); // C by fractional weight - mix->DefineElement(1, 14.0067, 7.0, 0.755267); // N by fractional weight - mix->DefineElement(2, 15.9994, 8.0, 0.231781); // O by fractional weight - mix->DefineElement(3, 39.9480, 18.0, 0.012827); // Ar by fractional weight - mix->SetPressure(101325.0 * fgkPascal); // = 1 atmosphere - mix->SetTemperature(25.0 * fgkCelsius); - mix->SetState(TGeoMaterial::kMatStateGas); - params[3] = ktmaxfdAir; - params[4] = kstemaxAir; - params[5] = kdeemaxAir; - params[6] = kepsilAir; - params[7] = kstminAir; - med = new TGeoMedium("ITSspdAir", medindex++, mix, params); - - // inox stainless steel, defined as a mixture - // used for all metallic parts - mix = new TGeoMixture("INOX", 9, 8.03 * fgkgcm3); - mix->SetIndex(matindex); - mix->DefineElement(0, 12.0107, 6., .0003); // C by fractional weight - mix->DefineElement(1, 54.9380, 25., .02); // Fe by fractional weight - mix->DefineElement(2, 28.0855, 14., .01); // Na by fractional weight - mix->DefineElement(3, 30.9738, 15., .00045); // P by fractional weight - mix->DefineElement(4, 32.066 , 16., .0003); // S by fractional weight - mix->DefineElement(5, 58.6928, 28., .12); // Ni by fractional weight - mix->DefineElement(6, 55.9961, 24., .17); // by fractional weight - mix->DefineElement(7, 95.84 , 42., .025); // by fractional weight - mix->DefineElement(8, 55.845 , 26., .654); // by fractional weight - mix->SetPressure(0.0 * fgkPascal); - mix->SetTemperature(25.0 * fgkCelsius); - mix->SetState(TGeoMaterial::kMatStateSolid); - params[3] = ktmaxfdAir; - params[4] = kstemaxAir; - params[5] = kdeemaxAir; - params[6] = kepsilAir; - params[7] = kstminAir; - med = new TGeoMedium("ITSspdStainlessSteel", medindex++, mix, params); - - // freon gas which fills the cooling system (C+F) - mix = new TGeoMixture("Freon", 2, 1.63 * fgkgcm3); - mix->SetIndex(matindex); - mix->DefineElement(0, 12.0107 , 6.0, 4); // C by fractional weight - mix->DefineElement(1, 18.9984032, 9.0, 10); // F by fractional weight - mix->SetPressure(101325.0 * fgkPascal); // = 1 atmosphere - mix->SetTemperature(25.0 * fgkCelsius); - mix->SetState(TGeoMaterial::kMatStateLiquid); - params[3] = ktmaxfdAir; - params[4] = kstemaxAir; - params[5] = kdeemaxAir; - params[6] = kepsilAir; - params[7] = kstminAir; - med = new TGeoMedium("ITSspdCoolingFluid", medindex++, mix, params); - - // return the next index to be used in case of adding new materials - medOffset = medindex; - matOffset = matindex; - return matOffset; -} -// -//__________________________________________________________________________________________ -void AliITSv11GeometrySPD::InitSPDCentral(Int_t offset, TVirtualMC *vmc) const -{ - // - // Do all SPD Central detector initializations (e.g.: transport cuts). - // --- - // Here follow some GEANT3 physics switches, which are interesting - // for these settings to be defined: - // - "MULTS" (MULtiple Scattering): - // the variable IMULS controls this process. See [PHYS320/325/328] - // 0 - No multiple scattering. - // 1 - (DEFAULT) Multiple scattering according to Moliere theory. - // 2 - Same as 1. Kept for backward compatibility. - // 3 - Pure Gaussian scattering according to the Rossi formula. - // - "DRAY" (Delta RAY production) - // The variable IDRAY controls this process. See [PHYS430] - // 0 - No delta rays production. - // 1 - (DEFAULT) Delta rays production with generation of. - // 2 - Delta rays production without generation of. - // - "LOSS" (continuous energy loss) - // The variable ILOSS controls this process. - // 0 - No continuous energy loss, IDRAY is set to 0. - // 1 - Continuous energy loss with generation of delta rays above - // DCUTE (common/GCUTS/) and restricted Landau fluctuations below DCUTE. - // 2 - (DEFAULT) Continuous energy loss without generation of delta rays - // and full Landau-Vavilov-Gauss fluctuations. - // In this case the variable IDRAY is forced to 0 to avoid - // double counting of fluctuations. - // 3 - Same as 1, kept for backward compatibility. - // 4 - Energy loss without fluctuation. - // The value obtained from the tables is used directly. - // --- - // Arguments: - // Int_t offset --> the material/medium index offset - // TVirtualMC *vmc --> pointer to the virtual Monte Carlo default gMC - // - - Int_t i, n = 4; - - for(i=0;iGstpar(i+offset, "CUTGAM", 30.0 * fgkKeV); - vmc->Gstpar(i+offset, "CUTELE", 30.0 * fgkKeV); - vmc->Gstpar(i+offset, "CUTNEU", 30.0 * fgkKeV); - vmc->Gstpar(i+offset, "CUTHAD", 30.0 * fgkKeV); - vmc->Gstpar(i+offset, "CUTMUO", 30.0 * fgkKeV); - vmc->Gstpar(i+offset, "BCUTE", 30.0 * fgkKeV); - vmc->Gstpar(i+offset, "BCUTM", 30.0 * fgkKeV); - vmc->Gstpar(i+offset, "DCUTE", 30.0 * fgkKeV); - vmc->Gstpar(i+offset, "DCUTM", 30.0 * fgkKeV); - //vmc->Gstpar(i+offset, "PPCUTM", ); - //vmc->Gstpar(i+offset, "PAIR", ); - //vmc->Gstpar(i+offset, "COMPT", ); - //vmc->Gstpar(i+offset, "PHOT", ); - //vmc->Gstpar(i+offset, "PFIS", ); - vmc->Gstpar(i+offset, "DRAY", 1); - //vmc->Gstpar(i+offset, "ANNI", ); - //vmc->Gstpar(i+offset, "BREM", ); - //vmc->Gstpar(i+offset, "HADR", ); - //vmc->Gstpar(i+offset, "MUNU", ); - //vmc->Gstpar(i+offset, "DCAY", ); - vmc->Gstpar(i+offset, "LOSS", 1); - //vmc->Gstpar(i+offset, "MULS", ); - //vmc->Gstpar(i+offset, "GHCOR1", ); - //vmc->Gstpar(i+offset, "BIRK1", ); - //vmc->Gstpar(i+offset, "BRIK2", ); - //vmc->Gstpar(i+offset, "BRIK3", ); - //vmc->Gstpar(i+offset, "LABS", ); - //vmc->Gstpar(i+offset, "SYNC", ); - //vmc->Gstpar(i+offset, "STRA", ); - } -} -// -//__________________________________________________________________________________________ -void AliITSv11GeometrySPD::SPDSector(TGeoVolume *moth, TGeoManager *mgr) -{ - // - // Creates a single SPD carbon fiber sector and places it - // in a container volume passed as first argument ('moth'). - // Second argument points to the TGeoManager which coordinates - // the overall volume creation. - // The position of the sector is based on distance of - // closest point of SPD stave to beam pipe - // (figures all-sections-modules.ps) of 7.22mm at section A-A. - // - - const Double_t kSPDclossesStaveAA = 7.22 * fgkmm; - const Double_t kSectorStartingAngle = -72.0 * fgkDegree; - const Double_t kNSectorsTotal = 10.0; - const Double_t kSectorRelativeAngle = 360.0 / kNSectorsTotal * fgkDegree; - const Double_t kBeamPipeRadius = 0.5 * 60.0 * fgkmm; - - Int_t i; - Double_t angle, radiusSector, xAAtubeCenter0, yAAtubeCenter0; - Double_t staveThicknessAA = 1.03 * fgkmm; // get from stave geometry. - TGeoCombiTrans *secRot = new TGeoCombiTrans(); - TGeoVolume *vCarbonFiberSector; - TGeoMedium *medSPDcf; - - // define an assembly and fill it with the support of - // a single carbon fiber sector and staves in it - medSPDcf = GetMedium("SPD C (M55J)$", mgr); - vCarbonFiberSector = new TGeoVolumeAssembly("ITSSPDCarbonFiberSectorV"); - vCarbonFiberSector->SetMedium(medSPDcf); - CarbonFiberSector(vCarbonFiberSector, xAAtubeCenter0, yAAtubeCenter0, mgr); - vCarbonFiberSector->SetVisibility(kTRUE); // logical volume - - // Compute the radial shift out of the sectors - radiusSector = kBeamPipeRadius + kSPDclossesStaveAA + staveThicknessAA; - radiusSector *= radiusSector; // squaring; - radiusSector -= xAAtubeCenter0 * xAAtubeCenter0; - radiusSector = -yAAtubeCenter0 + TMath::Sqrt(radiusSector); - - // add 10 single sectors, by replicating the virtual sector defined above - // and placing at different angles - Double_t shiftX, shiftY; - angle = kSectorStartingAngle; - secRot->RotateZ(angle); - for(i = 0; i < (Int_t)kNSectorsTotal; i++) { - shiftX = -radiusSector * TMath::Sin(angle/fgkRadian); - shiftY = radiusSector * TMath::Cos(angle/fgkRadian); - secRot->SetDx(shiftX); - secRot->SetDy(shiftY); - moth->AddNode(vCarbonFiberSector, i+1, new TGeoCombiTrans(*secRot)); - if(GetDebug(5)) { - AliInfo(Form("i=%d angle=%g angle[rad]=%g radiusSector=%g x=%g y=%g \n", - i, angle, angle/fgkRadian, radiusSector, shiftX, shiftY)); - } - angle += kSectorRelativeAngle; - secRot->RotateZ(kSectorRelativeAngle); - } - if(GetDebug(3)) moth->PrintNodes(); - delete secRot; -} -// -//__________________________________________________________________________________________ -void AliITSv11GeometrySPD::CarbonFiberSector -(TGeoVolume *moth, Double_t &xAAtubeCenter0, Double_t &yAAtubeCenter0, TGeoManager *mgr) -{ - // - // Define the detail SPD Carbon fiber support Sector geometry. - // Based on the drawings: - // - ALICE-Pixel "Costruzione Profilo Modulo" (march 25 2004) - // - ALICE-SUPPORTO "Costruzione Profilo Modulo" - // --- - // Define outside radii as negative, where "outside" means that the - // center of the arc is outside of the object (feb 16 2004). - // --- - // Arguments [the one passed by ref contain output values]: - // TGeoVolume *moth --> the voulme which will contain this object - // Double_t &xAAtubeCenter0 --> (by ref) x location of the outer surface - // of the cooling tube center for tube 0. - // Double_t &yAAtubeCenter0 --> (by ref) y location of the outer surface - // of the cooling tube center for tube 0. - // TGeoManager *mgr --> TGeo builder - // --- - // Int the two variables passed by reference values will be stored - // which will then be used to correctly locate this sector. - // The information used for this is the distance between the - // center of the #0 detector and the beam pipe. - // Measurements are taken at cross section A-A. - // - - //TGeoMedium *medSPDfs = 0; // SPD support cone inserto stesalite 4411w. - //TGeoMedium *medSPDfo = 0; // SPD support cone foam, Rohacell 50A. - //TGeoMedium *medSPDal = 0; // SPD support cone SDD mounting bracket Al - TGeoMedium *medSPDcf = GetMedium("SPD C (M55J)$", mgr); - TGeoMedium *medSPDss = GetMedium("INOX$", mgr); - TGeoMedium *medSPDair = GetMedium("AIR$", mgr); - TGeoMedium *medSPDcoolfl = GetMedium("Freon$", mgr); //ITSspdCoolingFluid - - const Double_t ksecDz = 0.5 * 500.0 * fgkmm; - const Double_t ksecLen = 30.0 * fgkmm; - const Double_t ksecCthick = 0.2 * fgkmm; - const Double_t ksecDipLength = 3.2 * fgkmm; - const Double_t ksecDipRadii = 0.4 * fgkmm; - //const Double_t ksecCoolingTubeExtraDepth = 0.86 * fgkmm; - - // The following positions ('ksecX#' and 'ksecY#') and radii ('ksecR#') - // are the centers and radii of curvature of all the rounded corners - // between the straight borders of the SPD sector shape. - // To draw this SPD sector, the following steps are followed: - // 1) the (ksecX, ksecY) points are plotted - // and circles of the specified radii are drawn around them. - // 2) each pair of consecutive circles is connected by a line - // tangent to them, in accordance with the radii being "internal" or "external" - // with respect to the closed shape which describes the sector itself. - // The resulting connected shape is the section - // of the SPD sector surface in the transverse plane (XY). - - const Double_t ksecX0 = -10.725 * fgkmm; - const Double_t ksecY0 = -14.853 * fgkmm; - const Double_t ksecR0 = -0.8 * fgkmm; // external - const Double_t ksecX1 = -13.187 * fgkmm; - const Double_t ksecY1 = -19.964 * fgkmm; - const Double_t ksecR1 = +0.6 * fgkmm; // internal - // const Double_t ksecDip0 = 5.9 * fgkmm; - - const Double_t ksecX2 = -3.883 * fgkmm; - const Double_t ksecY2 = -17.805 * fgkmm; - const Double_t ksecR2 = +0.80 * fgkmm; // internal (guess) - const Double_t ksecX3 = -3.123 * fgkmm; - const Double_t ksecY3 = -14.618 * fgkmm; - const Double_t ksecR3 = -0.6 * fgkmm; // external - //const Double_t ksecDip1 = 8.035 * fgkmm; - - const Double_t ksecX4 = +11.280 * fgkmm; - const Double_t ksecY4 = -14.473 * fgkmm; - const Double_t ksecR4 = +0.8 * fgkmm; // internal - const Double_t ksecX5 = +19.544 * fgkmm; - const Double_t ksecY5 = +10.961 * fgkmm; - const Double_t ksecR5 = +0.8 * fgkmm; // internal - //const Double_t ksecDip2 = 4.553 * fgkmm; - - const Double_t ksecX6 = +10.830 * fgkmm; - const Double_t ksecY6 = +16.858 * fgkmm; - const Double_t ksecR6 = +0.6 * fgkmm; // internal - const Double_t ksecX7 = +11.581 * fgkmm; - const Double_t ksecY7 = +13.317 * fgkmm; - const Double_t ksecR7 = -0.6 * fgkmm; // external - //const Double_t ksecDip3 = 6.978 * fgkmm; - - const Double_t ksecX8 = -0.733 * fgkmm; - const Double_t ksecY8 = +17.486 * fgkmm; - const Double_t ksecR8 = +0.6 * fgkmm; // internal - const Double_t ksecX9 = +0.562 * fgkmm; - //const Double_t ksecY9 = +14.486 * fgkmm; // correction by - const Double_t ksecY9 = +14.107 * fgkmm; // Alberto - const Double_t ksecR9 = -0.6 * fgkmm; // external - //const Double_t ksecDip4 = 6.978 * fgkmm; - - const Double_t ksecX10 = -12.252 * fgkmm; - const Double_t ksecY10 = +16.298 * fgkmm; - const Double_t ksecR10 = +0.6 * fgkmm; // internal - const Double_t ksecX11 = -10.445 * fgkmm; - const Double_t ksecY11 = +13.162 * fgkmm; - const Double_t ksecR11 = -0.6 * fgkmm; // external - //const Double_t ksecDip5 = 6.978 * fgkmm; - - const Double_t ksecX12 = -22.276 * fgkmm; - const Double_t ksecY12 = +12.948 * fgkmm; - const Double_t ksecR12 = +0.85 * fgkmm; // internal - const Double_t ksecR13 = -0.8 * fgkmm; // external - const Double_t ksecAngleSide13 = 36.0 * fgkDegree; - - const Int_t ksecNRadii = 20; - const Int_t ksecNPointsPerRadii = 4; - const Int_t ksecNCoolingTubeDips = 6; - - // Since the rounded parts are approximated by a regular polygon - // and a cooling tube of the propper diameter must fit, a scaling factor - // increases the size of the polygon for the tube to fit. - //const Double_t ksecRCoolScale = 1./TMath::Cos(TMath::Pi()/(Double_t)ksecNPointsPerRadii); - const Double_t ksecZEndLen = 30.000 * fgkmm; - //const Double_t ksecZFlangLen = 45.000 * fgkmm; - const Double_t ksecTl = 0.860 * fgkmm; - const Double_t ksecCthick2 = 0.600 * fgkmm; - //const Double_t ksecCthick3 = 1.80 * fgkmm; - //const Double_t ksecSidelen = 22.0 * fgkmm; - //const Double_t ksecSideD5 = 3.679 * fgkmm; - //const Double_t ksecSideD12 = 7.066 * fgkmm; - const Double_t ksecRCoolOut = 2.400 * fgkmm; - const Double_t ksecRCoolIn = 2.000 * fgkmm; - const Double_t ksecDl1 = 5.900 * fgkmm; - const Double_t ksecDl2 = 8.035 * fgkmm; - const Double_t ksecDl3 = 4.553 * fgkmm; - const Double_t ksecDl4 = 6.978 * fgkmm; - const Double_t ksecDl5 = 6.978 * fgkmm; - const Double_t ksecDl6 = 6.978 * fgkmm; - const Double_t ksecCoolTubeThick = 0.04 * fgkmm; - const Double_t ksecCoolTubeROuter = 2.6 * fgkmm; - const Double_t ksecCoolTubeFlatX = 3.696 * fgkmm; - const Double_t ksecCoolTubeFlatY = 0.68 * fgkmm; - //const Double_t ksecBeamX0 = 0.0 * fgkmm; // guess - //const Double_t ksecBeamY0 = (15.223 + 40.) * fgkmm; // guess - - // redefine some of the points already defined above - // in the format of arrays (???) - const Int_t ksecNPoints = (ksecNPointsPerRadii + 1) * ksecNRadii + 8; - Double_t secX[ksecNRadii] = { - ksecX0, ksecX1, -1000.0, - ksecX2, ksecX3, -1000.0, - ksecX4, ksecX5, -1000.0, - ksecX6, ksecX7, -1000.0, - ksecX8, ksecX9, -1000.0, - ksecX10, ksecX11, -1000.0, - ksecX12, -1000.0 - }; - Double_t secY[ksecNRadii] = { - ksecY0, ksecY1, -1000.0, - ksecY2, ksecY3, -1000.0, - ksecY4, ksecY5, -1000.0, - ksecY6, ksecY7, -1000.0, - ksecY8, ksecY9, -1000.0, - ksecY10, ksecY11, -1000.0, - ksecY12, -1000.0 - }; - Double_t secR[ksecNRadii] = { - ksecR0, ksecR1, -.5 * ksecDipLength - ksecDipRadii, - ksecR2, ksecR3, -.5 * ksecDipLength - ksecDipRadii, - ksecR4, ksecR5, -.5 * ksecDipLength - ksecDipRadii, - ksecR6, ksecR7, -.5 * ksecDipLength - ksecDipRadii, - ksecR8, ksecR9, -.5 * ksecDipLength - ksecDipRadii, - ksecR10, ksecR11, -.5 * ksecDipLength - ksecDipRadii, - ksecR12, ksecR13 - }; - /* - Double_t secDip[ksecNRadii] = { - 0., 0., ksecDip0, 0., 0., ksecDip1, - 0., 0., ksecDip2, 0., 0., ksecDip3, - 0., 0., ksecDip4, 0., 0., ksecDip5, - 0., 0. - }; - */ - Double_t secX2[ksecNRadii]; - Double_t secY2[ksecNRadii]; - Double_t secR2[ksecNRadii] = { - ksecR0, ksecR1, ksecRCoolOut, - ksecR2, ksecR3, ksecRCoolOut, - ksecR4, ksecR5, ksecRCoolOut, - ksecR6, ksecR7, ksecRCoolOut, - ksecR8, ksecR9, ksecRCoolOut, - ksecR10, ksecR11, ksecRCoolOut, - ksecR12, ksecR13 - }; - Double_t secDip2[ksecNCoolingTubeDips] = { - ksecDl1, ksecDl2, ksecDl3, - ksecDl4, ksecDl5, ksecDl6 - }; - Double_t secX3[ksecNRadii]; - Double_t secY3[ksecNRadii]; - const Int_t ksecDipIndex[ksecNCoolingTubeDips] = {2, 5, 8, 11, 14, 17}; - Double_t secAngleStart[ksecNRadii]; - Double_t secAngleEnd[ksecNRadii]; - Double_t secAngleStart2[ksecNRadii]; - Double_t secAngleEnd2[ksecNRadii]; - Double_t secAngleTurbo[ksecNCoolingTubeDips] = {0., 0., 0., 0., 0., 0.0}; - //Double_t secAngleStart3[ksecNRadii]; - //Double_t secAngleEnd3[ksecNRadii]; - Double_t xpp[ksecNPoints], ypp[ksecNPoints]; - Double_t xpp2[ksecNPoints], ypp2[ksecNPoints]; - Double_t *xp[ksecNRadii], *xp2[ksecNRadii]; - Double_t *yp[ksecNRadii], *yp2[ksecNRadii]; - TGeoXtru *sA0, *sA1, *sB0, *sB1; - TGeoEltu *sTA0, *sTA1; - TGeoTube *sTB0, *sTB1; //,*sM0; - TGeoRotation *rot; - TGeoTranslation *trans; - TGeoCombiTrans *rotrans; - Double_t t, t0, t1, a, b, x0, y0, x1, y1; - Int_t i, j, k, m; - Bool_t tst; - - if(!moth) { - AliError("Container volume (argument) is NULL"); - return; - } - for(i = 0; i < ksecNRadii; i++) { - xp[i] = &(xpp[i*(ksecNPointsPerRadii+1)]); - yp[i] = &(ypp[i*(ksecNPointsPerRadii+1)]); - xp2[i] = &(xpp2[i*(ksecNPointsPerRadii+1)]); - yp2[i] = &(ypp2[i*(ksecNPointsPerRadii+1)]); - secX2[i] = secX[i]; - secY2[i] = secY[i]; - secX3[i] = secX[i]; - secY3[i] = secY[i]; - } - - // find starting and ending angles for all but cooling tube sections - secAngleStart[0] = 0.5 * ksecAngleSide13; - for(i = 0; i < ksecNRadii - 2; i++) { - tst = kFALSE; - for(j = 0; j < ksecNCoolingTubeDips; j++) tst = (tst || i == ksecDipIndex[j]); - if (tst) continue; - tst = kFALSE; - for(j = 0; j < ksecNCoolingTubeDips; j++) tst = (tst || (i+1) == ksecDipIndex[j]); - if (tst) j = i+2; else j = i+1; - AnglesForRoundedCorners(secX[i], secY[i], secR[i], secX[j], secY[j], secR[j], t0, t1); - secAngleEnd[i] = t0; - secAngleStart[j] = t1; - if(secR[i] > 0.0 && secR[j] > 0.0) { - if(secAngleStart[i] > secAngleEnd[i]) secAngleEnd[i] += 360.0; - } - secAngleStart2[i] = secAngleStart[i]; - secAngleEnd2[i] = secAngleEnd[i]; - } // end for i - secAngleEnd[ksecNRadii-2] = secAngleStart[ksecNRadii-2] - + (secAngleEnd[ksecNRadii-5] - secAngleStart[ksecNRadii-5]); - if (secAngleEnd[ksecNRadii-2] < 0.0) secAngleEnd[ksecNRadii-2] += 360.0; - secAngleStart[ksecNRadii-1] = secAngleEnd[ksecNRadii-2] - 180.0; - secAngleEnd[ksecNRadii-1] = secAngleStart[0]; - secAngleStart2[ksecNRadii-2] = secAngleStart[ksecNRadii-2]; - secAngleEnd2[ksecNRadii-2] = secAngleEnd[ksecNRadii-2]; - secAngleStart2[ksecNRadii-1] = secAngleStart[ksecNRadii-1]; - secAngleEnd2[ksecNRadii-1] = secAngleEnd[ksecNRadii-1]; - - // find location of circle last rounded corner. - i = 0; - j = ksecNRadii - 2; - t0 = TanD(secAngleStart[i]-90.); - t1 = TanD(secAngleEnd[j]-90.); - t = secY[i] - secY[j]; - // NOTE: secR[i=0] < 0; secR[j=18] > 0; and secR[j+1=19] < 0 - t += (-secR[i]+secR[j+1]) * SinD(secAngleStart[i]); - t -= (secR[j]-secR[j+1]) * SinD(secAngleEnd[j]); - t += t1 * secX[j] - t0*secX[i]; - t += t1 * (secR[j] - secR[j+1]) * CosD(secAngleEnd[j]); - t -= t0 * (-secR[i]+secR[j+1]) * CosD(secAngleStart[i]); - secX[ksecNRadii-1] = t / (t1-t0); - secY[ksecNRadii-1] = TanD(90. + 0.5*ksecAngleSide13) * (secX[ksecNRadii-1] - secX[0]) + secY[0]; - secX2[ksecNRadii-1] = secX[ksecNRadii-1]; - secY2[ksecNRadii-1] = secY[ksecNRadii-1]; - secX3[ksecNRadii-1] = secX[ksecNRadii-1]; - secY3[ksecNRadii-1] = secY[ksecNRadii-1]; - - // find location of cooling tube centers - for(i = 0; i < ksecNCoolingTubeDips; i++) { - j = ksecDipIndex[i]; - x0 = secX[j-1] + TMath::Abs(secR[j-1]) * CosD(secAngleEnd[j-1]); - y0 = secY[j-1] + TMath::Abs(secR[j-1]) * SinD(secAngleEnd[j-1]); - x1 = secX[j+1] + TMath::Abs(secR[j+1]) * CosD(secAngleStart[j+1]); - y1 = secY[j+1] + TMath::Abs(secR[j+1]) * SinD(secAngleStart[j+1]); - t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1)); - t = secDip2[i] / t0; - a = x0+(x1-x0) * t; - b = y0+(y1-y0) * t; - if(i == 0) { - // get location of tube center->Surface for locating - // this sector around the beam pipe. - // This needs to be double checked, but I need my notes for that. - // (Bjorn Nilsen) - xAAtubeCenter0 = x0 + (x1 - x0) * t * 0.5; - yAAtubeCenter0 = y0 + (y1 - y0) * t * 0.5; - } - if(a + b*(a - x0) / (b - y0) > 0.0) { - secX[j] = a + TMath::Abs(y1-y0) * 2.0 * ksecDipRadii/t0; - secY[j] = b - TMath::Sign(2.0*ksecDipRadii,y1-y0) * (x1-x0)/t0; - secX2[j] = a + TMath::Abs(y1-y0) * ksecTl/t0; - secY2[j] = b - TMath::Sign(ksecTl,y1-y0) * (x1-x0) / t0; - secX3[j] = a + TMath::Abs(y1-y0) * (2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY)/t0; - secY3[j] = b - TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY,y1-y0)*(x1-x0)/t0; - } - else { - secX[j] = a - TMath::Abs(y1-y0)*2.0*ksecDipRadii/t0; - secY[j] = b + TMath::Sign(2.0*ksecDipRadii,y1-y0)*(x1-x0)/t0; - secX2[j] = a - TMath::Abs(y1-y0)*ksecTl/t0; - secY2[j] = b + TMath::Sign(ksecTl,y1-y0)*(x1-x0)/t0; - secX3[j] = a - TMath::Abs(y1-y0)*(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY)/t0; - secY3[j] = b + TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY,y1-y0)*(x1-x0)/t0; - } - - // Set up Start and End angles to correspond to start/end of dips. - t1 = (secDip2[i]-TMath::Abs(secR[j])) / t0; - secAngleStart[j] = TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j],x0+(x1-x0)*t1-secX[j]); - if (secAngleStart[j]<0.0) secAngleStart[j] += 360.0; - secAngleStart2[j] = secAngleStart[j]; - t1 = (secDip2[i]+TMath::Abs(secR[j]))/t0; - secAngleEnd[j] = TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j],x0+(x1-x0)*t1-secX[j]); - if (secAngleEnd[j]<0.0) secAngleEnd[j] += 360.0; - secAngleEnd2[j] = secAngleEnd[j]; - if (secAngleEnd[j]>secAngleStart[j]) secAngleEnd[j] -= 360.0; - secR[j] = TMath::Sqrt(secR[j]*secR[j]+4.0*ksecDipRadii*ksecDipRadii); - } // end for i - - // Special cases - secAngleStart2[8] -= 360.; - secAngleStart2[11] -= 360.; - - SPDsectorShape(ksecNRadii, secX, secY, secR, secAngleStart, secAngleEnd, - ksecNPointsPerRadii, m, xp, yp); - - // Fix up dips to be square. - for(i = 0; i < ksecNCoolingTubeDips; i++) { - j = ksecDipIndex[i]; - t = 0.5*ksecDipLength+ksecDipRadii; - t0 = TMath::RadToDeg()*TMath::ATan(2.0*ksecDipRadii/t); - t1 = secAngleEnd[j] + t0; - t0 = secAngleStart[j] - t0; - x0 = xp[j][1] = secX[j] + t*CosD(t0); - y0 = yp[j][1] = secY[j] + t*SinD(t0); - x1 = xp[j][ksecNPointsPerRadii-1] = secX[j] + t*CosD(t1); - y1 = yp[j][ksecNPointsPerRadii-1] = secY[j] + t*SinD(t1); - t0 = 1./((Double_t)(ksecNPointsPerRadii-2)); - for(k = 2; k < ksecNPointsPerRadii - 1; k++) { - // extra points spread them out. - t = ((Double_t)(k-1)) * t0; - xp[j][k] = x0+(x1-x0) * t; - yp[j][k] = y0+(y1-y0) * t; - } // end for k - secAngleTurbo[i] = -TMath::RadToDeg() * TMath::ATan2(y1-y0, x1-x0); - if(GetDebug(3)) { - AliInfo(Form("i=%d -- angle=%f -- x0,y0=(%f, %f) -- x1,y1=(%f, %f)", i, secAngleTurbo[i], x0, y0, x1, y1)); - } - } // end for i - sA0 = new TGeoXtru(2); - sA0->SetName("ITS SPD Carbon fiber support Sector A0"); - sA0->DefinePolygon(m, xpp, ypp); - sA0->DefineSection(0, -ksecDz); - sA0->DefineSection(1, ksecDz); - - // store the edges of each XY segment which defines - // one of the plane zones where staves will have to be placed - fSPDsectorX0.Set(ksecNCoolingTubeDips); - fSPDsectorY0.Set(ksecNCoolingTubeDips); - fSPDsectorX1.Set(ksecNCoolingTubeDips); - fSPDsectorY1.Set(ksecNCoolingTubeDips); - Int_t ixy0, ixy1; - for(i = 0; i < ksecNCoolingTubeDips; i++) { - // Find index in xpp[] and ypp[] corresponding to where the - // SPD ladders are to be attached. Order them according to - // the ALICE numbering schema. Using array of indexes (+-1 for - // cooling tubes. For any "bend/dip/edge, there are - // ksecNPointsPerRadii+1 points involved. - if(i == 0) j = 1; - else if (i == 1) j = 0; - else j = i; - ixy0 = (ksecDipIndex[j]-1) * (ksecNPointsPerRadii+1) + (ksecNPointsPerRadii); - ixy1 = (ksecDipIndex[j]+1) * (ksecNPointsPerRadii+1); - fSPDsectorX0[i] = sA0->GetX(ixy0); - fSPDsectorY0[i] = sA0->GetY(ixy0); - fSPDsectorX1[i] = sA0->GetX(ixy1); - fSPDsectorY1[i] = sA0->GetY(ixy1); - } - - //printf("SectorA#%d ",0); - InsidePoint(xpp[m-1], ypp[m-1], xpp[0], ypp[0], xpp[1], ypp[1], ksecCthick, xpp2[0], ypp2[0]); - for(i = 1; i < m - 1; i++) { - j = i / (ksecNPointsPerRadii+1); - //printf("SectorA#%d ",i); - InsidePoint(xpp[i-1], ypp[i-1], xpp[i], ypp[i], xpp[i+1], ypp[i+1], ksecCthick, xpp2[i], ypp2[i]); - } - //printf("SectorA#%d ",m); - InsidePoint(xpp[m-2], ypp[m-2], xpp[m-1], ypp[m-1], xpp[0], ypp[0], ksecCthick, xpp2[m-1], ypp2[m-1]); - // Fix center value of cooling tube dip and - // find location of cooling tube centers - for(i = 0; i < ksecNCoolingTubeDips; i++) { - j = ksecDipIndex[i]; - x0 = xp2[j][1]; - y0 = yp2[j][1]; - x1 = xp2[j][ksecNPointsPerRadii-1]; - y1 = yp2[j][ksecNPointsPerRadii-1]; - t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1)); - t = secDip2[i]/t0; - for(k = 2; k < ksecNPointsPerRadii - 1; k++) { - // extra points spread them out. - t = ((Double_t)(k-1)) * t0; - xp2[j][k] = x0+(x1-x0) * t; - yp2[j][k] = y0+(y1-y0) * t; - } - } // end for i - sA1 = new TGeoXtru(2); - sA1->SetName("ITS SPD Carbon fiber support Sector Air A1"); - sA1->DefinePolygon(m, xpp2, ypp2); - sA1->DefineSection(0, -ksecDz); - sA1->DefineSection(1, ksecDz); - - // Error in TGeoEltu. Semi-axis X must be < Semi-axis Y (?). - sTA0 = new TGeoEltu("ITS SPD Cooling Tube TA0", 0.5 * ksecCoolTubeFlatY, 0.5 * ksecCoolTubeFlatX, ksecDz); - sTA1 = new TGeoEltu("ITS SPD Cooling Tube coolant TA1", - sTA0->GetA() - ksecCoolTubeThick, - sTA0->GetB()-ksecCoolTubeThick,ksecDz); - - SPDsectorShape(ksecNRadii, secX2, secY2, secR2, secAngleStart2, secAngleEnd2, - ksecNPointsPerRadii, m, xp, yp); - - sB0 = new TGeoXtru(2); - sB0->SetName("ITS SPD Carbon fiber support Sector End B0"); - sB0->DefinePolygon(m, xpp, ypp); - sB0->DefineSection(0, ksecDz); - sB0->DefineSection(1, ksecDz + ksecZEndLen); - - //printf("SectorB#%d ",0); - InsidePoint(xpp[m-1], ypp[m-1], xpp[0], ypp[0], xpp[1], ypp[1], ksecCthick2, xpp2[0], ypp2[0]); - for(i = 1; i < m - 1; i++) { - t = ksecCthick2; - for(k = 0; k < ksecNCoolingTubeDips; k++) - if((i/(ksecNPointsPerRadii+1))==ksecDipIndex[k]) - if(!(ksecDipIndex[k]*(ksecNPointsPerRadii+1) == i || - ksecDipIndex[k]*(ksecNPointsPerRadii+1) + ksecNPointsPerRadii == i)) - t = ksecRCoolOut-ksecRCoolIn; - //printf("SectorB#%d ",i); - InsidePoint(xpp[i-1], ypp[i-1], xpp[i], ypp[i], xpp[i+1], ypp[i+1], t, xpp2[i], ypp2[i]); - } - //printf("SectorB#%d ",m); - InsidePoint(xpp[m-2], ypp[m-2], xpp[m-1], ypp[m-1], xpp[0], ypp[0], ksecCthick2, xpp2[m-1], ypp2[m-1]); - sB1 = new TGeoXtru(2); - sB1->SetName("ITS SPD Carbon fiber support Sector Air End B1"); - sB1->DefinePolygon(m, xpp2, ypp2); - sB1->DefineSection(0, ksecDz); - sB1->DefineSection(1, ksecDz + ksecLen); - sTB0 = new TGeoTube("ITS SPD Cooling Tube End TB0", 0.0, - 0.5 * ksecCoolTubeROuter, 0.5 * ksecLen); - sTB1 = new TGeoTube("ITS SPD Cooling Tube End coolant TB0", 0.0, - sTB0->GetRmax() - ksecCoolTubeThick, 0.5 * ksecLen); - - if(GetDebug(3)) { - if(medSPDcf) medSPDcf->Dump(); else AliInfo("medSPDcf = 0"); - if(medSPDss) medSPDss->Dump(); else AliInfo("medSPDss = 0"); - if(medSPDair) medSPDair->Dump(); else AliInfo("medSPDAir = 0"); - if(medSPDcoolfl) medSPDcoolfl->Dump(); else AliInfo("medSPDcoolfl = 0"); - sA0->InspectShape(); - sA1->InspectShape(); - sB0->InspectShape(); - sB1->InspectShape(); - } - - // create the assembly of the support and place staves on it - TGeoVolumeAssembly *vM0 = new TGeoVolumeAssembly("ITSSPDSensitiveVirtualvolumeM0"); - StavesInSector(vM0); - // create other volumes with some graphical settings - TGeoVolume *vA0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorA0", sA0, medSPDcf); - vA0->SetVisibility(kTRUE); - vA0->SetLineColor(4); // Blue - vA0->SetLineWidth(1); - vA0->SetFillColor(vA0->GetLineColor()); - vA0->SetFillStyle(4010); // 10% transparent - TGeoVolume *vA1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorAirA1", sA1, medSPDair); - vA1->SetVisibility(kTRUE); - vA1->SetLineColor(7); // light Blue - vA1->SetLineWidth(1); - vA1->SetFillColor(vA1->GetLineColor()); - vA1->SetFillStyle(4090); // 90% transparent - TGeoVolume *vTA0 = new TGeoVolume("ITSSPDCoolingTubeTA0", sTA0, medSPDss); - vTA0->SetVisibility(kTRUE); - vTA0->SetLineColor(1); // Black - vTA0->SetLineWidth(1); - vTA0->SetFillColor(vTA0->GetLineColor()); - vTA0->SetFillStyle(4000); // 0% transparent - TGeoVolume *vTA1 = new TGeoVolume("ITSSPDCoolingTubeFluidTA1", sTA1, medSPDcoolfl); - vTA1->SetVisibility(kTRUE); - vTA1->SetLineColor(6); // Purple - vTA1->SetLineWidth(1); - vTA1->SetFillColor(vTA1->GetLineColor()); - vTA1->SetFillStyle(4000); // 0% transparent - TGeoVolume *vB0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndB0", sB0, medSPDcf); - vB0->SetVisibility(kTRUE); - vB0->SetLineColor(4); // Blue - vB0->SetLineWidth(1); - vB0->SetFillColor(vB0->GetLineColor()); - vB0->SetFillStyle(4010); // 10% transparent - TGeoVolume *vB1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndAirB1", sB1, medSPDair); - vB1->SetVisibility(kTRUE); - vB1->SetLineColor(7); // light Blue - vB1->SetLineWidth(1); - vB1->SetFillColor(vB1->GetLineColor()); - vB1->SetFillStyle(4090); // 90% transparent - TGeoVolume *vTB0 = new TGeoVolume("ITSSPDCoolingTubeEndTB0", sTB0, medSPDss); - vTB0->SetVisibility(kTRUE); - vTB0->SetLineColor(1); // Black - vTB0->SetLineWidth(1); - vTB0->SetFillColor(vTB0->GetLineColor()); - vTB0->SetFillStyle(4000); // 0% transparent - TGeoVolume *vTB1 = new TGeoVolume("ITSSPDCoolingTubeEndFluidTB1", sTB1, medSPDcoolfl); - vTB1->SetVisibility(kTRUE); - vTB1->SetLineColor(6); // Purple - vTB1->SetLineWidth(1); - vTB1->SetFillColor(vTB1->GetLineColor()); - vTB1->SetFillStyle(4000); // 0% transparent - - // add volumes to mother container passed as argument of this method - moth->AddNode(vM0,1,0); // Add virtual volume to mother - vA0->AddNode(vA1,1,0); // Put air inside carbon fiber. - vB0->AddNode(vB1,1,0); // Put air inside carbon fiber. - vTA0->AddNode(vTA1,1,0); // Put air inside carbon fiber. - vTB0->AddNode(vTB1,1,0); // Put air inside carbon fiber. - for(i = 0; i < ksecNCoolingTubeDips; i++) { - x0 = secX3[ksecDipIndex[i]]; - y0 = secY3[ksecDipIndex[i]]; - t = 90.0 - secAngleTurbo[i]; - trans = new TGeoTranslation("", x0, y0, 0.5 * (sB1->GetZ(0) + sB1->GetZ(1))); - vB1->AddNode(vTB0, i+1, trans); - rot = new TGeoRotation("", 0.0, 0.0, t); - rotrans = new TGeoCombiTrans("", x0, y0, 0.0, rot); - vM0->AddNode(vTA0, i+1, rotrans); - } // end for i - vM0->AddNode(vA0, 1, 0); - vM0->AddNode(vB0, 1, 0); - // Reflection. - vM0->AddNode(vB0, 2, new TGeoRotation("", 90., 0., 90., 90., 180., 0.)); - if(GetDebug(3)){ - vM0->PrintNodes(); - vA0->PrintNodes(); - vA1->PrintNodes(); - vB0->PrintNodes(); - vB1->PrintNodes(); - vTA0->PrintNodes(); - vTA1->PrintNodes(); - vTB0->PrintNodes(); - vTB1->PrintNodes(); - } -} -// -//__________________________________________________________________________________________ -Bool_t AliITSv11GeometrySPD::GetSectorMountingPoints -(Int_t index, Double_t &x0, Double_t &y0, Double_t &x1, Double_t &y1) const -{ - // - // Returns the edges of the straight borders in the SPD sector shape, - // which are used to mount staves on them. - // Coordinate system is that of the carbon fiber sector volume. - // --- - // Index numbering is as follows: - // /5 - // /\/4 - // 1\ \/3 - // 0|___\/2 - // --- - // Arguments [the ones passed by reference contain output values]: - // Int_t index --> location index according to above scheme [0-5] - // Double_t &x0 --> (by ref) x0 location or the ladder sector [cm] - // Double_t &y0 --> (by ref) y0 location of the ladder sector [cm] - // Double_t &x1 --> (by ref) x1 location or the ladder sector [cm] - // Double_t &y1 --> (by ref) y1 location of the ladder sector [cm] - // TGeoManager *mgr --> The TGeo builder - // --- - // The location is described by a line going from (x0, y0) to (x1, y1) - // --- - // Returns kTRUE if no problems encountered. - // Returns kFALSE if a problem was encountered (e.g.: shape not found). - // - - Int_t isize = fSPDsectorX0.GetSize(); - x0 = x1 = y0 = y1 = 0.0; - if(index < 0 || index > isize) { - AliError(Form("index = %d: allowed 0 --> %", index, isize)); - return kFALSE; - } - - x0 = fSPDsectorX0[index]; - x1 = fSPDsectorX1[index]; - y0 = fSPDsectorY0[index]; - y1 = fSPDsectorY1[index]; - - return kTRUE; -} -// -//__________________________________________________________________________________________ -void AliITSv11GeometrySPD::SPDsectorShape -(Int_t n, - const Double_t *xc, const Double_t *yc, const Double_t *r, - const Double_t *ths, const Double_t *the, - Int_t npr, Int_t &m, Double_t **xp, Double_t **yp) const -{ - - // Code to compute the points that make up the shape of the SPD - // Carbon fiber support sections - // Inputs: - // Int_t n size of arrays xc,yc, and r. - // Double_t *xc array of x values for radii centers. - // Double_t *yc array of y values for radii centers. - // Double_t *r array of signed radii values. - // Double_t *ths array of starting angles [degrees]. - // Double_t *the array of ending angles [degrees]. - // Int_t npr the number of lines segments to aproximate the arc. - // Outputs (arguments passed by reference): - // Int_t m the number of enetries in the arrays *xp[npr+1] and *yp[npr+1]. - // Double_t **xp array of x coordinate values of the line segments - // which make up the SPD support sector shape. - // Double_t **yp array of y coordinate values of the line segments - // which make up the SPD support sector shape. - // - - Int_t i, k; - Double_t t, t0, t1; - - m = n*(npr + 1); - if(GetDebug(2)) { - cout <<" X \t Y \t R \t S \t E" << m << endl; - for(i = 0; i < n; i++) { - cout << "{" << xc[i] << ", "; - cout << yc[i] << ", "; - cout << r[i] << ", "; - cout << ths[i] << ", "; - cout << the[i] << "}, " << endl; - } - } - - if (GetDebug(3)) cout << "Double_t sA0 = [" << n*(npr+1)+1<<"]["; - if (GetDebug(4)) cout << "3] {"; - else if(GetDebug(3)) cout <<"2] {"; - t0 = (Double_t)npr; - for(i = 0; i < n; i++) { - t1 = (the[i] - ths[i]) / t0; - if(GetDebug(5)) cout << "t1 = " << t1 << endl; - for(k = 0; k <= npr; k++) { - t = ths[i] + ((Double_t)k) * t1; - xp[i][k] = TMath::Abs(r[i]) * CosD(t) + xc[i]; - yp[i][k] = TMath::Abs(r[i]) * SinD(t) + yc[i]; - if(GetDebug(3)) { - cout << "{" << xp[i][k] << "," << yp[i][k]; - if (GetDebug(4)) cout << "," << t; - cout << "},"; - } // end if GetDebug - } // end for k - if(GetDebug(3)) cout << endl; - } // end of i - if(GetDebug(3)) cout << "{" << xp[0][0] << ", " << yp[0][0]; - if(GetDebug(4)) cout << "," << ths[0]; - if(GetDebug(3)) cout << "}}" << endl; -} -// -//__________________________________________________________________________________________ -TGeoVolume* AliITSv11GeometrySPD::CreateLadder -(Int_t layer,TArrayD &sizes, TGeoManager *mgr) const -{ - // Creates the "ladder" = silicon sensor + 5 chips. - // Returns a TGeoVolume containing the following components: - // - the sensor (TGeoBBox), whose name depends on the layer - // - 5 identical chips (TGeoBBox) - // - a guard ring around the sensor (subtraction of TGeoBBoxes), - // which is separated from the rest of sensor because it is not - // a sensitive part - // - bump bondings (TGeoBBox stripes for the whole width of the - // sensor, one per column). - // --- - // Arguments: - // 1 - the owner layer (MUST be 1 or 2 or a fatal error is raised) - // 2 - a TArrayD passed by reference, which contains some relevant - // sizes of this object: - // size[0] = 'thickness' (the direction orthogonal to the ALICE - // Z axis, along which the different parts of the - // stave are superimposed on each other) - // size[1] = 'length' (the direction along the ALICE Z axis) - // size[2] = 'width' (the direction orthogonal to both the - // above ones) - // 3 - the used TGeoManager - - // ** CRITICAL CHECK ** - // layer number can be ONLY 1 or 2 - if (layer != 1 && layer != 2) AliFatal("Layer number MUST be 1 or 2"); - - // ** MEDIA ** - // instantiate all required media - TGeoMedium *medAir = GetMedium("AIR$",mgr); - TGeoMedium *medSPDSiChip = GetMedium("SPD SI CHIP$",mgr);// SPD SI CHIP - TGeoMedium *medSi = GetMedium("SI$",mgr); - TGeoMedium *medBumpBond = GetMedium("COPPER$",mgr); // ??? BumpBond - - // ** SIZES ** - // for the chip, also the spacing between them is required - Double_t chipThickness = fgkmm * 0.150; - Double_t chipWidth = fgkmm * 15.950; - Double_t chipLength = fgkmm * 13.600; - Double_t chipSpacing = fgkmm * 0.400; - // for the sensor, we define the area of sensitive volume - // while the guard ring is added as a separate piece - Double_t sensThickness = fgkmm * 0.200; - Double_t sensLength = fgkmm * 69.600; - Double_t sensWidth = fgkmm * 12.800; - Double_t guardRingWidth = fgkmm * 0.560; - // bump bond is defined as a small stripe of height = 0.012 mm - // and a suitable width to keep the same volume it has - // before being compressed (a line of spheres of 0.025 mm radius) - Double_t bbLength = fgkmm * 0.042; - Double_t bbWidth = sensWidth; - Double_t bbThickness = fgkmm * 0.012; - Double_t bbPos = 0.080; // Z position w.r. to left pixel edge - - // ** VOLUMES ** - // for readability reasons, create references to - // the overall sizes which will be returned in the TArrayD - if (sizes.GetSize() != 3) sizes.Set(3); - Double_t &thickness = sizes[0]; - Double_t &length = sizes[1]; - Double_t &width = sizes[2]; - // the container is a box which exactly enclose all the stuff; - // it is filled with air and named according to the layer number - width = chipWidth; - length = sensLength + 2.0*guardRingWidth; - thickness = sensThickness + chipThickness + bbThickness; - //TGeoVolume *container = mgr->MakeBox(Form("LAY%d_LADDER", layer), - // medAir, 0.5*width, 0.5*thickness, 0.5*length); - // We must have the x coordinate of this container conresponding to - // the x corrdinate of the sensitive volume. In order to do that we - // are going to create the container with a local reference system - // that is not in the middle of the box. This need to call directly - // the constructor of the shape, with an option : - Double_t xSens = 0.5 * (width - sensWidth - 2.0*guardRingWidth); - Double_t originShift[3] = {-xSens, 0., 0.}; - TGeoBBox *shapeContainer = new TGeoBBox(0.5*width, 0.5*thickness, 0.5*length, originShift); - TGeoVolume *container = new TGeoVolume(Form("LAY%d_LADDER",layer), shapeContainer, medAir); - // the chip - TGeoVolume *volChip = mgr->MakeBox - ("CHIP", medSPDSiChip, 0.5*chipWidth, 0.5*chipThickness, 0.5*chipLength); - // the sensor - TGeoVolume *volSens = mgr->MakeBox - (GetSenstiveVolumeName(layer), medSi, 0.5*sensWidth, 0.5*sensThickness, 0.5*sensLength); - // the guard ring shape is the subtraction of two boxes with the same center. - TGeoBBox *shIn = new TGeoBBox(0.5*sensWidth, sensThickness, 0.5*sensLength); - TGeoBBox *shOut = new TGeoBBox - (0.5*sensWidth + guardRingWidth, 0.5*sensThickness, 0.5*sensLength + guardRingWidth); - shIn->SetName("innerBox"); - shOut->SetName("outerBox"); - TGeoCompositeShape *shBorder = new TGeoCompositeShape("", "outerBox-innerBox"); - TGeoVolume *volBorder = new TGeoVolume("GUARD_RING", shBorder, medSi); - // bump bonds for one whole column - TGeoVolume *volBB = mgr->MakeBox - ("BB", medBumpBond, 0.5*bbWidth, 0.5*bbThickness, 0.5*bbLength); - // set colors of all objects for visualization - volSens->SetLineColor(kYellow + 1); - volChip->SetLineColor(kGreen); - volBorder->SetLineColor(kYellow + 3); - - // ** MOVEMENTS ** - // translation for the sensor parts: direction of width and - // thickness (moved up) - Double_t ySens = 0.5 * (thickness - sensThickness); - Double_t zSens = 0.0; - // We want that the x of the ladder is the same as the one of its sensitive volume - TGeoTranslation *trSens = new TGeoTranslation(xSens - xSens, ySens, zSens); - // translation for the bump bonds: - // keep same y used for sensors, but change the Z - TGeoTranslation *trBB[160]; - Double_t x = xSens - xSens; - Double_t y = 0.5 * (thickness - bbThickness) - sensThickness; - Double_t z = -0.5 * sensLength + guardRingWidth + fgkmm*0.425 - bbPos; - Int_t i; - for (i = 0; i < 160; i++) { - trBB[i] = new TGeoTranslation(x, y, z); - switch(i) { - case 31: - case 63: - case 95: - case 127: - z += fgkmm * 0.625 + fgkmm * 0.2; - break; - default: - z += fgkmm * 0.425; - } // end switch - } // end for i - // translations for the chip box: direction of length and - // thickness (moved down) - TGeoTranslation *trChip[5] = {0, 0, 0, 0, 0}; - x = -xSens; - y = 0.5 * (chipThickness - thickness); - z = 0.0; - for (i = 0; i < 5; i++) { - z = -0.5*length + guardRingWidth - + (Double_t)i*chipSpacing + ((Double_t)(i) + 0.5)*chipLength; - trChip[i] = new TGeoTranslation(x, y, z); - } // end for i - - // add nodes to container - container->AddNode(volSens, 1, trSens); - container->AddNode(volBorder, 1, trSens); - for (i = 0; i < 160; i++) container->AddNode(volBB, i, trBB[i]); - for (i = 0; i < 5; i++) container->AddNode(volChip, i + 2, trChip[i]); - - // return the container - return container; -} -// -//__________________________________________________________________________________________ -TGeoVolume* AliITSv11GeometrySPD::CreateClip -(TArrayD &sizes, TGeoManager *mgr) const -{ - // - // Creates the carbon fiber clips which are added to the central ladders. - // They have a complicated shape which is approximated by a TGeoXtru - // Implementation of a single clip over an half-stave. - // It has a complicated shape which is approximated to a section like this: - // - // 6 - // /\ . - // 7 //\\ 5 - // / 1\\___________________4 - // 0 \___________________ - // 2 3 - // with a finite thickness for all the shape - // Its local reference frame is such that point A corresponds to origin. - // - - Double_t fullLength = fgkmm * 12.6; // = x4 - x0 - Double_t flatLength = fgkmm * 5.4; // = x4 - x3 - Double_t inclLongLength = fgkmm * 5.0; // = 5-6 - Double_t inclShortLength = fgkmm * 2.0; // = 6-7 - Double_t fullHeight = fgkmm * 2.8; // = y6 - y3 - Double_t thickness = fgkmm * 0.2; // thickness - Double_t totalLength = fgkmm * 52.0; // total length in Z - Double_t holeSize = fgkmm * 4.0; // dimension of cubic hole inserted for pt1000 - Double_t angle1 = 27.0; // supplementary of angle DCB - Double_t angle2; // angle DCB - Double_t angle3; // angle of GH with vertical - - angle2 = 0.5 * (180.0 - angle1); - angle3 = 90.0 - TMath::ACos(fullLength - flatLength - inclLongLength*TMath::Cos(angle1)) * TMath::RadToDeg(); - - angle1 *= TMath::DegToRad(); - angle2 *= TMath::DegToRad(); - angle3 *= TMath::DegToRad(); - - Double_t x[8], y[8]; - - x[0] = 0.0; - x[1] = x[0] + fullLength - flatLength - inclLongLength*TMath::Cos(angle1); - x[2] = x[0] + fullLength - flatLength; - x[3] = x[0] + fullLength; - x[4] = x[3]; - x[5] = x[4] - flatLength + thickness * TMath::Cos(angle2); - x[6] = x[1]; - x[7] = x[0]; - - y[0] = 0.0; - y[1] = y[0] + inclShortLength * TMath::Cos(angle3); - y[2] = y[1] - inclLongLength * TMath::Sin(angle1); - y[3] = y[2]; - y[4] = y[3] + thickness; - y[5] = y[4]; - y[6] = y[1] + thickness; - y[7] = y[0] + thickness; - - sizes.Set(7); - sizes[0] = totalLength; - sizes[1] = fullHeight; - sizes[2] = y[2]; - sizes[3] = y[6]; - sizes[4] = x[0]; - sizes[5] = x[3]; - sizes[6] = x[2]; - - TGeoXtru *shClip = new TGeoXtru(2); - shClip->SetName("SHCLIP"); - shClip->DefinePolygon(8, x, y); - shClip->DefineSection(0, -0.5*totalLength, 0., 0., 1.0); - shClip->DefineSection(1, 0.5*totalLength, 0., 0., 1.0); - - TGeoBBox *shHole = new TGeoBBox("SH_CLIPHOLE", 0.5*holeSize, 0.5*holeSize, 0.5*holeSize); - TGeoTranslation *tr1 = new TGeoTranslation("TR_CLIPHOLE1", x[2], 0.0, fgkmm*14.); - TGeoTranslation *tr2 = new TGeoTranslation("TR_CLIPHOLE2", x[2], 0.0, 0.0); - TGeoTranslation *tr3 = new TGeoTranslation("TR_CLIPHOLE3", x[2], 0.0, -fgkmm*14.); - tr1->RegisterYourself(); - tr2->RegisterYourself(); - tr3->RegisterYourself(); - - TString strExpr("SHCLIP-("); - strExpr.Append(Form("%s:%s+", shHole->GetName(), tr1->GetName())); - strExpr.Append(Form("%s:%s+", shHole->GetName(), tr2->GetName())); - strExpr.Append(Form("%s:%s)", shHole->GetName(), tr3->GetName())); - TGeoCompositeShape *shClipHole = new TGeoCompositeShape("SHCLIPHOLES", strExpr.Data()); - - TGeoMedium *mat = GetMedium("ITSspdCarbonFiber", mgr); - TGeoVolume *vClip = new TGeoVolume("clip", shClipHole, mat); - vClip->SetLineColor(kGray + 2); - return vClip; -} -// -//__________________________________________________________________________________________ -TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateGroundingFoilSingle -(Int_t type, TArrayD &sizes, TGeoManager *mgr) const -{ - // Returns a TGeoVolume representing a single grounding foil layer. - // This shape is used to create the two real foils of the GF (one in - // kapton, and one in aluminum), and also to implement the glue - // layers which link the GF to the carbon fiber support, and to the - // ladders. - // --- - // The glue and kapton layers have exactly the same size, while - // the aluminum foil has some small differences in its overall size - // and in the dimensions of its holes. The first argument passed to - // the function ("type") is used to choose between all these - // possibilities: - // - type = 0 --> kapton layer - // - type = 1 --> aluminum layer - // - type = 2 --> glue layer between support and GF - // - type = 3 --> glue layer between GF and ladders - // --- - // The complete object is created as the sum of the following parts: - // 1) the part which is connected to the chips, which is a - // simple box with some box-shaped holes at regular intervals - // 2) a trapezoidal connection where the Y size changes - // 3) another box with a unique hole of the same shape and size as above - // 4) another trapezoidal connection where the Y size changes - // 5) a final part which is built as a sequence of 4 BOX volumes - // where the first and the third are equal and the others have - // same size in Y. - // --- - // The sizes of all parts are parameterized with variable names, - // even if their value is fixed according to engineers' drawings. - // --- - // The returns value is a TGeoVolume object which contains all parts - // of this layer. The 'sizes' argument passed by reference will - // contain the three dimensions of the container and some other - // values which upper level methods (stave assemblier) must know: - // - sizes[0] = full thickness - // - sizes[1] = full length - // - sizes[2] = full width - // - sizes[3] = hole length - // - sizes[4] = hole width - // - sizes[5] = position of first hole center - // - sizes[6] = standard separation between holes - // - sizes[7] = separation between 5th and 6th hole - // - sizes[8] = separation between 10th and 11th hole - // - sizes[9] = separation between the upper hole border and the - // foil border - // ** MEDIA ** - // - vacuum for the container volume - // - kapton/aluminum/glue for the pysical volume - TGeoMedium *mat = GetMedium("SPD KAPTON(POLYCH2)$", mgr); - // ** SIZES ** - Double_t sizeZ = fgkmm * 0.05; - Double_t part1X = fgkmm * 140.71; - Double_t part2X = fgkmm * 2.48; - Double_t part3X = fgkmm * 26.78; - Double_t part4X = fgkmm * 4.00; - Double_t part5X = fgkmm * 10.00; - Double_t part6X = fgkmm * 24.40; - Double_t part7X = fgkmm * 10.00; - Double_t part8X = fgkmm * 24.81; - Double_t sizeYMax = fgkmm * 15.95; - Double_t sizeYMed1 = fgkmm * 15.00; - Double_t sizeYMed2 = fgkmm * 11.00; - Double_t sizeYMin = fgkmm * 4.40; - Double_t holeX = fgkmm * 10.00; - Double_t holeY = fgkmm * 7.50; - Double_t holeFirstX = fgkmm * 7.05; // position of center of first hole - Double_t holeSepX = fgkmm * 14.00; // separation between the - // centers of two consecutive holes - Double_t holeSepX1 = fgkmm * 1.42; // to be added after 4th hole in - // volume 1 - Double_t holeSepY = fgkmm * 4.40; // dist between hole's and - // volume's upper border - Double_t holeAloneX = fgkmm * 13.28; // position of hole center in - // box "part 3" - // correct sizes/material in case we are on Aluminum foil - if (type == 1) { - mat = GetMedium("AL$", mgr); - sizeZ = fgkmm * 0.025; - part1X -= fgkmm * 0.2; - part5X -= fgkmm * 0.2; - part6X += fgkmm * 0.4; - part7X -= fgkmm * 0.4; - sizeYMax -= fgkmm * 0.4; - sizeYMed1 -= fgkmm * 0.4; - sizeYMed2 -= fgkmm * 0.4; - sizeYMin -= fgkmm * 0.4; - holeX += fgkmm * 0.4; - holeY += fgkmm * 0.4; - holeFirstX -= fgkmm * 0.2; - holeSepY -= fgkmm * 0.4; - } // end if type==1 - - // correct sizes/material in case we are in a glue layer - if (type == 2) { - mat = GetMedium("EPOXY$", mgr); //??? GLUE_GF_SUPPORT - sizeZ = fgkmm * 0.1175; - } // end if type ==2 - if (type == 3) { - mat = GetMedium("EPOXY$", mgr); //??? GLUE_GF_SUPPORT - sizeZ = fgkmm * 0.1175 - fAlignmentGap; - if (sizeZ <= 0.0) { - AliFatal("Too large gap thickness."); - return 0; - } // end if sizeZ<=0 - }// end if type==3 - // initialize the argument TArrayD - if (sizes.GetSize() != 10) sizes.Set(10); - Double_t &thickness = sizes[0]; - Double_t &length = sizes[1]; - Double_t &width = sizes[2]; - // compute full length and width - length = part1X+part2X+part3X+part4X+part5X+part6X+part7X+part8X; - width = sizeYMax; - thickness = sizeZ; - sizes[3] = holeX; - sizes[4] = holeY; - sizes[5] = holeFirstX; - sizes[6] = holeSepX; - sizes[7] = holeSepX + holeSepX1; - sizes[8] = fgkmm * 22.0; // the last separation is not used in the - // rest, and is implemented from scratch - sizes[9] = holeSepY; - // ** OBJECT NAMES ** - // define names for the object - char stype[20]; - if (type == 0) strcpy(stype, "KAP"); - else if (type == 1) strcpy(stype, "ALU"); - else if (type == 2) strcpy(stype, "GLUE1"); - else if (type == 3) strcpy(stype, "GLUE2"); - else { - AliFatal(Form("Type %d not allowed for grounding foil", type)); - } // end if else - // ** VOLUMES ** - // grounding foil world, bounded exactly around the limits of the structure - // TGeoVolume *container = mgr->MakeBox(Form("GFOIL_%s", stype), - // air, 0.5*length, 0.5*sizeYMax, 0.5*sizeZ); - TGeoVolumeAssembly *container = new TGeoVolumeAssembly(Form("GFOIL_%s", - stype)); - // === PART 1: box with holes === - TGeoBBox *shBox1 = 0, *shHole = 0; - shBox1 = new TGeoBBox(Form("GF%s_BOX1", stype), 0.5*part1X, 0.5*sizeYMax, - 0.5*sizeZ); - shHole = new TGeoBBox(Form("GF%s_HOLE", stype), 0.5*holeX, 0.5*holeY, - 0.5*sizeZ + 0.01); - // define the position of all holes and compose the expression - // to define the composite shape (box - holes) - Double_t firstX = -0.5*part1X + holeFirstX; - Double_t transY = 0.5*sizeYMax - holeSepY - 0.5*holeY; - Double_t transX; - TGeoTranslation *transHole[10]; - TString strComposite(Form("%s - (", shBox1->GetName())); - for (Int_t i = 0; i < 10; i++) { - transX = firstX + (Double_t)i * holeSepX; - if (i > 4) transX += holeSepX1; - transHole[i] = new TGeoTranslation(Form("TGF%s_HOLE%d", stype, i), - transX, transY, 0.0); - transHole[i]->RegisterYourself(); - strComposite.Append(Form("%s:%s", shHole->GetName(), - transHole[i]->GetName())); - if (i < 9) strComposite.Append("+"); else strComposite.Append(")"); - } // end for i - // create composite shape - TGeoCompositeShape *shPart1 = new TGeoCompositeShape( - Form("GF%s_PART1_SHAPE", stype), strComposite.Data()); - // create the volume - TGeoVolume *volPart1 = new TGeoVolume(Form("GF%s_PART1", stype), - shPart1, mat); - // === PART 2: first trapezoidal connection - TGeoArb8 *shTrap1 = new TGeoArb8(0.5*sizeZ); - shTrap1->SetVertex(0, -0.5*part2X, 0.5*sizeYMax); - shTrap1->SetVertex(1, 0.5*part2X, 0.5*sizeYMax); - shTrap1->SetVertex(2, 0.5*part2X, 0.5*sizeYMax - sizeYMed1); - shTrap1->SetVertex(3, -0.5*part2X, -0.5*sizeYMax); - shTrap1->SetVertex(4, -0.5*part2X, 0.5*sizeYMax); - shTrap1->SetVertex(5, 0.5*part2X, 0.5*sizeYMax); - shTrap1->SetVertex(6, 0.5*part2X, 0.5*sizeYMax - sizeYMed1); - shTrap1->SetVertex(7, -0.5*part2X, -0.5*sizeYMax); - TGeoVolume *volPart2 = new TGeoVolume(Form("GF%s_PART2", stype), - shTrap1, mat); - // === PART 3: other box with one hole - TGeoBBox *shBox2 = 0; - shBox2 = new TGeoBBox(Form("GF%s_BOX2", stype), 0.5*part3X, - 0.5*sizeYMed1, 0.5*sizeZ); - // define the position of the hole - transX = holeAloneX - 0.5*part3X; - transY -= 0.5*(sizeYMax - sizeYMed1); - TGeoTranslation *transHoleAlone = new TGeoTranslation( - Form("TGF%s_HOLE_ALONE", stype), transX, transY, 0.0); - transHoleAlone->RegisterYourself(); - // create composite shape - TGeoCompositeShape *shPart3 = new TGeoCompositeShape( - Form("GF%sPART3_SHAPE", stype), - Form("%s - %s:%s", shBox2->GetName(), - shHole->GetName(), transHoleAlone->GetName())); - // create the volume - TGeoVolume *volPart3 = new TGeoVolume(Form("GF%s_PART3", stype), - shPart3, mat); - // === PART 4: second trapezoidal connection - TGeoArb8 *shTrap2 = new TGeoArb8(0.5*sizeZ); - shTrap2->SetVertex(0, -0.5*part4X, 0.5*sizeYMed1); - shTrap2->SetVertex(1, 0.5*part4X, 0.5*sizeYMed1); - shTrap2->SetVertex(2, 0.5*part4X, 0.5*sizeYMed1 - sizeYMed2); - shTrap2->SetVertex(3, -0.5*part4X, -0.5*sizeYMed1); - shTrap2->SetVertex(4, -0.5*part4X, 0.5*sizeYMed1); - shTrap2->SetVertex(5, 0.5*part4X, 0.5*sizeYMed1); - shTrap2->SetVertex(6, 0.5*part4X, 0.5*sizeYMed1 - sizeYMed2); - shTrap2->SetVertex(7, -0.5*part4X, -0.5*sizeYMed1); - TGeoVolume *volPart4 = new TGeoVolume(Form("GF%s_PART4", stype), - shTrap2, mat); - // === PART 5 --> 8: sequence of boxes === - TGeoVolume *volPart5 = mgr->MakeBox(Form("GF%s_BOX3", stype), mat, - 0.5*part5X, 0.5*sizeYMed2, 0.5*sizeZ); - TGeoVolume *volPart6 = mgr->MakeBox(Form("GF%s_BOX4", stype), mat, - 0.5*part6X, 0.5*sizeYMin , 0.5*sizeZ); - TGeoVolume *volPart7 = mgr->MakeBox(Form("GF%s_BOX5", stype), mat, - 0.5*part7X, 0.5*sizeYMed2, 0.5*sizeZ); - TGeoVolume *volPart8 = mgr->MakeBox(Form("GF%s_BOX6", stype), mat, - 0.5*part8X, 0.5*sizeYMin , 0.5*sizeZ); - // === SET COLOR === - Color_t color = kRed + 3; - if (type == 1) color = kGreen; - if (type == 2 || type == 3) color = kYellow; - volPart1->SetLineColor(color); - volPart2->SetLineColor(color); - volPart3->SetLineColor(color); - volPart4->SetLineColor(color); - volPart5->SetLineColor(color); - volPart6->SetLineColor(color); - volPart7->SetLineColor(color); - volPart8->SetLineColor(color); - // ** MOVEMENTS ** - transX = 0.5*(part1X - length); - TGeoTranslation *transPart1 = new TGeoTranslation(transX, 0.0, 0.0); - transX += 0.5*(part1X + part2X); - TGeoTranslation *transPart2 = new TGeoTranslation(transX, 0.0, 0.0); - transX += 0.5*(part2X + part3X); - transY = 0.5*(sizeYMax - sizeYMed1); - TGeoTranslation *transPart3 = new TGeoTranslation(transX, transY, 0.0); - transX += 0.5*(part3X + part4X); - TGeoTranslation *transPart4 = new TGeoTranslation(transX, transY, 0.0); - transX += 0.5*(part4X + part5X); - transY = 0.5*(sizeYMax - sizeYMed2); - TGeoTranslation *transPart5 = new TGeoTranslation(transX, transY, 0.0); - transX += 0.5*(part5X + part6X); - transY = 0.5*(sizeYMax - sizeYMin); - TGeoTranslation *transPart6 = new TGeoTranslation(transX, transY, 0.0); - transX += 0.5*(part6X + part7X); - transY = 0.5*(sizeYMax - sizeYMed2); - TGeoTranslation *transPart7 = new TGeoTranslation(transX, transY, 0.0); - transX += 0.5*(part7X + part8X); - transY = 0.5*(sizeYMax - sizeYMin); - TGeoTranslation *transPart8 = new TGeoTranslation(transX, transY, 0.0); - // add the partial volumes to the container - container->AddNode(volPart1, 1, transPart1); - container->AddNode(volPart2, 2, transPart2); - container->AddNode(volPart3, 3, transPart3); - container->AddNode(volPart4, 4, transPart4); - container->AddNode(volPart5, 5, transPart5); - container->AddNode(volPart6, 6, transPart6); - container->AddNode(volPart7, 7, transPart7); - container->AddNode(volPart8, 8, transPart8); - return container; -} -// -//__________________________________________________________________________________________ -TGeoVolume* AliITSv11GeometrySPD::CreateGroundingFoil -(Bool_t isRight, TArrayD &sizes, TGeoManager *mgr) const -{ - // Create a volume containing all parts of the grounding foil a - // half-stave. The use of the TGeoXtru shape causes that in each - // single component volume the Z axis lies perpendicularly to the - // polygonal basis of this shape. Since we want that the Z axis - // of this volume must coincide with the one of the ALICE global - // reference frame, this requires some rotations of each component, - // besides the necessary translations to place it correctly with - // respect to the whole stave volume. - // --- - // Arguments: - // 1: a boolean value to know if it is the grounding foir for - // the right or left side - // 2: a TArrayD which will contain the dimension of the container box: - // - size[0] = length along Z (the beam line direction) - // - size[1] = the 'width' of the stave, which defines, together - // with Z, the plane of the carbon fiber support - // - size[2] = 'thickness' (= the direction along which all - // stave components are superimposed) - // 3: the TGeoManager - // --- - // The return value is a TGeoBBox volume containing all grounding - // foil components. - // to avoid strange behaviour of the geometry manager, - // create a suffix to be used in the names of all shapes - char suf[5]; - if (isRight) strcpy(suf, "R"); else strcpy(suf, "L"); - // this volume will be created in order to ease its placement in - // the half-stave; then, it is added here the small distance of - // the "central" edge of each volume from the Z=0 plane in the stave - // reference (which coincides with ALICE one) - Double_t dist = fgkmm * 0.71; - // create the component volumes and register their sizes in the - // passed arrays for readability reasons, some reference variables - // explicit the meaning of the array slots - TArrayD kpSize(9), alSize(9), g1Size(9), g2Size(9); - TGeoVolume *kpVol = CreateGroundingFoilSingle(0, kpSize, mgr); - TGeoVolume *alVol = CreateGroundingFoilSingle(1, alSize, mgr); - TGeoVolume *g1Vol = CreateGroundingFoilSingle(2, g1Size, mgr); - TGeoVolume *g2Vol = CreateGroundingFoilSingle(3, g2Size, mgr); - Double_t &kpLength = kpSize[1],&kpThickness=kpSize[0];//,&kpWidth=kpSize[2]; - Double_t &alLength = alSize[1],&alThickness=alSize[0];//,&alWidth=alSize[2]; - Double_t &g1Thickness = g1Size[0], &g2Thickness = g2Size[0]; - - // create references for the final size object - if (sizes.GetSize() != 3) sizes.Set(3); - Double_t &fullThickness = sizes[0]; - Double_t &fullLength = sizes[1]; - Double_t &fullWidth = sizes[2]; - // kapton leads the larger dimensions of the foil - // (including the cited small distance from Z=0 stave reference plane) - // the thickness is the sum of the ones of all components - fullLength = kpSize[1] + dist; - fullWidth = kpSize[2]; - fullThickness = kpSize[0] + alSize[0] + g1Size[0] + g2Size[0]; - // create the container - TGeoMedium *air = GetMedium("AIR$", mgr); - TGeoVolume *container = mgr->MakeBox(Form("GFOIL_%s", suf), air, - 0.5*fullThickness, 0.5*fullWidth, 0.5*fullLength); - // create the common correction rotation (which depends of what side - // we are building) - TGeoRotation *rotCorr = new TGeoRotation(*gGeoIdentity); - if (isRight) rotCorr->RotateY(90.0); - else rotCorr->RotateY(-90.0); - // compute the translations, which are in the length and thickness - // directions - Double_t x, y, z, shift = 0.0; - if (isRight) shift = dist; - // glue (bottom) - x = -0.5*(fullThickness - g1Thickness); - z = 0.5*(fullLength - kpLength) - shift; - TGeoCombiTrans *g1Trans = new TGeoCombiTrans(x, 0.0, z, rotCorr); - // kapton - x += 0.5*(g1Thickness + kpThickness); - TGeoCombiTrans *kpTrans = new TGeoCombiTrans(x, 0.0, z, rotCorr); - // aluminum - x += 0.5*(kpThickness + alThickness); - z = 0.5*(fullLength - alLength) - shift - 0.5*(kpLength - alLength); - TGeoCombiTrans *alTrans = new TGeoCombiTrans(x, 0.0, z, rotCorr); - // glue (top) - x += 0.5*(alThickness + g2Thickness); - z = 0.5*(fullLength - kpLength) - shift; - TGeoCombiTrans *g2Trans = new TGeoCombiTrans(x, 0.0, z, rotCorr); - - // add to container - container->AddNode(kpVol, 0, kpTrans); - container->AddNode(alVol, 0, alTrans); - container->AddNode(g1Vol, 0, g1Trans); - container->AddNode(g2Vol, 0, g2Trans); - // to add the grease we remember the sizes of the holes, stored as - // additional parameters in the kapton layer size: - // - sizes[3] = hole length - // - sizes[4] = hole width - // - sizes[5] = position of first hole center - // - sizes[6] = standard separation between holes - // - sizes[7] = separation between 5th and 6th hole - // - sizes[8] = separation between 10th and 11th hole - // - sizes[9] = separation between the upper hole border and - // the foil border - Double_t holeLength = kpSize[3]; - Double_t holeWidth = kpSize[4]; - Double_t holeFirstZ = kpSize[5]; - Double_t holeSepZ = kpSize[6]; - Double_t holeSep5th6th = kpSize[7]; - Double_t holeSep10th11th = kpSize[8]; - Double_t holeSepY = kpSize[9]; - // volume (common) - TGeoMedium *grease = GetMedium("SPD KAPTON(POLYCH2)$", mgr); // ??? GREASE - TGeoVolume *hVol = mgr->MakeBox("GREASE", grease, 0.5*fullThickness, - 0.5*holeWidth, 0.5*holeLength); - hVol->SetLineColor(kBlue); - // displacement of volumes in the container - Int_t idx = 0; - x = 0.0; - y = 0.5*(fullWidth - holeWidth) - holeSepY; - if (isRight) z = holeFirstZ - 0.5*fullLength + dist; - else z = 0.5*fullLength - holeFirstZ - dist; - for (Int_t i = 0; i < 11; i++) { - TGeoTranslation *t = 0; - t = new TGeoTranslation(x, y, -z); - container->AddNode(hVol, idx++, t); - if (i < 4) shift = holeSepZ; - else if (i == 4) shift = holeSep5th6th; - else if (i < 9) shift = holeSepZ; - else shift = holeSep10th11th; - if (isRight) z += shift; - else z -= shift; - }// end for i - return container; -} -// -//__________________________________________________________________________________________ -TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateMCM -(Bool_t isRight, TArrayD &sizes, TGeoManager *mgr) const -{ - // Assemblies all the components of the MCM and builds it as an - // assembly, because its large thickness could cause inexistent - // overlaps if all components were put into a true TGeoBBox. - // This assembly contains: - // - a layer of glue which has the same size of the MCM itself, - // and it the lowest part - // - the thin part of the MCM - // - the chips on the MCM, according to the specifications from EDMS - // - the cover which is superimposed to the part of the MCM with the chips - // --- - // Even if this is an assembly, the placement of objects is made in - // such a way that they are virtually contained in an imaginary box - // whose center is placed exactly in the middle of the occupied space - // in all directions. This will ease the positioning of this object - // in the final stave. The sizes of this virtual box are stored in - // the array passed by reference. - // --- - // Arguments: - // - a boolean flag to know if this is the left or right MCM, when - // looking at the stave from above (i.e. the direction from which - // one sees bus over ladders over grounding foil) and keeping the - // upper border continuous. - // - an array passed by reference which will contain the size of a - // virtual box containing all this stuff - // - a pointer to the used TGeoManager. - // to avoid strange behaviour of the geometry manager, - // create a suffix to be used in the names of all shapes - char suf[5]; - if (isRight) strcpy(suf, "R"); else strcpy(suf, "L"); - // ** MEDIA ** - TGeoMedium *medBase = GetMedium("SPD KAPTON(POLYCH2)$",mgr);// ??? MCM BASE - TGeoMedium *medGlue = GetMedium("EPOXY$",mgr); // ??? GlueMCM - TGeoMedium *medChip = GetMedium("SPD SI CHIP$",mgr); - TGeoMedium *medCap = GetMedium("AL$",mgr); - // The shape of the MCM is divided into 3 sectors with different - // widths (Y) and lengths (X), like in this sketch: - // - // 0 1 2 - // +---------------------+-----------------------------------+ - // | 4 sect 2 | - // | 6 sect 1 /-------------------+ - // | sect 0 /--------------/ 3 - // +--------------------/ 5 - // 8 7 - // - // the inclination of all oblique borders (6-7, 4-5) is always 45 degrees. - // From drawings we can parametrize the dimensions of all these sectors, - // then the shape of this part of the MCM is implemented as a - // TGeoXtru centerd in the virtual XY space. Since this shape - // is used twice (to define the MCM itself and the glue below it), - // we need to define two different shapes with different thicknesses - // and, since we place them in an assembly, we displace them - // directly in the right place with respect to the local Z axis - // (which is in the direction of thickness). The first step is - // definig the relevant sizes of this shape: - Int_t i, j; - Double_t mcmThickness = fgkmm * 0.35; - Double_t glueThickness = fAlignmentGap; - Double_t sizeXtot = fgkmm * 105.6; // total distance 0-2 - // resp. 7-8, 5-6 and 3-4 - Double_t sizeXsector[3] = {fgkmm * 28.4, fgkmm * 41.4, fgkmm * 28.8}; - // resp. 0-8, 1-6 and 2-3 - Double_t sizeYsector[3] = {fgkmm * 15.0, fgkmm * 11.0, fgkmm * 8.0}; - Double_t sizeSep01 = fgkmm * 4.0; // x(6)-x(7) - Double_t sizeSep12 = fgkmm * 3.0; // x(4)-x(5) - // define sizes of chips (last is the thickest) - Double_t chipLength[5] = { 4.00, 6.15, 3.85, 5.60, 18.00 }; - Double_t chipWidth[5] = { 3.00, 4.10, 3.85, 5.60, 5.45 }; - Double_t chipThickness[5] = { 0.60, 0.30, 0.30, 1.00, 1.20 }; - TString name[5]; - name[0] = "ANALOG"; - name[1] = "PILOT"; - name[2] = "GOL"; - name[3] = "RX40"; - name[4] = "OPTICAL"; - Color_t color[5] = { kCyan, kGreen, kYellow, kBlue, kOrange }; - - // define the sizes of the cover - Double_t capThickness = fgkmm * 0.3; - Double_t capHeight = fgkmm * 1.7; - // compute the total size of the virtual container box - Double_t &thickness = sizes[0]; - Double_t &length = sizes[1]; - Double_t &width = sizes[2]; - length = sizeXtot; - width = sizeYsector[0]; - thickness = glueThickness + mcmThickness + capHeight; - // define all the relevant vertices of the polygon - // which defines the transverse shape of the MCM. - // These values are used to several purposes, and - // for each one, some points must be excluded - Double_t xRef[9], yRef[9]; - xRef[0] = -0.5*sizeXtot; - yRef[0] = 0.5*sizeYsector[0]; - xRef[1] = xRef[0] + sizeXsector[0] + sizeSep01; - yRef[1] = yRef[0]; - xRef[2] = -xRef[0]; - yRef[2] = yRef[0]; - xRef[3] = xRef[2]; - yRef[3] = yRef[2] - sizeYsector[2]; - xRef[4] = xRef[3] - sizeXsector[2]; - yRef[4] = yRef[3]; - xRef[5] = xRef[4] - sizeSep12; - yRef[5] = yRef[4] - sizeSep12; - xRef[6] = xRef[5] - sizeXsector[1]; - yRef[6] = yRef[5]; - xRef[7] = xRef[6] - sizeSep01; - yRef[7] = yRef[6] - sizeSep01; - xRef[8] = xRef[0]; - yRef[8] = -yRef[0]; - // the above points are defined for the "right" MCM (if ve view the - // stave from above) in order to change to the "left" one, we must - // change the sign to all X values: - if (isRight) for (i = 0; i < 9; i++) xRef[i] = -xRef[i]; - // the shape of the MCM and glue layer are done excluding point 1, - // which is not necessary and cause the geometry builder to get confused - j = 0; - Double_t xBase[8], yBase[8]; - for (i = 0; i < 9; i++) { - if (i == 1) continue; - xBase[j] = xRef[i]; - yBase[j] = yRef[i]; - j++; - } // end for i - - // the MCM cover is superimposed over the sectors 1 and 2 only - Double_t xCap[6], yCap[6]; - j = 0; - for (i = 1; i <= 6; i++) { - xCap[j] = xRef[i]; - yCap[j] = yRef[i]; - j++; - } // end for i - - // define positions of chips, - // which must be added to the bottom-left corner of MCM - // and divided by 1E4; - Double_t chipX[5], chipY[5]; - if (isRight) { - chipX[0] = 666320.; - chipX[1] = 508320.; - chipX[2] = 381320.; - chipX[3] = 295320.; - chipX[4] = 150320.; - chipY[0] = 23750.; - chipY[1] = 27750.; - chipY[2] = 20750.; - chipY[3] = 42750.; - chipY[4] = 39750.; - } else { - chipX[0] = 389730.; - chipX[1] = 548630.; - chipX[2] = 674930.; - chipX[3] = 761430.; - chipX[4] = 905430.; - chipY[0] = 96250.; - chipY[1] = 91950.; - chipY[2] = 99250.; - chipY[3] = 107250.; - chipY[4] = 109750.; - } // end for isRight - for (i = 0; i < 5; i++) { - chipX[i] *= 0.00001; - chipY[i] *= 0.00001; - if (isRight) { - chipX[i] += xRef[3]; - chipY[i] += yRef[3]; - } else { - chipX[i] += xRef[8]; - chipY[i] += yRef[8]; - } // end for isRight - chipLength[i] *= fgkmm; - chipWidth[i] *= fgkmm; - chipThickness[i] *= fgkmm; - } // end for i - // create shapes for MCM - Double_t z1, z2; - TGeoXtru *shBase = new TGeoXtru(2); - TGeoXtru *shGlue = new TGeoXtru(2); - z1 = -0.5*thickness; - z2 = z1 + glueThickness; - shGlue->DefinePolygon(8, xBase, yBase); - shGlue->DefineSection(0, z1, 0., 0., 1.0); - shGlue->DefineSection(1, z2, 0., 0., 1.0); - z1 = z2; - z2 = z1 + mcmThickness; - shBase->DefinePolygon(8, xBase, yBase); - shBase->DefineSection(0, z1, 0., 0., 1.0); - shBase->DefineSection(1, z2, 0., 0., 1.0); - - // create volumes of MCM - TGeoVolume *volBase = new TGeoVolume("BASE", shBase, medBase); - volBase->SetLineColor(kRed); - TGeoVolume *volGlue = new TGeoVolume("GLUE", shGlue, medGlue); - volGlue->SetLineColor(kYellow + 1); - - // to create the border of the MCM cover, it is required the - // subtraction of two shapes the outer is created using the - // reference points defined here - TGeoXtru *shCapOut = new TGeoXtru(2); - shCapOut->SetName(Form("SHCAPOUT%s", suf)); - z1 = z2; - z2 = z1 + capHeight - capThickness; - shCapOut->DefinePolygon(6, xCap, yCap); - shCapOut->DefineSection(0, z1, 0., 0., 1.0); - shCapOut->DefineSection(1, z2, 0., 0., 1.0); - // the inner is built similarly but subtracting the thickness - Double_t angle, cs; - Double_t xin[6], yin[6]; - if (!isRight) { - angle = 45.0; - cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) ); - xin[0] = xCap[0] + capThickness; - yin[0] = yCap[0] - capThickness; - xin[1] = xCap[1] - capThickness; - yin[1] = yin[0]; - xin[2] = xin[1]; - yin[2] = yCap[2] + capThickness; - xin[3] = xCap[3] - capThickness*cs; - yin[3] = yin[2]; - xin[4] = xin[3] - sizeSep12; - yin[4] = yCap[4] + capThickness; - xin[5] = xin[0]; - yin[5] = yin[4]; - } else { - angle = 45.0; - cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) ); - xin[0] = xCap[0] - capThickness; - yin[0] = yCap[0] - capThickness; - xin[1] = xCap[1] + capThickness; - yin[1] = yin[0]; - xin[2] = xin[1]; - yin[2] = yCap[2] + capThickness; - xin[3] = xCap[3] - capThickness*cs; - yin[3] = yin[2]; - xin[4] = xin[3] + sizeSep12; - yin[4] = yCap[4] + capThickness; - xin[5] = xin[0]; - yin[5] = yin[4]; - } // end if isRight - TGeoXtru *shCapIn = new TGeoXtru(2); - shCapIn->SetName(Form("SHCAPIN%s", suf)); - shCapIn->DefinePolygon(6, xin, yin); - shCapIn->DefineSection(0, z1 - 0.01, 0., 0., 1.0); - shCapIn->DefineSection(1, z2 + 0.01, 0., 0., 1.0); - // compose shapes - TGeoCompositeShape *shCapBorder = new TGeoCompositeShape( - Form("SHBORDER%s", suf), - Form("%s-%s", shCapOut->GetName(), - shCapIn->GetName())); - // create volume - TGeoVolume *volCapBorder = new TGeoVolume("CAPBORDER",shCapBorder,medCap); - volCapBorder->SetLineColor(kGreen); - // finally, we create the top of the cover, which has the same - // shape of outer border and a thickness equal of the one othe - // cover border one - TGeoXtru *shCapTop = new TGeoXtru(2); - z1 = z2; - z2 = z1 + capThickness; - shCapTop->DefinePolygon(6, xCap, yCap); - shCapTop->DefineSection(0, z1, 0., 0., 1.0); - shCapTop->DefineSection(1, z2, 0., 0., 1.0); - TGeoVolume *volCapTop = new TGeoVolume("CAPTOP", shCapTop, medCap); - volCapTop->SetLineColor(kBlue); - - // create container assembly - TGeoVolumeAssembly *mcmAssembly = new TGeoVolumeAssembly("MCM"); - - // add objects in the assembly - - // glue - mcmAssembly->AddNode(volGlue, 0, gGeoIdentity); - // mcm layer - mcmAssembly->AddNode(volBase, 0, gGeoIdentity); - // chips - for (i = 0; i < 5; i++) { - TGeoVolume *box = gGeoManager->MakeBox(name[i], medChip, - 0.5*chipLength[i], 0.5*chipWidth[i], 0.5*chipThickness[i]); - TGeoTranslation *tr = new TGeoTranslation(chipX[i], chipY[i], - 0.5*(-thickness + chipThickness[i]) + mcmThickness + - glueThickness); - box->SetLineColor(color[i]); - mcmAssembly->AddNode(box, 0, tr); - } // end for i - // cap border - mcmAssembly->AddNode(volCapBorder, 0, gGeoIdentity); - // cap top - mcmAssembly->AddNode(volCapTop, 0, gGeoIdentity); - return mcmAssembly; -} -// -//__________________________________________________________________________________________ -TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBus -(Bool_t isRight, TArrayD &sizes, TGeoManager *mgr) const -{ - // - // The pixel bus is implemented as a TGeoBBox with some objects on it, - // which could affect the particle energy loss. - // --- - // In order to avoid confusion, the bus is directly displaced - // according to the axis orientations which are used in the final stave: - // X --> thickness direction - // Y --> width direction - // Z --> length direction - // - - - // ** MEDIA ** - - //PIXEL BUS - TGeoMedium *medBus = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr); - TGeoMedium *medPt1000 = GetMedium("CERAMICS$",mgr); // ??? PT1000 - // Capacity - TGeoMedium *medCap = GetMedium("SDD X7R capacitors$",mgr); - // ??? Resistance - TGeoMedium *medRes = GetMedium("SDD X7R capacitors$",mgr); - // ** SIZES & POSITIONS ** - Double_t busLength = 170.501 * fgkmm; // length of plane part - Double_t busWidth = 13.800 * fgkmm; // width - Double_t busThickness = 0.280 * fgkmm; // thickness - Double_t pt1000Length = fgkmm * 1.50; - Double_t pt1000Width = fgkmm * 3.10; - Double_t pt1000Thickness = fgkmm * 0.60; - Double_t pt1000Y, pt1000Z[10];// position of the pt1000's along the bus - Double_t capLength = fgkmm * 2.55; - Double_t capWidth = fgkmm * 1.50; - Double_t capThickness = fgkmm * 1.35; - Double_t capY[2], capZ[2]; - - Double_t resLength = fgkmm * 2.20; - Double_t resWidth = fgkmm * 0.80; - Double_t resThickness = fgkmm * 0.35; - Double_t resY[2], resZ[2]; - - // position of pt1000, resistors and capacitors depends on the - // bus if it's left or right one - if (!isRight) { - pt1000Y = 64400.; - pt1000Z[0] = 66160.; - pt1000Z[1] = 206200.; - pt1000Z[2] = 346200.; - pt1000Z[3] = 486200.; - pt1000Z[4] = 626200.; - pt1000Z[5] = 776200.; - pt1000Z[6] = 916200.; - pt1000Z[7] = 1056200.; - pt1000Z[8] = 1196200.; - pt1000Z[9] = 1336200.; - resZ[0] = 1397500.; - resY[0] = 26900.; - resZ[1] = 682500.; - resY[1] = 27800.; - capZ[0] = 1395700.; - capY[0] = 45700.; - capZ[1] = 692600.; - capY[1] = 45400.; - } else { - pt1000Y = 66100.; - pt1000Z[0] = 319700.; - pt1000Z[1] = 459700.; - pt1000Z[2] = 599700.; - pt1000Z[3] = 739700.; - pt1000Z[4] = 879700.; - pt1000Z[5] = 1029700.; - pt1000Z[6] = 1169700.; - pt1000Z[7] = 1309700.; - pt1000Z[8] = 1449700.; - pt1000Z[9] = 1589700.; - capY[0] = 44500.; - capZ[0] = 266700.; - capY[1] = 44300.; - capZ[1] = 974700.; - resZ[0] = 266500.; - resY[0] = 29200.; - resZ[1] = 974600.; - resY[1] = 29900.; - } // end if isRight - Int_t i; - pt1000Y *= 1E-4 * fgkmm; - for (i = 0; i < 10; i++) { - pt1000Z[i] *= 1E-4 * fgkmm; - if (i < 2) { - capZ[i] *= 1E-4 * fgkmm; - capY[i] *= 1E-4 * fgkmm; - resZ[i] *= 1E-4 * fgkmm; - resY[i] *= 1E-4 * fgkmm; - } // end if iM2 - } // end for i - - Double_t &fullLength = sizes[1]; - Double_t &fullWidth = sizes[2]; - Double_t &fullThickness = sizes[0]; - fullLength = busLength; - fullWidth = busWidth; - // add the thickness of the thickest component on bus (capacity) - fullThickness = busThickness + capThickness; - // ** VOLUMES ** - TGeoVolumeAssembly *container = new TGeoVolumeAssembly("PixelBus"); - TGeoVolume *bus = mgr->MakeBox("Bus", medBus, 0.5*busThickness, - 0.5*busWidth, 0.5*busLength); - TGeoVolume *pt1000 = mgr->MakeBox("PT1000", medPt1000, - 0.5*pt1000Thickness, 0.5*pt1000Width, 0.5*pt1000Length); - TGeoVolume *res = mgr->MakeBox("Resistor", medRes, 0.5*resThickness, - 0.5*resWidth, 0.5*resLength); - TGeoVolume *cap = mgr->MakeBox("Capacitor", medCap, 0.5*capThickness, - 0.5*capWidth, 0.5*capLength); - bus->SetLineColor(kYellow + 2); - pt1000->SetLineColor(kGreen + 3); - res->SetLineColor(kRed + 1); - cap->SetLineColor(kBlue - 7); - // ** MOVEMENTS AND POSITIONEMENT ** - // bus - TGeoTranslation *trBus = new TGeoTranslation(0.5 * (busThickness - - fullThickness), 0.0, 0.0); - container->AddNode(bus, 0, trBus); - Double_t zRef, yRef, x, y, z; - if (isRight) { - zRef = -0.5*fullLength; - yRef = -0.5*fullWidth; - } else { - zRef = -0.5*fullLength; - yRef = -0.5*fullWidth; - } // end if isRight - // pt1000 - x = 0.5*(pt1000Thickness - fullThickness) + busThickness; - for (i = 0; i < 10; i++) { - y = yRef + pt1000Y; - z = zRef + pt1000Z[i]; - TGeoTranslation *tr = new TGeoTranslation(x, y, z); - container->AddNode(pt1000, i, tr); - } // end for i - // capacitors - x = 0.5*(capThickness - fullThickness) + busThickness; - for (i = 0; i < 2; i++) { - y = yRef + capY[i]; - z = zRef + capZ[i]; - TGeoTranslation *tr = new TGeoTranslation(x, y, z); - container->AddNode(cap, i, tr); - } // end for i - // resistors - x = 0.5*(resThickness - fullThickness) + busThickness; - for (i = 0; i < 2; i++) { - y = yRef + resY[i]; - z = zRef + resZ[i]; - TGeoTranslation *tr = new TGeoTranslation(x, y, z); - container->AddNode(res, i, tr); - } // end for i - - sizes[3] = yRef + pt1000Y; - sizes[4] = zRef + pt1000Z[2]; - sizes[5] = zRef + pt1000Z[7]; - - return container; } -// -//__________________________________________________________________________________________ -TGeoVolume* AliITSv11GeometrySPD::CreateExtender -(const Double_t *extenderParams, const TGeoMedium *extenderMedium, TArrayD& sizes) const + + +//______________________________________________________________________ +TGeoVolume* AliITSv11GeometrySPD::CreateExtender( + const Double_t *extenderParams, const TGeoMedium *extenderMedium, + TArrayD& sizes) const { - // ------------------ CREATE AN EXTENDER ------------------------ - // - // This function creates the following picture (in plane xOy) - // Should be useful for the definition of the pixel bus and MCM extenders - // The origin corresponds to point 0 on the picture, at half-width in Z direction - // - // Y 7 6 5 - // ^ +---+---------------------+ - // | / | - // | / | - // 0------> X / +---------------------+ - // / / 3 4 - // / / - // 9 8 / / - // +-----------+ / - // | / - // | / - // ---> +-----------+---+ - // | 0 1 2 - // | - // origin (0,0,0) - // - // - // Takes 6 parameters in the following order : - // |--> par 0 : inner length [0-1] / [9-8] - // |--> par 1 : thickness ( = [0-9] / [4-5]) - // |--> par 2 : angle of the slope - // |--> par 3 : total height in local Y direction - // |--> par 4 : outer length [3-4] / [6-5] - // |--> par 5 : width in local Z direction - // - - - Double_t slopeDeltaX = (extenderParams[3] - extenderParams[1] * TMath::Cos(extenderParams[2])) / TMath::Tan(extenderParams[2]); - - Double_t extenderXtruX[10] = { - 0 , - extenderParams[0] , - extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) , - extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX , - extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX + extenderParams[4], - extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX + extenderParams[4], - extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX , - extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX - extenderParams[1] * TMath::Sin(extenderParams[2]) , - extenderParams[0] , - 0 - } ; - - Double_t extenderXtruY[10] = { - 0 , - 0 , - extenderParams[1] * (1-TMath::Cos(extenderParams[2])) , - extenderParams[3] - extenderParams[1] , - extenderParams[3] - extenderParams[1] , - extenderParams[3] , - extenderParams[3] , - extenderParams[3] - extenderParams[1] * (1-TMath::Cos(extenderParams[2])) , - extenderParams[1] , - extenderParams[1] - } ; - - if (sizes.GetSize() != 3) sizes.Set(3); - Double_t &thickness = sizes[0] ; - Double_t &length = sizes[1] ; - Double_t &width = sizes[2] ; - - thickness = extenderParams[3] ; - width = extenderParams[5] ; - length = extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX + extenderParams[4] ; - - // creation of the volume - TGeoXtru *extenderXtru = new TGeoXtru(2); - TGeoVolume *extenderXtruVol = new TGeoVolume("EXTENDER",extenderXtru,extenderMedium) ; - extenderXtru->DefinePolygon(10,extenderXtruX,extenderXtruY); - extenderXtru->DefineSection(0,-0.5*extenderParams[4]); - extenderXtru->DefineSection(1, 0.5*extenderParams[4]); - return extenderXtruVol ; + // + // ------------------ CREATE AN EXTENDER ------------------------ + // + // This function creates the following picture (in plane xOy) + // Should be useful for the definition of the pixel bus and MCM extenders + // The origin corresponds to point 0 on the picture, at half-width + // in Z direction + // + // Y 7 6 5 + // ^ +---+---------------------+ + // | / | + // | / | + // 0------> X / +---------------------+ + // / / 3 4 + // / / + // 9 8 / / + // +-----------+ / + // | / + // | / + // ---> +-----------+---+ + // | 0 1 2 + // | + // origin (0,0,0) + // + // + // Takes 6 parameters in the following order : + // |--> par 0 : inner length [0-1] / [9-8] + // |--> par 1 : thickness ( = [0-9] / [4-5]) + // |--> par 2 : angle of the slope + // |--> par 3 : total height in local Y direction + // |--> par 4 : outer length [3-4] / [6-5] + // |--> par 5 : width in local Z direction + // + Double_t slopeDeltaX = (extenderParams[3] - extenderParams[1] + * TMath::Cos(extenderParams[2])) / + TMath::Tan(extenderParams[2]); + Double_t extenderXtruX[10] = { + 0 , + extenderParams[0] , + extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2]) , + extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+ + slopeDeltaX , + extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+ + slopeDeltaX + extenderParams[4], + extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+ + slopeDeltaX + extenderParams[4], + extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+ + slopeDeltaX , + extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+ + slopeDeltaX - extenderParams[1] * TMath::Sin(extenderParams[2]) , + extenderParams[0] , + 0 + }; + Double_t extenderXtruY[10] = { + 0 , + 0 , + extenderParams[1] * (1-TMath::Cos(extenderParams[2])) , + extenderParams[3] - extenderParams[1] , + extenderParams[3] - extenderParams[1] , + extenderParams[3] , + extenderParams[3] , + extenderParams[3]-extenderParams[1]*(1-TMath::Cos(extenderParams[2])) , + extenderParams[1] , + extenderParams[1] + }; + + if (sizes.GetSize() != 3) sizes.Set(3); + Double_t &thickness = sizes[0]; + Double_t &length = sizes[1]; + Double_t &width = sizes[2]; + + thickness = extenderParams[3]; + width = extenderParams[5]; + length = extenderParams[0]+extenderParams[1]* + TMath::Sin(extenderParams[2])+slopeDeltaX+extenderParams[4]; + + // creation of the volume + TGeoXtru *extenderXtru = new TGeoXtru(2); + TGeoVolume *extenderXtruVol = new TGeoVolume("ITSSPDextender",extenderXtru, + extenderMedium); + extenderXtru->DefinePolygon(10,extenderXtruX,extenderXtruY); + extenderXtru->DefineSection(0,-0.5*extenderParams[4]); + extenderXtru->DefineSection(1, 0.5*extenderParams[4]); + return extenderXtruVol; } //______________________________________________________________________ -TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBusAndExtensions -(Bool_t /*zpos*/, TGeoManager *mgr) const +TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateHalfStave(Bool_t isRight, +Int_t layer,Int_t idxCentral,Int_t idxSide,TArrayD &sizes,TGeoManager *mgr) { - // - // Creates an assembly which contains the pixel bus and its extension - // and the extension of the MCM. - // By: Renaud Vernet - // NOTE: to be defined its material and its extension in the outside direction - // - - // ==== constants ===== - - //get the media - //TGeoMedium *medPixelBus = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr) ; // ??? PIXEL BUS - TGeoMedium *medPBExtender = GetMedium("SDDKAPTON (POLYCH2)$",mgr) ; // ??? IXEL BUS EXTENDER - TGeoMedium *medMCMExtender = GetMedium("SDDKAPTON (POLYCH2)$",mgr) ; // ??? MCM EXTENDER - - // //geometrical constants - const Double_t kPbextenderThickness = 0.07 * fgkmm ; - const Double_t kPbExtenderSlopeAngle = 70.0 * TMath::Pi()/180. ; //design=?? 70 deg. seems OK - const Double_t kPbExtenderHeight = 1.92 * fgkmm ; // = 2.6 - (0.28+0.05+0.35) cf design - const Double_t kPbExtenderWidthY = 11.0 * fgkmm ; - const Double_t kMcmExtenderSlopeAngle = 70.0 * TMath::Pi()/180. ; //design=?? 70 deg. seems OK - const Double_t kMcmExtenderThickness = 0.10 * fgkmm ; - const Double_t kMcmExtenderHeight = 1.8 * fgkmm ; - const Double_t kMcmExtenderWidthY = kPbExtenderWidthY ; - // const Double_t groundingThickness = 0.07 * fgkmm ; - // const Double_t grounding2pixelBusDz = 0.625 * fgkmm ; - // const Double_t pixelBusThickness = 0.28 * fgkmm ; - // const Double_t groundingWidthX = 170.501 * fgkmm ; - // const Double_t pixelBusContactDx = 1.099 * fgkmm ; - // const Double_t pixelBusWidthY = 13.8 * fgkmm ; - // const Double_t pixelBusContactPhi = 20.0 * TMath::Pi()/180. ; //design=20 deg. - // const Double_t pbExtenderTopZ = 2.72 * fgkmm ; - // const Double_t mcmThickness = 0.35 * fgkmm ; - // const Double_t halfStaveTotalLength = 247.64 * fgkmm ; - // const Double_t deltaYOrigin = 15.95/2.* fgkmm ; - // const Double_t deltaXOrigin = 1.1 * fgkmm ; - // const Double_t deltaZOrigin = halfStaveTotalLength / 2. ; - // const Double_t grounding2pixelBusDz2 = grounding2pixelBusDz+groundingThickness/2. + pixelBusThickness/2. ; - // const Double_t pixelBusWidthX = groundingWidthX ; - // const Double_t pixelBusRaiseLength = (pixelBusContactDx-pixelBusThickness*TMath::Sin(pixelBusContactPhi))/TMath::Cos(pixelBusContactPhi) ; - - // const Double_t pbExtenderBaseZ = grounding2pixelBusDz2 + pixelBusRaiseLength*TMath::Sin(pixelBusContactPhi) + 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi)*TMath::Tan(pixelBusContactPhi) ; - // const Double_t pbExtenderDeltaZ = pbExtenderTopZ-pbExtenderBaseZ ; - // const Double_t pbExtenderEndPointX = 2*deltaZOrigin - groundingWidthX - 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi) ; - // const Double_t pbExtenderXtru3L = 1.5 * fgkmm ; //arbitrary ? - // const Double_t pbExtenderXtru4L = (pbExtenderDeltaZ + pixelBusThickness*(TMath::Cos(extenderSlope)-2))/TMath::Sin(extenderSlope) ; - - // const Double_t kMcmExtenderEndPointX = deltaZOrigin - 48.2 * fgkmm ; - // const Double_t kMcmExtenderXtru3L = 1.5 * fgkmm ; - - // //===== end constants ===== - - - const Double_t kPbExtenderInnerLength = 10. * fgkmm ; - const Double_t kPbExtenderOuterLength = 15. * fgkmm ; - const Double_t kMcmExtenderInnerLength = 10. * fgkmm ; - const Double_t kMcmExtenderOuterLength = 15. * fgkmm ; - - Double_t pbExtenderParams[6] = {kPbExtenderInnerLength, //0 - kPbextenderThickness, //1 - kPbExtenderSlopeAngle, //2 - kPbExtenderHeight, //3 - kPbExtenderOuterLength, //4 - kPbExtenderWidthY}; //5 - - Double_t mcmExtenderParams[6] = {kMcmExtenderInnerLength, //0 - kMcmExtenderThickness, //1 - kMcmExtenderSlopeAngle, //2 - kMcmExtenderHeight, //3 - kMcmExtenderOuterLength, //4 - kMcmExtenderWidthY}; //5 - - TArrayD sizes(3); - TGeoVolume* pbExtender = CreateExtender(pbExtenderParams, medPBExtender, sizes) ; - printf("CREATED AN EXTENDER : THICKNESS = %5.5f cm\tLENGTH=%5.5f cm\tWIDTH=%5.5f cm\n",sizes[0],sizes[1],sizes[2]); - TGeoVolume* mcmExtender = CreateExtender(mcmExtenderParams, medMCMExtender, sizes) ; - printf("CREATED AN EXTENDER : THICKNESS = %5.5f cm\tLENGTH=%5.5f cm\tWIDTH=%5.5f cm\n",sizes[0],sizes[1],sizes[2]); - - - - // Double_t pixelBusValues[5] = {pixelBusWidthX, //0 - // pixelBusThickness, //1 - // pixelBusContactPhi, //2 - // pixelBusRaiseLength, //3 - // pixelBusWidthY} ; //4 - - // Double_t pbExtenderValues[8] = {pixelBusRaiseLength, //0 - // pixelBusContactPhi, //1 - // pbExtenderXtru3L, //2 - // pixelBusThickness, //3 - // extenderSlope, //4 - // pbExtenderXtru4L, //5 - // pbExtenderEndPointX, //6 - // kPbExtenderWidthY} ; //7 - - // Double_t mcmExtenderValues[6] = {mcmExtenderXtru3L, //0 - // mcmExtenderThickness, //1 - // extenderSlope, //2 - // deltaMcmMcmExtender, //3 - // mcmExtenderEndPointX, //4 - // mcmExtenderWidthY}; //5 - - // TGeoVolumeAssembly *pixelBus = new TGeoVolumeAssembly("PIXEL BUS"); - // CreatePixelBus(pixelBus,pixelBusValues,medPixelBus) ; - // TGeoVolumeAssembly *pbExtender = new TGeoVolumeAssembly("PIXEL BUS EXTENDER"); - // CreatePixelBusExtender(pbExtender,pbExtenderValues,medPBExtender) ; - // TGeoVolumeAssembly *mcmExtender = new TGeoVolumeAssembly("MCM EXTENDER"); - // CreateMCMExtender(mcmExtender,mcmExtenderValues,medMCMExtender) ; - - // //-------------- DEFINITION OF GEOMETRICAL TRANSFORMATIONS ------------------- - // TGeoRotation * commonRot = new TGeoRotation("commonRot",0,90,0); - // commonRot->MultiplyBy(new TGeoRotation("rot",-90,0,0)) ; - // TGeoTranslation * pixelBusTrans = new TGeoTranslation(pixelBusThickness/2. - deltaXOrigin + 0.52*fgkmm , - // -pixelBusWidthY/2. + deltaYOrigin , - // -groundingWidthX/2. + deltaZOrigin) ; - // TGeoRotation * pixelBusRot = new TGeoRotation(*commonRot); - // TGeoTranslation * pbExtenderTrans = new TGeoTranslation(*pixelBusTrans) ; - // TGeoRotation * pbExtenderRot = new TGeoRotation(*pixelBusRot) ; - // pbExtenderTrans->SetDz(*(pbExtenderTrans->GetTranslation()+2) - pixelBusWidthX/2. - 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi)) ; - // if (!zpos) { - // pbExtenderTrans->SetDy(*(pbExtenderTrans->GetTranslation()+1) - (pixelBusWidthY - kPbExtenderWidthY)/2.); - // } - // else { - // pbExtenderTrans->SetDy(*(pbExtenderTrans->GetTranslation()+1) + (pixelBusWidthY - kPbExtenderWidthY)/2.); - // } - // pbExtenderTrans->SetDx(*(pbExtenderTrans->GetTranslation()) + pixelBusThickness/2 + 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi)*TMath::Tan(pixelBusContactPhi)) ; - // TGeoTranslation * mcmExtenderTrans = new TGeoTranslation(0.12*fgkmm + mcmThickness - deltaXOrigin, - // pbExtenderTrans->GetTranslation()[1], - // -4.82); - // TGeoRotation * mcmExtenderRot = new TGeoRotation(*pbExtenderRot); - - // // add pt1000 components - // Double_t pt1000Z = fgkmm * 64400. * 1E-4; - // //Double_t pt1000X[10] = {319700., 459700., 599700., 739700., 879700., 1029700., 1169700., 1309700., 1449700., 1589700.}; - // Double_t pt1000X[10] = {66160., 206200., 346200., 486200., 626200., 776200., 916200., 1056200., 1196200., 1336200.}; - // Double_t pt1000size[3] = {fgkmm*1.5, fgkmm*0.6, fgkmm*3.1}; - // Int_t i; - // for (i = 0; i < 10; i++) { - // pt1000X[i] *= fgkmm * 1E-4; - // } - // TGeoVolume *pt1000 = mgr->MakeBox("PT1000", 0, 0.5*pt1000size[0], 0.5*pt1000size[1], 0.5*pt1000size[2]); - // pt1000->SetLineColor(kGray); - // Double_t refThickness = - pixelBusThickness ; - // for (i = 0; i < 10; i++) { - // TGeoTranslation *tr = new TGeoTranslation(pt1000X[i]-0.5*pixelBusWidthX, 0.002+0.5*(-3.*refThickness+pt1000size[3]), pt1000Z -0.5*pixelBusWidthY); - // pixelBus->AddNode(pt1000, i, tr); - // } - - //CREATE FINAL VOLUME ASSEMBLY AND ROTATE IT - TGeoVolumeAssembly *assembly = new TGeoVolumeAssembly("EXTENDERS"); - // assembly->AddNode((TGeoVolume*)pixelBus ,0, new TGeoCombiTrans(*pixelBusTrans,*pixelBusRot)); - // assembly->AddNode((TGeoVolume*)pbExtender ,0, new TGeoCombiTrans(*pbExtenderTrans,*pbExtenderRot)); - // assembly->AddNode((TGeoVolume*)mcmExtender ,0, new TGeoCombiTrans(*mcmExtenderTrans,*mcmExtenderRot)); - // assembly->AddNode(mcmExtender,0,new TGeoIdentity()); - assembly->AddNode(pbExtender,0); - assembly->AddNode(mcmExtender,0); - // assembly->SetTransparency(50); - - return assembly ; + // + // Implementation of an half-stave, which depends on the side where + // we are on the stave. The convention for "left" and "right" is the + // same as for the MCM. The return value is a TGeoAssembly which is + // structured in such a way that the origin of its local reference + // frame coincides with the origin of the whole stave. + // The TArrayD passed by reference will contain details of the shape: + // - sizes[0] = thickness + // - sizes[1] = length + // - sizes[2] = width + // - sizes[3] = common 'x' position for eventual clips + // - sizes[4] = common 'y' position for eventual clips + // - sizes[5] = 'z' position of first clip + // - sizes[6] = 'z' position of second clip + // + + // ** CHECK ** + + // idxCentral and idxSide must be different + if (idxCentral == idxSide) { + AliInfo("Ladders must be inserted in half-stave with " + "different indexes."); + idxSide = idxCentral + 1; + AliInfo(Form("Central ladder will be inserted with index %d", + idxCentral)); + AliInfo(Form("Side ladder will be inserted with index %d",idxSide)); + } // end if + + // define the separations along Z direction between the objects + Double_t sepLadderLadder = fgkmm * 0.2; // sep. btw the 2 ladders + Double_t sepLadderCenter = fgkmm * 0.4; // sep. btw the "central" ladder + // and the Z=0 plane in stave ref. + Double_t sepLadderMCM = fgkmm * 0.3; // sep. btw the "external" ladder + // and MCM + Double_t sepBusCenter = fgkmm * 0.3; // sep. btw the bus central edge + // and the Z=0 plane in stave ref. + + // ** VOLUMES ** + + // grounding foil + TArrayD grndSize(3); + // This one line repalces the 3 bellow, BNS. + TGeoVolume *grndVol = CreateGroundingFoil(isRight, grndSize, mgr); + Double_t &grndThickness = grndSize[0]; + Double_t &grndLength = grndSize[1]; + + // ladder + TArrayD ladderSize(3); + TGeoVolume *ladder = CreateLadder(layer, ladderSize, mgr); + Double_t ladderThickness = ladderSize[0]; + Double_t ladderLength = ladderSize[1]; + Double_t ladderWidth = ladderSize[2]; + + // MCM + TArrayD mcmSize(3); + TGeoVolumeAssembly *mcm = CreateMCM(!isRight,mcmSize,mgr); + Double_t mcmThickness = mcmSize[0]; + Double_t mcmLength = mcmSize[1]; + Double_t mcmWidth = mcmSize[2]; + + // bus + TArrayD busSize(6); + TGeoVolumeAssembly *bus = CreatePixelBus(isRight, layer, busSize, mgr); + Double_t busThickness = busSize[0]; + Double_t busLength = busSize[1]; + Double_t busWidth = busSize[2]; + + // glue between ladders and pixel bus + TGeoMedium *medLadGlue = GetMedium("EPOXY$", mgr); + Double_t ladGlueThickness = fgkmm * 0.1175 - fgkGapLadder; + TGeoVolume *ladderGlue = mgr->MakeBox("ITSSPDladderGlue",medLadGlue, + 0.5*ladGlueThickness, 0.5*busWidth, 0.5*busLength); + ladderGlue->SetLineColor(kYellow + 5); + + // create references for the whole object, as usual + sizes.Set(7); + Double_t &fullThickness = sizes[0]; + Double_t &fullLength = sizes[1]; + Double_t &fullWidth = sizes[2]; + + // compute the full size of the container + fullLength = sepLadderCenter+2.0*ladderLength+sepLadderMCM+ + sepLadderLadder+mcmLength; + fullWidth = ladderWidth; + fullThickness = grndThickness + fgkGapLadder + mcmThickness + busThickness; + //cout << "HSTAVE FULL THICKNESS = " << fullThickness << endl; + + // ** MOVEMENTS ** + + // grounding foil (shifted only along thickness) + Double_t xGrnd = -0.5*fullThickness + 0.5*grndThickness; + Double_t zGrnd = -0.5*grndLength; + if (!isRight) zGrnd = -zGrnd; + TGeoTranslation *grndTrans = new TGeoTranslation(xGrnd, 0.0, zGrnd); + + // ladders (translations along thickness and length) + // layers must be sorted going from the one at largest Z to the + // one at smallest Z: + // -|Zmax| ------> |Zmax| + // 3 2 1 0 + // then, for layer 1 ladders they must be placed exactly this way, + // and in layer 2 at the opposite. In order to remember the placements, + // we define as "inner" and "outer" ladder respectively the one close + // to barrel center, and the one closer to MCM, respectively. + Double_t xLad, zLadIn, zLadOut; + xLad = xGrnd + 0.5*(grndThickness + ladderThickness) + + 0.01175 - fgkGapLadder; + zLadIn = -sepLadderCenter - 0.5*ladderLength; + zLadOut = zLadIn - sepLadderLadder - ladderLength; + if (!isRight) { + zLadIn = -zLadIn; + zLadOut = -zLadOut; + } // end if !isRight + TGeoRotation *rotLad = new TGeoRotation(*gGeoIdentity); + rotLad->RotateZ(90.0); + rotLad->RotateY(180.0); + Double_t sensWidth = fgkmm * 12.800; + Double_t chipWidth = fgkmm * 15.950; + Double_t guardRingWidth = fgkmm * 0.560; + Double_t ladderShift = 0.5 * (chipWidth - sensWidth - 2.0*guardRingWidth); + TGeoCombiTrans *trLadIn = new TGeoCombiTrans(xLad,ladderShift,zLadIn, + rotLad); + TGeoCombiTrans *trLadOut = new TGeoCombiTrans(xLad,ladderShift,zLadOut, + rotLad); + + // MCM (length and thickness direction, placing at same level as the + // ladder, which implies to recompute the position of center, because + // ladder and MCM have NOT the same thickness) the two copies of the + // MCM are placed at the same distance from the center, on both sides + Double_t xMCM = xGrnd + 0.5*grndThickness + 0.5*mcmThickness + + 0.01175 - fgkGapLadder; + Double_t yMCM = 0.5*(fullWidth - mcmWidth); + Double_t zMCM = zLadOut - 0.5*ladderLength - 0.5*mcmLength - sepLadderMCM; + if (!isRight) zMCM = zLadOut + 0.5*ladderLength + 0.5*mcmLength + + sepLadderMCM; + + // create the correction rotations + TGeoRotation *rotMCM = new TGeoRotation(*gGeoIdentity); + rotMCM->RotateY(90.0); + TGeoCombiTrans *trMCM = new TGeoCombiTrans(xMCM, yMCM, zMCM, rotMCM); + + // glue between ladders and pixel bus + Double_t xLadGlue = xLad + 0.5*ladderThickness + 0.01175 - + fgkGapLadder + 0.5*ladGlueThickness; + + // bus (length and thickness direction) + Double_t xBus = xLadGlue + 0.5*ladGlueThickness + 0.5*busThickness; + Double_t yBus = 0.5*(fullWidth - busWidth) + 0.075; // Hardcode fix of a small overlap + Double_t zBus = -0.5*busLength - sepBusCenter; + if (!isRight) zBus = -zBus; + TGeoTranslation *trBus = new TGeoTranslation(xBus, yBus, zBus); + + TGeoTranslation *trLadGlue = new TGeoTranslation(xLadGlue, 0.0, zBus); + + // create the container + TGeoVolumeAssembly *container = 0; + if (idxCentral+idxSide==5) { + container = new TGeoVolumeAssembly("ITSSPDhalf-Stave1"); + } else { + container = new TGeoVolumeAssembly("ITSSPDhalf-Stave0"); + } // end if + + // add to container all objects + container->AddNode(grndVol, 1, grndTrans); + // ladders are inserted in different order to respect numbering scheme + // which is inverted when going from outer to inner layer + container->AddNode(ladder, idxCentral+1, trLadIn); + container->AddNode(ladder, idxSide+1, trLadOut); + container->AddNode(ladderGlue, 1, trLadGlue); + container->AddNode(mcm, 1, trMCM); + container->AddNode(bus, 1, trBus); + + // since the clips are placed in correspondence of two pt1000s, + // their position is computed here, but they are not added by default + // it will be the StavesInSector method which will decide to add them + // anyway, to recovery some size informations on the clip, it must be + // created + TArrayD clipSize; + // TGeoVolume *clipDummy = CreateClip(clipSize, kTRUE, mgr); + CreateClip(clipSize, kTRUE, mgr); + // define clip movements (width direction) + sizes[3] = xBus + 0.5*busThickness; + sizes[4] = 0.5 * (fullWidth - busWidth) - clipSize[6] - fgkmm*0.26; + sizes[5] = zBus + busSize[4]; + sizes[6] = zBus + busSize[5]; + + return container; } -// -//__________________________________________________________________________________________ -TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateHalfStave -(Bool_t isRight, - Int_t layer, Int_t idxCentral, Int_t idxSide, - TArrayD &sizes, Bool_t addClips, TGeoManager *mgr) +//______________________________________________________________________ +TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateStave(Int_t layer, + TArrayD &sizes, TGeoManager *mgr) { - // - // Implementation of an half-stave, which depends on the side where we are on the stave. - // The convention for "left" and "right" is the same as for the MCM. - // The return value is a TGeoAssembly which is structured in such a way that the origin - // of its local reference frame coincides with the origin of the whole stave. - // - - // ** CHECK ** - - // idxCentral and idxSide must be different - if (idxCentral == idxSide) { - AliInfo("Ladders must be inserted in half-stave with different indexes."); - idxSide = idxCentral + 1; - AliInfo(Form("Central ladder will be inserted with index %d", idxCentral)); - AliInfo(Form("Side ladder will be inserted with index %d", idxSide)); - } - - // define the separations along Z direction between the objects - Double_t sepLadderLadder = fgkmm * 0.2; // sep. btw the 2 ladders - Double_t sepLadderCenter = fgkmm * 0.4; // sep. btw the "central" ladder and the Z=0 plane in stave ref. - Double_t sepLadderMCM = fgkmm * 0.3; // sep. btw the "external" ladder and MCM - Double_t sepBusCenter = fgkmm * 0.3; // sep. btw the bus central edge and the Z=0 plane in stave ref. - - // ** VOLUMES ** - - // grounding foil - TArrayD grndSize(3); - // This one line repalces the 3 bellow, BNS. - TGeoVolume *grndVol = CreateGroundingFoil(isRight,grndSize,mgr); - //TGeoVolume *grndVol = 0; - //if (isRight) grndVol = CreateGroundingFoil(kTRUE, grndSize, mgr); - //else grndVol = CreateGroundingFoil(kFALSE, grndSize, mgr); - Double_t &grndThickness = grndSize[0]; - Double_t &grndLength = grndSize[1]; - - // ladder - TArrayD ladderSize(3); - TGeoVolume *ladder = CreateLadder(layer, ladderSize, mgr); - Double_t ladderThickness = ladderSize[0]; - Double_t ladderLength = ladderSize[1]; - Double_t ladderWidth = ladderSize[2]; - - // glue between ladders and pixel bus - TGeoMedium *medLadGlue = GetMedium("EPOXY$", mgr); // ??? LadderBusGlue - Double_t ladGlueThickness = fgkmm * 0.12 - fAlignmentGap; - TGeoVolume *ladderGlue = mgr->MakeBox("LADDER_GLUE", medLadGlue, 0.5*ladGlueThickness, 0.5*ladderWidth, 0.5*ladderLength); - ladderGlue->SetLineColor(kRed); - - // MCM - TArrayD mcmSize(3); - TGeoVolumeAssembly *mcm = CreateMCM(!isRight,mcmSize,mgr); - //TGeoVolumeAssembly *mcm = 0; - //if (isRight) mcm = CreateMCM(kFALSE, mcmSize, mgr); - //else mcm = CreateMCM(kTRUE, mcmSize, mgr); - Double_t mcmThickness = mcmSize[0]; - Double_t mcmLength = mcmSize[1]; - Double_t mcmWidth = mcmSize[2]; - - // bus - TArrayD busSize(6); - TGeoVolumeAssembly *bus = CreatePixelBus(isRight, busSize, mgr); - //TGeoVolume *bus = 0; - //if (isRight) bus = CreatePixelBus(kTRUE, busSize, mgr); - //else bus = CreatePixelBus(kFALSE, busSize, mgr); - Double_t busThickness = busSize[0]; - Double_t busLength = busSize[1]; - Double_t busWidth = busSize[2]; - - // create references for the whole object, as usual - if (sizes.GetSize() != 3) sizes.Set(3); - Double_t &fullThickness = sizes[0]; - Double_t &fullLength = sizes[1]; - Double_t &fullWidth = sizes[2]; - - // compute the full size of the container - fullLength = sepLadderCenter + 2.0*ladderLength + sepLadderMCM + sepLadderLadder + mcmLength; - fullWidth = ladderWidth; - fullThickness = grndThickness + fAlignmentGap + mcmThickness + busThickness; - - // ** MOVEMENTS ** - - // grounding foil (shifted only along thickness) - Double_t xGrnd = -0.5*fullThickness + 0.5*grndThickness; - Double_t zGrnd = -0.5*grndLength; - if (!isRight) zGrnd = -zGrnd; - TGeoTranslation *grndTrans = new TGeoTranslation(xGrnd, 0.0, zGrnd); - - // ladders (translations along thickness and length) - // layers must be sorted going from the one at largest Z to the one at smallest Z: - // -|Zmax| ------> |Zmax| - // 3 2 1 0 - // then, for layer 1 ladders they must be placed exactly this way, and in layer 2 at the opposite. - // In order to remember the placements, we define as "inner" and "outer" ladder respectively - // the one close to barrel center, and the one closer to MCM, respectively. - Double_t xLad, zLadIn, zLadOut; - xLad = xGrnd + 0.5*(grndThickness + ladderThickness) + 0.01175 - fAlignmentGap; - zLadIn = -sepLadderCenter - 0.5*ladderLength; - zLadOut = zLadIn - sepLadderLadder - ladderLength; - if (!isRight) { - zLadIn = -zLadIn; - zLadOut = -zLadOut; - } - TGeoRotation *rotLad = new TGeoRotation(*gGeoIdentity); - rotLad->RotateZ(90.0); - rotLad->RotateY(180.0); - Double_t sensWidth = fgkmm * 12.800; - Double_t chipWidth = fgkmm * 15.950; - Double_t guardRingWidth = fgkmm * 0.560; - Double_t ladderShift = 0.5 * (chipWidth - sensWidth - 2.0*guardRingWidth); - TGeoCombiTrans *trLadIn = new TGeoCombiTrans(xLad, ladderShift, zLadIn, rotLad); - TGeoCombiTrans *trLadOut = new TGeoCombiTrans(xLad, ladderShift, zLadOut, rotLad); - - // glue between ladders and pixel bus - Double_t xLadGlue = xLad + 0.5*ladderThickness + fAlignmentGap - 0.5*ladGlueThickness; - TGeoTranslation *trLadGlueIn = new TGeoTranslation(xLadGlue, 0.0, zLadIn); - TGeoTranslation *trLadGlueOut = new TGeoTranslation(xLadGlue, 0.0, zLadOut); - - // MCM (length and thickness direction, placing at same level as the ladder, which implies to - // recompute the position of center, because ladder and MCM have NOT the same thickness) - // the two copies of the MCM are placed at the same distance from the center, on both sides - Double_t xMCM = xGrnd + 0.5*grndThickness + 0.5*mcmThickness + fAlignmentGap; - Double_t yMCM = 0.5*(fullWidth - mcmWidth); - Double_t zMCM = zLadOut - 0.5*ladderLength - 0.5*mcmLength - sepLadderMCM; - if (!isRight) zMCM = zLadOut + 0.5*ladderLength + 0.5*mcmLength + sepLadderMCM; - - // create the correction rotations - TGeoRotation *rotMCM = new TGeoRotation(*gGeoIdentity); - rotMCM->RotateY(90.0); - TGeoCombiTrans *trMCM = new TGeoCombiTrans(xMCM, yMCM, zMCM, rotMCM); - - // bus (length and thickness direction) - Double_t xBus = xLad + 0.5*ladderThickness + 0.5*busThickness + fAlignmentGap + ladGlueThickness; - Double_t yBus = 0.5*(fullWidth - busWidth); - Double_t zBus = -0.5*busLength - sepBusCenter; - if (!isRight) zBus = -zBus; - TGeoTranslation *trBus = new TGeoTranslation(xBus, yBus, zBus); - - // create the container - TGeoVolumeAssembly *container = 0; - if (idxCentral+idxSide==5) { - container = new TGeoVolumeAssembly("HALF-STAVE1"); - } else { - container = new TGeoVolumeAssembly("HALF-STAVE0"); - } + // + // This method uses all other ones which create pieces of the stave + // and assemblies everything together, in order to return the whole + // stave implementation, which is returned as a TGeoVolumeAssembly, + // due to the presence of some parts which could generate fake overlaps + // when put on the sector. + // This assembly contains, going from bottom to top in the thickness + // direction: + // - the complete grounding foil, defined by the "CreateGroundingFoil" + // method which already joins some glue and real groudning foil + // layers for the whole stave (left + right); + // - 4 ladders, which are sorted according to the ALICE numbering + // scheme, which depends on the layer we are building this stave for; + // - 2 MCMs (a left and a right one); + // - 2 pixel buses (a left and a right one); + // --- + // Arguments: + // - the layer number, which determines the displacement and naming + // of sensitive volumes + // - a TArrayD passed by reference which will contain the size + // of virtual box containing the stave + // - the TGeoManager + // - // add to container all objects - container->AddNode(grndVol, 1, grndTrans); - // ladders are inserted in different order to respect numbering scheme - // which is inverted when going from outer to inner layer - container->AddNode(ladder, idxCentral, trLadIn); - container->AddNode(ladder, idxSide, trLadOut); - container->AddNode(ladderGlue, 0, trLadGlueIn); - container->AddNode(ladderGlue, 1, trLadGlueOut); - container->AddNode(mcm, 0, trMCM); - container->AddNode(bus, 0, trBus); - - if (addClips) { - - // ad clips if requested - // create clip volume - TArrayD clipSize(3); - TGeoVolume *clip = CreateClip(clipSize, mgr); - - // define clip movements (width direction) - TGeoRotation *rotClip = new TGeoRotation(*gGeoIdentity); - rotClip->RotateZ(-90.0); - rotClip->RotateX(180.0); - Double_t x = xBus + 0.5*busThickness;//clipSize[3] - clipSize[2]; - Double_t y = 0.5 * (fullWidth - busWidth) - clipSize[6] - fgkmm*0.48; - Double_t z1 = zBus + busSize[4]; - Double_t z2 = zBus + busSize[5]; - cout << z1 << ' ' << z2 << endl; - TGeoCombiTrans *trClip1 = new TGeoCombiTrans(x, y, z1, rotClip); - TGeoCombiTrans *trClip2 = new TGeoCombiTrans(x, y, z2, rotClip); - container->AddNode(clip, 0, trClip1); - container->AddNode(clip, 1, trClip2); - } - - - return container; -} -// -//__________________________________________________________________________________________ -TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateStave -(Int_t layer, - TArrayD &sizes, Bool_t addClips, TGeoManager *mgr) { - // This method uses all other ones which create pieces of the stave - // and assemblies everything together, in order to return the whole - // stave implementation, which is returned as a TGeoVolumeAssembly, - // due to the presence of some parts which could generate fake overlaps - // when put on the sector. - // This assembly contains, going from bottom to top in the thickness direction: - // - the complete grounding foil, defined by the "CreateGroundingFoil" method which - // already joins some glue and real groudning foil layers for the whole stave (left + right); - // - 4 ladders, which are sorted according to the ALICE numbering scheme, which depends - // on the layer we are building this stave for; - // - 2 MCMs (a left and a right one); - // - 2 pixel buses (a left and a right one); - // --- - // Arguments: - // - the layer number, which determines the displacement and naming of sensitive volumes - // - a TArrayD passed by reference which will contain the size of virtual box containing the stave - // - the TGeoManager - // - - // create the container - TGeoVolumeAssembly *container = new TGeoVolumeAssembly(Form("LAY%d_STAVE", layer)); - - // define the indexes of the ladders in order to have the correct order - // keeping in mind that the staves will be inserted as they are on layer 2, while - // they are rotated around their local Y axis when inserted on layer 1, so in this case - // they must be put in the "wrong" order to turn out to be right at the end - // The convention is: - // -|Zmax| ------> |Zmax| - // 3 2 1 0 - // with respect to the "native" stave reference frame, "left" is in the positive Z - // this leads the definition of these indexes: - - Int_t idxCentralL, idxSideL, idxCentralR, idxSideR; - if (layer == 1) { - idxSideL = 3; - idxCentralL = 2; - idxCentralR = 1; - idxSideR = 0; - } - else { - idxSideL = 0; - idxCentralL = 1; - idxCentralR = 2; - idxSideR = 3; - } - - // create the two half-staves - TArrayD sizeL(3), sizeR(3); - TGeoVolumeAssembly *hstaveL = CreateHalfStave(kFALSE, layer, idxCentralL, idxSideL, sizeL, addClips, mgr); - TGeoVolumeAssembly *hstaveR = CreateHalfStave(kTRUE, layer, idxCentralR, idxSideR, sizeR, addClips, mgr); - - // copy the size to the stave's one - sizes[0] = sizeL[0]; - sizes[1] = sizeR[1] + sizeL[1]; - sizes[2] = sizeL[2]; - - // add to container all objects - container->AddNode(hstaveL, 1); - container->AddNode(hstaveR, 1); - - return container; + // create the container + TGeoVolumeAssembly *container = new TGeoVolumeAssembly(Form( + "ITSSPDlay%d-Stave",layer)); + // define the indexes of the ladders in order to have the correct order + // keeping in mind that the staves will be inserted as they are on layer + // 2, while they are rotated around their local Y axis when inserted + // on layer 1, so in this case they must be put in the "wrong" order + // to turn out to be right at the end. The convention is: + // -|Zmax| ------> |Zmax| + // 3 2 1 0 + // with respect to the "native" stave reference frame, "left" is in + // the positive Z this leads the definition of these indexes: + Int_t idxCentralL, idxSideL, idxCentralR, idxSideR; + + if (layer == 1) { + idxSideL = 3; + idxCentralL = 2; + idxCentralR = 1; + idxSideR = 0; + } else { + idxSideL = 0; + idxCentralL = 1; + idxCentralR = 2; + idxSideR = 3; + } // end if layer ==1 + + // create the two half-staves + TArrayD sizeL, sizeR; + TGeoVolumeAssembly *hstaveL = CreateHalfStave(kFALSE, layer, idxCentralL, + idxSideL, sizeL,mgr); + TGeoVolumeAssembly *hstaveR = CreateHalfStave(kTRUE, layer, idxCentralR, + idxSideR, sizeR, mgr); + // copy the size to the stave's one + sizes.Set(9); + sizes[0] = sizeL[0]; + sizes[1] = sizeR[1] + sizeL[1]; + sizes[2] = sizeL[2]; + sizes[3] = sizeL[3]; + sizes[4] = sizeL[4]; + sizes[5] = sizeL[5]; + sizes[6] = sizeL[6]; + sizes[7] = sizeR[5]; + sizes[8] = sizeR[6]; + + // add to container all objects + container->AddNode(hstaveL, 1); + container->AddNode(hstaveR, 1); + + return container; } -// -//__________________________________________________________________________________________ +//______________________________________________________________________ void AliITSv11GeometrySPD::SetAddStave(Bool_t *mask) { - // - // Define a mask which states qhich staves must be placed. - // It is a string which must contain '0' or '1' depending if - // a stave must be placed or not. - // Each place is referred to one of the staves, so the first - // six characters of the string will be checked. - // - - Int_t i; - for (i = 0; i < 6; i++) fAddStave[i] = mask[i]; + // + // Define a mask which states qhich staves must be placed. + // It is a string which must contain '0' or '1' depending if + // a stave must be placed or not. + // Each place is referred to one of the staves, so the first + // six characters of the string will be checked. + // + Int_t i; + + for (i = 0; i < 6; i++) fAddStave[i] = mask[i]; } -// -//__________________________________________________________________________________________ -void AliITSv11GeometrySPD::StavesInSector(TGeoVolume *moth, TGeoManager *mgr) { - // - // Unification of essentially two methods: - // - the one which creates the sector structure - // - the one which returns the complete stave - // --- - // For compatibility, this method requires the same arguments - // asked by "CarbonFiberSector" method, which is recalled here. - // Like this cited method, this one does not return any value, - // but it inserts in the mother volume (argument 'moth') all the stuff - // which composes the complete SPD sector. - // --- - // In the following, the stave numbering order used for arrays is the same as - // defined in the GetSectorMountingPoints(): - // /5 - // /\/4 - // 1\ \/3 - // 0|___\/2 - // --- - // Arguments: see description of "CarbonFiberSector" method. - // - - Double_t shift[6]; // shift from the innermost position in the sector placement plane - // (where the stave edge is in the point where the rounded corner begins) - - shift[0] = fgkmm * -0.691; - shift[1] = fgkmm * 1.300; - shift[2] = fgkmm * 1.816; - shift[3] = fgkmm * -0.610; - shift[4] = fgkmm * -0.610; - shift[5] = fgkmm * -0.610; - - // create stave volumes (different for layer 1 and 2) - TArrayD staveSizes1(3), staveSizes2(3); - Double_t &staveHeight = staveSizes1[2], &staveThickness = staveSizes1[0]; - TGeoVolume *stave1 = CreateStave(1, staveSizes1, kFALSE, mgr); - //TGeoVolume *stave2clips = CreateStave(2, staveSizes2, kTRUE, mgr); - TGeoVolume *stave2noclips = CreateStave(2, staveSizes2, kFALSE, mgr); - - Double_t xL, yL; // leftmost edge of mounting point (XY projection) - Double_t xR, yR; // rightmost edge of mounting point (XY projection) - Double_t xM, yM; // middle point of the segment L-R - Double_t dx, dy; // (xL - xR) and (yL - yR) - Double_t widthLR; // width of the segment L-R - Double_t angle; // stave rotation angle in degrees - Double_t diffWidth; // difference between mounting plane width and stave width (smaller) - Double_t xPos, yPos; // final translation of the stave - Double_t parMovement; // translation in the LR plane direction - - // loop on staves - for (Int_t i = 0; i < 6; i++) { - // in debug mode, if this stave is not required, it is skipped - if (!fAddStave[i]) continue; - // retrieve reference points - GetSectorMountingPoints(i, xL, yL, xR, yR); - xM = 0.5 * (xL + xR); - yM = 0.5 * (yL + yR); - dx = xL - xR; - dy = yL - yR; - angle = TMath::ATan2(dy, dx); - widthLR = TMath::Sqrt(dx*dx + dy*dy); - diffWidth = 0.5*(widthLR - staveHeight); - // first, a movement along this plane must be done - // by an amount equal to the width difference - // and then the fixed shift must also be added - parMovement = diffWidth + shift[i]; - // due to stave thickness, another movement must be done - // in the direction normal to the mounting plane - // which is computed using an internal method, in a reference frame where the LR segment - // has its middle point in the origin and axes parallel to the master reference frame - if (i == 0) { - ParallelPosition(-0.5*staveThickness, -parMovement, angle, xPos, yPos); - } - if (i == 1) { - ParallelPosition( 0.5*staveThickness, -parMovement, angle, xPos, yPos); - } - else { - ParallelPosition( 0.5*staveThickness, parMovement, angle, xPos, yPos); - } - // then we go into the true reference frame - xPos += xM; - yPos += yM; - // using the parameters found here, compute the - // translation and rotation of this stave: - TGeoRotation *rot = new TGeoRotation(*gGeoIdentity); - if (i == 0 || i == 1) rot->RotateX(180.0); - rot->RotateZ(90.0 + angle * TMath::RadToDeg()); - TGeoCombiTrans *trans = new TGeoCombiTrans(xPos, yPos, 0.0, rot); - if (i == 0 || i == 1) { - moth->AddNode(stave1, i, trans); - } - else { - if (i == 2) { - moth->AddNode(stave2noclips, i - 2, trans); - } - else { - moth->AddNode(stave2noclips, i - 2, trans); - } - } - } +//______________________________________________________________________ +void AliITSv11GeometrySPD::StavesInSector(TGeoVolume *moth, TGeoManager *mgr) +{ + // + // Unification of essentially two methods: + // - the one which creates the sector structure + // - the one which returns the complete stave + // --- + // For compatibility, this method requires the same arguments + // asked by "CarbonFiberSector" method, which is recalled here. + // Like this cited method, this one does not return any value, + // but it inserts in the mother volume (argument 'moth') all the stuff + // which composes the complete SPD sector. + // --- + // In the following, the stave numbering order used for arrays is the + // same as defined in the GetSectorMountingPoints(): + // /5 + // /\/4 + // 1\ \/3 + // 0|___\/2 + // --- + // Arguments: see description of "CarbonFiberSector" method. + // + + Double_t shift[6]; // shift from the innermost position in the + // sector placement plane (where the stave + // edge is in the point where the rounded + // corner begins) + + shift[0] = fgkmm * -0.691; + shift[1] = fgkmm * 5.041; + shift[2] = fgkmm * 1.816; + shift[3] = fgkmm * -0.610; + shift[4] = fgkmm * -0.610; + shift[5] = fgkmm * -0.610; + + // corrections after interaction with Andrea and CAD + Double_t corrX[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + Double_t corrY[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + corrX[0] = 0.0046; + corrX[1] = -0.0041; + corrX[2] = corrX[3] = corrX[4] = corrX[5] = -0.0016; + + corrY[0] = -0.0007; + corrY[1] = -0.0009; + corrY[2] = corrY[3] = corrY[4] = corrY[5] = -0.0003; + + corrX[0] += 0.00026; + corrY[0] += -0.00080; + + corrX[1] += 0.00018; + corrY[1] += -0.00086; + + corrX[2] += 0.00020; + corrY[2] += -0.00062; + + corrX[3] += 0.00017; + corrY[3] += -0.00076; + + corrX[4] += 0.00016; + corrY[4] += -0.00096; + + corrX[5] += 0.00018; + corrY[5] += -0.00107; + + // create stave volumes (different for layer 1 and 2) + TArrayD staveSizes1(9), staveSizes2(9), clipSize(5); + Double_t &staveHeight = staveSizes1[2], &staveThickness = staveSizes1[0]; + TGeoVolume *stave1 = CreateStave(1, staveSizes1, mgr); + TGeoVolume *stave2 = CreateStave(2, staveSizes2, mgr); + TGeoVolume *clip = CreateClip(clipSize, kFALSE, mgr); + + Double_t xL, yL; // leftmost edge of mounting point (XY projection) + Double_t xR, yR; // rightmost edge of mounting point (XY projection) + Double_t xM, yM; // middle point of the segment L-R + Double_t dx, dy; // (xL - xR) and (yL - yR) + Double_t widthLR; // width of the segment L-R + Double_t angle; // stave rotation angle in degrees + Double_t diffWidth; // difference between mounting plane width and + // stave width (smaller) + Double_t xPos, yPos; // final translation of the stave + Double_t parMovement; // translation in the LR plane direction + + staveThickness += fgkGapHalfStave; + + // loop on staves + Int_t i, iclip = 1; + for (i = 0; i < 6; i++) { + // in debug mode, if this stave is not required, it is skipped + if (!fAddStave[i]) continue; + // retrieve reference points + GetSectorMountingPoints(i, xL, yL, xR, yR); + xM = 0.5 * (xL + xR); + yM = 0.5 * (yL + yR); + dx = xL - xR; + dy = yL - yR; + angle = TMath::ATan2(dy, dx); + widthLR = TMath::Sqrt(dx*dx + dy*dy); + diffWidth = 0.5*(widthLR - staveHeight); + // first, a movement along this plane must be done + // by an amount equal to the width difference + // and then the fixed shift must also be added + parMovement = diffWidth + shift[i]; + // due to stave thickness, another movement must be done + // in the direction normal to the mounting plane + // which is computed using an internal method, in a reference + // frame where the LR segment has its middle point in the origin + // and axes parallel to the master reference frame + if (i == 0) { + ParallelPosition(-0.5*staveThickness, -parMovement, angle, + xPos, yPos); + } // end if i==0 + if (i == 1) { + ParallelPosition( 0.5*staveThickness, -parMovement, angle, + xPos, yPos); + }else { + ParallelPosition( 0.5*staveThickness, parMovement, angle, + xPos, yPos); + } // end if i==1 + // then we go into the true reference frame + xPos += xM; + yPos += yM; + xPos += corrX[i]; + yPos += corrY[i]; + // using the parameters found here, compute the + // translation and rotation of this stave: + TGeoRotation *rot = new TGeoRotation(*gGeoIdentity); + if (i == 0 || i == 1) rot->RotateX(180.0); + rot->RotateZ(90.0 + angle * TMath::RadToDeg()); + TGeoCombiTrans *trans = new TGeoCombiTrans(xPos, yPos, 0.0, rot); + if (i == 0 || i == 1) { + moth->AddNode(stave1, i+1, trans); + }else { + moth->AddNode(stave2, i - 1, trans); + if (i != 2) { + // except in the case of stave #2, + // clips must be added, and this is done directly on the sector + Int_t j; + //TArrayD clipSize; + TGeoRotation *rotClip = new TGeoRotation(*gGeoIdentity); + rotClip->RotateZ(-90.0); + rotClip->RotateX(180.0); + Double_t x = staveSizes2[3] + fgkGapHalfStave; + Double_t y = staveSizes2[4]; + Double_t z[4] = { staveSizes2[5], staveSizes2[6], + staveSizes2[7], staveSizes2[8] }; + for (j = 0; j < 4; j++) { + TGeoCombiTrans *trClip = new TGeoCombiTrans(x, y, z[j], + rotClip); + *trClip = *trans * *trClip; + moth->AddNode(clip, iclip++, trClip); + } // end for j + } // end if i!=2 + } // end if i==0||i==1 else + } // end for i + + + // Add a box representing the collector for cooling tubes + // MOVED TO CreateServices() - M.S. 25 jul 12 + } -// -//__________________________________________________________________________________________ +//______________________________________________________________________ void AliITSv11GeometrySPD::ParallelPosition(Double_t dist1, Double_t dist2, - Double_t phi, Double_t &x, Double_t &y) const { - // Performs the following steps: - // 1 - finds a straight line parallel to the one passing through the origin and with angle 'phi' with X axis - // (phi in RADIANS); - // 2 - finds another line parallel to the previous one, with a distance 'dist1' from it - // 3 - takes a reference point in the second line in the intersection between the normal to both lines - // passing through the origin - // 4 - finds a point whith has distance 'dist2' from this reference, in the second line (point 2) - // ---- - // According to the signs given to dist1 and dist2, the point is found in different position w.r. to the origin - // - - // compute the point - Double_t cs = TMath::Cos(phi); - Double_t sn = TMath::Sin(phi); - - x = dist2*cs - dist1*sn; - y = dist1*cs + dist2*sn; + Double_t phi, Double_t &x, Double_t &y) const +{ + // + // Performs the following steps: + // 1 - finds a straight line parallel to the one passing through + // the origin and with angle 'phi' with X axis(phi in RADIANS); + // 2 - finds another line parallel to the previous one, with a + // distance 'dist1' from it + // 3 - takes a reference point in the second line in the intersection + // between the normal to both lines passing through the origin + // 4 - finds a point whith has distance 'dist2' from this reference, + // in the second line (point 2) + // ---- + // According to the signs given to dist1 and dist2, the point is + // found in different position w.r. to the origin + // compute the point + // + Double_t cs = TMath::Cos(phi); + Double_t sn = TMath::Sin(phi); + + x = dist2*cs - dist1*sn; + y = dist1*cs + dist2*sn; } -// -//__________________________________________________________________________________________ -void AliITSv11GeometrySPD::CreateFigure0(const Char_t *filepath, - const Char_t *type, - TGeoManager *mgr) const { - // Creates Figure 0 for the documentation of this class. In this - // specific case, it creates the X,Y cross section of the SPD suport - // section, center and ends. The output is written to a standard - // file name to the path specificed. +//______________________________________________________________________ +Double_t AliITSv11GeometrySPD::GetSPDSectorTranslation( + Double_t x0,Double_t y0,Double_t x1,Double_t y1,Double_t r) const +{ + // + // Comutes the radial translation of a sector to give the + // proper distance between SPD detectors and the beam pipe. + // Units in are units out. + // + + //Begin_Html + /* + + Figure showing the geometry used in the computation below. + */ + //End_Html + // Inputs: - // const Char_t *filepath Path where the figure is to be drawn - // const Char_t *type The type of file, default is gif. - // TGeoManager *mgr The TGeoManager default gGeoManager - // Output: + // Double_t x0 Point x0 on Sector surface for the inner + // most detector mounting + // Double_t y0 Point y0 on Sector surface for the innor + // most detector mounting + // Double_t x1 Point x1 on Sector surface for the inner + // most detector mounting + // Double_t y1 Point y1 on Sector surface for the innor + // most detector mounting + // Double_t r The radial distance this mounting surface + // should be from the center of the beam pipe. + // Outputs: // none. // Return: - // none. - TGeoXtru *sA0,*sA1,*sB0,*sB1; - //TPolyMarker *pmA,*pmB; - TPolyLine plA0,plA1,plB0,plB1; - TCanvas *canvas; - TLatex txt; - Double_t x=0.0,y=0.0; - Int_t i,kNRadii=6; - - if(strcmp(filepath,"")){ - Error("CreateFigure0","filepath=%s type=%s",filepath,type); - } // end if - // - sA0 = (TGeoXtru*) mgr->GetVolume( - "ITSSPDCarbonFiberSupportSectorA0_1")->GetShape(); - sA1 = (TGeoXtru*) mgr->GetVolume( - "ITSSPDCarbonFiberSupportSectorAirA1_1")->GetShape(); - sB0 = (TGeoXtru*) mgr->GetVolume( - "ITSSPDCarbonFiberSupportSectorEndB0_1")->GetShape(); - sB1 = (TGeoXtru*) mgr->GetVolume( - "ITSSPDCarbonFiberSupportSectorEndAirB1_1")->GetShape(); - //pmA = new TPolyMarker(); - //pmA.SetMarkerStyle(2); // + - //pmA.SetMarkerColor(7); // light blue - //pmB = new TPolyMarker(); - //pmB.SetMarkerStyle(5); // X - //pmB.SetMarkerColor(6); // purple - plA0.SetPolyLine(sA0->GetNvert()); - plA0.SetLineColor(1); // black - plA0.SetLineStyle(1); - plA1.SetPolyLine(sA1->GetNvert()); - plA1.SetLineColor(2); // red - plA1.SetLineStyle(1); - plB0.SetPolyLine(sB0->GetNvert()); - plB0.SetLineColor(3); // Green - plB0.SetLineStyle(2); - plB1.SetPolyLine(sB1->GetNvert()); - plB1.SetLineColor(4); // Blue - plB1.SetLineStyle(2); - //for(i=0;iGetNvert();i++) plA0.SetPoint(i,sA0->GetX(i),sA0->GetY(i)); - for(i=0;iGetNvert();i++) plA1.SetPoint(i,sA1->GetX(i),sA1->GetY(i)); - for(i=0;iGetNvert();i++) plB0.SetPoint(i,sB0->GetX(i),sB0->GetY(i)); - for(i=0;iGetNvert();i++) plB1.SetPoint(i,sB1->GetX(i),sB1->GetY(i)); - canvas = new TCanvas("AliITSv11GeometrySPDFig0","",1000,1000); - canvas->Range(-3.,-3.,3.,3.); - txt.SetTextSize(0.05); - txt.SetTextAlign(33); - txt.SetTextColor(1); - txt.DrawLatex(2.9,2.9,"Section A-A outer Carbon Fiber surface"); - txt.SetTextColor(2); - txt.DrawLatex(2.9,2.5,"Section A-A Inner Carbon Fiber surface"); - txt.SetTextColor(3); - txt.DrawLatex(2.9,2.1,"Section E-E outer Carbon Fiber surface"); - txt.SetTextColor(4); - txt.DrawLatex(2.9,1.7,"Section E-E Inner Carbon Fiber surface"); - plA0.Draw(); - plA1.Draw(); - plB0.Draw(); - plB1.Draw(); - //pmA.Draw(); - //pmB.Draw(); - // - x = 1.0; - y = -2.5; - Char_t chr[3]; - for(i=0;i 2 ios::fmtflags fmt = cout.flags(); @@ -2962,12 +4377,26 @@ void AliITSv11GeometrySPD::PrintAscii(ostream *os)const{ Int_t fmt; #endif #endif + + *os<< fgkGapLadder <<" "<< fgkGapHalfStave<<" "<< 6 <<" "; + for(i=0;i<6;i++) *os<< fAddStave[i] <<" "<flags(fmt); // reset back to old Formating. return; } // -//__________________________________________________________________________________________ -void AliITSv11GeometrySPD::ReadAscii(istream* /* is */){ +//______________________________________________________________________ +void AliITSv11GeometrySPD::ReadAscii(istream* is) +{ + // // Read in class data values in Ascii Form to output stream // Inputs: // istream *is Input stream where Ascii data is to be read in from @@ -2975,10 +4404,46 @@ void AliITSv11GeometrySPD::ReadAscii(istream* /* is */){ // none. // Return: // none. + // + Int_t i,j,k,n; + Double_t gapLadder,gapHalfStave; + const Int_t kLimits = 100; + *is>>gapLadder>>gapHalfStave>>n; + if(n!=6){ + AliError(Form("fAddStave Array !=6 n=%d",n)); + return; + } // end if + for(i=0;i>fAddStave[i]; + *is>>n; + if(n<0 || n> kLimits){ + AliError("Anomalous value for parameter n"); + return; + } + fSPDsectorX0.Set(n); + fSPDsectorY0.Set(n); + fSPDsectorX1.Set(n); + fSPDsectorY1.Set(n); + for(i=0;i>fSPDsectorX0[i]; + for(i=0;i>fSPDsectorY0[i]; + for(i=0;i>fSPDsectorX1[i]; + for(i=0;i>fSPDsectorY1[i]; + *is>> i>>j>>n; + if(i!=2||j!=6||n!=3){ + Warning("ReadAscii","fTubeEndSector array wrong size [2][6][3]," + "found [%d][%d][%d]",i,j,n); + return; + } // end if + for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++) + *is>>fTubeEndSector[k][0][i][j]; + for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++) + *is>>fTubeEndSector[k][1][i][j]; + return; } // -//__________________________________________________________________________________________ -ostream &operator<<(ostream &os,const AliITSv11GeometrySPD &s){ +//______________________________________________________________________ +ostream &operator<<(ostream &os,const AliITSv11GeometrySPD &s) +{ + // // Standard output streaming function // Inputs: // ostream &os output steam @@ -2987,13 +4452,15 @@ ostream &operator<<(ostream &os,const AliITSv11GeometrySPD &s){ // none. // Return: // ostream &os The stream pointer - + // s.PrintAscii(&os); return os; } // -//__________________________________________________________________________________________ -istream &operator>>(istream &is,AliITSv11GeometrySPD &s){ +//______________________________________________________________________ +istream &operator>>(istream &is,AliITSv11GeometrySPD &s) +{ + // // Standard inputput streaming function // Inputs: // istream &is input steam @@ -3002,91 +4469,8 @@ istream &operator>>(istream &is,AliITSv11GeometrySPD &s){ // none. // Return: // ostream &os The stream pointer - + // s.ReadAscii(&is); return is; } -// -//__________________________________________________________________________________________ -Bool_t AliITSv11GeometrySPD::Make2DCrossSections(TPolyLine &a0,TPolyLine &a1, - TPolyLine &b0,TPolyLine &b1,TPolyMarker &p)const{ - // Fill the objects with the points representing - // a0 the outer carbon fiber SPD sector shape Cross Section A - // a1 the inner carbon fiber SPD sector shape Cross Section A - // b0 the outer carbon fiber SPD sector shape Cross Section B - // b1 the inner carbon fiber SPD sector shape Cross Section B - // - // Inputs: - // TPolyLine &a0 The outer carbon fiber SPD sector shape - // TPolyLine &a1 The Inner carbon fiber SPD sector shape - // TPolyLine &b0 The outer carbon fiber SPD sector shape - // TPolyLine &b1 The Inner carbon fiber SPD sector shape - // TPolyMarker &p The points where the ladders are to be placed - // Outputs: - // TPolyLine &a0 The shape filled with the points - // TPolyLine &a1 The shape filled with the points - // TPolyLine &b0 The shape filled with the points - // TPolyLine &b1 The shape filled with the points - // TPolyMarker &p The filled array of points - // Return: - // An error flag. - Int_t n0,n1,i; - Double_t x,y; - TGeoVolume *a0V,*a1V,*b0V,*b1V; - TGeoXtru *a0S,*a1S,*b0S,*b1S; - TGeoManager *mgr = gGeoManager; - - a0V = mgr->GetVolume("ITS SPD Carbon fiber support Sector A0"); - a0S = dynamic_cast(a0V->GetShape()); - n0 = a0S->GetNvert(); - a0.SetPolyLine(n0+1); - //for(i=0;iGetX(i); - y = a0S->GetY(i); - //printf("%d %g %g\n",i,x,y); - a0.SetPoint(i,x,y); - if(i==0) a0.SetPoint(n0,x,y); - } // end for i - a1V = mgr->GetVolume("ITSSPDCarbonFiberSupportSectorAirA1"); - a1S = dynamic_cast(a1V->GetShape()); - n1 = a1S->GetNvert(); - a1.SetPolyLine(n1+1); - for(i=0;iGetX(i); - y = a1S->GetY(i); - a1.SetPoint(i,x,y); - if(i==0) a1.SetPoint(n1,x,y); - } // end for i - // Cross Section B - b0V = mgr->GetVolume("ITSSPDCarbonFiberSupportSectorEndB0"); - b0S = dynamic_cast(b0V->GetShape()); - n0 = b0S->GetNvert(); - b0.SetPolyLine(n0+1); - for(i=0;iGetX(i); - y = b0S->GetY(i); - b0.SetPoint(i,x,y); - if(i==0) b0.SetPoint(n0,x,y); - } // end for i - b1V = mgr->GetVolume("ITSSPDCarbonFiberSupportSectorEndAirB1"); - b1S = dynamic_cast(b1V->GetShape()); - n1 = b1S->GetNvert(); - b1.SetPolyLine(n1+1); - for(i=0;iGetX(i); - y = b1S->GetY(i); - b1.SetPoint(i,x,y); - if(i==0) b1.SetPoint(n1,x,y); - } // end for i - // - Double_t x0,y0,x1,y1; - p.SetPolyMarker(2*fSPDsectorX0.GetSize()); - for(i=0;i