X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;ds=sidebyside;f=RICH%2FAliRICHDetect.cxx;h=b6e8f433cb9e1a6d3baf22b96af74f5cd5fe8d81;hb=44c7f8de7bcdce86f9c280c164755f6f3c609058;hp=2a44456e3d15886be496ee60bdc5b23d599d6f5c;hpb=237c933d68793192ded67c959825d4e5e881131e;p=u%2Fmrichter%2FAliRoot.git diff --git a/RICH/AliRICHDetect.cxx b/RICH/AliRICHDetect.cxx index 2a44456e3d1..b6e8f433cb9 100644 --- a/RICH/AliRICHDetect.cxx +++ b/RICH/AliRICHDetect.cxx @@ -15,22 +15,72 @@ /* $Log$ + Revision 1.15 2001/10/21 18:31:23 hristov + Several pointers were set to zero in the default constructors to avoid memory management problems + + Revision 1.14 2001/05/14 13:25:54 hristov + stdlib.h included (for Alpha) + + Revision 1.13 2001/05/10 12:26:31 jbarbosa + Totally reworked version of reconstruction algorithm. + + Revision 1.12 2001/02/27 22:15:03 jbarbosa + Removed compiler warning. + + Revision 1.11 2001/02/27 15:21:46 jbarbosa + Transition to SDigits. + + Revision 1.10 2001/02/13 20:39:06 jbarbosa + Changes to make it work with new IO. + + Revision 1.9 2001/01/22 21:39:11 jbarbosa + Several tune-ups + + Revision 1.8 2000/11/15 15:52:53 jbarbosa + Turned on spot algorithm. + + Revision 1.7 2000/11/01 15:37:05 jbarbosa + Updated to use its own rec. point object. + + Revision 1.6 2000/10/02 21:28:12 fca + Removal of useless dependecies via forward declarations + + Revision 1.5 2000/06/30 16:30:28 dibari + Disabled writing to rechits. + + Revision 1.4 2000/06/15 15:46:59 jbarbosa + Corrected compilation errors on HP-UX (replaced pow with TMath::Power) + + Revision 1.3 2000/06/13 13:15:41 jbarbosa + Still some code cleanup done (variable names) + + Revision 1.2 2000/06/12 15:19:30 jbarbosa + Cleaned up version. + Revision 1.1 2000/04/19 13:05:14 morsch J. Barbosa's spot reconstruction algorithm. */ +#include + #include "AliRICH.h" #include "AliRICHPoints.h" #include "AliRICHDetect.h" #include "AliRICHHit.h" #include "AliRICHDigit.h" +#include "AliRICHSegmentationV0.h" #include "AliRun.h" #include "TParticle.h" +#include "TTree.h" #include "TMath.h" #include "TRandom.h" +#include "TH3.h" +#include "TH2.h" +#include "TCanvas.h" +#include "malloc.h" ClassImp(AliRICHDetect) @@ -40,26 +90,37 @@ AliRICHDetect::AliRICHDetect() : TObject() // Default constructor - //fChambers = 0; + fc1 = 0; + fc2 = 0; + fc3 = 0; + } //___________________________________________ AliRICHDetect::AliRICHDetect(const char *name, const char *title) : TObject() { - -// Constructor - /*fChambers = new TObjArray(7); - for (Int_t i=0; i<7; i++) { + + fc1= new TCanvas("c1","Reconstructed points",50,50,300,350); + fc1->Divide(2,2); + fc2= new TCanvas("c2","Reconstructed points after SPOT",50,50,300,350); + fc2->Divide(2,2); + fc3= new TCanvas("c3","Used Digits",50,50,300,350); + //fc3->Divide(2,1); + +} + +//___________________________________________ +AliRICHDetect::~AliRICHDetect() +{ - (*fChambers)[i] = new AliRICHchamber(); - - } */ +// Destructor + } -void AliRICHDetect::Detect() +void AliRICHDetect::Detect(Int_t nev) { // @@ -67,263 +128,527 @@ void AliRICHDetect::Detect() //printf("Detection started!\n"); - Float_t OMEGA,steptheta,stepphi,x,y,cx,cy,l,aux1,aux2,aux3,maxi,maxj,maxk,max; + Float_t omega,omega1,theta1,steptheta,stepphi,x,y,z,cx,cy,l,aux1,aux2,aux3,max,radius=0,meanradius=0; + Int_t maxi,maxj,maxk; //Float_t theta,phi,realomega,realtheta; + Float_t binomega, bintheta, binphi; + Int_t intomega, inttheta, intphi; Int_t i,j,k; + + AliRICH *pRICH = (AliRICH*)gAlice->GetDetector("RICH"); + AliRICHSegmentationV0* segmentation; + AliRICHChamber* iChamber; + AliRICHGeometry* geometry; - //const Float_t Noise_Level=0; //Noise Level in percentage of mesh points - //const Float_t t=0.6; //Softening of Noise Correction (factor) - - const Float_t Pii=3.1415927; + iChamber = &(pRICH->Chamber(0)); + segmentation=(AliRICHSegmentationV0*) iChamber->GetSegmentationModel(0); + geometry=iChamber->GetGeometryModel(); + - const Float_t h=10; //Distance from Radiator to Pads in pads + //const Float_t Noise_Level=0; //Noise Level in percentage of mesh points + //const Float_t t=0.6; //Softening of Noise Correction (factor) + const Float_t kPi=TMath::Pi(); - const Int_t dimensiontheta=100; //Matrix dimension for angle Detection - const Int_t dimensionphi=100; - const Int_t dimensionOMEGA=100; + const Float_t kHeight=geometry->GetRadiatorToPads(); //Distance from Radiator to Pads in centimeters + //printf("Distance to Pads:%f\n",kHeight); + + const Int_t kSpot=0; //number of passes with spot algorithm - //const Float_t SPOTp=.2; //Percentage of spot action - //const Int_t np=500; //Number of points to reconstruct elipse - const Float_t maxOMEGA=65*Pii/180; //Maximum Cherenkov angle to identify + const Int_t kDimensionTheta=30; //Matrix dimension for angle Detection + const Int_t kDimensionPhi=45; + const Int_t kDimensionOmega=100; - Int_t Point[dimensiontheta][dimensionphi][dimensionOMEGA]; - //Int_t Point1[dimensiontheta][dimensionphi][dimensionOMEGA]; + const Float_t SPOTp=1; //Percentage of spot action + const Float_t kMinOmega=20*kPi/180; + const Float_t kMaxOmega=70*kPi/180; //Maximum Cherenkov angle to identify + const Float_t kMinTheta=0; + const Float_t kMaxTheta=15*kPi/180; + //const Float_t kMaxTheta=0.1; + const Float_t kMinPhi=0; + const Float_t kMaxPhi=360*kPi/180; + + + Float_t kCorr=0.61; //Correction factor, accounting for aberration, refractive index, etc. + //const Float_t kCorr=.9369; //from 0 incidence + //const Float_t kCorr=1; + + //TRandom* random=0; + + Float_t rechit[6]; //Reconstructed point data + - steptheta=Pii/dimensiontheta; - stepphi=Pii/dimensionphi; - AliRICHChamber* iChamber; + //printf("Creating matrices\n"); + //Float_t point[kDimensionTheta][kDimensionPhi][kDimensionOmega]; + //Float_t point1[kDimensionTheta][kDimensionPhi][kDimensionOmega]; + //printf("Created matrices\n"); + + Int_t ***point = i3tensor(0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega); + Int_t ***point1 = i3tensor(0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega); - AliRICH *RICH = (AliRICH*)gAlice->GetDetector("RICH"); + //Int_t **point = new Int_t[kDimensionTheta][kDimensionPhi][kDimensionOmega]; + //Int_t **point1 = new Int_t[kDimensionTheta][kDimensionPhi][kDimensionOmega]; + + steptheta=(kMaxTheta-kMinTheta)/kDimensionTheta; + stepphi=(kMaxPhi-kMinPhi)/kDimensionPhi; + + static TH3F *Points = new TH3F("Points","Reconstructed points 3D",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega); + static TH2F *ThetaPhi = new TH2F("ThetaPhi","Theta-Phi projection",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi); + static TH2F *OmegaTheta = new TH2F("OmegaTheta","Omega-Theta projection",kDimensionTheta,0,kDimensionTheta,kDimensionOmega,0,kDimensionOmega); + static TH2F *OmegaPhi = new TH2F("OmegaPhi","Omega-Phi projection",kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega); + static TH3F *SpotPoints = new TH3F("Points","Reconstructed points 3D, spot",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega); + static TH2F *SpotThetaPhi = new TH2F("ThetaPhi","Theta-Phi projection, spot",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi); + static TH2F *SpotOmegaTheta = new TH2F("OmegaTheta","Omega-Theta projection, spot",kDimensionTheta,0,kDimensionTheta,kDimensionOmega,0,kDimensionOmega); + static TH2F *SpotOmegaPhi = new TH2F("OmegaPhi","Omega-Phi projection, spot",kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega); + static TH2F *DigitsXY = new TH2F("DigitsXY","Pads used for reconstruction",150,-25,25,150,-25,25); + Points->SetXTitle("theta"); + Points->SetYTitle("phi"); + Points->SetZTitle("omega"); + ThetaPhi->SetXTitle("theta"); + ThetaPhi->SetYTitle("phi"); + OmegaTheta->SetXTitle("theta"); + OmegaTheta->SetYTitle("omega"); + OmegaPhi->SetXTitle("phi"); + OmegaPhi->SetYTitle("omega"); + SpotPoints->SetXTitle("theta"); + SpotPoints->SetYTitle("phi"); + SpotPoints->SetZTitle("omega"); + SpotThetaPhi->SetXTitle("theta"); + SpotThetaPhi->SetYTitle("phi"); + SpotOmegaTheta->SetXTitle("theta"); + SpotOmegaTheta->SetYTitle("omega"); + SpotOmegaPhi->SetXTitle("phi"); + SpotOmegaPhi->SetYTitle("omega"); + Int_t ntracks = (Int_t)gAlice->TreeH()->GetEntries(); //Int_t ntrks = gAlice->GetNtrack(); Float_t trackglob[3]; Float_t trackloc[3]; - //printf("Got ntracks:%d\n",ntracks); - /*TVector *xp = new TVector(1000); - TVector *yp = new TVector(1000); - TVector *zp = new TVector(1000); - TVector *ptrk = new TVector(1000); - TVector *phit = new TVector(1000);*/ - //printf("Area de uma elipse com teta 0 e Omega 45:%f",Area(0,45)); + Int_t track; - for (Int_t track=0; trackResetHits(); gAlice->TreeH()->GetEvent(track); - TClonesArray *Hits = RICH->Hits(); - if (Hits == 0) return; - Int_t nhits = Hits->GetEntriesFast(); + TClonesArray *pHits = pRICH->Hits(); + if (pHits == 0) return; + Int_t nhits = pHits->GetEntriesFast(); if (nhits == 0) continue; - Int_t nent=(Int_t)gAlice->TreeD()->GetEntries(); - gAlice->TreeD()->GetEvent(nent-1); + //Int_t nent=(Int_t)gAlice->TreeD()->GetEntries(); + gAlice->TreeD()->GetEvent(0); AliRICHHit *mHit = 0; AliRICHDigit *points = 0; //Int_t npoints=0; - Int_t counter=0; + Int_t counter=0, counter1=0; //Initialization - for(i=0;iUncheckedAt(0); + mHit = (AliRICHHit*) pHits->UncheckedAt(0); //printf("Aqui vou eu\n"); - Int_t nch = mHit->fChamber; + Int_t nch = mHit->Chamber(); //printf("Aqui fui eu\n"); - trackglob[0] = mHit->fX; - trackglob[1] = mHit->fY; - trackglob[2] = mHit->fZ; + trackglob[0] = mHit->X(); + trackglob[1] = mHit->Y(); + trackglob[2] = mHit->Z(); - cx=trackglob[0]; - cy=trackglob[2]; - - - //printf("Chamber processed:%d\n",nch); - printf("Center processed: %3.1f %3.1f %3.1f\n",trackglob[0],trackglob[1],trackglob[2]); + printf("Chamber processed:%d\n",nch); + + printf("Reconstructing particle at (global coordinates): %3.1f %3.1f %3.1f,\n",trackglob[0],trackglob[1],trackglob[2]); - iChamber = &(RICH->Chamber(nch-1)); + iChamber = &(pRICH->Chamber(nch-1)); //printf("Nch:%d\n",nch); iChamber->GlobaltoLocal(trackglob,trackloc); - printf("Transformation 1: %3.1f %3.1f %3.1f\n",trackloc[0],trackloc[1],trackloc[2]); + printf("Reconstructing particle at (local coordinates) : %3.1f %3.1f %3.1f\n",trackloc[0],trackloc[1],trackloc[2]); iChamber->LocaltoGlobal(trackloc,trackglob); - printf("Transformation 2: %3.1f %3.1f %3.1f\n",trackglob[0],trackglob[1],trackglob[2]); - + //printf("Transformation 2: %3.1f %3.1f %3.1f\n",trackglob[0],trackglob[1],trackglob[2]); + cx=trackloc[0]; + cy=trackloc[2]; - TClonesArray *Digits = RICH->DigitsAddress(nch-1); - Int_t ndigits = Digits->GetEntriesFast(); + TClonesArray *pDigits = pRICH->DigitsAddress(nch-1); + Int_t ndigits = pDigits->GetEntriesFast(); //printf("Got %d digits\n",ndigits); - //printf("Starting calculations\n"); - - for(Float_t theta=0;thetaUncheckedAt(dig); - - x=points->fPadX-cx; - y=points->fPadY-cy; - //printf("Loaded digit %d with coordinates x:%f, y%f\n",dig,x,y); - //cout<<"x="<Fill(x,y,(float) 1); + + theta1=SnellAngle(theta)*1.5; + + aux1=-y*sin(phi)+x*cos(phi); + aux2=y*cos(phi)+x*sin(phi); + aux3=( TMath::Power(aux1,2)+TMath::Power(cos(theta1)*aux2 ,2))/TMath::Power(sin(theta1)*aux2+l,2); + omega=atan(sqrt(aux3)); + + //omega is distorted, theta1 is distorted + + if(InvSnellAngle(theta+omega)<999) + { + omega1=InvSnellAngle(omega+theta1) - theta; + //theta1=InvSnellAngle(omega+theta) - omega1; + //omega1=kCorr*omega; + + kCorr=InvSnellAngle(omega+theta)/(omega+theta); + theta1=kCorr*theta/1.4; + //if(phi==0) + //printf("Omega:%f Theta:%f Omega1:%f Theta1:%f ISA(o+t):%f ISA(t):%f\n",omega*180/kPi,theta*180/kPi,omega1*180/kPi,theta1*180/kPi,InvSnellAngle(omega+theta)*180/kPi,InvSnellAngle(theta)*180/kPi); + } + else + { + omega1=0; + theta1=0; + } + + //printf("Omega:%f\n",omega); + + + //if(SnellAngle(theta+omega)<999) + //printf("(Angle)/(Snell angle):%f\n",(theta+omega)/SnellAngle(theta+omega)); + if(theta==0 && phi==0) + { + //printf("Omega: %f Corrected Omega: %f\n",omega, omega/kCorr); + //omega=omega/kCorr; + } + + //cout<<"\ni="<Fill(inttheta,intphi,intomega,(float) 1); + ThetaPhi->Fill(inttheta,intphi,(float) 1); + OmegaTheta->Fill(inttheta,intomega,(float) 1); + OmegaPhi->Fill(intphi,intomega,(float) 1); + //printf("Filling at %d %d %d\n",Int_t(theta*kDimensionTheta/kMaxTheta),Int_t(phi*kDimensionPhi/kMaxPhi),Int_t(omega*kDimensionOmega/kMaxOmega)); + } + //if(omegacd(1); + Points->Draw(); + fc1->cd(2); + ThetaPhi->Draw(); + fc1->cd(3); + OmegaTheta->Draw(); + fc1->cd(4); + OmegaPhi->Draw(); + fc3->cd(); + DigitsXY->Draw(); + } + else + { + //fc1->cd(1); + //Points->Draw("same"); + //fc1->cd(2); + //ThetaPhi->Draw("same"); + //fc1->cd(3); + //OmegaTheta->Draw("same"); + //fc1->cd(4); + //OmegaPhi->Draw("same"); + } + } + //SPOT execute twice - /*for(s=1;i<=2;s++) + for(Int_t s=0;s>lixo;} + //buffer copy + for(i=0;i<=kDimensionTheta;i++) + { + for(j=0;j<=kDimensionPhi;j++) + { + for(k=0;k<=kDimensionOmega;k++) + { + point1[i][j][k]=point[i][j][k]; + } + } + } + //SPOT algorithm - for(i=1;iPoint[i-1][k][j])&&(Point[i][k][j]>Point[i+1][k][j])&& - (Point[i][k][j]>Point[i][k-1][j])&&(Point[i][k][j]>Point[i][k+1][j])&& - (Point[i][k][j]>Point[i][k][j-1])&&(Point[i][k][j]>Point[i][k][j+1])) + for(k=1;kpoint[i-1][k][j])&&(point[i][k][j]>point[i+1][k][j])&& + (point[i][k][j]>point[i][k-1][j])&&(point[i][k][j]>point[i][k+1][j])&& + (point[i][k][j]>point[i][k][j-1])&&(point[i][k][j]>point[i][k][j+1])) + { + //cout<<"SPOT"<Fill(i,j,k,(float) point1[i][j][k]); + //printf("Random number %f\n",random->Rndm(2)); + //if(random->Rndm() < .2) + //{ + SpotThetaPhi->Fill(i,j,(float) point1[i][j][k]); + SpotOmegaTheta->Fill(i,k,(float) point1[i][j][k]); + SpotOmegaPhi->Fill(j,k,(float) point1[i][j][k]); + counter1++; + //} + //printf("Filling at %d %d %d value %f\n",i,j,k,(float) point1[i][j][k]); + } + } + } + //if(point1[i][j][k] != 0) + //printf("Last transfer point: %d, point1, %d\n",point[i][j][k],point1[i][j][k]); + } + } + } + } + + //printf("Filled %d cells\n",counter1); + + if(nev<20) + { + if(nev==0) + { + fc2->cd(1); + SpotPoints->Draw(); + fc2->cd(2); + SpotThetaPhi->Draw(); + fc2->cd(3); + SpotOmegaTheta->Draw(); + fc2->cd(4); + SpotOmegaPhi->Draw(); + } + else + { + //fc2->cd(1); + //SpotPoints->Draw("same"); + //fc2->cd(2); + //SpotThetaPhi->Draw("same"); + //fc2->cd(3); + //SpotOmegaTheta->Draw("same"); + //fc2->cd(4); + //SpotOmegaPhi->Draw("same"); + } + } //Identification is equivalent to maximum determination max=0;maxi=0;maxj=0;maxk=0; - //cout<<"Proceeding to Identification"<max) - { - //cout<<"maxi="<max) + { + //cout<<"maxi="<AddRecHit(nch-1,rechit); + pRICH->AddRecHit3D(nch-1,rechit); + //printf("rechit %f %f %f %f %f\n",rechit[0],rechit[1],rechit[2],rechit[3],rechit[4]); + //printf("Chamber:%d",nch); } //printf("\n\n\n\n"); gAlice->TreeR()->Fill(); - //TTree *TR=gAlice->TreeR(); - //Stat_t ndig=TR->GetEntries(); TClonesArray *fRec; for (i=0;iRecHitsAddress(i); + fRec=pRICH->RecHitsAddress3D(i); int ndig=fRec->GetEntriesFast(); - printf ("Chamber %d, rings %d\n",i,ndig); + printf ("Chamber %d, rings %d\n",i+1,ndig); } - //printf("Number of rec. hits: %d",ndig); - RICH->ResetRecHits(); - //char hname[30]; - //sprintf(hname,"TreeR%d",track); - //gAlice->TreeR()->Write(hname); - + pRICH->ResetRecHits3D(); + + free_i3tensor(point,0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega); + free_i3tensor(point1,0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega); } -Float_t AliRICHDetect:: Area(Float_t theta,Float_t OMEGA) + + +Float_t AliRICHDetect:: Area(Float_t theta,Float_t omega) { // @@ -331,80 +656,179 @@ Float_t AliRICHDetect:: Area(Float_t theta,Float_t OMEGA) Float_t area; - const Float_t h=9.25; //Distance from Radiator to Pads in pads + const Float_t kHeight=9.25; //Distance from Radiator to Pads in pads - area=TMath::Pi()*pow(h*tan(OMEGA),2)/pow(pow(cos(theta),2)-pow(tan(OMEGA)*sin(theta),2),3/2); + area=TMath::Pi()*TMath::Power(kHeight*tan(omega),2)/TMath::Power(TMath::Power(cos(theta),2)-TMath::Power(tan(omega)*sin(theta),2),3/2); return (area); } -/*Int_t ***AliRICHDetect::i3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh) -// allocate a Float_t 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh] -{ -long i,j,nrow=nrh-nrl+1,ncol=nch-ncl+1,ndep=ndh-ndl+1; -Int_t ***t; - -// allocate pointers to pointers to rows -t=(Int_t ***) malloc((size_t)((nrow+NR_END)*sizeof(Int_t**))); -if (!t) printf("allocation failure 1 in f3tensor()"); -t += NR_END; -t -= nrl; - -// allocate pointers to rows and set pointers to them -t[nrl]=(Int_t **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(Int_t*))); -if (!t[nrl]) printf("allocation failure 2 in f3tensor()"); -t[nrl] += NR_END; -t[nrl] -= ncl; - -// allocate rows and set pointers to them -t[nrl][ncl]=(Int_t *) malloc((size_t)((nrow*ncol*ndep+NR_END)*sizeof(Int_t))); -if (!t[nrl][ncl]) printf("allocation failure 3 in f3tensor()"); -t[nrl][ncl] += NR_END; -t[nrl][ncl] -= ndl; - -for(j=ncl+1;j<=nch;j++) t[nrl][j]=t[nrl][j-1]+ndep; -for(i=nrl+1;i<=nrh;i++) { -t[i]=t[i-1]+ncol; -t[i][ncl]=t[i-1][ncl]+ncol*ndep; -for(j=ncl+1;j<=nch;j++) t[i][j]=t[i][j-1]+ndep; -} -// return pointer to array of pointers to rows -return t; -}*/ +Int_t ***AliRICHDetect::i3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh) +// allocate a Int_t 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh] +{ + long i,j,nrow=nrh-nrl+1,ncol=nch-ncl+1,ndep=ndh-ndl+1; + Int_t ***t; + + int NR_END=1; -/*void Pointpp(Float_t alfa,Float_t theta,Float_t OMEGA,Float_t cx,Float_t cy) - { - Int_t s; - Float_t fiducial=h*tan((OMEGA+theta)*Pii/180),l=h/cos(theta*Pii/180),xtrial,y,c0,c1,c2; + // allocate pointers to pointers to rows + t=(Int_t ***) malloc((size_t)((nrow+NR_END)*sizeof(Int_t**))); + if (!t) printf("allocation failure 1 in f3tensor()"); + t += NR_END; + t -= nrl; + + // allocate pointers to rows and set pointers to them + t[nrl]=(Int_t **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(Int_t*))); + if (!t[nrl]) printf("allocation failure 2 in f3tensor()"); + t[nrl] += NR_END; + t[nrl] -= ncl; - //cout<<"fiducial="<.5) s=1; else s=-1; - //Trial a y - y=s*aleat(fiducial); - Float_t alfa1=alfa*Pii/180; - Float_t theta1=theta*Pii/180; - Float_t OMEGA1=OMEGA*Pii/180; - //Solve the eq for a trial x - c0=-pow(y*cos(alfa1)*cos(theta1),2)-pow(y*sin(alfa1),2)+pow(l*tan(OMEGA1),2)+2*l*y*cos(alfa1)*sin(theta1)*pow(tan(OMEGA1),2)+pow(y*cos(alfa1)*sin(theta1)*tan(OMEGA1),2); - c1=2*y*cos(alfa1)*sin(alfa1)-2*y*cos(alfa1)*pow(cos(theta1),2)*sin(alfa1)+2*l*sin(alfa1)*sin(theta1)*pow(tan(OMEGA1),2)+2*y*cos(alfa1)*sin(alfa1)*pow(sin(theta1),2)*pow(tan(OMEGA1),2); - c2=-pow(cos(alfa1),2)-pow(cos(theta1)*sin(alfa1),2)+pow(sin(alfa1)*sin(theta1)*tan(OMEGA1),2); - //cout<<"Trial: y="<1.) { + iangle = 999.; + return iangle; + } + + iangle = asin(siniangle); + return iangle; +} + +//________________________________________________________________________________ +void AliRICHDetect::CreatePoints(Float_t theta, Float_t phi, Float_t omega, Float_t h) +{ + + // Create points along the ellipse equation + + Int_t s1,s2; + Float_t fiducial=h*TMath::Tan(omega+theta), l=h/TMath::Cos(theta), xtrial, y=0, c0, c1, c2; + //TRandom *random=new TRandom(); + + static TH2F *REllipse = new TH2F("REllipse","Reconstructed ellipses",150,-25,25,150,-25,25); + + for(Float_t i=0;i<1000;i++) + { + + Float_t counter=0; + + c0=0;c1=0;c2=0; + while((c1*c1-4*c2*c0)<=0 && counter<1000) + { + //Choose which side to go... + if(i>250 && i<750) s1=1; + //if (gRandom->Rndm(1)>.5) s1=1; + else s1=-1; + //printf("s1:%d\n",s1); + //Trial a y + y=s1*i*gRandom->Rndm(Int_t(fiducial/50)); + //printf("Fiducial %f for omega:%f theta:%f phi:%f\n",fiducial,omega,theta,fphi); + Float_t alfa1=theta; + Float_t theta1=phi; + Float_t omega1=omega; + + //Solve the eq for a trial x + c0=-TMath::Power(y*TMath::Cos(alfa1)*TMath::Cos(theta1),2)-TMath::Power(y*TMath::Sin(alfa1),2)+TMath::Power(l*TMath::Tan(omega1),2)+2*l*y*TMath::Cos(alfa1)*TMath::Sin(theta1)*TMath::Power(TMath::Tan(omega1),2)+TMath::Power(y*TMath::Cos(alfa1)*TMath::Sin(theta1)*TMath::Tan(omega1),2); + c1=2*y*TMath::Cos(alfa1)*TMath::Sin(alfa1)-2*y*TMath::Cos(alfa1)*TMath::Power(TMath::Cos(theta1),2)*TMath::Sin(alfa1)+2*l*TMath::Sin(alfa1)*TMath::Sin(theta1)*TMath::Power(TMath::Tan(omega1),2)+2*y*TMath::Cos(alfa1)*TMath::Sin(alfa1)*TMath::Power(TMath::Sin(theta1),2)*TMath::Power(TMath::Tan(omega1),2); + c2=-TMath::Power(TMath::Cos(alfa1),2)-TMath::Power(TMath::Cos(theta1)*TMath::Sin(alfa1),2)+TMath::Power(TMath::Sin(alfa1)*TMath::Sin(theta1)*TMath::Tan(omega1),2); + //cout<<"Trial: y="<=1000) + y=0; + + //Choose which side to go... + //if(gRandom->Rndm(1)>.5) s=1; + //else s=-1; + if(i>500) s2=1; + //if (gRandom->Rndm(1)>.5) s2=1; + else s2=-1; + xtrial=(-c1+s2*TMath::Sqrt(c1*c1-4*c2*c0))/(2*c2); + //cout<<"x="<Fill(xtrial,y); + + //printf("Coordinates: %f %f %f\n",vectorGlob[0],vectorGlob[1],vectorGlob[2]); + } + + fc3->cd(2); + REllipse->Draw(); +}