X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;ds=sidebyside;f=MUON%2FAliMUONv1.cxx;h=39f2cf57ba5dcfb331ebc6ef209b822c2912bbd3;hb=e1ac9a831cff40d31c125b5679d46aac476c5941;hp=10412f9c0c110b428dc4b88122d76c04d7b2309e;hpb=21a18f36edc1aa695df97208457d0b08726cf51b;p=u%2Fmrichter%2FAliRoot.git diff --git a/MUON/AliMUONv1.cxx b/MUON/AliMUONv1.cxx index 10412f9c0c1..39f2cf57ba5 100644 --- a/MUON/AliMUONv1.cxx +++ b/MUON/AliMUONv1.cxx @@ -1,6 +1,6 @@ /************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * - * * + * SigmaEffect_thetadegrees * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * @@ -13,1831 +13,246 @@ * provided "as is" without express or implied warranty. * **************************************************************************/ -/* -$Log$ -Revision 1.24 2001/03/14 17:22:15 pcrochet -Geometry of the trigger chambers : a vertical gap of has been introduced around x=0 according fig.3.27 of the TDR (P.Dupieux) - -Revision 1.23 2001/01/18 15:23:49 egangler -Bug correction in StepManager : -Now the systematic offset with angle is cured - -Revision 1.22 2001/01/17 21:01:21 hristov -Unused variable removed - -Revision 1.21 2000/12/20 13:00:22 egangler - -Added charge correlation between cathods. -In Config_slat.C, use - MUON->Chamber(chamber-1).SetChargeCorrel(0.11); to set the RMS of - q1/q2 to 11 % (number from Alberto) - This is stored in AliMUONChamber fChargeCorrel member. - At generation time, when a tracks enters the volume, - AliMUONv1::StepManager calls - AliMUONChamber::ChargeCorrelationInit() to set the current value of - fCurrentCorrel which is then used at Disintegration level to scale - appropriately the PadHit charges. - -Revision 1.20 2000/12/04 17:48:23 gosset -Modifications for stations 1 et 2 mainly: -* station 1 with 4 mm gas gap and smaller cathode segmentation... -* stations 1 and 2 with "grey" frame crosses -* mean noise at 1.5 ADC channel -* Ar-CO2 gas (80%+20%) - -Revision 1.19 2000/12/02 17:15:46 morsch -Correction of dead zones in inner regions of stations 3-5 -Correction of length of slats 3 and 9 of station 4. - -Revision 1.17 2000/11/24 12:57:10 morsch -New version of geometry for stations 3-5 "Slats" (A. de Falco) - - sensitive region at station 3 inner radius - - improved volume tree structure - -Revision 1.16 2000/11/08 13:01:40 morsch -Chamber half-planes of stations 3-5 at different z-positions. - -Revision 1.15 2000/11/06 11:39:02 morsch -Bug in StepManager() corrected. - -Revision 1.14 2000/11/06 09:16:50 morsch -Avoid overlap of slat volumes. - -Revision 1.13 2000/10/26 07:33:44 morsch -Correct x-position of slats in station 5. - -Revision 1.12 2000/10/25 19:55:35 morsch -Switches for each station individually for debug and lego. - -Revision 1.11 2000/10/22 16:44:01 morsch -Update of slat geometry for stations 3,4,5 (A. deFalco) - -Revision 1.10 2000/10/12 16:07:04 gosset -StepManager: -* SigGenCond only called for tracking chambers, - hence no more division by 0, - and may use last ALIROOT/dummies.C with exception handling; -* "10" replaced by "AliMUONConstants::NTrackingCh()". - -Revision 1.9 2000/10/06 15:37:22 morsch -Problems with variable redefinition in for-loop solved. -Variable names starting with u-case letters changed to l-case. - -Revision 1.8 2000/10/06 09:06:31 morsch -Include Slat chambers (stations 3-5) into geometry (A. de Falco) - -Revision 1.7 2000/10/02 21:28:09 fca -Removal of useless dependecies via forward declarations - -Revision 1.6 2000/10/02 17:20:45 egangler -Cleaning of the code (continued ) : --> coding conventions --> void Streamers --> some useless includes removed or replaced by "class" statement - -Revision 1.5 2000/06/28 15:16:35 morsch -(1) Client code adapted to new method signatures in AliMUONSegmentation (see comments there) -to allow development of slat-muon chamber simulation and reconstruction code in the MUON -framework. The changes should have no side effects (mostly dummy arguments). -(2) Hit disintegration uses 3-dim hit coordinates to allow simulation -of chambers with overlapping modules (MakePadHits, Disintegration). - -Revision 1.4 2000/06/26 14:02:38 morsch -Add class AliMUONConstants with MUON specific constants using static memeber data and access methods. - -Revision 1.3 2000/06/22 14:10:05 morsch -HP scope problems corrected (PH) - -Revision 1.2 2000/06/15 07:58:49 morsch -Code from MUON-dev joined - -Revision 1.1.2.14 2000/06/14 14:37:25 morsch -Initialization of TriggerCircuit added (PC) - -Revision 1.1.2.13 2000/06/09 21:55:47 morsch -Most coding rule violations corrected. - -Revision 1.1.2.12 2000/05/05 11:34:29 morsch -Log inside comments. - -Revision 1.1.2.11 2000/05/05 10:06:48 morsch -Coding Rule violations regarding trigger section corrected (CP) -Log messages included. -*/ +/* $Id$ */ ///////////////////////////////////////////////////////// -// Manager and hits classes for set:MUON version 0 // +// Manager and hits classes for set:MUON version 1 // ///////////////////////////////////////////////////////// -#include +#include +#include +#include +#include #include #include -#include -#include +#include +#include +#include +#include -#include "AliMUONv1.h" -#include "AliRun.h" -#include "AliMC.h" -#include "AliMagF.h" -#include "AliCallf77.h" #include "AliConst.h" #include "AliMUONChamber.h" -#include "AliMUONHit.h" -#include "AliMUONPadHit.h" #include "AliMUONConstants.h" +#include "AliMUONFactory.h" +#include "AliMUONHit.h" #include "AliMUONTriggerCircuit.h" +#include "AliMUONv1.h" +#include "AliMUONVGeometryBuilder.h" +#include "AliMUONChamberGeometry.h" +#include "AliMUONGeometryEnvelope.h" +#include "AliMUONGeometryConstituent.h" +#include "AliMagF.h" +#include "AliRun.h" +#include "AliMC.h" ClassImp(AliMUONv1) //___________________________________________ AliMUONv1::AliMUONv1() : AliMUON() + ,fTrackMomentum(), fTrackPosition(),fGlobalTransformation(0) { // Constructor - fChambers = 0; -} - + fChambers = 0; + fStepManagerVersionOld = kFALSE; + fAngleEffect = kTRUE; + fStepMaxInActiveGas = 0.6; + fStepSum = 0x0; + fDestepSum = 0x0; + fElossRatio = 0x0; + fAngleEffect10 = 0x0; + fAngleEffectNorma= 0x0; +} //___________________________________________ AliMUONv1::AliMUONv1(const char *name, const char *title) - : AliMUON(name,title) + : AliMUON(name,title), fTrackMomentum(), fTrackPosition() { // Constructor + // By default include all stations + AliMUONFactory factory; + factory.Build(this, title); + + fStepManagerVersionOld = kFALSE; + fAngleEffect = kTRUE; + fStepMaxInActiveGas = 0.6; + + fStepSum = new Float_t [AliMUONConstants::NCh()]; + fDestepSum = new Float_t [AliMUONConstants::NCh()]; + for (Int_t i=0; iSetParameter(0,1.02138); + fElossRatio->SetParameter(1,-9.54149e-02); + fElossRatio->SetParameter(2,+7.83433e-02); + fElossRatio->SetParameter(3,-9.98208e-03); + fElossRatio->SetParameter(4,+3.83279e-04); + + // Angle effect in tracking chambers at theta =10 degres as a function of ElossRatio (Khalil BOUDJEMLINE sep 2003 Ph.D Thesis) (in micrometers) + fAngleEffect10 = new TF1("AngleEffect10","[0]+[1]*x+[2]*x*x",0.5,3.0); + fAngleEffect10->SetParameter(0, 1.90691e+02); + fAngleEffect10->SetParameter(1,-6.62258e+01); + fAngleEffect10->SetParameter(2,+1.28247e+01); + // Angle effect: Normalisation form theta=10 degres to theta between 0 and 10 (Khalil BOUDJEMLINE sep 2003 Ph.D Thesis) + // Angle with respect to the wires assuming that chambers are perpendicular to the z axis. + fAngleEffectNorma = new TF1("AngleEffectNorma","[0]+[1]*x+[2]*x*x+[3]*x*x*x",0.0,10.0); + fAngleEffectNorma->SetParameter(0,4.148); + fAngleEffectNorma->SetParameter(1,-6.809e-01); + fAngleEffectNorma->SetParameter(2,5.151e-02); + fAngleEffectNorma->SetParameter(3,-1.490e-03); + + // Define the global transformation: + // Transformation from the old ALICE coordinate system to a new one: + // x->-x, z->-z + TGeoRotation* rotGlobal + = new TGeoRotation("rotGlobal", 90., 180., 90., 90., 180., 0.); + fGlobalTransformation = new TGeoCombiTrans(0., 0., 0., rotGlobal); } -//___________________________________________ -void AliMUONv1::CreateGeometry() -{ -// -// Note: all chambers have the same structure, which could be -// easily parameterised. This was intentionally not done in order -// to give a starting point for the implementation of the actual -// design of each station. - Int_t *idtmed = fIdtmed->GetArray()-1099; - -// Distance between Stations -// - Float_t bpar[3]; - Float_t tpar[3]; -// Float_t pgpar[10]; - Float_t zpos1, zpos2, zfpos; - // Outer excess and inner recess for mother volume radius - // with respect to ROuter and RInner - Float_t dframep=.001; // Value for station 3 should be 6 ... - // Width (RdPhi) of the frame crosses for stations 1 and 2 (cm) -// Float_t dframep1=.001; - Float_t dframep1 = 11.0; -// Bool_t frameCrosses=kFALSE; - Bool_t frameCrosses=kTRUE; - -// Float_t dframez=0.9; - // Half of the total thickness of frame crosses (including DAlu) - // for each chamber in stations 1 and 2: - // 3% of X0 of composite material, - // but taken as Aluminium here, with same thickness in number of X0 - Float_t dframez = 3. * 8.9 / 100; -// Float_t dr; - Float_t dstation; - -// -// Rotation matrices in the x-y plane - Int_t idrotm[1199]; -// phi= 0 deg - AliMatrix(idrotm[1100], 90., 0., 90., 90., 0., 0.); -// phi= 90 deg - AliMatrix(idrotm[1101], 90., 90., 90., 180., 0., 0.); -// phi= 180 deg - AliMatrix(idrotm[1102], 90., 180., 90., 270., 0., 0.); -// phi= 270 deg - AliMatrix(idrotm[1103], 90., 270., 90., 0., 0., 0.); -// - Float_t phi=2*TMath::Pi()/12/2; - -// -// pointer to the current chamber -// pointer to the current chamber - Int_t idAlu1=idtmed[1103]; // medium 4 - Int_t idAlu2=idtmed[1104]; // medium 5 -// Int_t idAlu1=idtmed[1100]; -// Int_t idAlu2=idtmed[1100]; - Int_t idAir=idtmed[1100]; // medium 1 -// Int_t idGas=idtmed[1105]; // medium 6 = Ar-isoC4H10 gas - Int_t idGas=idtmed[1108]; // medium 9 = Ar-CO2 gas (80%+20%) - - - AliMUONChamber *iChamber, *iChamber1, *iChamber2; - Int_t stations[5] = {1, 1, 1, 1, 1}; - - if (stations[0]) { - -//******************************************************************** -// Station 1 ** -//******************************************************************** -// CONCENTRIC - // indices 1 and 2 for first and second chambers in the station - // iChamber (first chamber) kept for other quanties than Z, - // assumed to be the same in both chambers - iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[0]; - iChamber2 =(AliMUONChamber*) (*fChambers)[1]; - zpos1=iChamber1->Z(); - zpos2=iChamber2->Z(); - dstation = zpos2 - zpos1; - // DGas decreased from standard one (0.5) - iChamber->SetDGas(0.4); iChamber2->SetDGas(0.4); - // DAlu increased from standard one (3% of X0), - // because more electronics with smaller pads - iChamber->SetDAlu(3.5 * 8.9 / 100.); iChamber2->SetDAlu(3.5 * 8.9 / 100.); - zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; - -// -// Mother volume - tpar[0] = iChamber->RInner()-dframep; - tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); - tpar[2] = dstation/5; - - gMC->Gsvolu("C01M", "TUBE", idAir, tpar, 3); - gMC->Gsvolu("C02M", "TUBE", idAir, tpar, 3); - gMC->Gspos("C01M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); - gMC->Gspos("C02M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); -// // Aluminium frames -// // Outer frames -// pgpar[0] = 360/12/2; -// pgpar[1] = 360.; -// pgpar[2] = 12.; -// pgpar[3] = 2; -// pgpar[4] = -dframez/2; -// pgpar[5] = iChamber->ROuter(); -// pgpar[6] = pgpar[5]+dframep1; -// pgpar[7] = +dframez/2; -// pgpar[8] = pgpar[5]; -// pgpar[9] = pgpar[6]; -// gMC->Gsvolu("C01O", "PGON", idAlu1, pgpar, 10); -// gMC->Gsvolu("C02O", "PGON", idAlu1, pgpar, 10); -// gMC->Gspos("C01O",1,"C01M", 0.,0.,-zfpos, 0,"ONLY"); -// gMC->Gspos("C01O",2,"C01M", 0.,0.,+zfpos, 0,"ONLY"); -// gMC->Gspos("C02O",1,"C02M", 0.,0.,-zfpos, 0,"ONLY"); -// gMC->Gspos("C02O",2,"C02M", 0.,0.,+zfpos, 0,"ONLY"); -// // -// // Inner frame -// tpar[0]= iChamber->RInner()-dframep1; -// tpar[1]= iChamber->RInner(); -// tpar[2]= dframez/2; -// gMC->Gsvolu("C01I", "TUBE", idAlu1, tpar, 3); -// gMC->Gsvolu("C02I", "TUBE", idAlu1, tpar, 3); - -// gMC->Gspos("C01I",1,"C01M", 0.,0.,-zfpos, 0,"ONLY"); -// gMC->Gspos("C01I",2,"C01M", 0.,0.,+zfpos, 0,"ONLY"); -// gMC->Gspos("C02I",1,"C02M", 0.,0.,-zfpos, 0,"ONLY"); -// gMC->Gspos("C02I",2,"C02M", 0.,0.,+zfpos, 0,"ONLY"); -// -// Frame Crosses - if (frameCrosses) { - // outside gas - // security for inside mother volume - bpar[0] = (iChamber->ROuter() - iChamber->RInner()) - * TMath::Cos(TMath::ASin(dframep1 / - (iChamber->ROuter() - iChamber->RInner()))) - / 2.0; - bpar[1] = dframep1/2; - // total thickness will be (4 * bpar[2]) for each chamber, - // which has to be equal to (2 * dframez) - DAlu - bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0; - gMC->Gsvolu("C01B", "BOX", idAlu1, bpar, 3); - gMC->Gsvolu("C02B", "BOX", idAlu1, bpar, 3); - - gMC->Gspos("C01B",1,"C01M", +iChamber->RInner()+bpar[0] , 0,-zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C01B",2,"C01M", -iChamber->RInner()-bpar[0] , 0,-zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C01B",3,"C01M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, - idrotm[1101],"ONLY"); - gMC->Gspos("C01B",4,"C01M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, - idrotm[1101],"ONLY"); - gMC->Gspos("C01B",5,"C01M", +iChamber->RInner()+bpar[0] , 0,+zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C01B",6,"C01M", -iChamber->RInner()-bpar[0] , 0,+zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C01B",7,"C01M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, - idrotm[1101],"ONLY"); - gMC->Gspos("C01B",8,"C01M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, - idrotm[1101],"ONLY"); - - gMC->Gspos("C02B",1,"C02M", +iChamber->RInner()+bpar[0] , 0,-zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C02B",2,"C02M", -iChamber->RInner()-bpar[0] , 0,-zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C02B",3,"C02M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, - idrotm[1101],"ONLY"); - gMC->Gspos("C02B",4,"C02M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, - idrotm[1101],"ONLY"); - gMC->Gspos("C02B",5,"C02M", +iChamber->RInner()+bpar[0] , 0,+zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C02B",6,"C02M", -iChamber->RInner()-bpar[0] , 0,+zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C02B",7,"C02M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, - idrotm[1101],"ONLY"); - gMC->Gspos("C02B",8,"C02M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, - idrotm[1101],"ONLY"); - } -// -// Chamber Material represented by Alu sheet - tpar[0]= iChamber->RInner(); - tpar[1]= iChamber->ROuter(); - tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2; - gMC->Gsvolu("C01A", "TUBE", idAlu2, tpar, 3); - gMC->Gsvolu("C02A", "TUBE",idAlu2, tpar, 3); - gMC->Gspos("C01A", 1, "C01M", 0., 0., 0., 0, "ONLY"); - gMC->Gspos("C02A", 1, "C02M", 0., 0., 0., 0, "ONLY"); -// -// Sensitive volumes - // tpar[2] = iChamber->DGas(); - tpar[2] = iChamber->DGas()/2; - gMC->Gsvolu("C01G", "TUBE", idGas, tpar, 3); - gMC->Gsvolu("C02G", "TUBE", idGas, tpar, 3); - gMC->Gspos("C01G", 1, "C01A", 0., 0., 0., 0, "ONLY"); - gMC->Gspos("C02G", 1, "C02A", 0., 0., 0., 0, "ONLY"); -// -// Frame Crosses to be placed inside gas - // NONE: chambers are sensitive everywhere -// if (frameCrosses) { - -// dr = (iChamber->ROuter() - iChamber->RInner()); -// bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2; -// bpar[1] = dframep1/2; -// bpar[2] = iChamber->DGas()/2; -// gMC->Gsvolu("C01F", "BOX", idAlu1, bpar, 3); -// gMC->Gsvolu("C02F", "BOX", idAlu1, bpar, 3); - -// gMC->Gspos("C01F",1,"C01G", +iChamber->RInner()+bpar[0] , 0, 0, -// idrotm[1100],"ONLY"); -// gMC->Gspos("C01F",2,"C01G", -iChamber->RInner()-bpar[0] , 0, 0, -// idrotm[1100],"ONLY"); -// gMC->Gspos("C01F",3,"C01G", 0, +iChamber->RInner()+bpar[0] , 0, -// idrotm[1101],"ONLY"); -// gMC->Gspos("C01F",4,"C01G", 0, -iChamber->RInner()-bpar[0] , 0, -// idrotm[1101],"ONLY"); - -// gMC->Gspos("C02F",1,"C02G", +iChamber->RInner()+bpar[0] , 0, 0, -// idrotm[1100],"ONLY"); -// gMC->Gspos("C02F",2,"C02G", -iChamber->RInner()-bpar[0] , 0, 0, -// idrotm[1100],"ONLY"); -// gMC->Gspos("C02F",3,"C02G", 0, +iChamber->RInner()+bpar[0] , 0, -// idrotm[1101],"ONLY"); -// gMC->Gspos("C02F",4,"C02G", 0, -iChamber->RInner()-bpar[0] , 0, -// idrotm[1101],"ONLY"); -// } - } - if (stations[1]) { - -//******************************************************************** -// Station 2 ** -//******************************************************************** - // indices 1 and 2 for first and second chambers in the station - // iChamber (first chamber) kept for other quanties than Z, - // assumed to be the same in both chambers - iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[2]; - iChamber2 =(AliMUONChamber*) (*fChambers)[3]; - zpos1=iChamber1->Z(); - zpos2=iChamber2->Z(); - dstation = zpos2 - zpos1; - // DGas and DAlu not changed from standard values - zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; - -// -// Mother volume - tpar[0] = iChamber->RInner()-dframep; - tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); - tpar[2] = dstation/5; - - gMC->Gsvolu("C03M", "TUBE", idAir, tpar, 3); - gMC->Gsvolu("C04M", "TUBE", idAir, tpar, 3); - gMC->Gspos("C03M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); - gMC->Gspos("C04M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); - -// // Aluminium frames -// // Outer frames -// pgpar[0] = 360/12/2; -// pgpar[1] = 360.; -// pgpar[2] = 12.; -// pgpar[3] = 2; -// pgpar[4] = -dframez/2; -// pgpar[5] = iChamber->ROuter(); -// pgpar[6] = pgpar[5]+dframep; -// pgpar[7] = +dframez/2; -// pgpar[8] = pgpar[5]; -// pgpar[9] = pgpar[6]; -// gMC->Gsvolu("C03O", "PGON", idAlu1, pgpar, 10); -// gMC->Gsvolu("C04O", "PGON", idAlu1, pgpar, 10); -// gMC->Gspos("C03O",1,"C03M", 0.,0.,-zfpos, 0,"ONLY"); -// gMC->Gspos("C03O",2,"C03M", 0.,0.,+zfpos, 0,"ONLY"); -// gMC->Gspos("C04O",1,"C04M", 0.,0.,-zfpos, 0,"ONLY"); -// gMC->Gspos("C04O",2,"C04M", 0.,0.,+zfpos, 0,"ONLY"); -// // -// // Inner frame -// tpar[0]= iChamber->RInner()-dframep; -// tpar[1]= iChamber->RInner(); -// tpar[2]= dframez/2; -// gMC->Gsvolu("C03I", "TUBE", idAlu1, tpar, 3); -// gMC->Gsvolu("C04I", "TUBE", idAlu1, tpar, 3); - -// gMC->Gspos("C03I",1,"C03M", 0.,0.,-zfpos, 0,"ONLY"); -// gMC->Gspos("C03I",2,"C03M", 0.,0.,+zfpos, 0,"ONLY"); -// gMC->Gspos("C04I",1,"C04M", 0.,0.,-zfpos, 0,"ONLY"); -// gMC->Gspos("C04I",2,"C04M", 0.,0.,+zfpos, 0,"ONLY"); -// -// Frame Crosses - if (frameCrosses) { - // outside gas - // security for inside mother volume - bpar[0] = (iChamber->ROuter() - iChamber->RInner()) - * TMath::Cos(TMath::ASin(dframep1 / - (iChamber->ROuter() - iChamber->RInner()))) - / 2.0; - bpar[1] = dframep1/2; - // total thickness will be (4 * bpar[2]) for each chamber, - // which has to be equal to (2 * dframez) - DAlu - bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0; - gMC->Gsvolu("C03B", "BOX", idAlu1, bpar, 3); - gMC->Gsvolu("C04B", "BOX", idAlu1, bpar, 3); - - gMC->Gspos("C03B",1,"C03M", +iChamber->RInner()+bpar[0] , 0,-zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C03B",2,"C03M", -iChamber->RInner()-bpar[0] , 0,-zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C03B",3,"C03M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, - idrotm[1101],"ONLY"); - gMC->Gspos("C03B",4,"C03M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, - idrotm[1101],"ONLY"); - gMC->Gspos("C03B",5,"C03M", +iChamber->RInner()+bpar[0] , 0,+zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C03B",6,"C03M", -iChamber->RInner()-bpar[0] , 0,+zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C03B",7,"C03M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, - idrotm[1101],"ONLY"); - gMC->Gspos("C03B",8,"C03M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, - idrotm[1101],"ONLY"); - - gMC->Gspos("C04B",1,"C04M", +iChamber->RInner()+bpar[0] , 0,-zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C04B",2,"C04M", -iChamber->RInner()-bpar[0] , 0,-zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C04B",3,"C04M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, - idrotm[1101],"ONLY"); - gMC->Gspos("C04B",4,"C04M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, - idrotm[1101],"ONLY"); - gMC->Gspos("C04B",5,"C04M", +iChamber->RInner()+bpar[0] , 0,+zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C04B",6,"C04M", -iChamber->RInner()-bpar[0] , 0,+zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C04B",7,"C04M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, - idrotm[1101],"ONLY"); - gMC->Gspos("C04B",8,"C04M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, - idrotm[1101],"ONLY"); - } -// -// Chamber Material represented by Alu sheet - tpar[0]= iChamber->RInner(); - tpar[1]= iChamber->ROuter(); - tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2; - gMC->Gsvolu("C03A", "TUBE", idAlu2, tpar, 3); - gMC->Gsvolu("C04A", "TUBE", idAlu2, tpar, 3); - gMC->Gspos("C03A", 1, "C03M", 0., 0., 0., 0, "ONLY"); - gMC->Gspos("C04A", 1, "C04M", 0., 0., 0., 0, "ONLY"); -// -// Sensitive volumes - // tpar[2] = iChamber->DGas(); - tpar[2] = iChamber->DGas()/2; - gMC->Gsvolu("C03G", "TUBE", idGas, tpar, 3); - gMC->Gsvolu("C04G", "TUBE", idGas, tpar, 3); - gMC->Gspos("C03G", 1, "C03A", 0., 0., 0., 0, "ONLY"); - gMC->Gspos("C04G", 1, "C04A", 0., 0., 0., 0, "ONLY"); -// -// Frame Crosses to be placed inside gas - // NONE: chambers are sensitive everywhere -// if (frameCrosses) { - -// dr = (iChamber->ROuter() - iChamber->RInner()); -// bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2; -// bpar[1] = dframep1/2; -// bpar[2] = iChamber->DGas()/2; -// gMC->Gsvolu("C03F", "BOX", idAlu1, bpar, 3); -// gMC->Gsvolu("C04F", "BOX", idAlu1, bpar, 3); - -// gMC->Gspos("C03F",1,"C03G", +iChamber->RInner()+bpar[0] , 0, 0, -// idrotm[1100],"ONLY"); -// gMC->Gspos("C03F",2,"C03G", -iChamber->RInner()-bpar[0] , 0, 0, -// idrotm[1100],"ONLY"); -// gMC->Gspos("C03F",3,"C03G", 0, +iChamber->RInner()+bpar[0] , 0, -// idrotm[1101],"ONLY"); -// gMC->Gspos("C03F",4,"C03G", 0, -iChamber->RInner()-bpar[0] , 0, -// idrotm[1101],"ONLY"); - -// gMC->Gspos("C04F",1,"C04G", +iChamber->RInner()+bpar[0] , 0, 0, -// idrotm[1100],"ONLY"); -// gMC->Gspos("C04F",2,"C04G", -iChamber->RInner()-bpar[0] , 0, 0, -// idrotm[1100],"ONLY"); -// gMC->Gspos("C04F",3,"C04G", 0, +iChamber->RInner()+bpar[0] , 0, -// idrotm[1101],"ONLY"); -// gMC->Gspos("C04F",4,"C04G", 0, -iChamber->RInner()-bpar[0] , 0, -// idrotm[1101],"ONLY"); -// } - } - // define the id of tracking media: - Int_t idCopper = idtmed[1110]; - Int_t idGlass = idtmed[1111]; - Int_t idCarbon = idtmed[1112]; - Int_t idRoha = idtmed[1113]; - - // sensitive area: 40*40 cm**2 - const Float_t sensLength = 40.; - const Float_t sensHeight = 40.; - const Float_t sensWidth = 0.5; // according to TDR fig 2.120 - const Int_t sensMaterial = idGas; - const Float_t yOverlap = 1.5; - - // PCB dimensions in cm; width: 30 mum copper - const Float_t pcbLength = sensLength; - const Float_t pcbHeight = 60.; - const Float_t pcbWidth = 0.003; - const Int_t pcbMaterial = idCopper; - - // Insulating material: 200 mum glass fiber glued to pcb - const Float_t insuLength = pcbLength; - const Float_t insuHeight = pcbHeight; - const Float_t insuWidth = 0.020; - const Int_t insuMaterial = idGlass; - - // Carbon fiber panels: 200mum carbon/epoxy skin - const Float_t panelLength = sensLength; - const Float_t panelHeight = sensHeight; - const Float_t panelWidth = 0.020; - const Int_t panelMaterial = idCarbon; - - // rohacell between the two carbon panels - const Float_t rohaLength = sensLength; - const Float_t rohaHeight = sensHeight; - const Float_t rohaWidth = 0.5; - const Int_t rohaMaterial = idRoha; - - // Frame around the slat: 2 sticks along length,2 along height - // H: the horizontal ones - const Float_t hFrameLength = pcbLength; - const Float_t hFrameHeight = 1.5; - const Float_t hFrameWidth = sensWidth; - const Int_t hFrameMaterial = idGlass; - - // V: the vertical ones - const Float_t vFrameLength = 4.0; - const Float_t vFrameHeight = sensHeight + hFrameHeight; - const Float_t vFrameWidth = sensWidth; - const Int_t vFrameMaterial = idGlass; - - // B: the horizontal border filled with rohacell - const Float_t bFrameLength = hFrameLength; - const Float_t bFrameHeight = (pcbHeight - sensHeight)/2. - hFrameHeight; - const Float_t bFrameWidth = hFrameWidth; - const Int_t bFrameMaterial = idRoha; - - // NULOC: 30 mum copper + 200 mum vetronite (same radiation length as 14mum copper) - const Float_t nulocLength = 2.5; - const Float_t nulocHeight = 7.5; - const Float_t nulocWidth = 0.0030 + 0.0014; // equivalent copper width of vetronite; - const Int_t nulocMaterial = idCopper; - - const Float_t slatHeight = pcbHeight; - const Float_t slatWidth = sensWidth + 2.*(pcbWidth + insuWidth + - 2.* panelWidth + rohaWidth); - const Int_t slatMaterial = idAir; - const Float_t dSlatLength = vFrameLength; // border on left and right - - Float_t spar[3]; - Int_t i, j; - - // the panel volume contains the rohacell - - Float_t twidth = 2 * panelWidth + rohaWidth; - Float_t panelpar[3] = { panelLength/2., panelHeight/2., twidth/2. }; - Float_t rohapar[3] = { rohaLength/2., rohaHeight/2., rohaWidth/2. }; - - // insulating material contains PCB-> gas-> 2 borders filled with rohacell - - twidth = 2*(insuWidth + pcbWidth) + sensWidth; - Float_t insupar[3] = { insuLength/2., insuHeight/2., twidth/2. }; - twidth -= 2 * insuWidth; - Float_t pcbpar[3] = { pcbLength/2., pcbHeight/2., twidth/2. }; - Float_t senspar[3] = { sensLength/2., sensHeight/2., sensWidth/2. }; - Float_t theight = 2*hFrameHeight + sensHeight; - Float_t hFramepar[3]={hFrameLength/2., theight/2., hFrameWidth/2.}; - Float_t bFramepar[3]={bFrameLength/2., bFrameHeight/2., bFrameWidth/2.}; - Float_t vFramepar[3]={vFrameLength/2., vFrameHeight/2., vFrameWidth/2.}; - Float_t nulocpar[3]={nulocLength/2., nulocHeight/2., nulocWidth/2.}; - Float_t xx; - Float_t xxmax = (bFrameLength - nulocLength)/2.; - Int_t index=0; - - if (stations[2]) { - -//******************************************************************** -// Station 3 ** -//******************************************************************** - // indices 1 and 2 for first and second chambers in the station - // iChamber (first chamber) kept for other quanties than Z, - // assumed to be the same in both chambers - iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[4]; - iChamber2 =(AliMUONChamber*) (*fChambers)[5]; - zpos1=iChamber1->Z(); - zpos2=iChamber2->Z(); - dstation = zpos2 - zpos1; - -// zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more -// -// Mother volume - tpar[0] = iChamber->RInner()-dframep; - tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); - tpar[2] = dstation/5; - gMC->Gsvolu("C05M", "TUBE", idAir, tpar, 3); - gMC->Gsvolu("C06M", "TUBE", idAir, tpar, 3); - gMC->Gspos("C05M", 1, "ALIC", 0., 0., zpos1 , 0, "MANY"); - gMC->Gspos("C06M", 1, "ALIC", 0., 0., zpos2 , 0, "MANY"); - - // volumes for slat geometry (xx=5,..,10 chamber id): - // Sxx0 Sxx1 Sxx2 Sxx3 --> Slat Mother volumes - // SxxG --> Sensitive volume (gas) - // SxxP --> PCB (copper) - // SxxI --> Insulator (vetronite) - // SxxC --> Carbon panel - // SxxR --> Rohacell - // SxxH, SxxV --> Horizontal and Vertical frames (vetronite) - // SB5x --> Volumes for the 35 cm long PCB - // slat dimensions: slat is a MOTHER volume!!! made of air - - // only for chamber 5: slat 1 has a PCB shorter by 5cm! - - Float_t tlength = 35.; - Float_t panelpar2[3] = { tlength/2., panelpar[1], panelpar[2]}; - Float_t rohapar2[3] = { tlength/2., rohapar[1], rohapar[2]}; - Float_t insupar2[3] = { tlength/2., insupar[1], insupar[2]}; - Float_t pcbpar2[3] = { tlength/2., pcbpar[1], pcbpar[2]}; - Float_t senspar2[3] = { tlength/2., senspar[1], senspar[2]}; - Float_t hFramepar2[3] = { tlength/2., hFramepar[1], hFramepar[2]}; - Float_t bFramepar2[3] = { tlength/2., bFramepar[1], bFramepar[2]}; - - const Int_t nSlats3 = 5; // number of slats per quadrant - const Int_t nPCB3[nSlats3] = {3,3,4,3,2}; // n PCB per slat - const Float_t xpos3[nSlats3] = {31., 40., 0., 0., 0.}; - Float_t slatLength3[nSlats3]; - - // create and position the slat (mother) volumes - - char volNam5[5]; - char volNam6[5]; - Float_t xSlat3; - - Float_t spar2[3]; - for (i = 0; iGsvolu(volNam5,"BOX",slatMaterial,spar2,3); - gMC->Gspos(volNam5, i*4+1,"C05M", xSlat32, ySlat31, zSlat+2.*dzCh3, 0, "ONLY"); - gMC->Gspos(volNam5, i*4+2,"C05M",-xSlat32, ySlat31, zSlat-2.*dzCh3, 0, "ONLY"); - - if (i>0) { - gMC->Gspos(volNam5, i*4+3,"C05M", xSlat32, ySlat32, zSlat+2.*dzCh3, 0, "ONLY"); - gMC->Gspos(volNam5, i*4+4,"C05M",-xSlat32, ySlat32, zSlat-2.*dzCh3, 0, "ONLY"); - } - sprintf(volNam6,"S06%d",i); - gMC->Gsvolu(volNam6,"BOX",slatMaterial,spar,3); - gMC->Gspos(volNam6, i*4+1,"C06M", xSlat3, ySlat31, zSlat+2.*dzCh3, 0, "ONLY"); - gMC->Gspos(volNam6, i*4+2,"C06M",-xSlat3, ySlat31, zSlat-2.*dzCh3, 0, "ONLY"); - if (i>0) { - gMC->Gspos(volNam6, i*4+3,"C06M", xSlat3, ySlat32, zSlat+2.*dzCh3, 0, "ONLY"); - gMC->Gspos(volNam6, i*4+4,"C06M",-xSlat3, ySlat32, zSlat-2.*dzCh3, 0, "ONLY"); - } - } - - // create the panel volume - - gMC->Gsvolu("S05C","BOX",panelMaterial,panelpar,3); - gMC->Gsvolu("SB5C","BOX",panelMaterial,panelpar2,3); - gMC->Gsvolu("S06C","BOX",panelMaterial,panelpar,3); +//_____________________________________________________________________________ +AliMUONv1::AliMUONv1(const AliMUONv1& right) + : AliMUON(right) +{ + // copy constructor (not implemented) - // create the rohacell volume + Fatal("AliMUONv1", "Copy constructor not provided."); +} - gMC->Gsvolu("S05R","BOX",rohaMaterial,rohapar,3); - gMC->Gsvolu("SB5R","BOX",rohaMaterial,rohapar2,3); - gMC->Gsvolu("S06R","BOX",rohaMaterial,rohapar,3); +//___________________________________________ +AliMUONv1::~AliMUONv1() +{ +// Destructor - // create the insulating material volume + delete fGlobalTransformation; +} - gMC->Gsvolu("S05I","BOX",insuMaterial,insupar,3); - gMC->Gsvolu("SB5I","BOX",insuMaterial,insupar2,3); - gMC->Gsvolu("S06I","BOX",insuMaterial,insupar,3); +//_____________________________________________________________________________ +AliMUONv1& AliMUONv1::operator=(const AliMUONv1& right) +{ + // assignement operator (not implemented) - // create the PCB volume + // check assignement to self + if (this == &right) return *this; - gMC->Gsvolu("S05P","BOX",pcbMaterial,pcbpar,3); - gMC->Gsvolu("SB5P","BOX",pcbMaterial,pcbpar2,3); - gMC->Gsvolu("S06P","BOX",pcbMaterial,pcbpar,3); - - // create the sensitive volumes, - gMC->Gsvolu("S05G","BOX",sensMaterial,0,0); - gMC->Gsvolu("S06G","BOX",sensMaterial,0,0); - - - // create the vertical frame volume - - gMC->Gsvolu("S05V","BOX",vFrameMaterial,vFramepar,3); - gMC->Gsvolu("S06V","BOX",vFrameMaterial,vFramepar,3); - - // create the horizontal frame volume - - gMC->Gsvolu("S05H","BOX",hFrameMaterial,hFramepar,3); - gMC->Gsvolu("SB5H","BOX",hFrameMaterial,hFramepar2,3); - gMC->Gsvolu("S06H","BOX",hFrameMaterial,hFramepar,3); - - // create the horizontal border volume - - gMC->Gsvolu("S05B","BOX",bFrameMaterial,bFramepar,3); - gMC->Gsvolu("SB5B","BOX",bFrameMaterial,bFramepar2,3); - gMC->Gsvolu("S06B","BOX",bFrameMaterial,bFramepar,3); - - index=0; - for (i = 0; iGspos("S05V",2*i-1,volNam5, xvFrame2, 0., 0. , 0, "ONLY"); - gMC->Gspos("S05V",2*i ,volNam5,-xvFrame2, 0., 0. , 0, "ONLY"); - gMC->Gspos("S06V",2*i-1,volNam6, xvFrame, 0., 0. , 0, "ONLY"); - gMC->Gspos("S06V",2*i ,volNam6,-xvFrame, 0., 0. , 0, "ONLY"); - } - // position the panels and the insulating material - for (j=0; jGspos("SB5C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY"); - gMC->Gspos("SB5C",2*index ,volNam5, xx, 0.,-zPanel , 0, "ONLY"); - gMC->Gspos("SB5I",index ,volNam5, xx, 0., 0 , 0, "ONLY"); - } - else if ( (i==1 || i==2) && j < nPCB3[i]-1) { - gMC->Gspos("S05C",2*index-1,volNam5, xx2, 0., zPanel , 0, "ONLY"); - gMC->Gspos("S05C",2*index ,volNam5, xx2, 0.,-zPanel , 0, "ONLY"); - gMC->Gspos("S05I",index ,volNam5, xx2, 0., 0 , 0, "ONLY"); - } - else { - gMC->Gspos("S05C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY"); - gMC->Gspos("S05C",2*index ,volNam5, xx, 0.,-zPanel , 0, "ONLY"); - gMC->Gspos("S05I",index ,volNam5, xx, 0., 0 , 0, "ONLY"); - } - gMC->Gspos("S06C",2*index-1,volNam6, xx, 0., zPanel , 0, "ONLY"); - gMC->Gspos("S06C",2*index ,volNam6, xx, 0.,-zPanel , 0, "ONLY"); - gMC->Gspos("S06I",index,volNam6, xx, 0., 0 , 0, "ONLY"); - } - } - - // position the rohacell volume inside the panel volume - gMC->Gspos("S05R",1,"S05C",0.,0.,0.,0,"ONLY"); - gMC->Gspos("SB5R",1,"SB5C",0.,0.,0.,0,"ONLY"); - gMC->Gspos("S06R",1,"S06C",0.,0.,0.,0,"ONLY"); - - // position the PCB volume inside the insulating material volume - gMC->Gspos("S05P",1,"S05I",0.,0.,0.,0,"ONLY"); - gMC->Gspos("SB5P",1,"SB5I",0.,0.,0.,0,"ONLY"); - gMC->Gspos("S06P",1,"S06I",0.,0.,0.,0,"ONLY"); - // position the horizontal frame volume inside the PCB volume - gMC->Gspos("S05H",1,"S05P",0.,0.,0.,0,"ONLY"); - gMC->Gspos("SB5H",1,"SB5P",0.,0.,0.,0,"ONLY"); - gMC->Gspos("S06H",1,"S06P",0.,0.,0.,0,"ONLY"); - // position the sensitive volume inside the horizontal frame volume - gMC->Gsposp("S05G",1,"S05H",0.,0.,0.,0,"ONLY",senspar,3); - gMC->Gsposp("S05G",1,"SB5H",0.,0.,0.,0,"ONLY",senspar2,3); - gMC->Gsposp("S06G",1,"S06H",0.,0.,0.,0,"ONLY",senspar,3); - // position the border volumes inside the PCB volume - Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; - gMC->Gspos("S05B",1,"S05P",0., yborder,0.,0,"ONLY"); - gMC->Gspos("S05B",2,"S05P",0.,-yborder,0.,0,"ONLY"); - gMC->Gspos("SB5B",1,"SB5P",0., yborder,0.,0,"ONLY"); - gMC->Gspos("SB5B",2,"SB5P",0.,-yborder,0.,0,"ONLY"); - gMC->Gspos("S06B",1,"S06P",0., yborder,0.,0,"ONLY"); - gMC->Gspos("S06B",2,"S06P",0.,-yborder,0.,0,"ONLY"); - - // create the NULOC volume and position it in the horizontal frame - - gMC->Gsvolu("S05N","BOX",nulocMaterial,nulocpar,3); - gMC->Gsvolu("S06N","BOX",nulocMaterial,nulocpar,3); - index = 0; - Float_t xxmax2 = xxmax - 5./2.; - for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) { - index++; - gMC->Gspos("S05N",2*index-1,"S05B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); - gMC->Gspos("S05N",2*index ,"S05B", xx, 0., bFrameWidth/4., 0, "ONLY"); - if (xx > -xxmax2 && xx< xxmax2) { - gMC->Gspos("S05N",2*index-1,"SB5B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); - gMC->Gspos("S05N",2*index ,"SB5B", xx, 0., bFrameWidth/4., 0, "ONLY"); - } - gMC->Gspos("S06N",2*index-1,"S06B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); - gMC->Gspos("S06N",2*index ,"S06B", xx, 0., bFrameWidth/4., 0, "ONLY"); - } - - // position the volumes approximating the circular section of the pipe - Float_t yoffs = sensHeight/2. - yOverlap; - Float_t epsilon = 0.001; - Int_t ndiv=6; - Float_t divpar[3]; - Double_t dydiv= sensHeight/ndiv; - Double_t ydiv = yoffs -dydiv; - Int_t imax=0; - imax = 1; - Float_t rmin = 33.; - Float_t z1 = spar[2], z2=2*spar[2]*1.01; - for (Int_t idiv=0;idivGsposp("S05G",imax+4*idiv+1,"C05M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S06G",imax+4*idiv+1,"C06M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S05G",imax+4*idiv+2,"C05M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S06G",imax+4*idiv+2,"C06M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S05G",imax+4*idiv+3,"C05M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S06G",imax+4*idiv+3,"C06M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S05G",imax+4*idiv+4,"C05M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S06G",imax+4*idiv+4,"C06M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); - } - } - + Fatal("operator =", "Assignement operator not provided."); + + return *this; +} - if (stations[3]) { - -//******************************************************************** -// Station 4 ** -//******************************************************************** - // indices 1 and 2 for first and second chambers in the station - // iChamber (first chamber) kept for other quanties than Z, - // assumed to be the same in both chambers - iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[6]; - iChamber2 =(AliMUONChamber*) (*fChambers)[7]; - zpos1=iChamber1->Z(); - zpos2=iChamber2->Z(); - dstation = zpos2 - zpos1; -// zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more - +//__________________________________________________ +void AliMUONv1::CreateGeometry() +{ // -// Mother volume - tpar[0] = iChamber->RInner()-dframep; - tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); - tpar[2] = dstation/5; - - gMC->Gsvolu("C07M", "TUBE", idAir, tpar, 3); - gMC->Gsvolu("C08M", "TUBE", idAir, tpar, 3); - gMC->Gspos("C07M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); - gMC->Gspos("C08M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); - - - const Int_t nSlats4 = 6; // number of slats per quadrant - const Int_t nPCB4[nSlats4] = {4,4,5,5,4,3}; // n PCB per slat - const Float_t xpos4[nSlats4] = {38.5, 40., 0., 0., 0., 0.}; - Float_t slatLength4[nSlats4]; - - // create and position the slat (mother) volumes - - char volNam7[5]; - char volNam8[5]; - Float_t xSlat4; - Float_t ySlat4; - - for (i = 0; iGsvolu(volNam7,"BOX",slatMaterial,spar,3); - gMC->Gspos(volNam7, i*4+1,"C07M", xSlat4, ySlat4, zSlat+2.*dzCh4, 0, "ONLY"); - gMC->Gspos(volNam7, i*4+2,"C07M",-xSlat4, ySlat4, zSlat-2.*dzCh4, 0, "ONLY"); - if (i>0) { - gMC->Gspos(volNam7, i*4+3,"C07M", xSlat4,-ySlat4, zSlat+2.*dzCh4, 0, "ONLY"); - gMC->Gspos(volNam7, i*4+4,"C07M",-xSlat4,-ySlat4, zSlat-2.*dzCh4, 0, "ONLY"); - } - sprintf(volNam8,"S08%d",i); - gMC->Gsvolu(volNam8,"BOX",slatMaterial,spar,3); - gMC->Gspos(volNam8, i*4+1,"C08M", xSlat4, ySlat4, zSlat+2.*dzCh4, 0, "ONLY"); - gMC->Gspos(volNam8, i*4+2,"C08M",-xSlat4, ySlat4, zSlat-2.*dzCh4, 0, "ONLY"); - if (i>0) { - gMC->Gspos(volNam8, i*4+3,"C08M", xSlat4,-ySlat4, zSlat+2.*dzCh4, 0, "ONLY"); - gMC->Gspos(volNam8, i*4+4,"C08M",-xSlat4,-ySlat4, zSlat-2.*dzCh4, 0, "ONLY"); - } - } - - - // create the panel volume - - gMC->Gsvolu("S07C","BOX",panelMaterial,panelpar,3); - gMC->Gsvolu("S08C","BOX",panelMaterial,panelpar,3); - - // create the rohacell volume - - gMC->Gsvolu("S07R","BOX",rohaMaterial,rohapar,3); - gMC->Gsvolu("S08R","BOX",rohaMaterial,rohapar,3); - - // create the insulating material volume - - gMC->Gsvolu("S07I","BOX",insuMaterial,insupar,3); - gMC->Gsvolu("S08I","BOX",insuMaterial,insupar,3); - - // create the PCB volume - - gMC->Gsvolu("S07P","BOX",pcbMaterial,pcbpar,3); - gMC->Gsvolu("S08P","BOX",pcbMaterial,pcbpar,3); - - // create the sensitive volumes, - - gMC->Gsvolu("S07G","BOX",sensMaterial,0,0); - gMC->Gsvolu("S08G","BOX",sensMaterial,0,0); - - // create the vertical frame volume - - gMC->Gsvolu("S07V","BOX",vFrameMaterial,vFramepar,3); - gMC->Gsvolu("S08V","BOX",vFrameMaterial,vFramepar,3); - - // create the horizontal frame volume - - gMC->Gsvolu("S07H","BOX",hFrameMaterial,hFramepar,3); - gMC->Gsvolu("S08H","BOX",hFrameMaterial,hFramepar,3); - - // create the horizontal border volume - - gMC->Gsvolu("S07B","BOX",bFrameMaterial,bFramepar,3); - gMC->Gsvolu("S08B","BOX",bFrameMaterial,bFramepar,3); - - index=0; - for (i = 0; iGspos("S07V",2*i-1,volNam7, xvFrame, 0., 0. , 0, "ONLY"); - gMC->Gspos("S07V",2*i ,volNam7,-xvFrame, 0., 0. , 0, "ONLY"); - gMC->Gspos("S08V",2*i-1,volNam8, xvFrame, 0., 0. , 0, "ONLY"); - gMC->Gspos("S08V",2*i ,volNam8,-xvFrame, 0., 0. , 0, "ONLY"); - } - // position the panels and the insulating material - for (j=0; jGspos("S07C",2*index-1,volNam7, xx, 0., zPanel , 0, "ONLY"); - gMC->Gspos("S07C",2*index ,volNam7, xx, 0.,-zPanel , 0, "ONLY"); - gMC->Gspos("S08C",2*index-1,volNam8, xx, 0., zPanel , 0, "ONLY"); - gMC->Gspos("S08C",2*index ,volNam8, xx, 0.,-zPanel , 0, "ONLY"); - - gMC->Gspos("S07I",index,volNam7, xx, 0., 0 , 0, "ONLY"); - gMC->Gspos("S08I",index,volNam8, xx, 0., 0 , 0, "ONLY"); - } - } - - // position the rohacell volume inside the panel volume - gMC->Gspos("S07R",1,"S07C",0.,0.,0.,0,"ONLY"); - gMC->Gspos("S08R",1,"S08C",0.,0.,0.,0,"ONLY"); - - // position the PCB volume inside the insulating material volume - gMC->Gspos("S07P",1,"S07I",0.,0.,0.,0,"ONLY"); - gMC->Gspos("S08P",1,"S08I",0.,0.,0.,0,"ONLY"); - // position the horizontal frame volume inside the PCB volume - gMC->Gspos("S07H",1,"S07P",0.,0.,0.,0,"ONLY"); - gMC->Gspos("S08H",1,"S08P",0.,0.,0.,0,"ONLY"); - // position the sensitive volume inside the horizontal frame volume - gMC->Gsposp("S07G",1,"S07H",0.,0.,0.,0,"ONLY",senspar,3); - gMC->Gsposp("S08G",1,"S08H",0.,0.,0.,0,"ONLY",senspar,3); - // position the border volumes inside the PCB volume - Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; - gMC->Gspos("S07B",1,"S07P",0., yborder,0.,0,"ONLY"); - gMC->Gspos("S07B",2,"S07P",0.,-yborder,0.,0,"ONLY"); - gMC->Gspos("S08B",1,"S08P",0., yborder,0.,0,"ONLY"); - gMC->Gspos("S08B",2,"S08P",0.,-yborder,0.,0,"ONLY"); - - // create the NULOC volume and position it in the horizontal frame - - gMC->Gsvolu("S07N","BOX",nulocMaterial,nulocpar,3); - gMC->Gsvolu("S08N","BOX",nulocMaterial,nulocpar,3); - index = 0; - for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) { - index++; - gMC->Gspos("S07N",2*index-1,"S07B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); - gMC->Gspos("S07N",2*index ,"S07B", xx, 0., bFrameWidth/4., 0, "ONLY"); - gMC->Gspos("S08N",2*index-1,"S08B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); - gMC->Gspos("S08N",2*index ,"S08B", xx, 0., bFrameWidth/4., 0, "ONLY"); - } - - // position the volumes approximating the circular section of the pipe - Float_t yoffs = sensHeight/2. - yOverlap; - Float_t epsilon = 0.001; - Int_t ndiv=6; - Float_t divpar[3]; - Double_t dydiv= sensHeight/ndiv; - Double_t ydiv = yoffs -dydiv; - Int_t imax=0; - imax = 1; - Float_t rmin = 40.; - Float_t z1 = -spar[2], z2=2*spar[2]*1.01; - for (Int_t idiv=0;idivGsposp("S07G",imax+4*idiv+1,"C07M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S08G",imax+4*idiv+1,"C08M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S07G",imax+4*idiv+2,"C07M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S08G",imax+4*idiv+2,"C08M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S07G",imax+4*idiv+3,"C07M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S08G",imax+4*idiv+3,"C08M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S07G",imax+4*idiv+4,"C07M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S08G",imax+4*idiv+4,"C08M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); - } - - - - - - } - - if (stations[4]) { - - -//******************************************************************** -// Station 5 ** -//******************************************************************** - // indices 1 and 2 for first and second chambers in the station - // iChamber (first chamber) kept for other quanties than Z, - // assumed to be the same in both chambers - iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[8]; - iChamber2 =(AliMUONChamber*) (*fChambers)[9]; - zpos1=iChamber1->Z(); - zpos2=iChamber2->Z(); - dstation = zpos2 - zpos1; -// zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more - +// Construct geometry using geometry builders. // -// Mother volume - tpar[0] = iChamber->RInner()-dframep; - tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); - tpar[2] = dstation/5.; - - gMC->Gsvolu("C09M", "TUBE", idAir, tpar, 3); - gMC->Gsvolu("C10M", "TUBE", idAir, tpar, 3); - gMC->Gspos("C09M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); - gMC->Gspos("C10M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); - - - const Int_t nSlats5 = 7; // number of slats per quadrant - const Int_t nPCB5[nSlats5] = {5,5,6,6,5,4,3}; // n PCB per slat - const Float_t xpos5[nSlats5] = {38.5, 40., 0., 0., 0., 0., 0.}; - Float_t slatLength5[nSlats5]; - char volNam9[5]; - char volNam10[5]; - Float_t xSlat5; - Float_t ySlat5; - - for (i = 0; iGsvolu(volNam9,"BOX",slatMaterial,spar,3); - gMC->Gspos(volNam9, i*4+1,"C09M", xSlat5, ySlat5, zSlat+2.*dzCh5, 0, "ONLY"); - gMC->Gspos(volNam9, i*4+2,"C09M",-xSlat5, ySlat5, zSlat-2.*dzCh5, 0, "ONLY"); - if (i>0) { - gMC->Gspos(volNam9, i*4+3,"C09M", xSlat5,-ySlat5, zSlat+2.*dzCh5, 0, "ONLY"); - gMC->Gspos(volNam9, i*4+4,"C09M",-xSlat5,-ySlat5, zSlat-2.*dzCh5, 0, "ONLY"); - } - sprintf(volNam10,"S10%d",i); - gMC->Gsvolu(volNam10,"BOX",slatMaterial,spar,3); - gMC->Gspos(volNam10, i*4+1,"C10M", xSlat5, ySlat5, zSlat+2.*dzCh5, 0, "ONLY"); - gMC->Gspos(volNam10, i*4+2,"C10M",-xSlat5, ySlat5, zSlat-2.*dzCh5, 0, "ONLY"); - if (i>0) { - gMC->Gspos(volNam10, i*4+3,"C10M", xSlat5,-ySlat5, zSlat+2.*dzCh5, 0, "ONLY"); - gMC->Gspos(volNam10, i*4+4,"C10M",-xSlat5,-ySlat5, zSlat-2.*dzCh5, 0, "ONLY"); - } - } - - // create the panel volume - - gMC->Gsvolu("S09C","BOX",panelMaterial,panelpar,3); - gMC->Gsvolu("S10C","BOX",panelMaterial,panelpar,3); - - // create the rohacell volume - - gMC->Gsvolu("S09R","BOX",rohaMaterial,rohapar,3); - gMC->Gsvolu("S10R","BOX",rohaMaterial,rohapar,3); - - // create the insulating material volume - - gMC->Gsvolu("S09I","BOX",insuMaterial,insupar,3); - gMC->Gsvolu("S10I","BOX",insuMaterial,insupar,3); - - // create the PCB volume - - gMC->Gsvolu("S09P","BOX",pcbMaterial,pcbpar,3); - gMC->Gsvolu("S10P","BOX",pcbMaterial,pcbpar,3); - - // create the sensitive volumes, - - gMC->Gsvolu("S09G","BOX",sensMaterial,0,0); - gMC->Gsvolu("S10G","BOX",sensMaterial,0,0); - - // create the vertical frame volume - - gMC->Gsvolu("S09V","BOX",vFrameMaterial,vFramepar,3); - gMC->Gsvolu("S10V","BOX",vFrameMaterial,vFramepar,3); - - // create the horizontal frame volume - - gMC->Gsvolu("S09H","BOX",hFrameMaterial,hFramepar,3); - gMC->Gsvolu("S10H","BOX",hFrameMaterial,hFramepar,3); - - // create the horizontal border volume - - gMC->Gsvolu("S09B","BOX",bFrameMaterial,bFramepar,3); - gMC->Gsvolu("S10B","BOX",bFrameMaterial,bFramepar,3); - - index=0; - for (i = 0; iGspos("S09V",2*i-1,volNam9, xvFrame, 0., 0. , 0, "ONLY"); - gMC->Gspos("S09V",2*i ,volNam9,-xvFrame, 0., 0. , 0, "ONLY"); - gMC->Gspos("S10V",2*i-1,volNam10, xvFrame, 0., 0. , 0, "ONLY"); - gMC->Gspos("S10V",2*i ,volNam10,-xvFrame, 0., 0. , 0, "ONLY"); - } - - // position the panels and the insulating material - for (j=0; jGspos("S09C",2*index-1,volNam9, xx, 0., zPanel , 0, "ONLY"); - gMC->Gspos("S09C",2*index ,volNam9, xx, 0.,-zPanel , 0, "ONLY"); - gMC->Gspos("S10C",2*index-1,volNam10, xx, 0., zPanel , 0, "ONLY"); - gMC->Gspos("S10C",2*index ,volNam10, xx, 0.,-zPanel , 0, "ONLY"); - - gMC->Gspos("S09I",index,volNam9, xx, 0., 0 , 0, "ONLY"); - gMC->Gspos("S10I",index,volNam10, xx, 0., 0 , 0, "ONLY"); - } - } - - // position the rohacell volume inside the panel volume - gMC->Gspos("S09R",1,"S09C",0.,0.,0.,0,"ONLY"); - gMC->Gspos("S10R",1,"S10C",0.,0.,0.,0,"ONLY"); - - // position the PCB volume inside the insulating material volume - gMC->Gspos("S09P",1,"S09I",0.,0.,0.,0,"ONLY"); - gMC->Gspos("S10P",1,"S10I",0.,0.,0.,0,"ONLY"); - // position the horizontal frame volume inside the PCB volume - gMC->Gspos("S09H",1,"S09P",0.,0.,0.,0,"ONLY"); - gMC->Gspos("S10H",1,"S10P",0.,0.,0.,0,"ONLY"); - // position the sensitive volume inside the horizontal frame volume - gMC->Gsposp("S09G",1,"S09H",0.,0.,0.,0,"ONLY",senspar,3); - gMC->Gsposp("S10G",1,"S10H",0.,0.,0.,0,"ONLY",senspar,3); - // position the border volumes inside the PCB volume - Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; - gMC->Gspos("S09B",1,"S09P",0., yborder,0.,0,"ONLY"); - gMC->Gspos("S09B",2,"S09P",0.,-yborder,0.,0,"ONLY"); - gMC->Gspos("S10B",1,"S10P",0., yborder,0.,0,"ONLY"); - gMC->Gspos("S10B",2,"S10P",0.,-yborder,0.,0,"ONLY"); - - // create the NULOC volume and position it in the horizontal frame - - gMC->Gsvolu("S09N","BOX",nulocMaterial,nulocpar,3); - gMC->Gsvolu("S10N","BOX",nulocMaterial,nulocpar,3); - index = 0; - for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) { - index++; - gMC->Gspos("S09N",2*index-1,"S09B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); - gMC->Gspos("S09N",2*index ,"S09B", xx, 0., bFrameWidth/4., 0, "ONLY"); - gMC->Gspos("S10N",2*index-1,"S10B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); - gMC->Gspos("S10N",2*index ,"S10B", xx, 0., bFrameWidth/4., 0, "ONLY"); - } - // position the volumes approximating the circular section of the pipe - Float_t yoffs = sensHeight/2. - yOverlap; - Float_t epsilon = 0.001; - Int_t ndiv=6; - Float_t divpar[3]; - Double_t dydiv= sensHeight/ndiv; - Double_t ydiv = yoffs -dydiv; - Int_t imax=0; - // for (Int_t islat=0; islatGsposp("S09G",imax+4*idiv+1,"C09M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S10G",imax+4*idiv+1,"C10M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S09G",imax+4*idiv+2,"C09M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S10G",imax+4*idiv+2,"C10M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S09G",imax+4*idiv+3,"C09M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S10G",imax+4*idiv+3,"C10M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S09G",imax+4*idiv+4,"C09M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S10G",imax+4*idiv+4,"C10M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); - } - - } - - -/////////////////////////////////////// -// GEOMETRY FOR THE TRIGGER CHAMBERS // -/////////////////////////////////////// - -// 03/00 P. Dupieux : introduce a slighly more realistic -// geom. of the trigger readout planes with -// 2 Zpos per trigger plane (alternate -// between left and right of the trigger) - -// Parameters of the Trigger Chambers - -// DP03-01 introduce dead zone of +/- 2 cm arround x=0 (as in TDR, fig3.27) - const Float_t kDXZERO=2.; - const Float_t kXMC1MIN=34.; - const Float_t kXMC1MED=51.; - const Float_t kXMC1MAX=272.; - const Float_t kYMC1MIN=34.; - const Float_t kYMC1MAX=51.; - const Float_t kRMIN1=50.; -// DP03-01 const Float_t kRMAX1=62.; - const Float_t kRMAX1=64.; - const Float_t kRMIN2=50.; -// DP03-01 const Float_t kRMAX2=66.; - const Float_t kRMAX2=68.; - -// zposition of the middle of the gas gap in mother vol - const Float_t kZMCm=-3.6; - const Float_t kZMCp=+3.6; - - -// TRIGGER STATION 1 - TRIGGER STATION 1 - TRIGGER STATION 1 - - // iChamber 1 and 2 for first and second chambers in the station - // iChamber (first chamber) kept for other quanties than Z, - // assumed to be the same in both chambers - iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[10]; - iChamber2 =(AliMUONChamber*) (*fChambers)[11]; - - // 03/00 - // zpos1 and zpos2 are now the middle of the first and second - // plane of station 1 : - // zpos1=(16075+15995)/2=16035 mm, thick/2=40 mm - // zpos2=(16225+16145)/2=16185 mm, thick/2=40 mm - // - // zpos1m=15999 mm , zpos1p=16071 mm (middles of gas gaps) - // zpos2m=16149 mm , zpos2p=16221 mm (middles of gas gaps) - // rem : the total thickness accounts for 1 mm of al on both - // side of the RPCs (see zpos1 and zpos2), as previously - - zpos1=iChamber1->Z(); - zpos2=iChamber2->Z(); - - -// Mother volume definition - tpar[0] = iChamber->RInner(); - tpar[1] = iChamber->ROuter(); - tpar[2] = 4.0; - gMC->Gsvolu("CM11", "TUBE", idAir, tpar, 3); - gMC->Gsvolu("CM12", "TUBE", idAir, tpar, 3); - -// Definition of the flange between the beam shielding and the RPC - tpar[0]= kRMIN1; - tpar[1]= kRMAX1; - tpar[2]= 4.0; - - gMC->Gsvolu("CF1A", "TUBE", idAlu1, tpar, 3); //Al - gMC->Gspos("CF1A", 1, "CM11", 0., 0., 0., 0, "MANY"); - gMC->Gspos("CF1A", 2, "CM12", 0., 0., 0., 0, "MANY"); - - -// FIRST PLANE OF STATION 1 - -// ratios of zpos1m/zpos1p and inverse for first plane - Float_t zmp=(zpos1-3.6)/(zpos1+3.6); - Float_t zpm=1./zmp; - - -// Definition of prototype for chambers in the first plane - - tpar[0]= 0.; - tpar[1]= 0.; - tpar[2]= 0.; - - gMC->Gsvolu("CC1A", "BOX ", idAlu1, tpar, 0); //Al - gMC->Gsvolu("CB1A", "BOX ", idtmed[1107], tpar, 0); //Bakelite - gMC->Gsvolu("CG1A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer - -// chamber type A - tpar[0] = -1.; - tpar[1] = -1.; - -// DP03-01 const Float_t kXMC1A=kXMC1MED+(kXMC1MAX-kXMC1MED)/2.; - const Float_t kXMC1A=kDXZERO+kXMC1MED+(kXMC1MAX-kXMC1MED)/2.; - const Float_t kYMC1Am=0.; - const Float_t kYMC1Ap=0.; - - tpar[2] = 0.1; - gMC->Gsposp("CG1A", 1, "CB1A", 0., 0., 0., 0, "ONLY",tpar,3); - tpar[2] = 0.3; - gMC->Gsposp("CB1A", 1, "CC1A", 0., 0., 0., 0, "ONLY",tpar,3); - - tpar[2] = 0.4; - tpar[0] = (kXMC1MAX-kXMC1MED)/2.; - tpar[1] = kYMC1MIN; - - gMC->Gsposp("CC1A", 1, "CM11",kXMC1A,kYMC1Am,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 2, "CM11",-kXMC1A,kYMC1Ap,kZMCp, 0, "ONLY", tpar, 3); - -// chamber type B - Float_t tpar1save=tpar[1]; - Float_t y1msave=kYMC1Am; - Float_t y1psave=kYMC1Ap; - - tpar[0] = (kXMC1MAX-kXMC1MIN)/2.; - tpar[1] = (kYMC1MAX-kYMC1MIN)/2.; - -// DP03-01 const Float_t kXMC1B=kXMC1MIN+tpar[0]; - const Float_t kXMC1B=kDXZERO+kXMC1MIN+tpar[0]; - const Float_t kYMC1Bp=(y1msave+tpar1save)*zpm+tpar[1]; - const Float_t kYMC1Bm=(y1psave+tpar1save)*zmp+tpar[1]; - - gMC->Gsposp("CC1A", 3, "CM11",kXMC1B,kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 4, "CM11",-kXMC1B,kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 5, "CM11",kXMC1B,-kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 6, "CM11",-kXMC1B,-kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3); - -// chamber type C (end of type B !!) - tpar1save=tpar[1]; - y1msave=kYMC1Bm; - y1psave=kYMC1Bp; - - tpar[0] = kXMC1MAX/2; - tpar[1] = kYMC1MAX/2; - - -// DP03-01 const Float_t kXMC1C=tpar[0]; - const Float_t kXMC1C=kDXZERO+tpar[0]; -// warning : same Z than type B - const Float_t kYMC1Cp=(y1psave+tpar1save)*1.+tpar[1]; - const Float_t kYMC1Cm=(y1msave+tpar1save)*1.+tpar[1]; - - gMC->Gsposp("CC1A", 7, "CM11",kXMC1C,kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 8, "CM11",-kXMC1C,kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 9, "CM11",kXMC1C,-kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 10, "CM11",-kXMC1C,-kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3); - -// chamber type D, E and F (same size) - tpar1save=tpar[1]; - y1msave=kYMC1Cm; - y1psave=kYMC1Cp; - - tpar[0] = kXMC1MAX/2.; - tpar[1] = kYMC1MIN; - -// DP03-01 const Float_t kXMC1D=tpar[0]; - const Float_t kXMC1D=kDXZERO+tpar[0]; - const Float_t kYMC1Dp=(y1msave+tpar1save)*zpm+tpar[1]; - const Float_t kYMC1Dm=(y1psave+tpar1save)*zmp+tpar[1]; - - gMC->Gsposp("CC1A", 11, "CM11",kXMC1D,kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 12, "CM11",-kXMC1D,kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 13, "CM11",kXMC1D,-kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 14, "CM11",-kXMC1D,-kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3); - - - tpar1save=tpar[1]; - y1msave=kYMC1Dm; - y1psave=kYMC1Dp; - const Float_t kYMC1Ep=(y1msave+tpar1save)*zpm+tpar[1]; - const Float_t kYMC1Em=(y1psave+tpar1save)*zmp+tpar[1]; - - gMC->Gsposp("CC1A", 15, "CM11",kXMC1D,kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 16, "CM11",-kXMC1D,kYMC1Em,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 17, "CM11",kXMC1D,-kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 18, "CM11",-kXMC1D,-kYMC1Em,kZMCm, 0, "ONLY", tpar, 3); - - tpar1save=tpar[1]; - y1msave=kYMC1Em; - y1psave=kYMC1Ep; - const Float_t kYMC1Fp=(y1msave+tpar1save)*zpm+tpar[1]; - const Float_t kYMC1Fm=(y1psave+tpar1save)*zmp+tpar[1]; - - gMC->Gsposp("CC1A", 19, "CM11",kXMC1D,kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 20, "CM11",-kXMC1D,kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 21, "CM11",kXMC1D,-kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 22, "CM11",-kXMC1D,-kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3); - -// Positioning first plane in ALICE - gMC->Gspos("CM11", 1, "ALIC", 0., 0., zpos1, 0, "ONLY"); - -// End of geometry definition for the first plane of station 1 - - - -// SECOND PLANE OF STATION 1 : proj ratio = zpos2/zpos1 - - const Float_t kZ12=zpos2/zpos1; - -// Definition of prototype for chambers in the second plane of station 1 - - tpar[0]= 0.; - tpar[1]= 0.; - tpar[2]= 0.; - - gMC->Gsvolu("CC2A", "BOX ", idAlu1, tpar, 0); //Al - gMC->Gsvolu("CB2A", "BOX ", idtmed[1107], tpar, 0); //Bakelite - gMC->Gsvolu("CG2A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer - -// chamber type A - tpar[0] = -1.; - tpar[1] = -1.; - - const Float_t kXMC2A=kXMC1A*kZ12; - const Float_t kYMC2Am=0.; - const Float_t kYMC2Ap=0.; - - tpar[2] = 0.1; - gMC->Gsposp("CG2A", 1, "CB2A", 0., 0., 0., 0, "ONLY",tpar,3); - tpar[2] = 0.3; - gMC->Gsposp("CB2A", 1, "CC2A", 0., 0., 0., 0, "ONLY",tpar,3); - - tpar[2] = 0.4; - tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ12; - tpar[1] = kYMC1MIN*kZ12; - - gMC->Gsposp("CC2A", 1, "CM12",kXMC2A,kYMC2Am,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 2, "CM12",-kXMC2A,kYMC2Ap,kZMCp, 0, "ONLY", tpar, 3); - - -// chamber type B - - tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ12; - tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ12; - - const Float_t kXMC2B=kXMC1B*kZ12; - const Float_t kYMC2Bp=kYMC1Bp*kZ12; - const Float_t kYMC2Bm=kYMC1Bm*kZ12; - gMC->Gsposp("CC2A", 3, "CM12",kXMC2B,kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 4, "CM12",-kXMC2B,kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 5, "CM12",kXMC2B,-kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 6, "CM12",-kXMC2B,-kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3); - - -// chamber type C (end of type B !!) - - tpar[0] = (kXMC1MAX/2)*kZ12; - tpar[1] = (kYMC1MAX/2)*kZ12; - - const Float_t kXMC2C=kXMC1C*kZ12; - const Float_t kYMC2Cp=kYMC1Cp*kZ12; - const Float_t kYMC2Cm=kYMC1Cm*kZ12; - gMC->Gsposp("CC2A", 7, "CM12",kXMC2C,kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 8, "CM12",-kXMC2C,kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 9, "CM12",kXMC2C,-kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 10, "CM12",-kXMC2C,-kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3); - -// chamber type D, E and F (same size) - - tpar[0] = (kXMC1MAX/2.)*kZ12; - tpar[1] = kYMC1MIN*kZ12; - - const Float_t kXMC2D=kXMC1D*kZ12; - const Float_t kYMC2Dp=kYMC1Dp*kZ12; - const Float_t kYMC2Dm=kYMC1Dm*kZ12; - gMC->Gsposp("CC2A", 11, "CM12",kXMC2D,kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 12, "CM12",-kXMC2D,kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 13, "CM12",kXMC2D,-kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 14, "CM12",-kXMC2D,-kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3); - - const Float_t kYMC2Ep=kYMC1Ep*kZ12; - const Float_t kYMC2Em=kYMC1Em*kZ12; - gMC->Gsposp("CC2A", 15, "CM12",kXMC2D,kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 16, "CM12",-kXMC2D,kYMC2Em,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 17, "CM12",kXMC2D,-kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 18, "CM12",-kXMC2D,-kYMC2Em,kZMCm, 0, "ONLY", tpar, 3); - - - const Float_t kYMC2Fp=kYMC1Fp*kZ12; - const Float_t kYMC2Fm=kYMC1Fm*kZ12; - gMC->Gsposp("CC2A", 19, "CM12",kXMC2D,kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 20, "CM12",-kXMC2D,kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 21, "CM12",kXMC2D,-kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 22, "CM12",-kXMC2D,-kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3); - -// Positioning second plane of station 1 in ALICE - - gMC->Gspos("CM12", 1, "ALIC", 0., 0., zpos2, 0, "ONLY"); - -// End of geometry definition for the second plane of station 1 - - -// TRIGGER STATION 2 - TRIGGER STATION 2 - TRIGGER STATION 2 + for (Int_t i=0; iGetEntriesFast(); i++) { - // 03/00 - // zpos3 and zpos4 are now the middle of the first and second - // plane of station 2 : - // zpos3=(17075+16995)/2=17035 mm, thick/2=40 mm - // zpos4=(17225+17145)/2=17185 mm, thick/2=40 mm - // - // zpos3m=16999 mm , zpos3p=17071 mm (middles of gas gaps) - // zpos4m=17149 mm , zpos4p=17221 mm (middles of gas gaps) - // rem : the total thickness accounts for 1 mm of al on both - // side of the RPCs (see zpos3 and zpos4), as previously - iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[12]; - iChamber2 =(AliMUONChamber*) (*fChambers)[13]; - Float_t zpos3=iChamber1->Z(); - Float_t zpos4=iChamber2->Z(); + // Get the builder + AliMUONVGeometryBuilder* builder + = (AliMUONVGeometryBuilder*)fGeometryBuilders->At(i); + // Create geometry with each builder + if (builder) { + builder->CreateGeometry(); + builder->SetTransformations(); + } + } -// Mother volume definition - tpar[0] = iChamber->RInner(); - tpar[1] = iChamber->ROuter(); - tpar[2] = 4.0; - - gMC->Gsvolu("CM21", "TUBE", idAir, tpar, 3); - gMC->Gsvolu("CM22", "TUBE", idAir, tpar, 3); - -// Definition of the flange between the beam shielding and the RPC -// ???? interface shielding - - tpar[0]= kRMIN2; - tpar[1]= kRMAX2; - tpar[2]= 4.0; - - gMC->Gsvolu("CF2A", "TUBE", idAlu1, tpar, 3); //Al - gMC->Gspos("CF2A", 1, "CM21", 0., 0., 0., 0, "MANY"); - gMC->Gspos("CF2A", 2, "CM22", 0., 0., 0., 0, "MANY"); - - - -// FIRST PLANE OF STATION 2 : proj ratio = zpos3/zpos1 - - const Float_t kZ13=zpos3/zpos1; - -// Definition of prototype for chambers in the first plane of station 2 - tpar[0]= 0.; - tpar[1]= 0.; - tpar[2]= 0.; - - gMC->Gsvolu("CC3A", "BOX ", idAlu1, tpar, 0); //Al - gMC->Gsvolu("CB3A", "BOX ", idtmed[1107], tpar, 0); //Bakelite - gMC->Gsvolu("CG3A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer - - -// chamber type A - tpar[0] = -1.; - tpar[1] = -1.; - - const Float_t kXMC3A=kXMC1A*kZ13; - const Float_t kYMC3Am=0.; - const Float_t kYMC3Ap=0.; - - tpar[2] = 0.1; - gMC->Gsposp("CG3A", 1, "CB3A", 0., 0., 0., 0, "ONLY",tpar,3); - tpar[2] = 0.3; - gMC->Gsposp("CB3A", 1, "CC3A", 0., 0., 0., 0, "ONLY",tpar,3); - - tpar[2] = 0.4; - tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ13; - tpar[1] = kYMC1MIN*kZ13; - gMC->Gsposp("CC3A", 1, "CM21",kXMC3A,kYMC3Am,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 2, "CM21",-kXMC3A,kYMC3Ap,kZMCp, 0, "ONLY", tpar, 3); - - -// chamber type B - tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ13; - tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ13; - - const Float_t kXMC3B=kXMC1B*kZ13; - const Float_t kYMC3Bp=kYMC1Bp*kZ13; - const Float_t kYMC3Bm=kYMC1Bm*kZ13; - gMC->Gsposp("CC3A", 3, "CM21",kXMC3B,kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 4, "CM21",-kXMC3B,kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 5, "CM21",kXMC3B,-kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 6, "CM21",-kXMC3B,-kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3); - - -// chamber type C (end of type B !!) - tpar[0] = (kXMC1MAX/2)*kZ13; - tpar[1] = (kYMC1MAX/2)*kZ13; - - const Float_t kXMC3C=kXMC1C*kZ13; - const Float_t kYMC3Cp=kYMC1Cp*kZ13; - const Float_t kYMC3Cm=kYMC1Cm*kZ13; - gMC->Gsposp("CC3A", 7, "CM21",kXMC3C,kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 8, "CM21",-kXMC3C,kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 9, "CM21",kXMC3C,-kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 10, "CM21",-kXMC3C,-kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3); - - -// chamber type D, E and F (same size) - - tpar[0] = (kXMC1MAX/2.)*kZ13; - tpar[1] = kYMC1MIN*kZ13; - - const Float_t kXMC3D=kXMC1D*kZ13; - const Float_t kYMC3Dp=kYMC1Dp*kZ13; - const Float_t kYMC3Dm=kYMC1Dm*kZ13; - gMC->Gsposp("CC3A", 11, "CM21",kXMC3D,kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 12, "CM21",-kXMC3D,kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 13, "CM21",kXMC3D,-kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 14, "CM21",-kXMC3D,-kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3); - - const Float_t kYMC3Ep=kYMC1Ep*kZ13; - const Float_t kYMC3Em=kYMC1Em*kZ13; - gMC->Gsposp("CC3A", 15, "CM21",kXMC3D,kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 16, "CM21",-kXMC3D,kYMC3Em,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 17, "CM21",kXMC3D,-kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 18, "CM21",-kXMC3D,-kYMC3Em,kZMCm, 0, "ONLY", tpar, 3); - - const Float_t kYMC3Fp=kYMC1Fp*kZ13; - const Float_t kYMC3Fm=kYMC1Fm*kZ13; - gMC->Gsposp("CC3A", 19, "CM21",kXMC3D,kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 20, "CM21",-kXMC3D,kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 21, "CM21",kXMC3D,-kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 22, "CM21",-kXMC3D,-kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3); - - -// Positioning first plane of station 2 in ALICE - - gMC->Gspos("CM21", 1, "ALIC", 0., 0., zpos3, 0, "ONLY"); - -// End of geometry definition for the first plane of station 2 - - - - -// SECOND PLANE OF STATION 2 : proj ratio = zpos4/zpos1 - - const Float_t kZ14=zpos4/zpos1; - -// Definition of prototype for chambers in the second plane of station 2 - - tpar[0]= 0.; - tpar[1]= 0.; - tpar[2]= 0.; - - gMC->Gsvolu("CC4A", "BOX ", idAlu1, tpar, 0); //Al - gMC->Gsvolu("CB4A", "BOX ", idtmed[1107], tpar, 0); //Bakelite - gMC->Gsvolu("CG4A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer - -// chamber type A - tpar[0] = -1.; - tpar[1] = -1.; - - const Float_t kXMC4A=kXMC1A*kZ14; - const Float_t kYMC4Am=0.; - const Float_t kYMC4Ap=0.; - - tpar[2] = 0.1; - gMC->Gsposp("CG4A", 1, "CB4A", 0., 0., 0., 0, "ONLY",tpar,3); - tpar[2] = 0.3; - gMC->Gsposp("CB4A", 1, "CC4A", 0., 0., 0., 0, "ONLY",tpar,3); - - tpar[2] = 0.4; - tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ14; - tpar[1] = kYMC1MIN*kZ14; - gMC->Gsposp("CC4A", 1, "CM22",kXMC4A,kYMC4Am,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 2, "CM22",-kXMC4A,kYMC4Ap,kZMCp, 0, "ONLY", tpar, 3); - - -// chamber type B - tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ14; - tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ14; - - const Float_t kXMC4B=kXMC1B*kZ14; - const Float_t kYMC4Bp=kYMC1Bp*kZ14; - const Float_t kYMC4Bm=kYMC1Bm*kZ14; - gMC->Gsposp("CC4A", 3, "CM22",kXMC4B,kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 4, "CM22",-kXMC4B,kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 5, "CM22",kXMC4B,-kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 6, "CM22",-kXMC4B,-kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3); - - -// chamber type C (end of type B !!) - tpar[0] =(kXMC1MAX/2)*kZ14; - tpar[1] = (kYMC1MAX/2)*kZ14; - - const Float_t kXMC4C=kXMC1C*kZ14; - const Float_t kYMC4Cp=kYMC1Cp*kZ14; - const Float_t kYMC4Cm=kYMC1Cm*kZ14; - gMC->Gsposp("CC4A", 7, "CM22",kXMC4C,kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 8, "CM22",-kXMC4C,kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 9, "CM22",kXMC4C,-kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 10, "CM22",-kXMC4C,-kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3); + for (Int_t j=0; jGsposp("CC4A", 11, "CM22",kXMC4D,kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 12, "CM22",-kXMC4D,kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 13, "CM22",kXMC4D,-kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 14, "CM22",-kXMC4D,-kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3); - - const Float_t kYMC4Ep=kYMC1Ep*kZ14; - const Float_t kYMC4Em=kYMC1Em*kZ14; - gMC->Gsposp("CC4A", 15, "CM22",kXMC4D,kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 16, "CM22",-kXMC4D,kYMC4Em,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 17, "CM22",kXMC4D,-kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 18, "CM22",-kXMC4D,-kYMC4Em,kZMCm, 0, "ONLY", tpar, 3); - - const Float_t kYMC4Fp=kYMC1Fp*kZ14; - const Float_t kYMC4Fm=kYMC1Fm*kZ14; - gMC->Gsposp("CC4A", 19, "CM22",kXMC4D,kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 20, "CM22",-kXMC4D,kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 21, "CM22",kXMC4D,-kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 22, "CM22",-kXMC4D,-kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3); - + AliMUONChamberGeometry* geometry = Chamber(j).GetGeometry(); -// Positioning second plane of station 2 in ALICE - - gMC->Gspos("CM22", 1, "ALIC", 0., 0., zpos4, 0, "ONLY"); + if (!geometry) continue; + // Skip chambers with not defined geometry + + // Loop over envelopes + const TObjArray* kEnvelopes = geometry->GetEnvelopes(); + for (Int_t k=0; kGetEntriesFast(); k++) { + + // Get envelope + AliMUONGeometryEnvelope* env = (AliMUONGeometryEnvelope*)kEnvelopes->At(k); + const TGeoCombiTrans* kEnvTrans = env->GetTransformation(); + const char* only = "ONLY"; + if (env->IsMANY()) only = "MANY"; + + if (env->IsVirtual() && env->GetConstituents()->GetEntriesFast() == 0 ) { + // virtual envelope + nof constituents = 0 + // => not allowed; + // empty virtual envelope has no sense + Fatal("CreateGeometry", "Virtual envelope must have constituents."); + return; + } -// End of geometry definition for the second plane of station 2 + if (!env->IsVirtual() && env->GetConstituents()->GetEntriesFast() > 0 ) { + // non virtual envelope + nof constituents > 0 + // => not allowed; + // use VMC to place constituents + Fatal("CreateGeometry", "Non virtual envelope cannot have constituents."); + return; + } -// End of trigger geometry definition + if (!env->IsVirtual() && env->GetConstituents()->GetEntriesFast() == 0 ) { + // non virtual envelope + nof constituents = 0 + // => place envelope in ALICE by composed transformation: + // Tglobal * Tch * Tenv + + // Compound chamber transformation with the envelope one + TGeoHMatrix total + = (*fGlobalTransformation) * + (*geometry->GetTransformation()) * + (*kEnvTrans); + PlaceVolume(env->GetName(), geometry->GetMotherVolume(), + env->GetCopyNo(), total, 0, 0, only); + } + if (env->IsVirtual() && env->GetConstituents()->GetEntriesFast() > 0 ) { + // virtual envelope + nof constituents > 0 + // => do not place envelope and place constituents + // in ALICE by composed transformation: + // Tglobal * Tch * Tenv * Tconst + + for (Int_t l=0; lGetConstituents()->GetEntriesFast(); l++) { + AliMUONGeometryConstituent* constituent + = (AliMUONGeometryConstituent*)env->GetConstituents()->At(l); + + // Compound chamber transformation with the envelope one + the constituent one + TGeoHMatrix total + = (*fGlobalTransformation) * + (*geometry->GetTransformation()) * + (*kEnvTrans) * + (*constituent->GetTransformation()); + + PlaceVolume(constituent->GetName(), geometry->GetMotherVolume(), + constituent->GetCopyNo(), total, + constituent->GetNpar(), constituent->GetParam(), only); + } + } + } + } } +//__________________________________________________________________ +Int_t AliMUONv1::GetChamberId(Int_t volId) const +{ +// Check if the volume with specified volId is a sensitive volume (gas) +// of some chamber and returns the chamber number; +// if not sensitive volume - return 0. +// --- +/* + for (Int_t i = 1; i <= AliMUONConstants::NCh(); i++) + if (volId==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()) return i; +*/ + for (Int_t i = 1; i <= AliMUONConstants::NCh(); i++) + if ( ((AliMUONChamber*)(*fChambers)[i-1])->IsSensId(volId) ) return i; - -//___________________________________________ + return 0; +} +//________________________________________________________________ void AliMUONv1::CreateMaterials() { + // *** DEFINITION OF AVAILABLE MUON MATERIALS *** // // Ar-CO2 gas (80%+20%) @@ -1953,17 +368,101 @@ void AliMUONv1::CreateMaterials() fMaxStepAlu, fMaxDestepAlu, epsil, stmin); AliMedium(14, "Rohacell ", 34, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, fMaxDestepAlu, epsil, stmin); + + + + //.Materials specific to stations + // created via builders + + for (Int_t i=0; iGetEntriesFast(); i++) { + + // Get the builder + AliMUONVGeometryBuilder* builder + = (AliMUONVGeometryBuilder*)fGeometryBuilders->At(i); + + // Create materials with each builder + if (builder) builder->CreateMaterials(); + } } -//___________________________________________ +//______________________________________________________________________________ +void AliMUONv1::PlaceVolume(const TString& name, const TString& mName, + Int_t copyNo, const TGeoHMatrix& matrix, + Int_t npar, Double_t* param, const char* only) const +{ +// Place the volume specified by name with the given transformation matrix +// --- + + // Do not apply global transformation + // if mother volume == DDIP + // (as it is applied on this volume) + TGeoHMatrix transform(matrix); + if (mName == TString("DDIP")) { + transform = (*fGlobalTransformation) * transform; + // To be changed to (*fGlobalTransformation).inverse() + // when available in TGeo + // To make this correct also for a general case when + // (*fGlobalTransformation) * *fGlobalTransformation) != 1 + } + + // Decompose transformation + const Double_t* xyz = transform.GetTranslation(); + const Double_t* rm = transform.GetRotationMatrix(); + + //cout << "Got translation: " + // << xyz[0] << " " << xyz[1] << " " << xyz[2] << endl; + + //cout << "Got rotation: " + // << rm[0] << " " << rm[1] << " " << rm[2] << endl + // << rm[3] << " " << rm[4] << " " << rm[5] << endl + // << rm[6] << " " << rm[7] << " " << rm[8] << endl; + + // Check for presence of rotation + // (will be nice to be available in TGeo) + const Double_t kTolerance = 1e-04; + Bool_t isRotation = true; + if (TMath::Abs(rm[0] - 1.) < kTolerance && + TMath::Abs(rm[1] - 0.) < kTolerance && + TMath::Abs(rm[2] - 0.) < kTolerance && + TMath::Abs(rm[3] - 0.) < kTolerance && + TMath::Abs(rm[4] - 1.) < kTolerance && + TMath::Abs(rm[5] - 0.) < kTolerance && + TMath::Abs(rm[6] - 0.) < kTolerance && + TMath::Abs(rm[7] - 0.) < kTolerance && + TMath::Abs(rm[8] - 1.) < kTolerance) isRotation = false; + + Int_t krot = 0; + if (isRotation) { + TGeoRotation rot; + rot.SetMatrix(const_cast(transform.GetRotationMatrix())); + Double_t theta1, phi1, theta2, phi2, theta3, phi3; + rot.GetAngles(theta1, phi1, theta2, phi2, theta3, phi3); + + //cout << "angles: " + // << theta1 << " " << phi1 << " " + // << theta2 << " " << phi2 << " " + // << theta3 << " " << phi3 << endl; + + AliMatrix(krot, theta1, phi1, theta2, phi2, theta3, phi3); + } + + // Place the volume in ALIC + if (npar == 0) + gMC->Gspos(name, copyNo, mName, xyz[0], xyz[1], xyz[2] , krot, only); + else + gMC->Gsposp(name, copyNo, mName, xyz[0], xyz[1], xyz[2] , krot, only, + param, npar); + +} +//___________________________________________ void AliMUONv1::Init() { // // Initialize Tracking Chambers // - printf("\n\n\n Start Init for version 1 - CPC chamber type\n\n\n"); + if(fDebug) printf("\n%s: Start Init for version 1 - CPC chamber type\n\n",ClassName()); Int_t i; for (i=0; iInit(); @@ -1971,12 +470,25 @@ void AliMUONv1::Init() // // Set the chamber (sensitive region) GEANT identifier - AliMC* gMC = AliMC::GetMC(); - ((AliMUONChamber*)(*fChambers)[0])->SetGid(gMC->VolId("C01G")); - ((AliMUONChamber*)(*fChambers)[1])->SetGid(gMC->VolId("C02G")); + // + for (Int_t i=0; iGetEntriesFast(); i++) { + + // Get the builder + AliMUONVGeometryBuilder* builder + = (AliMUONVGeometryBuilder*)fGeometryBuilders->At(i); + + // Set sesitive volumes with each builder + if (builder) builder->SetSensitiveVolumes(); + } + +/* + // + // Set the chamber (sensitive region) GEANT identifier + ((AliMUONChamber*)(*fChambers)[0])->SetGid(gMC->VolId("S01G")); + ((AliMUONChamber*)(*fChambers)[1])->SetGid(gMC->VolId("S02G")); - ((AliMUONChamber*)(*fChambers)[2])->SetGid(gMC->VolId("C03G")); - ((AliMUONChamber*)(*fChambers)[3])->SetGid(gMC->VolId("C04G")); + ((AliMUONChamber*)(*fChambers)[2])->SetGid(gMC->VolId("S03G")); + ((AliMUONChamber*)(*fChambers)[3])->SetGid(gMC->VolId("S04G")); ((AliMUONChamber*)(*fChambers)[4])->SetGid(gMC->VolId("S05G")); ((AliMUONChamber*)(*fChambers)[5])->SetGid(gMC->VolId("S06G")); @@ -1987,132 +499,253 @@ void AliMUONv1::Init() ((AliMUONChamber*)(*fChambers)[8])->SetGid(gMC->VolId("S09G")); ((AliMUONChamber*)(*fChambers)[9])->SetGid(gMC->VolId("S10G")); - ((AliMUONChamber*)(*fChambers)[10])->SetGid(gMC->VolId("CG1A")); - ((AliMUONChamber*)(*fChambers)[11])->SetGid(gMC->VolId("CG2A")); - ((AliMUONChamber*)(*fChambers)[12])->SetGid(gMC->VolId("CG3A")); - ((AliMUONChamber*)(*fChambers)[13])->SetGid(gMC->VolId("CG4A")); - - printf("\n\n\n Finished Init for version 0 - CPC chamber type\n\n\n"); + ((AliMUONChamber*)(*fChambers)[10])->SetGid(gMC->VolId("SG1A")); + ((AliMUONChamber*)(*fChambers)[11])->SetGid(gMC->VolId("SG2A")); + ((AliMUONChamber*)(*fChambers)[12])->SetGid(gMC->VolId("SG3A")); + ((AliMUONChamber*)(*fChambers)[13])->SetGid(gMC->VolId("SG4A")); +*/ + if(fDebug) printf("\n%s: Finished Init for version 1 - CPC chamber type\n",ClassName()); //cp - printf("\n\n\n Start Init for Trigger Circuits\n\n\n"); + if(fDebug) printf("\n%s: Start Init for Trigger Circuits\n",ClassName()); for (i=0; iInit(i); } - printf(" Finished Init for Trigger Circuits\n\n\n"); + if(fDebug) printf("%s: Finished Init for Trigger Circuits\n",ClassName()); //cp - } -//___________________________________________ +//_______________________________________________________________________________ void AliMUONv1::StepManager() { + // Stepmanager for the chambers + + if (fStepManagerVersionOld) { + StepManagerOld(); + return; + } + + // Only charged tracks + if( !(gMC->TrackCharge()) ) return; + // Only charged tracks + + // Only gas gap inside chamber + // Tag chambers and record hits when track enters + static Int_t idvol=-1; + Int_t iChamber=0; + Int_t id=0; + Int_t copy; + const Float_t kBig = 1.e10; + + + // + // Only gas gap inside chamber + // Tag chambers and record hits when track enters + id=gMC->CurrentVolID(copy); + iChamber = GetChamberId(id); + idvol = iChamber -1; + + if (idvol == -1) return; + + // Filling TrackRefs file for MUON. Our Track references are the active volume of the chambers + if ( (gMC->IsTrackEntering() || gMC->IsTrackExiting() ) ) + AddTrackReference(gAlice->GetMCApp()->GetCurrentTrackNumber()); + + if( gMC->IsTrackEntering() ) { + Float_t theta = fTrackMomentum.Theta(); + if ((TMath::Pi()-theta)*kRaddeg>=15.) gMC->SetMaxStep(fStepMaxInActiveGas); // We use Pi-theta because z is negative + } + +// if (GetDebug()) { +// Float_t z = ( (AliMUONChamber*)(*fChambers)[idvol])->Z() ; +// Info("StepManager Step","Active volume found %d chamber %d Z chamber is %f ",idvol,iChamber, z); +// } + // Particule id and mass, + Int_t ipart = gMC->TrackPid(); + Float_t mass = gMC->TrackMass(); + + fDestepSum[idvol]+=gMC->Edep(); + // Get current particle id (ipart), track position (pos) and momentum (mom) + if ( fStepSum[idvol]==0.0 ) gMC->TrackMomentum(fTrackMomentum); + fStepSum[idvol]+=gMC->TrackStep(); + +// if (GetDebug()) { +// Info("StepManager Step","iChamber %d, Particle %d, theta %f phi %f mass %f StepSum %f eloss %g", +// iChamber,ipart, fTrackMomentum.Theta()*kRaddeg, fTrackMomentum.Phi()*kRaddeg, mass, fStepSum[idvol], gMC->Edep()); +// Info("StepManager Step","Track Momentum %f %f %f", fTrackMomentum.X(), fTrackMomentum.Y(), fTrackMomentum.Z()) ; +// gMC->TrackPosition(fTrackPosition); +// Info("StepManager Step","Track Position %f %f %f",fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z()) ; +// } + + // Track left chamber or StepSum larger than fStepMaxInActiveGas + if ( gMC->IsTrackExiting() || + gMC->IsTrackStop() || + gMC->IsTrackDisappeared()|| + (fStepSum[idvol]>fStepMaxInActiveGas) ) { + + if ( gMC->IsTrackExiting() || + gMC->IsTrackStop() || + gMC->IsTrackDisappeared() ) gMC->SetMaxStep(kBig); + + gMC->TrackPosition(fTrackPosition); + Float_t theta = fTrackMomentum.Theta(); + Float_t phi = fTrackMomentum.Phi(); + + TLorentzVector backToWire( fStepSum[idvol]/2.*sin(theta)*cos(phi), + fStepSum[idvol]/2.*sin(theta)*sin(phi), + fStepSum[idvol]/2.*cos(theta),0.0 ); + // if (GetDebug()) + // Info("StepManager Exit","Track Position %f %f %f",fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z()) ; + // if (GetDebug()) + // Info("StepManager Exit ","Track backToWire %f %f %f",backToWire.X(),backToWire.Y(),backToWire.Z()) ; + fTrackPosition-=backToWire; + + //-------------- Angle effect + // Ratio between energy loss of particle and Mip as a function of BetaGamma of particle (Energy/Mass) + + Float_t BetaxGamma = fTrackMomentum.P()/mass;// pc/mc2 + Float_t sigmaEffect10degrees; + Float_t sigmaEffectThetadegrees; + Float_t eLossParticleELossMip; + Float_t yAngleEffect=0.; + Float_t thetawires = TMath::Abs( TMath::ASin( TMath::Sin(TMath::Pi()-theta) * TMath::Sin(phi) ) );// We use Pi-theta because z is negative + + + if (fAngleEffect){ + if ( (BetaxGamma >3.2) && (thetawires*kRaddeg<=15.) ) { + BetaxGamma=TMath::Log(BetaxGamma); + eLossParticleELossMip = fElossRatio->Eval(BetaxGamma); + // 10 degrees is a reference for a model (arbitrary) + sigmaEffect10degrees=fAngleEffect10->Eval(eLossParticleELossMip);// in micrometers + // Angle with respect to the wires assuming that chambers are perpendicular to the z axis. + sigmaEffectThetadegrees = sigmaEffect10degrees/fAngleEffectNorma->Eval(thetawires*kRaddeg); // For 5mm gap + if ( (iChamber==1) || (iChamber==2) ) + sigmaEffectThetadegrees/=(1.09833e+00+1.70000e-02*(thetawires*kRaddeg)); // The gap is different (4mm) + yAngleEffect=1.e-04*gRandom->Gaus(0,sigmaEffectThetadegrees); // Error due to the angle effect in cm + } + } + + // One hit per chamber + GetMUONData()->AddHit(fIshunt, gAlice->GetMCApp()->GetCurrentTrackNumber(), iChamber, ipart, + fTrackPosition.X(), fTrackPosition.Y()+yAngleEffect, fTrackPosition.Z(), 0.0, + fTrackMomentum.P(),theta, phi, fStepSum[idvol], fDestepSum[idvol], + fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z()); +// if (GetDebug()){ +// Info("StepManager Exit","Particle exiting from chamber %d",iChamber); +// Info("StepManager Exit","StepSum %f eloss geant %g ",fStepSum[idvol],fDestepSum[idvol]); +// Info("StepManager Exit","Track Position %f %f %f",fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z()) ; +// } + fStepSum[idvol] =0; // Reset for the next event + fDestepSum[idvol]=0; // Reset for the next event + } +} + +//__________________________________________ +void AliMUONv1::StepManagerOld() +{ + // Old Stepmanager for the chambers Int_t copy, id; - static Int_t idvol; + static Int_t idvol =-1; static Int_t vol[2]; Int_t ipart; TLorentzVector pos; TLorentzVector mom; Float_t theta,phi; Float_t destep, step; - + + static Float_t sstep; static Float_t eloss, eloss2, xhit, yhit, zhit, tof, tlength; - const Float_t kBig=1.e10; - // modifs perso + const Float_t kBig = 1.e10; static Float_t hits[15]; TClonesArray &lhits = *fHits; // - // Set maximum step size for gas - // numed=gMC->GetMedium(); // // Only charged tracks if( !(gMC->TrackCharge()) ) return; // // Only gas gap inside chamber // Tag chambers and record hits when track enters - idvol=-1; id=gMC->CurrentVolID(copy); - - for (Int_t i=1; i<=AliMUONConstants::NCh(); i++) { - if(id==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()){ - vol[0]=i; - idvol=i-1; - } - } - if (idvol == -1) return; + vol[0] = GetChamberId(id); + idvol = vol[0] -1; + + if (idvol == -1) return; + // // Get current particle id (ipart), track position (pos) and momentum (mom) gMC->TrackPosition(pos); gMC->TrackMomentum(mom); ipart = gMC->TrackPid(); - //Int_t ipart1 = gMC->IdFromPDG(ipart); - //printf("ich, ipart %d %d \n",vol[0],ipart1); // // momentum loss and steplength in last step destep = gMC->Edep(); step = gMC->TrackStep(); - + // cout<<"------------"<IsTrackEntering()) { + gMC->SetMaxStep(fMaxStepGas); Double_t tc = mom[0]*mom[0]+mom[1]*mom[1]; Double_t rt = TMath::Sqrt(tc); Double_t pmom = TMath::Sqrt(tc+mom[2]*mom[2]); - Double_t tx=mom[0]/pmom; - Double_t ty=mom[1]/pmom; - Double_t tz=mom[2]/pmom; - Double_t s=((AliMUONChamber*)(*fChambers)[idvol]) - ->ResponseModel() - ->Pitch()/tz; + Double_t tx = mom[0]/pmom; + Double_t ty = mom[1]/pmom; + Double_t tz = mom[2]/pmom; + Double_t s = ((AliMUONChamber*)(*fChambers)[idvol]) + ->ResponseModel() + ->Pitch()/tz; theta = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg; phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg; hits[0] = Float_t(ipart); // Geant3 particle type - hits[1] = pos[0]+s*tx; // X-position for hit - hits[2] = pos[1]+s*ty; // Y-position for hit - hits[3] = pos[2]+s*tz; // Z-position for hit + hits[1] = pos[0]+s*tx; // X-position for hit + hits[2] = pos[1]+s*ty; // Y-position for hit + hits[3] = pos[2]+s*tz; // Z-position for hit hits[4] = theta; // theta angle of incidence hits[5] = phi; // phi angle of incidence - hits[8] = (Float_t) fNPadHits; // first padhit + hits[8] = 0;//PadHits does not exist anymore (Float_t) fNPadHits; // first padhit hits[9] = -1; // last pad hit - - // modifs perso - hits[10] = mom[3]; // hit momentum P - hits[11] = mom[0]; // Px/P - hits[12] = mom[1]; // Py/P - hits[13] = mom[2]; // Pz/P - // fin modifs perso + hits[10] = mom[3]; // hit momentum P + hits[11] = mom[0]; // Px + hits[12] = mom[1]; // Py + hits[13] = mom[2]; // Pz tof=gMC->TrackTime(); - hits[14] = tof; // Time of flight - // phi angle of incidence - tlength = 0; - eloss = 0; - eloss2 = 0; - xhit = pos[0]; - yhit = pos[1]; - zhit = pos[2]; + hits[14] = tof; // Time of flight + tlength = 0; + eloss = 0; + eloss2 = 0; + sstep=0; + xhit = pos[0]; + yhit = pos[1]; + zhit = pos[2]; Chamber(idvol).ChargeCorrelationInit(); // Only if not trigger chamber - +// printf("---------------------------\n"); +// printf(">>>> Y = %f \n",hits[2]); +// printf("---------------------------\n"); + - if(idvolSigGenInit(pos[0], pos[1], pos[2]); - } else { - //geant3->Gpcxyz(); - //printf("In the Trigger Chamber #%d\n",idvol-9); - } + // if(idvol < AliMUONConstants::NTrackingCh()) { +// // +// // Initialize hit position (cursor) in the segmentation model +// ((AliMUONChamber*) (*fChambers)[idvol]) +// ->SigGenInit(pos[0], pos[1], pos[2]); +// } else { +// //geant3->Gpcxyz(); +// //printf("In the Trigger Chamber #%d\n",idvol-9); +// } } eloss2+=destep; - + sstep+=step; + + // cout<Gmtod(globalPos,localPos,1); - if(idvol0) MakePadHits(x0,y0,z0,eloss,tof,idvol); + // if (eloss >0) MakePadHits(x0,y0,z0,eloss,tof,idvol); + + + hits[6] = tlength; // track length + hits[7] = eloss2; // de/dx energy loss + + + // if (fNPadHits > (Int_t)hits[8]) { + // hits[8] = hits[8]+1; + // hits[9] = 0: // PadHits does not exist anymore (Float_t) fNPadHits; + //} +// +// new hit - - hits[6]=tlength; - hits[7]=eloss2; - if (fNPadHits > (Int_t)hits[8]) { - hits[8]= hits[8]+1; - hits[9]= (Float_t) fNPadHits; - } - new(lhits[fNhits++]) - AliMUONHit(fIshunt,gAlice->CurrentTrack(),vol,hits); + AliMUONHit(fIshunt, gAlice->GetMCApp()->GetCurrentTrackNumber(), vol,hits); eloss = 0; // // Check additional signal generation conditions @@ -2165,7 +800,7 @@ void AliMUONv1::StepManager() ((AliMUONChamber*) (*fChambers)[idvol])->SigGenCond(pos[0], pos[1], pos[2])) { ((AliMUONChamber*) (*fChambers)[idvol]) - ->SigGenInit(pos[0], pos[1], pos[2]); + ->SigGenInit(pos[0], pos[1], pos[2]); Float_t localPos[3]; Float_t globalPos[3] = {pos[0], pos[1], pos[2]}; @@ -2173,8 +808,8 @@ void AliMUONv1::StepManager() eloss += destep; - if (eloss > 0 && idvol < AliMUONConstants::NTrackingCh()) - MakePadHits(0.5*(xhit+pos[0]),0.5*(yhit+pos[1]),pos[2],eloss,tof,idvol); + // if (eloss > 0 && idvol < AliMUONConstants::NTrackingCh()) + // MakePadHits(0.5*(xhit+pos[0]),0.5*(yhit+pos[1]),pos[2],eloss,tof,idvol); xhit = pos[0]; yhit = pos[1]; zhit = pos[2]; @@ -2187,5 +822,3 @@ void AliMUONv1::StepManager() tlength += step ; } } - -