X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=EMCAL%2FAliEMCALRawUtils.cxx;h=5e52a6a792fb595fdf08b1cc8c7e2b5bb6a3836d;hb=1ab0e0dbb218d25d2820b549d8d53adff2ee05bc;hp=dad0953c2a27d27373fd384da12d8c1edbb53cd9;hpb=e0dc3f7df7a5d1f0605d8373255d7c76d828c7fa;p=u%2Fmrichter%2FAliRoot.git diff --git a/EMCAL/AliEMCALRawUtils.cxx b/EMCAL/AliEMCALRawUtils.cxx index dad0953c2a2..5e52a6a792f 100644 --- a/EMCAL/AliEMCALRawUtils.cxx +++ b/EMCAL/AliEMCALRawUtils.cxx @@ -1,3 +1,4 @@ +// -*- mode: c++ -*- /************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * @@ -15,6 +16,7 @@ /* $Id$ */ + //_________________________________________________________________________ // Utility Class for handling Raw data // Does all transitions from Digits to Raw and vice versa, @@ -60,26 +62,30 @@ class AliEMCALDigitizer; #include "AliCaloRawAnalyzerLMS.h" #include "AliCaloRawAnalyzerPeakFinder.h" #include "AliCaloRawAnalyzerCrude.h" +#include "AliEMCALTriggerRawDigitMaker.h" +#include "AliEMCALTriggerSTURawStream.h" +#include "AliEMCALTriggerData.h" ClassImp(AliEMCALRawUtils) // Signal shape parameters -Int_t AliEMCALRawUtils::fgTimeBins = 256; // number of sampling bins of the raw RO signal (we typically use 15-50; theoretical max is 1k+) -Double_t AliEMCALRawUtils::fgTimeBinWidth = 100E-9 ; // each sample is 100 ns -Double_t AliEMCALRawUtils::fgTimeTrigger = 1.5E-6 ; // 15 time bins ~ 1.5 musec +Int_t AliEMCALRawUtils::fgTimeBins = 256; // number of sampling bins of the raw RO signal (we typically use 15-50; theoretical max is 1k+) +Double_t AliEMCALRawUtils::fgTimeBinWidth = 100E-9 ; // each sample is 100 ns +Double_t AliEMCALRawUtils::fgTimeTrigger = 600E-9 ; // the time of the trigger as approximately seen in the data // some digitization constants -Int_t AliEMCALRawUtils::fgThreshold = 1; +Int_t AliEMCALRawUtils::fgThreshold = 1; Int_t AliEMCALRawUtils::fgDDLPerSuperModule = 2; // 2 ddls per SuperModule -Int_t AliEMCALRawUtils::fgPedestalValue = 0; // pedestal value for digits2raw, default generate ZS data -Double_t AliEMCALRawUtils::fgFEENoise = 3.; // 3 ADC channels of noise (sampled) +Int_t AliEMCALRawUtils::fgPedestalValue = 0; // pedestal value for digits2raw, default generate ZS data +Double_t AliEMCALRawUtils::fgFEENoise = 3.; // 3 ADC channels of noise (sampled) -AliEMCALRawUtils::AliEMCALRawUtils(fitAlgorithm fitAlgo) +AliEMCALRawUtils::AliEMCALRawUtils( Algo::fitAlgorithm fitAlgo) : fHighLowGainFactor(0.), fOrder(0), fTau(0.), fNoiseThreshold(0), fNPedSamples(0), fGeom(0), fOption(""), fRemoveBadChannels(kTRUE),fFittingAlgorithm(0), fTimeMin(-1.),fTimeMax(1.), - fUseFALTRO(kFALSE),fRawAnalyzer(0) + fUseFALTRO(kFALSE),fRawAnalyzer(0), + fTriggerRawDigitMaker(0x0) { //These are default parameters. @@ -105,24 +111,33 @@ AliEMCALRawUtils::AliEMCALRawUtils(fitAlgorithm fitAlgo) //To make sure we match with the geometry in a simulation file, //let's try to get it first. If not, take the default geometry AliRunLoader *rl = AliRunLoader::Instance(); - if (rl && rl->GetAliRun() && rl->GetAliRun()->GetDetector("EMCAL")) { - fGeom = dynamic_cast(rl->GetAliRun()->GetDetector("EMCAL"))->GetGeometry(); + if (rl && rl->GetAliRun()) { + AliEMCAL * emcal = dynamic_cast(rl->GetAliRun()->GetDetector("EMCAL")); + if(emcal)fGeom = emcal->GetGeometry(); + else { + AliDebug(1, Form("Using default geometry in raw reco")); + fGeom = AliEMCALGeometry::GetInstance(AliEMCALGeometry::GetDefaultGeometryName()); + } + } else { AliDebug(1, Form("Using default geometry in raw reco")); fGeom = AliEMCALGeometry::GetInstance(AliEMCALGeometry::GetDefaultGeometryName()); } if(!fGeom) AliFatal(Form("Could not get geometry!")); + + fTriggerRawDigitMaker = new AliEMCALTriggerRawDigitMaker(); } //____________________________________________________________________________ -AliEMCALRawUtils::AliEMCALRawUtils(AliEMCALGeometry *pGeometry, fitAlgorithm fitAlgo) +AliEMCALRawUtils::AliEMCALRawUtils(AliEMCALGeometry *pGeometry, Algo::fitAlgorithm fitAlgo) : fHighLowGainFactor(0.), fOrder(0), fTau(0.), fNoiseThreshold(0), fNPedSamples(0), fGeom(pGeometry), fOption(""), fRemoveBadChannels(kTRUE),fFittingAlgorithm(0), fTimeMin(-1.),fTimeMax(1.), - fUseFALTRO(kFALSE),fRawAnalyzer() + fUseFALTRO(kFALSE),fRawAnalyzer(), + fTriggerRawDigitMaker(0x0) { // // Initialize with the given geometry - constructor required by HLT @@ -152,7 +167,8 @@ AliEMCALRawUtils::AliEMCALRawUtils(AliEMCALGeometry *pGeometry, fitAlgorithm fit } if(!fGeom) AliFatal(Form("Could not get geometry!")); - + + fTriggerRawDigitMaker = new AliEMCALTriggerRawDigitMaker(); } //____________________________________________________________________________ @@ -168,8 +184,9 @@ AliEMCALRawUtils::AliEMCALRawUtils(const AliEMCALRawUtils& rawU) fRemoveBadChannels(rawU.fRemoveBadChannels), fFittingAlgorithm(rawU.fFittingAlgorithm), fTimeMin(rawU.fTimeMin),fTimeMax(rawU.fTimeMax), - fUseFALTRO(rawU.fUseFALTRO), - fRawAnalyzer(rawU.fRawAnalyzer) + fUseFALTRO(rawU.fUseFALTRO), + fRawAnalyzer(rawU.fRawAnalyzer), + fTriggerRawDigitMaker(rawU.fTriggerRawDigitMaker) { //copy ctor fMapping[0] = rawU.fMapping[0]; @@ -193,14 +210,15 @@ AliEMCALRawUtils& AliEMCALRawUtils::operator =(const AliEMCALRawUtils &rawU) fOption = rawU.fOption; fRemoveBadChannels = rawU.fRemoveBadChannels; fFittingAlgorithm = rawU.fFittingAlgorithm; - fTimeMin = rawU.fTimeMin; - fTimeMax = rawU.fTimeMax; + fTimeMin = rawU.fTimeMin; + fTimeMax = rawU.fTimeMax; fUseFALTRO = rawU.fUseFALTRO; fRawAnalyzer = rawU.fRawAnalyzer; fMapping[0] = rawU.fMapping[0]; fMapping[1] = rawU.fMapping[1]; fMapping[2] = rawU.fMapping[2]; fMapping[3] = rawU.fMapping[3]; + fTriggerRawDigitMaker = rawU.fTriggerRawDigitMaker; } return *this; @@ -220,7 +238,7 @@ void AliEMCALRawUtils::Digits2Raw() AliRunLoader *rl = AliRunLoader::Instance(); AliEMCALLoader *loader = dynamic_cast(rl->GetDetectorLoader("EMCAL")); - + // get the digits loader->LoadDigits("EMCAL"); loader->GetEvent(); @@ -230,82 +248,89 @@ void AliEMCALRawUtils::Digits2Raw() Warning("Digits2Raw", "no digits found !"); return; } - + static const Int_t nDDL = 12*2; // 12 SM hardcoded for now. Buffers allocated dynamically, when needed, so just need an upper limit here AliAltroBuffer* buffers[nDDL]; for (Int_t i=0; i < nDDL; i++) buffers[i] = 0; - + TArrayI adcValuesLow(fgTimeBins); TArrayI adcValuesHigh(fgTimeBins); - + // loop over digits (assume ordered digits) for (Int_t iDigit = 0; iDigit < digits->GetEntries(); iDigit++) { AliEMCALDigit* digit = dynamic_cast(digits->At(iDigit)) ; - if (digit->GetAmplitude() < fgThreshold) - continue; - - //get cell indices - Int_t nSM = 0; - Int_t nIphi = 0; - Int_t nIeta = 0; - Int_t iphi = 0; - Int_t ieta = 0; - Int_t nModule = 0; - fGeom->GetCellIndex(digit->GetId(), nSM, nModule, nIphi, nIeta); - fGeom->GetCellPhiEtaIndexInSModule(nSM, nModule, nIphi, nIeta,iphi, ieta) ; - - //Check which is the RCU, 0 or 1, of the cell. - Int_t iRCU = -111; - //RCU0 - if (0<=iphi&&iphi<8) iRCU=0; // first cable row - else if (8<=iphi&&iphi<16 && 0<=ieta&&ieta<24) iRCU=0; // first half; - //second cable row - //RCU1 - else if(8<=iphi&&iphi<16 && 24<=ieta&&ieta<48) iRCU=1; // second half; - //second cable row - else if(16<=iphi&&iphi<24) iRCU=1; // third cable row - - if (nSM%2==1) iRCU = 1 - iRCU; // swap for odd=C side, to allow us to cable both sides the same - - if (iRCU<0) - Fatal("Digits2Raw()","Non-existent RCU number: %d", iRCU); - - //Which DDL? - Int_t iDDL = fgDDLPerSuperModule* nSM + iRCU; - if (iDDL >= nDDL) - Fatal("Digits2Raw()","Non-existent DDL board number: %d", iDDL); - - if (buffers[iDDL] == 0) { - // open new file and write dummy header - TString fileName = AliDAQ::DdlFileName("EMCAL",iDDL); - //Select mapping file RCU0A, RCU0C, RCU1A, RCU1C - Int_t iRCUside=iRCU+(nSM%2)*2; - //iRCU=0 and even (0) SM -> RCU0A.data 0 - //iRCU=1 and even (0) SM -> RCU1A.data 1 - //iRCU=0 and odd (1) SM -> RCU0C.data 2 - //iRCU=1 and odd (1) SM -> RCU1C.data 3 - //cout<<" nSM "<WriteDataHeader(kTRUE, kFALSE); //Dummy; - } - - // out of time range signal (?) - if (digit->GetTimeR() > GetRawFormatTimeMax() ) { - AliInfo("Signal is out of time range.\n"); - buffers[iDDL]->FillBuffer((Int_t)digit->GetAmplitude()); - buffers[iDDL]->FillBuffer(GetRawFormatTimeBins() ); // time bin - buffers[iDDL]->FillBuffer(3); // bunch length - buffers[iDDL]->WriteTrailer(3, ieta, iphi, nSM); // trailer - // calculate the time response function - } else { - Bool_t lowgain = RawSampledResponse(digit->GetTimeR(), digit->GetAmplitude(), adcValuesHigh.GetArray(), adcValuesLow.GetArray()) ; - if (lowgain) - buffers[iDDL]->WriteChannel(ieta, iphi, 0, GetRawFormatTimeBins(), adcValuesLow.GetArray(), fgThreshold); - else - buffers[iDDL]->WriteChannel(ieta,iphi, 1, GetRawFormatTimeBins(), adcValuesHigh.GetArray(), fgThreshold); + if(!digit){ + AliFatal("NULL Digit"); } - } + else{ + if (digit->GetAmplitude() < fgThreshold) + continue; + + //get cell indices + Int_t nSM = 0; + Int_t nIphi = 0; + Int_t nIeta = 0; + Int_t iphi = 0; + Int_t ieta = 0; + Int_t nModule = 0; + fGeom->GetCellIndex(digit->GetId(), nSM, nModule, nIphi, nIeta); + fGeom->GetCellPhiEtaIndexInSModule(nSM, nModule, nIphi, nIeta,iphi, ieta) ; + + //Check which is the RCU, 0 or 1, of the cell. + Int_t iRCU = -111; + //RCU0 + if (0<=iphi&&iphi<8) iRCU=0; // first cable row + else if (8<=iphi&&iphi<16 && 0<=ieta&&ieta<24) iRCU=0; // first half; + //second cable row + //RCU1 + else if(8<=iphi&&iphi<16 && 24<=ieta&&ieta<48) iRCU=1; // second half; + //second cable row + else if(16<=iphi&&iphi<24) iRCU=1; // third cable row + + if (nSM%2==1) iRCU = 1 - iRCU; // swap for odd=C side, to allow us to cable both sides the same + + if (iRCU<0) + Fatal("Digits2Raw()","Non-existent RCU number: %d", iRCU); + + //Which DDL? + Int_t iDDL = fgDDLPerSuperModule* nSM + iRCU; + if (iDDL < 0 || iDDL >= nDDL){ + Fatal("Digits2Raw()","Non-existent DDL board number: %d", iDDL); + } + else{ + if (buffers[iDDL] == 0) { + // open new file and write dummy header + TString fileName = AliDAQ::DdlFileName("EMCAL",iDDL); + //Select mapping file RCU0A, RCU0C, RCU1A, RCU1C + Int_t iRCUside=iRCU+(nSM%2)*2; + //iRCU=0 and even (0) SM -> RCU0A.data 0 + //iRCU=1 and even (0) SM -> RCU1A.data 1 + //iRCU=0 and odd (1) SM -> RCU0C.data 2 + //iRCU=1 and odd (1) SM -> RCU1C.data 3 + //cout<<" nSM "<WriteDataHeader(kTRUE, kFALSE); //Dummy; + } + + // out of time range signal (?) + if (digit->GetTimeR() > GetRawFormatTimeMax() ) { + AliInfo("Signal is out of time range.\n"); + buffers[iDDL]->FillBuffer((Int_t)digit->GetAmplitude()); + buffers[iDDL]->FillBuffer(GetRawFormatTimeBins() ); // time bin + buffers[iDDL]->FillBuffer(3); // bunch length + buffers[iDDL]->WriteTrailer(3, ieta, iphi, nSM); // trailer + // calculate the time response function + } else { + Bool_t lowgain = RawSampledResponse(digit->GetTimeR(), digit->GetAmplitude(), adcValuesHigh.GetArray(), adcValuesLow.GetArray()) ; + if (lowgain) + buffers[iDDL]->WriteChannel(ieta, iphi, 0, GetRawFormatTimeBins(), adcValuesLow.GetArray(), fgThreshold); + else + buffers[iDDL]->WriteChannel(ieta,iphi, 1, GetRawFormatTimeBins(), adcValuesHigh.GetArray(), fgThreshold); + } + }// iDDL under the limits + }//digit exists + }//Digit loop // write headers and close files for (Int_t i=0; i < nDDL; i++) { @@ -315,17 +340,17 @@ void AliEMCALRawUtils::Digits2Raw() delete buffers[i]; } } - + loader->UnloadDigits(); } //____________________________________________________________________________ -void AliEMCALRawUtils::Raw2Digits(AliRawReader* reader,TClonesArray *digitsArr, const AliCaloCalibPedestal* pedbadmap, TClonesArray *digitsTRG) +void AliEMCALRawUtils::Raw2Digits(AliRawReader* reader,TClonesArray *digitsArr, const AliCaloCalibPedestal* pedbadmap, TClonesArray *digitsTRG, AliEMCALTriggerData* trgData) { // convert raw data of the current event to digits - - digitsArr->Clear("C"); - + + if(digitsArr) digitsArr->Clear("C"); + if (!digitsArr) { Error("Raw2Digits", "no digits found !"); return; @@ -334,192 +359,159 @@ void AliEMCALRawUtils::Raw2Digits(AliRawReader* reader,TClonesArray *digitsArr, Error("Raw2Digits", "no raw reader found !"); return; } - - AliCaloRawStreamV3 in(reader,"EMCAL",fMapping); + + AliEMCALTriggerSTURawStream inSTU(reader); + + AliCaloRawStreamV3 in(reader,"EMCAL",fMapping); + // Select EMCAL DDL's; reader->Select("EMCAL",0,43); // 43 = AliEMCALGeoParams::fgkLastAltroDDL - + + fTriggerRawDigitMaker->Reset(); + fTriggerRawDigitMaker->SetIO(reader, in, inSTU, digitsTRG, trgData); + // fRawAnalyzer setup fRawAnalyzer->SetNsampleCut(5); // requirement for fits to be done, for the new methods fRawAnalyzer->SetOverflowCut(fgkOverflowCut); fRawAnalyzer->SetAmpCut(fNoiseThreshold); fRawAnalyzer->SetFitArrayCut(fNoiseThreshold); fRawAnalyzer->SetIsZeroSuppressed(true); // TMP - should use stream->IsZeroSuppressed(), or altro cfg registers later - + // channel info parameters Int_t lowGain = 0; Int_t caloFlag = 0; // low, high gain, or TRU, or LED ref. - + // start loop over input stream while (in.NextDDL()) { -// if ( in.GetDDLNumber() != 0 && in.GetDDLNumber() != 2 ) continue; - + // if ( in.GetDDLNumber() != 0 && in.GetDDLNumber() != 2 ) continue; + while (in.NextChannel()) { - + //Check if the signal is high or low gain and then do the fit, //if it is from TRU or LEDMon do not fit caloFlag = in.GetCaloFlag(); -// if (caloFlag != 0 && caloFlag != 1) continue; - if (caloFlag > 2) continue; // Work with ALTRO and FALTRO - + // if (caloFlag != 0 && caloFlag != 1) continue; + if (caloFlag > 2) continue; // Work with ALTRO and FALTRO + //Do not fit bad channels of ALTRO if(caloFlag < 2 && fRemoveBadChannels && pedbadmap->IsBadChannel(in.GetModule(),in.GetColumn(),in.GetRow())) { - //printf("Tower from SM %d, column %d, row %d is BAD!!! Skip \n", in.GetModule(),in.GetColumn(),in.GetRow()); - continue; + //printf("Tower from SM %d, column %d, row %d is BAD!!! Skip \n", in.GetModule(),in.GetColumn(),in.GetRow()); + continue; } - + vector bunchlist; while (in.NextBunch()) { - bunchlist.push_back( AliCaloBunchInfo(in.GetStartTimeBin(), in.GetBunchLength(), in.GetSignals() ) ); + bunchlist.push_back( AliCaloBunchInfo(in.GetStartTimeBin(), in.GetBunchLength(), in.GetSignals() ) ); } // loop over bunches - - - if ( caloFlag < 2 ){ // ALTRO - - Float_t time = 0; - Float_t amp = 0; - short timeEstimate = 0; - Float_t ampEstimate = 0; - Bool_t fitDone = kFALSE; - Float_t chi2 = 0; - Int_t ndf = 0; - - if ( fFittingAlgorithm == kFastFit || fFittingAlgorithm == kNeuralNet || fFittingAlgorithm == kLMS || fFittingAlgorithm == kPeakFinder || fFittingAlgorithm == kCrude) { - // all functionality to determine amp and time etc is encapsulated inside the Evaluate call for these methods - AliCaloFitResults fitResults = fRawAnalyzer->Evaluate( bunchlist, in.GetAltroCFG1(), in.GetAltroCFG2()); - - amp = fitResults.GetAmp(); - time = fitResults.GetTime(); - timeEstimate = fitResults.GetMaxTimebin(); - ampEstimate = fitResults.GetMaxSig(); - chi2 = fitResults.GetChi2(); - ndf = fitResults.GetNdf(); - if (fitResults.GetStatus() == AliCaloFitResults::kFitPar) { - fitDone = kTRUE; - } - } - else { // for the other methods we for now use the functionality of - // AliCaloRawAnalyzer as well, to select samples and prepare for fits, - // if it looks like there is something to fit - - // parameters init. - Float_t pedEstimate = 0; - short maxADC = 0; - Int_t first = 0; - Int_t last = 0; - Int_t bunchIndex = 0; - // - // The PreFitEvaluateSamples + later call to FitRaw will hopefully - // be replaced by a single Evaluate call or so soon, like for the other - // methods, but this should be good enough for evaluation of - // the methods for now (Jan. 2010) - // - int nsamples = fRawAnalyzer->PreFitEvaluateSamples( bunchlist, in.GetAltroCFG1(), in.GetAltroCFG2(), bunchIndex, ampEstimate, maxADC, timeEstimate, pedEstimate, first, last); - - if (ampEstimate >= fNoiseThreshold) { // something worth looking at - - time = timeEstimate; // maxrev in AliCaloRawAnalyzer speak; comes with an offset w.r.t. real timebin - Int_t timebinOffset = bunchlist.at(bunchIndex).GetStartBin() - (bunchlist.at(bunchIndex).GetLength()-1); - amp = ampEstimate; - - if ( nsamples > 1 && maxADC 0.1) || (TMath::Abs(timeDiff) > 2) ) { - // AliDebug(2,Form("Fit results amp %f time %f not consistent with expectations amp %f time %d", amp, time, ampEstimate, timeEstimate)); - - // for now just overwrite the fit results with the simple/initial estimate - amp = ampEstimate; - time = timeEstimate; - fitDone = kFALSE; - } - } // fitDone - - if (amp >= fNoiseThreshold) { // something to be stored - if ( ! fitDone) { // smear ADC with +- 0.5 uniform (avoid discrete effects) - amp += (0.5 - gRandom->Rndm()); // Rndm generates a number in ]0,1] - } - - Int_t id = fGeom->GetAbsCellIdFromCellIndexes(in.GetModule(), in.GetRow(), in.GetColumn()) ; - lowGain = in.IsLowGain(); - - // go from time-bin units to physical time fgtimetrigger - time = time * GetRawFormatTimeBinWidth(); // skip subtraction of fgTimeTrigger? - // subtract RCU L1 phase (L1Phase is in seconds) w.r.t. L0: - time -= in.GetL1Phase(); - - AliDebug(2,Form("id %d lowGain %d amp %g", id, lowGain, amp)); - // printf("Added tower: SM %d, row %d, column %d, amp %3.2f\n",in.GetModule(), in.GetRow(), in.GetColumn(),amp); - AddDigit(digitsArr, id, lowGain, amp, time, chi2, ndf); - } - }//ALTRO - else if(fUseFALTRO) - {// Fake ALTRO - // if (maxTimeBin && gSig->GetN() > maxTimeBin + 10) gSig->Set(maxTimeBin + 10); // set actual max size of TGraph - Int_t hwAdd = in.GetHWAddress(); - UShort_t iRCU = in.GetDDLNumber() % 2; // 0/1 - UShort_t iBranch = ( hwAdd >> 11 ) & 0x1; // 0/1 - - // Now find TRU number - Int_t itru = 3 * in.GetModule() + ( (iRCU << 1) | iBranch ) - 1; - - AliDebug(1,Form("Found TRG digit in TRU: %2d ADC: %2d",itru,in.GetColumn())); - - Int_t idtrg; - - Bool_t isOK = fGeom->GetAbsFastORIndexFromTRU(itru, in.GetColumn(), idtrg); - - Int_t timeSamples[256]; for (Int_t j=0;j<256;j++) timeSamples[j] = 0; - Int_t nSamples = 0; - - for (std::vector::iterator itVectorData = bunchlist.begin(); itVectorData != bunchlist.end(); itVectorData++) - { - AliCaloBunchInfo bunch = *(itVectorData); - - const UShort_t* sig = bunch.GetData(); - Int_t startBin = bunch.GetStartBin(); - - for (Int_t iS = 0; iS < bunch.GetLength(); iS++) - { - Int_t time = startBin--; - Int_t amp = sig[iS]; - - if ( amp ) timeSamples[nSamples++] = ( ( time << 12 ) & 0xFF000 ) | ( amp & 0xFFF ); - } - } - - if (nSamples && isOK) AddDigit(digitsTRG, idtrg, timeSamples, nSamples); - }//Fake ALTRO - } // end while over channel + if ( caloFlag < 2 ) + { // ALTRO + Float_t time = 0; + Float_t amp = 0; + short timeEstimate = 0; + Float_t ampEstimate = 0; + Bool_t fitDone = kFALSE; + Float_t chi2 = 0; + Int_t ndf = 0; + + if ( fFittingAlgorithm == Algo::kFastFit || fFittingAlgorithm == Algo::kNeuralNet || + fFittingAlgorithm == Algo::kLMS || fFittingAlgorithm == Algo::kPeakFinder || + fFittingAlgorithm == Algo::kCrude) { + // all functionality to determine amp and time etc is encapsulated inside the Evaluate call for these methods + AliCaloFitResults fitResults = fRawAnalyzer->Evaluate( bunchlist, in.GetAltroCFG1(), in.GetAltroCFG2()); + + amp = fitResults.GetAmp(); + time = fitResults.GetTime(); + timeEstimate = fitResults.GetMaxTimebin(); + ampEstimate = fitResults.GetMaxSig(); + chi2 = fitResults.GetChi2(); + ndf = fitResults.GetNdf(); + if (fitResults.GetStatus() == Ret::kFitPar) { + fitDone = kTRUE; + } + } + else { // for the other methods we for now use the functionality of + // AliCaloRawAnalyzer as well, to select samples and prepare for fits, + // if it looks like there is something to fit + + // parameters init. + Float_t pedEstimate = 0; + short maxADC = 0; + Int_t first = 0; + Int_t last = 0; + Int_t bunchIndex = 0; + // + // The PreFitEvaluateSamples + later call to FitRaw will hopefully + // be replaced by a single Evaluate call or so soon, like for the other + // methods, but this should be good enough for evaluation of + // the methods for now (Jan. 2010) + // + int nsamples = fRawAnalyzer->PreFitEvaluateSamples( bunchlist, in.GetAltroCFG1(), in.GetAltroCFG2(), bunchIndex, ampEstimate, maxADC, timeEstimate, pedEstimate, first, last); + + if (ampEstimate >= fNoiseThreshold) { // something worth looking at + + time = timeEstimate; // maxrev in AliCaloRawAnalyzer speak; comes with an offset w.r.t. real timebin + Int_t timebinOffset = bunchlist.at(bunchIndex).GetStartBin() - (bunchlist.at(bunchIndex).GetLength()-1); + amp = ampEstimate; + + if ( nsamples > 1 && maxADC 0.1) || (TMath::Abs(timeDiff) > 2) ) { + // AliDebug(2,Form("Fit results amp %f time %f not consistent with expectations amp %f time %d", amp, time, ampEstimate, timeEstimate)); + + // for now just overwrite the fit results with the simple/initial estimate + amp = ampEstimate; + time = timeEstimate; + fitDone = kFALSE; + } + } // fitDone + + if (amp >= fNoiseThreshold) { // something to be stored + if ( ! fitDone) { // smear ADC with +- 0.5 uniform (avoid discrete effects) + amp += (0.5 - gRandom->Rndm()); // Rndm generates a number in ]0,1] + } + + Int_t id = fGeom->GetAbsCellIdFromCellIndexes(in.GetModule(), in.GetRow(), in.GetColumn()) ; + lowGain = in.IsLowGain(); + + // go from time-bin units to physical time fgtimetrigger + time = time * GetRawFormatTimeBinWidth(); // skip subtraction of fgTimeTrigger? + // subtract RCU L1 phase (L1Phase is in seconds) w.r.t. L0: + time -= in.GetL1Phase(); + + AliDebug(2,Form("id %d lowGain %d amp %g", id, lowGain, amp)); + // printf("Added tower: SM %d, row %d, column %d, amp %3.2f\n",in.GetModule(), in.GetRow(), in.GetColumn(),amp); + + AddDigit(digitsArr, id, lowGain, amp, time, chi2, ndf); + } + + }//ALTRO + else if(fUseFALTRO) + {// Fake ALTRO + fTriggerRawDigitMaker->Add( bunchlist ); + }//Fake ALTRO + } // end while over channel } //end while over DDL's, of input stream - + + fTriggerRawDigitMaker->PostProcess(); + TrimDigits(digitsArr); return ; } -//____________________________________________________________________________ -void AliEMCALRawUtils::AddDigit(TClonesArray *digitsArr, Int_t id, Int_t timeSamples[], Int_t nSamples) -{ - //Add raw sample to raw digit - new((*digitsArr)[digitsArr->GetEntriesFast()]) AliEMCALRawDigit(id, timeSamples, nSamples); - - // Int_t idx = digitsArr->GetEntriesFast()-1; - // AliEMCALRawDigit* d = (AliEMCALRawDigit*)digitsArr->At(idx); -} - //____________________________________________________________________________ void AliEMCALRawUtils::AddDigit(TClonesArray *digitsArr, Int_t id, Int_t lowGain, Float_t amp, Float_t time, Float_t chi2, Int_t ndf) { // @@ -581,7 +573,7 @@ void AliEMCALRawUtils::TrimDigits(TClonesArray *digitsArr) Int_t nDigits = digitsArr->GetEntriesFast(); TIter nextdigit(digitsArr); while ((digit = (AliEMCALDigit*) nextdigit())) { - + //Check if only LG existed, remove if so if (digit->GetType() == AliEMCALDigit::kLGnoHG) { AliDebug(1,Form("Remove digit with id %d, LGnoHG",digit->GetId())); @@ -618,9 +610,9 @@ void AliEMCALRawUtils::FitRaw(const Int_t firstTimeBin, const Int_t lastTimeBin, //-------------------------------------------------- int nsamples = lastTimeBin - firstTimeBin + 1; fitDone = kFALSE; - + switch(fFittingAlgorithm) { - case kStandard: + case Algo::kStandard: { if (nsamples < 3) { return; } // nothing much to fit //printf("Standard fitter \n"); @@ -628,10 +620,10 @@ void AliEMCALRawUtils::FitRaw(const Int_t firstTimeBin, const Int_t lastTimeBin, // Create Graph to hold data we will fit TGraph *gSig = new TGraph( nsamples); for (int i=0; iSetPoint(i, timebin, fRawAnalyzer->GetReversed(timebin)); + Int_t timebin = firstTimeBin + i; + gSig->SetPoint(i, timebin, fRawAnalyzer->GetReversed(timebin)); } - + TF1 * signalF = new TF1("signal", RawResponseFunction, 0, GetRawFormatTimeBins(), 5); signalF->SetParameters(10.,5.,fTau,fOrder,0.); //set all defaults once, just to be safe signalF->SetParNames("amp","t0","tau","N","ped"); @@ -643,40 +635,40 @@ void AliEMCALRawUtils::FitRaw(const Int_t firstTimeBin, const Int_t lastTimeBin, // set rather loose parameter limits signalF->SetParLimits(0, 0.5*amp, 2*amp ); signalF->SetParLimits(1, time - 4, time + 4); - + try { - gSig->Fit(signalF, "QROW"); // Note option 'W': equal errors on all points - // assign fit results - amp = signalF->GetParameter(0); - time = signalF->GetParameter(1); - chi2 = signalF->GetChisquare(); - fitDone = kTRUE; + gSig->Fit(signalF, "QROW"); // Note option 'W': equal errors on all points + // assign fit results + amp = signalF->GetParameter(0); + time = signalF->GetParameter(1); + chi2 = signalF->GetChisquare(); + fitDone = kTRUE; } catch (const std::exception & e) { - AliError( Form("TGraph Fit exception %s", e.what()) ); - // stay with default amp and time in case of exception, i.e. no special action required - fitDone = kFALSE; + AliError( Form("TGraph Fit exception %s", e.what()) ); + // stay with default amp and time in case of exception, i.e. no special action required + fitDone = kFALSE; } delete signalF; - + //printf("Std : Amp %f, time %g\n",amp, time); delete gSig; // delete TGraph - + break; }//kStandard Fitter - //---------------------------- - case kLogFit: + //---------------------------- + case Algo::kLogFit: { if (nsamples < 3) { return; } // nothing much to fit //printf("LogFit \n"); - + // Create Graph to hold data we will fit TGraph *gSigLog = new TGraph( nsamples); for (int i=0; iSetPoint(timebin, timebin, TMath::Log(fRawAnalyzer->GetReversed(timebin) ) ); + Int_t timebin = firstTimeBin + i; + gSigLog->SetPoint(timebin, timebin, TMath::Log(fRawAnalyzer->GetReversed(timebin) ) ); } - + TF1 * signalFLog = new TF1("signalLog", RawResponseFunctionLog, 0, GetRawFormatTimeBins(), 5); signalFLog->SetParameters(2.3, 5.,fTau,fOrder,0.); //set all defaults once, just to be safe signalFLog->SetParNames("amplog","t0","tau","N","ped"); @@ -685,27 +677,27 @@ void AliEMCALRawUtils::FitRaw(const Int_t firstTimeBin, const Int_t lastTimeBin, signalFLog->FixParameter(4, 0); // pedestal should be subtracted when we get here signalFLog->SetParameter(1, time); if (amp>=1) { - signalFLog->SetParameter(0, TMath::Log(amp)); + signalFLog->SetParameter(0, TMath::Log(amp)); } - + gSigLog->Fit(signalFLog, "QROW"); // Note option 'W': equal errors on all points - + // assign fit results Double_t amplog = signalFLog->GetParameter(0); //Not Amp, but Log of Amp amp = TMath::Exp(amplog); time = signalFLog->GetParameter(1); fitDone = kTRUE; - + delete signalFLog; //printf("LogFit: Amp %f, time %g\n",amp, time); delete gSigLog; break; } //kLogFit - //---------------------------- - - //---------------------------- + //---------------------------- + + //---------------------------- }//switch fitting algorithms - + return; } @@ -744,13 +736,13 @@ void AliEMCALRawUtils::FitParabola(const TGraph *gSig, Float_t & amp) const Double_t sxy = 0 ; Double_t sx2y = 0 ; for (Int_t i = 0; i < kN ; i++) { - sy += ymMaxY[i] ; - sx += ymMaxX[i] ; - sx2 += ymMaxX[i]*ymMaxX[i] ; - sx3 += ymMaxX[i]*ymMaxX[i]*ymMaxX[i] ; - sx4 += ymMaxX[i]*ymMaxX[i]*ymMaxX[i]*ymMaxX[i] ; - sxy += ymMaxX[i]*ymMaxY[i] ; - sx2y += ymMaxX[i]*ymMaxX[i]*ymMaxY[i] ; + sy += ymMaxY[i] ; + sx += ymMaxX[i] ; + sx2 += ymMaxX[i]*ymMaxX[i] ; + sx3 += ymMaxX[i]*ymMaxX[i]*ymMaxX[i] ; + sx4 += ymMaxX[i]*ymMaxX[i]*ymMaxX[i]*ymMaxX[i] ; + sxy += ymMaxX[i]*ymMaxY[i] ; + sx2y += ymMaxX[i]*ymMaxX[i]*ymMaxY[i] ; } Double_t cN = (sx2y*kN-sy*sx2)*(sx3*sx-sx2*sx2)-(sx2y*sx-sxy*sx2)*(sx3*kN-sx*sx2); Double_t cD = (sx4*kN-sx2*sx2)*(sx3*sx-sx2*sx2)-(sx4*sx-sx3*sx2)*(sx3*kN-sx*sx2) ; @@ -790,11 +782,11 @@ Double_t AliEMCALRawUtils::RawResponseFunction(Double_t *x, Double_t *par) // N: par[3] // ped: par[4] // - Double_t signal ; - Double_t tau =par[2]; - Double_t n =par[3]; - Double_t ped = par[4]; - Double_t xx = ( x[0] - par[1] + tau ) / tau ; + Double_t signal = 0.; + Double_t tau = par[2]; + Double_t n = par[3]; + Double_t ped = par[4]; + Double_t xx = ( x[0] - par[1] + tau ) / tau ; if (xx <= 0) signal = ped ; @@ -823,11 +815,11 @@ Double_t AliEMCALRawUtils::RawResponseFunctionLog(Double_t *x, Double_t *par) // N: par[3] // ped: par[4] // - Double_t signal ; - Double_t tau =par[2]; - Double_t n =par[3]; + Double_t signal = 0. ; + Double_t tau = par[2]; + Double_t n = par[3]; //Double_t ped = par[4]; // not used - Double_t xx = ( x[0] - par[1] + tau ) / tau ; + Double_t xx = ( x[0] - par[1] + tau ) / tau ; if (xx < 0) signal = par[0] - n*TMath::Log(TMath::Abs(xx)) + n * (1 - xx ) ; @@ -842,15 +834,14 @@ Bool_t AliEMCALRawUtils::RawSampledResponse(const Double_t dtime, const Double_t { // for a start time dtime and an amplitude damp given by digit, // calculates the raw sampled response AliEMCAL::RawResponseFunction - Bool_t lowGain = kFALSE ; - + // A: par[0] // Amplitude = peak value // t0: par[1] // tau: par[2] // N: par[3] // ped: par[4] - + TF1 signalF("signal", RawResponseFunction, 0, GetRawFormatTimeBins(), 5); signalF.SetParameter(0, damp) ; signalF.SetParameter(1, (dtime + fgTimeTrigger)/fgTimeBinWidth) ; @@ -861,34 +852,35 @@ Bool_t AliEMCALRawUtils::RawSampledResponse(const Double_t dtime, const Double_t Double_t signal=0.0, noise=0.0; for (Int_t iTime = 0; iTime < GetRawFormatTimeBins(); iTime++) { signal = signalF.Eval(iTime) ; - // Next lines commeted for the moment but in principle it is not necessary to add // extra noise since noise already added at the digits level. - + //According to Terry Awes, 13-Apr-2008 //add gaussian noise in quadrature to each sample //Double_t noise = gRandom->Gaus(0.,fgFEENoise); //signal = sqrt(signal*signal + noise*noise); - + // March 17,09 for fast fit simulations by Alexei Pavlinov. // Get from PHOS analysis. In some sense it is open questions. - if(keyErr>0) { - noise = gRandom->Gaus(0.,fgFEENoise); - signal += noise; - } + if(keyErr>0) { + noise = gRandom->Gaus(0.,fgFEENoise); + signal += noise; + } adcH[iTime] = static_cast(signal + 0.5) ; if ( adcH[iTime] > fgkRawSignalOverflow ){ // larger than 10 bits adcH[iTime] = fgkRawSignalOverflow ; lowGain = kTRUE ; } - + signal /= fHighLowGainFactor; - + adcL[iTime] = static_cast(signal + 0.5) ; if ( adcL[iTime] > fgkRawSignalOverflow) // larger than 10 bits adcL[iTime] = fgkRawSignalOverflow ; + } + return lowGain ; } @@ -922,7 +914,7 @@ const Double_t sig, const Double_t tau, const Double_t amp, const Double_t t0, D f = RawResponseFunction(&x, par); dy = y[i] - f; chi2 += dy*dy; - printf(" AliEMCALRawUtils::CalculateChi2 : %i : y %f -> f %f : dy %f \n", i, y[i], f, dy); + //printf(" AliEMCALRawUtils::CalculateChi2 : %i : y %f -> f %f : dy %f \n", i, y[i], f, dy); } if(sig>0.0) chi2 /= (sig*sig); } @@ -945,23 +937,24 @@ void AliEMCALRawUtils::SetFittingAlgorithm(Int_t fitAlgo) fFittingAlgorithm = fitAlgo; if (fRawAnalyzer) delete fRawAnalyzer; // delete prev. analyzer if existed. - if (fitAlgo == kFastFit) { + if (fitAlgo == Algo::kFastFit) { fRawAnalyzer = new AliCaloRawAnalyzerFastFit(); } - else if (fitAlgo == kNeuralNet) { + else if (fitAlgo == Algo::kNeuralNet) { fRawAnalyzer = new AliCaloRawAnalyzerNN(); } - else if (fitAlgo == kLMS) { + else if (fitAlgo == Algo::kLMS) { fRawAnalyzer = new AliCaloRawAnalyzerLMS(); } - else if (fitAlgo == kPeakFinder) { + else if (fitAlgo == Algo::kPeakFinder) { fRawAnalyzer = new AliCaloRawAnalyzerPeakFinder(); } - else if (fitAlgo == kCrude) { + else if (fitAlgo == Algo::kCrude) { fRawAnalyzer = new AliCaloRawAnalyzerCrude(); } else { - fRawAnalyzer = new AliCaloRawAnalyzer(); + // fRawAnalyzer = new AliCaloRawAnalyzer(); + fRawAnalyzer = 0; } }