X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=EMCAL%2FAliCaloRawAnalyzer.h;h=261d5822020b41e355a15088285f95157794a0a5;hb=bdf70a4cdc213e42f79d98a0833eb85413ab3b90;hp=1a3029f56c3458ff6fdbc341d41fac51b320cc4b;hpb=57839add729de273b3f0b5a2c75f94eda52dc4e4;p=u%2Fmrichter%2FAliRoot.git diff --git a/EMCAL/AliCaloRawAnalyzer.h b/EMCAL/AliCaloRawAnalyzer.h index 1a3029f56c3..261d5822020 100644 --- a/EMCAL/AliCaloRawAnalyzer.h +++ b/EMCAL/AliCaloRawAnalyzer.h @@ -1,8 +1,9 @@ +// -*- mode: c++ -*- #ifndef ALICALORAWANALYZER_H #define ALICALORAWANALYZER_H /************************************************************************** * This file is property of and copyright by * - * the Relatvistic Heavy Ion Group (RHIG), Yale University, US, 2009 * + * the Relatvistic Heavy Ion Group (RHIG), Yale University, US, 2009 * * * * Primary Author: Per Thomas Hille * * * @@ -18,64 +19,99 @@ * provided "as is" without express or implied warranty. * **************************************************************************/ - //Base class for extraction //of signal amplitude and peak position //From CALO Calorimeter RAW data - #include "Rtypes.h" #include "TObject.h" #include -using namespace std; +#include "TObjArray.h" +#include "AliCaloFitResults.h" +#include "AliCaloConstants.h" +using namespace ALTRO; +using namespace CALO; -#define MAXSAMPLES 1008 //CRAP PTH -#include "AliCaloRawAnalyzer.h" class AliCaloBunchInfo; -class AliCaloFitResults; class AliCaloRawAnalyzer : public TObject { - public: - AliCaloRawAnalyzer(); +public: + AliCaloRawAnalyzer(const char *name="AliCaloRawAnalyzer", const char *nameshort="RawAna"); virtual ~AliCaloRawAnalyzer(); - virtual AliCaloFitResults Evaluate( const vector &bunchvector, const UInt_t altrocfg1, const UInt_t altrocfg2 ); - - void PrintBunches( const vector &bunchvector ) const; - void PrintBunch( const AliCaloBunchInfo &bunch ) const ; - virtual int PreFitEvaluateSamples( const vector &bunchvector, const UInt_t altrocfg1, const UInt_t altrocfg2, Int_t & index, Float_t & maxf, short & maxamp, short & maxampindex, Float_t & ped, int & first, int & last); + virtual AliCaloFitResults Evaluate( const std::vector &/*bunchvector*/, + const UInt_t /*altrocfg1*/, const UInt_t /*altrocfg2*/ ) = 0; + + static void PrintBunches( const std::vector &bunchvector ); + static void PrintBunch( const AliCaloBunchInfo &bunch ); + + int PreFitEvaluateSamples( const std::vector &bunchvector, + const UInt_t altrocfg1, const UInt_t altrocfg2, Int_t & index, + Float_t & maxf, short & maxamp, short & maxampindex, + Float_t & ped, int & first, int & last, const int acut); + void SetTimeConstraint(const int min, const int max ); void SetVerbose(bool verbose = true){ fVerbose = verbose; }; void SetIsZeroSuppressed(const bool iszs = true) { fIsZerosupressed = iszs; } ; void SetAmpCut(const Float_t cut) { fAmpCut = cut ; } ; void SetFitArrayCut(const Int_t cut) { fFitArrayCut = cut ; } ; void SetNsampleCut(const Int_t cut) { fNsampleCut = cut ; } ; + void SetOverflowCut(const Int_t cut) { fOverflowCut = cut ; } ; + void SetNsamplePed(const Int_t i) { fNsamplePed = i ; } ; + + bool GetIsZeroSuppressed() const { return fIsZerosupressed;} ; + Float_t GetAmpCut() const { return fAmpCut; } ; + Int_t GetFitArrayCut() const { return fFitArrayCut; } ; + Int_t GetNsampleCut() const { return fNsampleCut; } ; + Int_t GetOverflowCut() const { return fOverflowCut; } ; + Int_t GetNsamplePed() const { return fNsamplePed; } ; // access to array info Double_t GetReversed(const int i) const { return fReversed[i]; } + const char * GetAlgoName() const { return fName; }; + const char * GetAlgoAbbr() const { return fNameShort; }; + Algo::fitAlgorithm GetAlgo() const { return fAlgo; }; - protected: + Double_t CalculateChi2(const Double_t amp, const Double_t time, + const Int_t first, const Int_t last, + const Double_t adcErr=1, + const Double_t tau=2.35) const; + void CalculateMeanAndRMS(const Int_t first, const Int_t last, + Double_t & mean, Double_t & rms); + void SetL1Phase(const Double_t phase) {fL1Phase = phase;}; short Max( const AliCaloBunchInfo *const bunch, int *const maxindex) const; UShort_t Max(const UShort_t *data, const int length ) const; - bool IsInTimeRange( const int maxindex ) const; + bool CheckBunchEdgesForMax( const AliCaloBunchInfo *const bunch) const; + bool IsInTimeRange( const int maxindex, const int maxtime, const int mintime ) const; Float_t ReverseAndSubtractPed( const AliCaloBunchInfo *bunch, const UInt_t altrocfg1, const UInt_t altrocfg2, double *outarray ) const; - int SelectBunch( const vector &bunchvector, short *const maxampbin, short *const maxamplitude ) const; - void SelectSubarray( const Double_t *fData, const int length, const short maxindex, int *const first, int *const last ) const; + int SelectBunch( const std::vector &bunchvector, short *const maxampbin, short *const maxamplitude ); + void SelectSubarray( const Double_t *date, const int length, const short maxindex, int *const first, int *const last, const int cut) const; Float_t EvaluatePedestal(const UShort_t * const data, const int length ) const; + Float_t GetTau() const { return fTau;}; + void SetTau( const Float_t tau ) { fTau =tau ;}; - Double_t fReversed[MAXSAMPLES]; //Reversed sequence of samples (pedestalsubtracted) - - // private: +protected: + Double_t fReversed[ALTROMAXSAMPLES]; //Reversed sequence of samples (pedestalsubtracted) int fMinTimeIndex; //The timebin of the max signal value must be between fMinTimeIndex and fMaxTimeIndex int fMaxTimeIndex; //The timebin of the max signal value must be between fMinTimeIndex and fMaxTimeIndex int fFitArrayCut; //Cut on ADC value (after ped. subtraction) for signals used for fit Float_t fAmpCut; //Max ADC - pedestal must be higher than this befor attemting to extract the amplitude int fNsampleCut; //Minimum number of sample require before attemting to extract signal parameters + int fOverflowCut; // value when ADC starts to saturate + int fNsamplePed; //Number of samples used for pedestal calculation (first in bunch) bool fIsZerosupressed; //Wether or not the data is zeros supressed, by default its assumed that the baseline is also subtracted if set to true bool fVerbose; //Print debug information to std out if set to true + char fName[256]; // Name of the algorithm + char fNameShort[256]; // Abbrevation for the name + Algo::fitAlgorithm fAlgo; // Which algorithm to use + Double_t fL1Phase; // Phase of the ADC sampling clock relative to the LHC clock + Double_t fAmp; // The amplitude in entities of ADC counts + Double_t fTof; // The amplitude in entities of ADC counts + Float_t fTau; // Rise time of the signal (peak position = t0 +tau), by defauly it is 235 ns + ClassDef(AliCaloRawAnalyzer, 2) };