X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=EMCAL%2FAliEMCALTrigger.cxx;h=302a098281f5b7dcc2c988f075298b115b51b495;hb=27d49e75e5df7e58cdf39b134a2b55a88cd9799b;hp=ea1f79d0bee295e5c72b26551fd0680a3f74d243;hpb=03ecfe88df6e8f6f5d6d55ca60bc94ee3971b636;p=u%2Fmrichter%2FAliRoot.git diff --git a/EMCAL/AliEMCALTrigger.cxx b/EMCAL/AliEMCALTrigger.cxx index ea1f79d0bee..302a098281f 100644 --- a/EMCAL/AliEMCALTrigger.cxx +++ b/EMCAL/AliEMCALTrigger.cxx @@ -13,38 +13,43 @@ * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ -/* $Log $ */ //_________________________________________________________________________ // // Class for trigger analysis. -// Digits are grouped in TRU's (384 cells? ordered fNTRUPhi x fNTRUEta). -// The algorithm searches all possible 4x4 cell combinations per each TRU, -// adding the digits amplitude and finding the maximum. Maximums are compared -// to triggers threshold and they are set. Thresholds need to be fixed. -// Last 2 modules are half size in Phi, I considered that the number of TRU -// is maintained for the last modules but decision not taken. If different, -// then this must be changed. +// Digits are grouped in TRU's (Trigger Units). A TRU consists of 384 +// modules ordered fNTRUPhi x fNTRUEta. The algorithm searches all possible 2x2 +// and nxn (n is a multiple of 2) cell combinations per each TRU, adding the +// digits amplitude and finding the maximum. If found, look if it is isolated. +// Maxima are transformed in ADC time samples. Each time bin is compared to the trigger +// threshold until it is larger and then, triggers are set. Thresholds need to be fixed. +// Thresholds need to be fixed. Last 2 modules are half size in Phi, I considered +// that the number of TRU is maintained for the last modules but decision not taken. +// If different, then this must be changed. // Usage: // // //Inside the event loop // AliEMCALTrigger *tr = new AliEMCALTrigger();//Init Trigger -// tr->SetL0Threshold(100); -// tr->SetL1JetLowPtThreshold(1000); -// tr->SetL1JetMediumPtThreshold(10000); -// tr->SetL1JetHighPtThreshold(20000); +// tr->SetL0Threshold(100); //Arbitrary threshold values +// tr->SetL1GammaLowPtThreshold(1000); +// tr->SetL1GammaMediumPtThreshold(10000); +// tr->SetL1GammaHighPtThreshold(20000); +// ... // tr->Trigger(); //Execute Trigger // tr->Print(""); //Print results // //*-- Author: Gustavo Conesa & Yves Schutz (IFIC, CERN) ////////////////////////////////////////////////////////////////////////////// +#include // --- ROOT system --- -//#include "TMatrixD.h" +#include +#include +#include +#include // --- ALIROOT system --- - #include "AliRun.h" #include "AliRunLoader.h" #include "AliTriggerInput.h" @@ -53,63 +58,92 @@ #include "AliEMCALDigit.h" #include "AliEMCALTrigger.h" #include "AliEMCALGeometry.h" +#include "AliEMCALRawUtils.h" +#include "AliLog.h" +#include "AliCaloConstants.h" +#include "AliEMCALRawResponse.h" + +using namespace CALO; ClassImp(AliEMCALTrigger) +TString AliEMCALTrigger::fgNameOfJetTriggers("EMCALJetTriggerL1"); + //______________________________________________________________________ AliEMCALTrigger::AliEMCALTrigger() - : AliTriggerDetector(), - f2x2MaxAmp(-1), f2x2CellPhi(-1), f2x2CellEta(-1), - f4x4MaxAmp(-1), f4x4CellPhi(-1), f4x4CellEta(-1), - fL0Threshold(100),fL1JetLowPtThreshold(200), - fL1JetMediumPtThreshold(500), fL1JetHighPtThreshold(1000), - fSimulation(kTRUE) - + : AliTriggerDetector(), fGeom(0), + f2x2MaxAmp(-1), f2x2ModulePhi(-1), f2x2ModuleEta(-1), + f2x2SM(0), + fnxnMaxAmp(-1), fnxnModulePhi(-1), fnxnModuleEta(-1), + fnxnSM(0), + fADCValuesHighnxn(0),fADCValuesLownxn(0), + fADCValuesHigh2x2(0),fADCValuesLow2x2(0), + fDigitsList(0), + fL0Threshold(100),fL1GammaLowPtThreshold(200), + fL1GammaMediumPtThreshold(500), fL1GammaHighPtThreshold(1000), + fPatchSize(1), fIsolPatchSize(1), + f2x2AmpOutOfPatch(-1), fnxnAmpOutOfPatch(-1), + f2x2AmpOutOfPatchThres(100000), fnxnAmpOutOfPatchThres(100000), + fIs2x2Isol(kFALSE), fIsnxnIsol(kFALSE), + fSimulation(kTRUE), fIsolateInSuperModule(kTRUE), fTimeKey(kFALSE), + fAmpTrus(0),fTimeRtrus(0),fAmpSMods(0), + fTriggerPosition(6), fTriggerAmplitudes(4), + fNJetPatchPhi(3), fNJetPatchEta(3), fNJetThreshold(3), fL1JetThreshold(0), fJetMaxAmp(0), + fAmpJetMatrix(0), fJetMatrixE(0), fAmpJetMax(6,1), fVZER0Mult(0.) { //ctor - - fADCValuesHigh4x4 = 0x0; //new Int_t[fTimeBins]; - fADCValuesLow4x4 = 0x0; //new Int_t[fTimeBins]; + fADCValuesHighnxn = 0x0; //new Int_t[fTimeBins]; + fADCValuesLownxn = 0x0; //new Int_t[fTimeBins]; fADCValuesHigh2x2 = 0x0; //new Int_t[fTimeBins]; fADCValuesLow2x2 = 0x0; //new Int_t[fTimeBins]; - fDigitsList = 0x0 ; - - SetName("EMCAL"); + // Define jet threshold - can not change from outside now + // fNJetThreshold = 7; // For MB Pythia suppression + fNJetThreshold = 10; // Hijing + fL1JetThreshold = new Double_t[fNJetThreshold]; + if(fNJetThreshold == 7) { + fL1JetThreshold[0] = 5./0.0153; + fL1JetThreshold[1] = 8./0.0153; + fL1JetThreshold[2] = 10./0.0153; + fL1JetThreshold[3] = 12./0.0153; + fL1JetThreshold[4] = 13./0.0153; + fL1JetThreshold[5] = 14./0.0153; + fL1JetThreshold[6] = 15./0.0153; + } else if(fNJetThreshold == 10) { + Double_t thGev[10]={5.,8.,10., 12., 13.,14.,15., 17., 20., 25.}; + for(Int_t i=0; iDelete(); delete fAmpTrus;} + if(fTimeRtrus) {fTimeRtrus->Delete(); delete fTimeRtrus;} + if(fAmpSMods) {fAmpSMods->Delete(); delete fAmpSMods;} + if(fAmpJetMatrix) delete fAmpJetMatrix; + if(fJetMatrixE) delete fJetMatrixE; + if(fL1JetThreshold) delete [] fL1JetThreshold; } //---------------------------------------------------------------------- @@ -119,110 +153,355 @@ void AliEMCALTrigger::CreateInputs() // Do not create inputs again!! if( fInputs.GetEntriesFast() > 0 ) return; - - fInputs.AddLast( new AliTriggerInput( "EMCAL_L0", "EMCAL L0", 0x02 ) ); - fInputs.AddLast( new AliTriggerInput( "EMCAL_JetHPt_L1","EMCAL Jet High Pt L1", 0x04 ) ); - fInputs.AddLast( new AliTriggerInput( "EMCAL_JetMPt_L1","EMCAL Jet Medium Pt L1", 0x08 ) ); - fInputs.AddLast( new AliTriggerInput( "EMCAL_JetLPt_L1","EMCAL Jet Low Pt L1", 0x016 ) ); + + // Second parameter should be detector name = "EMCAL" + TString det("EMCAL"); // Apr 29, 2008 + fInputs.AddLast( new AliTriggerInput( det+"_L0", det, 0x02) ); + fInputs.AddLast( new AliTriggerInput( det+"_GammaHPt_L1", det, 0x04 ) ); + fInputs.AddLast( new AliTriggerInput( det+"_GammaMPt_L1", det, 0x08 ) ); + fInputs.AddLast( new AliTriggerInput( det+"_GammaLPt_L1", det, 0x016 ) ); + fInputs.AddLast( new AliTriggerInput( det+"_JetHPt_L1", det, 0x032 ) ); + fInputs.AddLast( new AliTriggerInput( det+"_JetMPt_L1", det, 0x048 ) ); + fInputs.AddLast( new AliTriggerInput( det+"_JetLPt_L1", det, 0x064 ) ); + + if(fNJetThreshold<=0) return; + // Jet Trigger(s) + UInt_t level = 0x032; + for(Int_t i=0; iGetNTRU(); //number of tru, min 0 max 3*22=66. + TMatrixD * ampmatrix = 0x0; + Int_t colborder = 0; + Int_t rowborder = 0; + static int keyPrint = 0; + if(keyPrint) AliDebug(2,Form(" IsPatchIsolated : iSM %i mtru %i itru %i maxphi %i maxeta %i \n", iSM, mtru, itru, maxphi, maxeta)); + + if(fIsolateInSuperModule){ // ? + ampmatrix = dynamic_cast(ampmatrixes->At(iSM)) ; + rowborder = fGeom->GetNPhi(); + colborder = fGeom->GetNZ(); + AliDebug(2,"Isolate trigger in Module"); + } else{ + ampmatrix = dynamic_cast(ampmatrixes->At(itru)) ; + rowborder = fGeom->GetNModulesInTRUPhi(); + colborder = fGeom->GetNModulesInTRUEta(); + AliDebug(2,"Isolate trigger in TRU"); + } + if(iSM>9) rowborder /= 2; // half size in phi + + if(!ampmatrixes || !ampmatrix){ + AliError("Could not recover the matrix with the amplitudes"); + return kFALSE; + } + + //Define patch modules - what is this ?? + Int_t isolmodules = fIsolPatchSize*(1+iPatchType); + Int_t ipatchmodules = 2*(1+fPatchSize*iPatchType); + Int_t minrow = maxphi - isolmodules; + Int_t mincol = maxeta - isolmodules; + Int_t maxrow = maxphi + isolmodules + ipatchmodules; + Int_t maxcol = maxeta + isolmodules + ipatchmodules; + + minrow = minrow<0?0 :minrow; + mincol = mincol<0?0 :mincol; + + maxrow = maxrow>rowborder?rowborder :maxrow; + maxcol = maxcol>colborder?colborder :maxcol; + + //printf("%s\n",Form("Number of added Isol Modules %d, Patch Size %d",isolmodules, ipatchmodules)); + //printf("%s\n",Form("Patch: minrow %d, maxrow %d, mincol %d, maxcol %d",minrow,maxrow,mincol,maxcol)); + // AliDebug(2,Form("Number of added Isol Modules %d, Patch Size %d",isolmodules, ipatchmodules)); + //AliDebug(2,Form("Patch: minrow %d, maxrow %d, mincol %d, maxcol %d",minrow,maxrow,mincol,maxcol)); - //Sums energy of all possible 2x2 (L0) and 4x4 (L1) cells per each TRU. - //Fast signal in the experiment is given by 2x2 cells, - //for this reason we loop inside the TRU cells by 2. + //Add amplitudes in all isolation patch + Float_t amp = 0.; + for(Int_t irow = minrow ; irow < maxrow; irow ++) + for(Int_t icol = mincol ; icol < maxcol ; icol ++) + amp += (*ampmatrix)(irow,icol); + AliDebug(2,Form("Type %d, Maximum amplitude %f, patch+isol square %f",iPatchType, maxamp, amp)); + + if(amp < maxamp){ + // AliError(Form("Bad sum: Type %d, Maximum amplitude %f, patch+isol square %f",iPatchType, maxamp, amp)); + // ampmatrix->Print(); + return kFALSE; + } else { + amp-=maxamp; //Calculate energy in isolation patch that do not comes from maximum patch. + } + + AliDebug(2, Form("Maximum amplitude %f, Out of patch %f",maxamp, amp)); + + //Fill isolation amplitude data member and say if patch is isolated. + if(iPatchType == 0){ //2x2 case + f2x2AmpOutOfPatch = amp; + if(amp < f2x2AmpOutOfPatchThres) b=kTRUE; + } else if(iPatchType == 1){ //nxn case + fnxnAmpOutOfPatch = amp; + if(amp < fnxnAmpOutOfPatchThres) b=kTRUE; + } + + if(keyPrint) AliDebug(2,Form(" IsPatchIsolated - OUT \n")); + + return b; + +} + +/* +//____________________________________________________________________________ +void AliEMCALTrigger::MakeSlidingCell(const TClonesArray * amptrus, const TClonesArray * timeRtrus, const Int_t isupermod,TMatrixD &max2, TMatrixD &maxn){ + + //Sums energy of all possible 2x2 (L0) and nxn (L1) modules per each TRU. + //Fast signal in the experiment is given by 2x2 modules, + //for this reason we loop inside the TRU modules by 2. + //Declare and initialize variables - Int_t nCellsPhi = geom->GetNPhi()*2/geom->GetNTRUPhi() ; - if(isupermod > 10) + Int_t nCellsPhi = fGeom->GetNCellsInTRUPhi(); + if(isupermod > 9) nCellsPhi = nCellsPhi / 2 ; //Half size SM. Not Final. // 12(tow)*2(cell)/1 TRU, cells in Phi in one TRU - Int_t nCellsEta = geom->GetNEta()*2/geom->GetNTRUEta() ; + Int_t nCellsEta = fGeom->GetNCellsInTRUEta(); + Int_t nTRU = fGeom->GetNTRU(); // 24(mod)*2(tower)/3 TRU, cells in Eta in one TRU - Int_t nTRU = geom->GetNTRU();//3 TRU per super module + //Int_t nTRU = geom->GeNTRU();//3 TRU per super module Float_t amp2 = 0 ; - Float_t amp4 = 0 ; - for(Int_t i = 0; i < 3; i++){ + Float_t ampn = 0 ; + for(Int_t i = 0; i < 4; i++){ for(Int_t j = 0; j < nTRU; j++){ - (*ampmax2)(i,j) = -1; - (*ampmax4)(i,j) = -1; + ampmax2(i,j) = -1; + ampmaxn(i,j) = -1; } } //Create matrix that will contain 2x2 amplitude sums - //used to calculate the 4x4 sums - TMatrixD * tru2x2 = new TMatrixD(nCellsPhi/2,nCellsEta/2) ; + //used to calculate the nxn sums + TMatrixD tru2x2(nCellsPhi/2,nCellsEta/2) ; for(Int_t i = 0; i < nCellsPhi/2; i++) for(Int_t j = 0; j < nCellsEta/2; j++) - (*tru2x2)(i,j) = -1; + tru2x2(i,j) = -1; //Loop over all TRUS in a supermodule - for(Int_t itru = 0 + (isupermod - 1) * nTRU ; itru < isupermod*nTRU ; itru++) { + for(Int_t itru = 0 + isupermod * nTRU ; itru < (isupermod+1)*nTRU ; itru++) { TMatrixD * amptru = dynamic_cast(amptrus->At(itru)) ; TMatrixD * timeRtru = dynamic_cast(timeRtrus->At(itru)) ; - Int_t mtru = itru-(isupermod-1)*nTRU ; //Number of TRU in Supermodule - + Int_t mtru = itru-isupermod*nTRU ; //Number of TRU in Supermodule + //Sliding 2x2, add 2x2 amplitudes (NOT OVERLAP) for(Int_t irow = 0 ; irow < nCellsPhi; irow += 2){ for(Int_t icol = 0 ; icol < nCellsEta ; icol += 2){ amp2 = (*amptru)(irow,icol)+(*amptru)(irow+1,icol)+ (*amptru)(irow,icol+1)+(*amptru)(irow+1,icol+1); - //Fill matrix with added 2x2 crystals for use in 4x4 sums - (*tru2x2)(irow/2,icol/2) = amp2 ; + + //Fill matrix with added 2x2 cells for use in nxn sums + tru2x2(irow/2,icol/2) = amp2 ; //Select 2x2 maximum sums to select L0 - if(amp2 > (*ampmax2)(0,mtru)){ - (*ampmax2)(0,mtru) = amp2 ; - (*ampmax2)(1,mtru) = irow; - (*ampmax2)(2,mtru) = icol; + if(amp2 > ampmax2(0,mtru)){ + ampmax2(0,mtru) = amp2 ; + ampmax2(1,mtru) = irow; + ampmax2(2,mtru) = icol; } } } //Find most recent time in the selected 2x2 cell - (*ampmax2)(3,mtru) = 1 ; - Int_t row2 = static_cast ((*ampmax2)(1,mtru)); - Int_t col2 = static_cast ((*ampmax2)(2,mtru)); + ampmax2(3,mtru) = 1 ; + Int_t row2 = static_cast (ampmax2(1,mtru)); + Int_t col2 = static_cast (ampmax2(2,mtru)); for(Int_t i = 0; i<2; i++){ for(Int_t j = 0; j<2; j++){ if((*amptru)(row2+i,col2+j) > 0 && (*timeRtru)(row2+i,col2+j)> 0){ - if((*timeRtru)(row2+i,col2+j) < (*ampmax2)(3,mtru) ) - (*ampmax2)(3,mtru) = (*timeRtru)(row2+i,col2+j); + if((*timeRtru)(row2+i,col2+j) < ampmax2(3,mtru) ) + ampmax2(3,mtru) = (*timeRtru)(row2+i,col2+j); } } } - - //Sliding 4x4, add 4x4 amplitudes (OVERLAP) - for(Int_t irow = 0 ; irow < nCellsPhi/2; irow++){ - for(Int_t icol = 0 ; icol < nCellsEta/2 ; icol++){ - if( (irow+1) < nCellsPhi/2 && (icol+1) < nCellsEta/2){//Avoid exit the TRU - amp4 = (*tru2x2)(irow,icol)+(*tru2x2)(irow+1,icol)+ - (*tru2x2)(irow,icol+1)+(*tru2x2)(irow+1,icol+1); - //Select 4x4 maximum sums to select L1 - if(amp4 > (*ampmax4)(0,mtru)){ - (*ampmax4)(0,mtru) = amp4 ; - (*ampmax4)(1,mtru) = irow*2; - (*ampmax4)(2,mtru) = icol*2; + + //Sliding nxn, add nxn amplitudes (OVERLAP) + if(fPatchSize > 0){ + for(Int_t irow = 0 ; irow < nCellsPhi/2; irow++){ + for(Int_t icol = 0 ; icol < nCellsEta/2 ; icol++){ + ampn = 0; + if( (irow+fPatchSize) < nCellsPhi/2 && (icol+fPatchSize) < nCellsEta/2){//Avoid exit the TRU + for(Int_t i = 0 ; i <= fPatchSize ; i++) + for(Int_t j = 0 ; j <= fPatchSize ; j++) + ampn += tru2x2(irow+i,icol+j); + //Select nxn maximum sums to select L1 + if(ampn > ampmaxn(0,mtru)){ + ampmaxn(0,mtru) = ampn ; + ampmaxn(1,mtru) = irow*2; + ampmaxn(2,mtru) = icol*2; + } + } + } + } + + //Find most recent time in selected nxn cell + ampmaxn(3,mtru) = 1 ; + Int_t rown = static_cast (ampmaxn(1,mtru)); + Int_t coln = static_cast (ampmaxn(2,mtru)); + for(Int_t i = 0; i<4*fPatchSize; i++){ + for(Int_t j = 0; j<4*fPatchSize; j++){ + if( (rown+i) < nCellsPhi && (coln+j) < nCellsEta){//Avoid exit the TRU + if((*amptru)(rown+i,coln+j) > 0 && (*timeRtru)(rown+i,coln+j)> 0){ + if((*timeRtru)(rown+i,coln+j) < ampmaxn(3,mtru) ) + ampmaxn(3,mtru) = (*timeRtru)(rown+i,coln+j); + } } } } } + else { + ampmaxn(0,mtru) = ampmax2(0,mtru); + ampmaxn(1,mtru) = ampmax2(1,mtru); + ampmaxn(2,mtru) = ampmax2(2,mtru); + ampmaxn(3,mtru) = ampmax2(3,mtru); + } + } +} +*/ +//____________________________________________________________________________ +void AliEMCALTrigger::MakeSlidingTowers(const TClonesArray * amptrus, const TClonesArray * timeRtrus, + const Int_t isupermod,TMatrixD &max2, TMatrixD &maxn){ + + // Output from module (2x2 cells from one module) + Int_t nModulesPhi = fGeom->GetNModulesInTRUPhi(); // now 4 modules (3 div in phi) + if(isupermod > 9) + nModulesPhi = nModulesPhi / 2 ; // Half size SM. Not Final. + // + Int_t nModulesEta = fGeom->GetNModulesInTRUEta(); // now 24 modules (no division in eta) + Int_t nTRU = fGeom->GetNTRU(); + static int keyPrint = 0; + if(keyPrint) AliDebug(2,Form("MakeSlidingTowers : nTRU %i nModulesPhi %i nModulesEta %i ", + nTRU, nModulesPhi, nModulesEta )); + + Float_t amp2 = 0 ; + Float_t ampn = 0 ; + for(Int_t i = 0; i < 4; i++){ + for(Int_t j = 0; j < nTRU; j++){ + ampmax2(i,j) = ampmaxn(i,j) = -1; + } + } + + // Create matrix that will contain 2x2 amplitude sums + // used to calculate the nxn sums + TMatrixD tru2x2(nModulesPhi/2,nModulesEta/2); + + // Loop over all TRUS in a supermodule + for(Int_t itru = 0 + isupermod * nTRU ; itru < (isupermod+1)*nTRU ; itru++) { + TMatrixD * amptru = dynamic_cast(amptrus->At(itru)) ; + TMatrixD * timeRtru = dynamic_cast(timeRtrus->At(itru)) ; + Int_t mtru = itru - isupermod*nTRU ; // Number of TRU in Supermodule !! - //Find most recent time in selected 4x4 cell - (*ampmax4)(3,mtru) = 1 ; - Int_t row4 = static_cast ((*ampmax4)(1,mtru)); - Int_t col4 = static_cast ((*ampmax4)(2,mtru)); - for(Int_t i = 0; i<4; i++){ - for(Int_t j = 0; j<4; j++){ - if((*amptru)(row4+i,col4+j) > 0 && (*timeRtru)(row4+i,col4+j)> 0){ - if((*timeRtru)(row4+i,col4+j) < (*ampmax4)(3,mtru) ) - (*ampmax4)(3,mtru) = (*timeRtru)(row4+i,col4+j); - } + if(!amptru || !timeRtru){ + AliError("Amplitude or Time TRU matrix not available"); + return; + } + + // Sliding 2x2, add 2x2 amplitudes (NOT OVERLAP) + for(Int_t irow = 0 ; irow < nModulesPhi; irow +=2){ + for(Int_t icol = 0 ; icol < nModulesEta ; icol +=2){ + amp2 = (*amptru)(irow,icol) +(*amptru)(irow+1,icol)+ + (*amptru)(irow,icol+1)+(*amptru)(irow+1,icol+1); + + //Fill matrix with added 2x2 towers for use in nxn sums + tru2x2(irow/2,icol/2) = amp2 ; + //Select 2x2 maximum sums to select L0 + if(amp2 > ampmax2(0,mtru)){ + ampmax2(0,mtru) = amp2 ; + ampmax2(1,mtru) = irow; + ampmax2(2,mtru) = icol; + } + } + } + + ampmax2(3,mtru) = 0.; + if(GetTimeKey()) { + // Find most recent time in the selected 2x2 towers + Int_t row2 = static_cast (ampmax2(1,mtru)); + Int_t col2 = static_cast (ampmax2(2,mtru)); + for(Int_t i = 0; i<2; i++){ + for(Int_t j = 0; j<2; j++){ + if((*amptru)(row2+i,col2+j) > 0 && (*timeRtru)(row2+i,col2+j)> 0){ + if((*timeRtru)(row2+i,col2+j) > ampmax2(3,mtru) ) + ampmax2(3,mtru) = (*timeRtru)(row2+i,col2+j); // max time + } + } } } + + //Sliding nxn, add nxn amplitudes (OVERLAP) + if(fPatchSize > 0){ + for(Int_t irow = 0 ; irow < nModulesPhi/2; irow++){ + for(Int_t icol = 0 ; icol < nModulesEta/2; icol++){ + ampn = 0; + if( (irow+fPatchSize) < nModulesPhi/2 && (icol+fPatchSize) < nModulesEta/2){ //Avoid exit the TRU + for(Int_t i = 0 ; i <= fPatchSize ; i++) + for(Int_t j = 0 ; j <= fPatchSize ; j++) + ampn += tru2x2(irow+i,icol+j); + //Select nxn maximum sums to select L1 + if(ampn > ampmaxn(0,mtru)){ + ampmaxn(0,mtru) = ampn ; + ampmaxn(1,mtru) = irow; + ampmaxn(2,mtru) = icol; + } + } + } + } + + ampmaxn(3,mtru) = 0.; // Was 1 , I don't know why + if(GetTimeKey()) { + //Find most recent time in selected nxn cell + Int_t rown = static_cast (ampmaxn(1,mtru)); + Int_t coln = static_cast (ampmaxn(2,mtru)); + for(Int_t i = 0; i<4*fPatchSize; i++){ + for(Int_t j = 0; j<4*fPatchSize; j++){ + if( (rown+i) < nModulesPhi && (coln+j) < nModulesEta){//Avoid exit the TRU + if((*amptru)(rown+i,coln+j) > 0 && (*timeRtru)(rown+i,coln+j)> 0){ + if((*timeRtru)(rown+i,coln+j) > ampmaxn(3,mtru) ) + ampmaxn(3,mtru) = (*timeRtru)(rown+i,coln+j); // max time + } + } + } + } + } + } else { // copy 2x2 to nxn + ampmaxn(0,mtru) = ampmax2(0,mtru); + ampmaxn(1,mtru) = ampmax2(1,mtru); + ampmaxn(2,mtru) = ampmax2(2,mtru); + ampmaxn(3,mtru) = ampmax2(3,mtru); + } } + if(keyPrint) AliDebug(2,Form(" : MakeSlidingTowers -OUt \n")); } //____________________________________________________________________________ @@ -234,207 +513,681 @@ void AliEMCALTrigger::Print(const Option_t * opt) const if(! opt) return; AliTriggerInput* in = 0x0 ; + AliInfo(Form(" fSimulation %i (input option) : #digits %i\n", fSimulation, fDigitsList->GetEntries())); + AliInfo(Form(" fTimeKey %i \n ", fTimeKey)); + + AliInfo(Form("\t Maximum Amplitude after Sliding Cell, \n")) ; + AliInfo(Form("\t -2x2 cells sum (not overlapped): %10.2f, in Super Module %d\n", + f2x2MaxAmp,f2x2SM)) ; + AliInfo(Form("\t -2x2 from row %d to row %d and from column %d to column %d\n", f2x2ModulePhi, f2x2ModulePhi+2, f2x2ModuleEta, f2x2ModuleEta+2)); + AliInfo(Form("\t -2x2 Isolation Patch %d x %d, Amplitude out of 2x2 patch is %f, threshold %f, Isolated? %d \n", 2*fIsolPatchSize+2, 2*fIsolPatchSize+2, f2x2AmpOutOfPatch, f2x2AmpOutOfPatchThres,static_cast (fIs2x2Isol))); + if(fPatchSize > 0){ + AliInfo(Form("\t Patch Size, n x n: %d x %d cells\n",2*(fPatchSize+1), 2*(fPatchSize+1))); + AliInfo(Form("\t -nxn cells sum (overlapped) : %10.2f, in Super Module %d\n", fnxnMaxAmp,fnxnSM)); + AliInfo(Form("\t -nxn from row %d to row %d and from column %d to column %d\n", fnxnModulePhi, fnxnModulePhi+4*fPatchSize, fnxnModuleEta, fnxnModuleEta+4*fPatchSize)) ; + AliInfo(Form("\t -nxn Isolation Patch %d x %d, Amplitude out of nxn patch is %f, threshold %f, Isolated? %d \n", 4*fIsolPatchSize+2*(fPatchSize+1),4*fIsolPatchSize+2*(fPatchSize+1) , fnxnAmpOutOfPatch, fnxnAmpOutOfPatchThres,static_cast (fIsnxnIsol) )); + } + + AliInfo(Form("\t Isolate in SuperModule? %d\n", fIsolateInSuperModule)) ; + AliInfo(Form("\t Threshold for LO %10.2f\n", fL0Threshold)); - printf( " Maximum Amplitude after Sliding Cell, \n") ; - printf( " -2x2 cells sum (not overlapped): %10.2f, in Super Module %d\n", - f2x2MaxAmp,f2x2SM) ; - printf( " -2x2 from row %d to row %d and from column %d to column %d\n", f2x2CellPhi, f2x2CellPhi+2, f2x2CellEta, f2x2CellEta+2) ; - printf( " -4x4 cells sum (overlapped) : %10.2f, in Super Module %d\n", - f4x4MaxAmp,f4x4SM) ; - printf( " -4x4 from row %d to row %d and from column %d to column %d\n", f4x4CellPhi, f4x4CellPhi+4, f4x4CellEta, f4x4CellEta+4) ; - printf( " Threshold for LO %10.2f\n", - fL0Threshold) ; in = (AliTriggerInput*)fInputs.FindObject( "EMCAL_L0" ); if(in->GetValue()) - printf( " *** EMCAL LO is set ***\n") ; + AliInfo(Form("\t *** EMCAL LO is set ***\n")); - printf( " Jet Low Pt Threshold for L1 %10.2f\n", - fL1JetLowPtThreshold) ; - in = (AliTriggerInput*)fInputs.FindObject( "EMCAL_JetLPt_L1" ); + AliInfo(Form("\t Gamma Low Pt Threshold for L1 %10.2f\n", fL1GammaLowPtThreshold)); + in = (AliTriggerInput*)fInputs.FindObject( "EMCAL_GammaLPt_L1" ); if(in->GetValue()) - printf( " *** EMCAL Jet Low Pt for L1 is set ***\n") ; + AliInfo(Form("\t *** EMCAL Gamma Low Pt for L1 is set ***\n")); - printf( " Jet Medium Pt Threshold for L1 %10.2f\n", - fL1JetMediumPtThreshold) ; - in = (AliTriggerInput*) fInputs.FindObject( "EMCAL_JetMPt_L1" ); + AliInfo(Form("\t Gamma Medium Pt Threshold for L1 %10.2f\n", fL1GammaMediumPtThreshold)); + in = (AliTriggerInput*) fInputs.FindObject( "EMCAL_GammaMPt_L1" ); if(in->GetValue()) - printf( " *** EMCAL Jet Medium Pt for L1 is set ***\n") ; + AliInfo(Form("\t *** EMCAL Gamma Medium Pt for L1 is set ***\n")); - printf( " Jet High Pt Threshold for L1 %10.2f\n", - fL1JetHighPtThreshold) ; - in = (AliTriggerInput*) fInputs.FindObject( "EMCAL_JetHPt_L1" ); + AliInfo(Form("\t Gamma High Pt Threshold for L1 %10.2f\n", fL1GammaHighPtThreshold)); + in = (AliTriggerInput*) fInputs.FindObject( "EMCAL_GammaHPt_L1" ); if(in->GetValue()) - printf( " *** EMCAL Jet High Pt for L1 is set ***\n") ; + AliInfo(Form("\t *** EMCAL Gamma High Pt for L1 is set ***\n")) ; } //____________________________________________________________________________ -void AliEMCALTrigger::SetTriggers(const Int_t iSM, const TMatrixD *ampmax2, - const TMatrixD *ampmax4, AliEMCALGeometry *geom) +void AliEMCALTrigger::SetTriggers(const TClonesArray * ampmatrix,const Int_t iSM, + const TMatrixD &max2, + const TMatrixD &maxn) { - - //Checks the 2x2 and 4x4 maximum amplitude per each TRU and + //Checks the 2x2 and nxn maximum amplitude per each TRU and //compares with the different L0 and L1 triggers thresholds Float_t max2[] = {-1,-1,-1,-1} ; - Float_t max4[] = {-1,-1,-1,-1} ; - Int_t itru2 = -1 ; - Int_t itru4 = -1 ; + Float_t maxn[] = {-1,-1,-1,-1} ; + Int_t mtru2 = -1 ; + Int_t mtrun = -1 ; + + Int_t nTRU = fGeom->GetNTRU(); //Find maximum summed amplitude of all the TRU //in a Super Module - for(Int_t i = 0 ; i < geom->GetNTRU() ; i++){ - if(max2[0] < (*ampmax2)(0,i) ){ - max2[0] = (*ampmax2)(0,i) ; // 2x2 summed max amplitude - max2[1] = (*ampmax2)(1,i) ; // corresponding phi position in TRU - max2[2] = (*ampmax2)(2,i) ; // corresponding eta position in TRU - max2[3] = (*ampmax2)(3,i) ; // corresponding most recent time - itru2 = i ; + for(Int_t i = 0 ; i < nTRU ; i++){ + if(max2[0] < ampmax2(0,i) ){ + max2[0] = ampmax2(0,i) ; // 2x2 summed max amplitude + max2[1] = ampmax2(1,i) ; // corresponding phi position in TRU + max2[2] = ampmax2(2,i) ; // corresponding eta position in TRU + max2[3] = ampmax2(3,i) ; // corresponding most recent time + mtru2 = i ; } - if(max4[0] < (*ampmax4)(0,i) ){ - max4[0] = (*ampmax4)(0,i) ; // 4x4 summed max amplitude - max4[1] = (*ampmax4)(1,i) ; // corresponding phi position in TRU - max4[2] = (*ampmax4)(2,i) ; // corresponding eta position in TRU - max4[3] = (*ampmax4)(3,i) ; // corresponding most recent time - itru4 = i ; + if(maxn[0] < ampmaxn(0,i) ){ + maxn[0] = ampmaxn(0,i) ; // nxn summed max amplitude + maxn[1] = ampmaxn(1,i) ; // corresponding phi position in TRU + maxn[2] = ampmaxn(2,i) ; // corresponding eta position in TRU + maxn[3] = ampmaxn(3,i) ; // corresponding most recent time + mtrun = i ; } } //--------Set max amplitude if larger than in other Super Modules------------ Float_t maxtimeR2 = -1 ; - Float_t maxtimeR4 = -1 ; - AliRunLoader *rl = AliRunLoader::GetRunLoader(); - AliRun * gAlice = rl->GetAliRun(); - AliEMCAL * emcal = (AliEMCAL*)gAlice->GetDetector("EMCAL"); - Int_t nTimeBins = emcal->GetRawFormatTimeBins() ; + Float_t maxtimeRn = -1 ; + static AliEMCALRawUtils rawUtil; + // Int_t nTimeBins = rawUtil.GetRawFormatTimeBins() ; + Int_t nTimeBins = TIMEBINS; //changed by PTH //Set max of 2x2 amplitudes and select L0 trigger if(max2[0] > f2x2MaxAmp ){ + // if(max2[0] > 5) printf(" L0 : iSM %i: max2[0] %5.0f : max2[3] %5.0f (maxtimeR2) \n", + // iSM, max2[0], max2[3]); f2x2MaxAmp = max2[0] ; f2x2SM = iSM ; maxtimeR2 = max2[3] ; - geom->GetCellPhiEtaIndexInSModuleFromTRUIndex(itru2, + fGeom->GetModulePhiEtaIndexInSModuleFromTRUIndex(mtru2, static_cast(max2[1]), static_cast(max2[2]), - f2x2CellPhi,f2x2CellEta) ; + f2x2ModulePhi,f2x2ModuleEta); + //Isolated patch? + if(fIsolateInSuperModule) + fIs2x2Isol = IsPatchIsolated(0, ampmatrix, iSM, mtru2, f2x2MaxAmp, f2x2ModulePhi,f2x2ModuleEta) ; + else + fIs2x2Isol = IsPatchIsolated(0, ampmatrix, iSM, mtru2, f2x2MaxAmp, static_cast(max2[1]), static_cast(max2[2])) ; + + if(GetTimeKey()) { //Transform digit amplitude in Raw Samples - fADCValuesLow2x2 = new Int_t[nTimeBins]; - fADCValuesHigh2x2 = new Int_t[nTimeBins]; - emcal->RawSampledResponse(maxtimeR2, f2x2MaxAmp, fADCValuesHigh2x2, fADCValuesLow2x2) ; - - //Set Trigger Inputs, compare ADC time bins until threshold is attained - //Set L0 - for(Int_t i = 0 ; i < nTimeBins ; i++){ - if(fADCValuesHigh2x2[i] >= fL0Threshold || fADCValuesLow2x2[i] >= fL0Threshold){ - SetInput("EMCAL_L0") ; - break; + if (fADCValuesLow2x2 == 0) { + fADCValuesLow2x2 = new Int_t[nTimeBins]; + fADCValuesHigh2x2 = new Int_t[nTimeBins]; + } + //printf(" maxtimeR2 %12.5e (1)\n", maxtimeR2); + // rawUtil.RawSampledResponse(maxtimeR2 * AliEMCALRawUtils::GetRawFormatTimeBin(), + // f2x2MaxAmp, fADCValuesHigh2x2, fADCValuesLow2x2) ; + + // rawUtil.RawSampledResponse(maxtimeR2*TIMEBINMAX/TIMEBINS, + // f2x2MaxAmp, fADCValuesHigh2x2, fADCValuesLow2x2) ; + + AliEMCALRawResponse::RawSampledResponse( maxtimeR2*TIMEBINMAX/TIMEBINS, + f2x2MaxAmp, fADCValuesHigh2x2, fADCValuesLow2x2) ; + + // Set Trigger Inputs, compare ADC time bins until threshold is attained + // Set L0 + for(Int_t i = 0 ; i < nTimeBins ; i++){ + // printf(" fADCValuesHigh2x2[%i] %i : %i \n", i, fADCValuesHigh2x2[i], fADCValuesLow2x2[i]); + if(fADCValuesHigh2x2[i] >= fL0Threshold || fADCValuesLow2x2[i] >= fL0Threshold){ + SetInput("EMCAL_L0") ; + break; + } + } + } else { + // Nov 5 - no analysis of time information + if(f2x2MaxAmp >= fL0Threshold) { // should add the low amp too + SetInput("EMCAL_L0"); } } - // for(Int_t i = 0 ; i < nTimeBins ; i++) - // if(fADCValuesLow2x2[i]!=0||fADCValuesHigh2x2[i]!=0) - // cout<< "2x2 Time Bin "< f4x4MaxAmp ){ - f4x4MaxAmp = max4[0] ; - f4x4SM = iSM ; - maxtimeR4 = max4[3] ; - geom->GetCellPhiEtaIndexInSModuleFromTRUIndex(itru4, - static_cast(max4[1]), - static_cast(max4[2]), - f4x4CellPhi,f4x4CellEta) ; - //Transform digit amplitude in Raw Samples - fADCValuesHigh4x4 = new Int_t[nTimeBins]; - fADCValuesLow4x4 = new Int_t[nTimeBins]; - emcal->RawSampledResponse(maxtimeR4, f4x4MaxAmp, fADCValuesHigh4x4, fADCValuesLow4x4) ; + //------------Set max of nxn amplitudes and select L1 trigger--------- + if(maxn[0] > fnxnMaxAmp ){ + fnxnMaxAmp = maxn[0] ; + fnxnSM = iSM ; + maxtimeRn = maxn[3] ; + fGeom->GetModulePhiEtaIndexInSModuleFromTRUIndex(mtrun, + static_cast(maxn[1]), + static_cast(maxn[2]), + fnxnModulePhi,fnxnModuleEta) ; + + //Isolated patch? + if(fIsolateInSuperModule) + fIsnxnIsol = IsPatchIsolated(1, ampmatrix, iSM, mtrun, fnxnMaxAmp, fnxnModulePhi, fnxnModuleEta) ; + else + fIsnxnIsol = IsPatchIsolated(1, ampmatrix, iSM, mtrun, fnxnMaxAmp, static_cast(maxn[1]), static_cast(maxn[2])) ; + if(GetTimeKey()) { + //Transform digit amplitude in Raw Samples + if (fADCValuesLownxn == 0) { + fADCValuesHighnxn = new Int_t[nTimeBins]; + fADCValuesLownxn = new Int_t[nTimeBins]; + } + // rawUtil.RawSampledResponse(maxtimeRn * AliEMCALRawUtils::GetRawFormatTimeBin(), + // fnxnMaxAmp, fADCValuesHighnxn, fADCValuesLownxn) ; + + //rawUtil.RawSampledResponse(maxtimeRn*TIMEBINMAX/TIMEBINS, + // fnxnMaxAmp, fADCValuesHighnxn, fADCValuesLownxn) ; + + AliEMCALRawResponse::RawSampledResponse (maxtimeRn*TIMEBINMAX/TIMEBINS, + fnxnMaxAmp, fADCValuesHighnxn, fADCValuesLownxn) ; + //Set Trigger Inputs, compare ADC time bins until threshold is attained //SetL1 Low - for(Int_t i = 0 ; i < nTimeBins ; i++){ - if(fADCValuesHigh4x4[i] >= fL1JetLowPtThreshold || fADCValuesLow4x4[i] >= fL1JetLowPtThreshold){ - SetInput("EMCAL_JetLPt_L1") ; - break; + for(Int_t i = 0 ; i < nTimeBins ; i++){ + if(fADCValuesHighnxn[i] >= fL1GammaLowPtThreshold || fADCValuesLownxn[i] >= fL1GammaLowPtThreshold){ + SetInput("EMCAL_GammaLPt_L1") ; + break; + } } - } //SetL1 Medium - for(Int_t i = 0 ; i < nTimeBins ; i++){ - if(fADCValuesHigh4x4[i] >= fL1JetMediumPtThreshold || fADCValuesLow4x4[i] >= fL1JetMediumPtThreshold){ - SetInput("EMCAL_JetMPt_L1") ; - break; + for(Int_t i = 0 ; i < nTimeBins ; i++){ + if(fADCValuesHighnxn[i] >= fL1GammaMediumPtThreshold || fADCValuesLownxn[i] >= fL1GammaMediumPtThreshold){ + SetInput("EMCAL_GammaMPt_L1") ; + break; + } } - } //SetL1 High - for(Int_t i = 0 ; i < nTimeBins ; i++){ - if(fADCValuesHigh4x4[i] >= fL1JetHighPtThreshold || fADCValuesLow4x4[i] >= fL1JetHighPtThreshold){ - SetInput("EMCAL_JetHPt_L1") ; - break; + for(Int_t i = 0 ; i < nTimeBins ; i++){ + if(fADCValuesHighnxn[i] >= fL1GammaHighPtThreshold || fADCValuesLownxn[i] >= fL1GammaHighPtThreshold){ + SetInput("EMCAL_GammaHPt_L1") ; + break; + } + } + } else { + // Nov 5 - no analysis of time information + if(fnxnMaxAmp >= fL1GammaLowPtThreshold) { // should add the low amp too + SetInput("EMCAL_GammaLPt_L1") ; //SetL1 Low + } + if(fnxnMaxAmp >= fL1GammaMediumPtThreshold) { // should add the low amp too + SetInput("EMCAL_GammaMPt_L1") ; //SetL1 Medium + } + if(fnxnMaxAmp >= fL1GammaHighPtThreshold) { // should add the low amp too + SetInput("EMCAL_GammaHPt_L1") ; //SetL1 High } } - // for(Int_t i = 0 ; i < nTimeBins ; i++) -// if(fADCValuesLow4x4[i]!= 100||fADCValuesHigh4x4[i] != 100) -// cout<< "4x4 Time Bin "< AliEMCALTrigger::FillTRU() started : # digits %i\n", digits->GetEntriesFast()); + +// Nov 2, 2007. +// One input per EMCAL module so size of matrix is reduced by 4 (2x2 division case) + + Int_t nPhi = fGeom->GetNPhi(); + Int_t nZ = fGeom->GetNZ(); + Int_t nTRU = fGeom->GetNTRU(); + // Int_t nTRUPhi = fGeom->GetNTRUPhi(); + Int_t nModulesPhi = fGeom->GetNModulesInTRUPhi(); + Int_t nModulesPhi2 = fGeom->GetNModulesInTRUPhi(); + Int_t nModulesEta = fGeom->GetNModulesInTRUEta(); + // printf(" AliEMCALTrigger::FillTRU() nTRU %i nTRUPhi %i : nModulesPhi %i nModulesEta %i \n", + // nTRU, nTRUPhi, nModulesPhi, nModulesEta); + + Int_t id = -1; + Float_t amp = -1; + Float_t timeR = -1; + Int_t iSupMod = -1; + Int_t nModule = -1; + Int_t nIphi = -1; + Int_t nIeta = -1; + Int_t iphi = -1; + Int_t ieta = -1; + // iphim, ietam - module indexes in SM + Int_t iphim = -1; + Int_t ietam = -1; + + //List of TRU matrices initialized to 0. + Int_t nSup = fGeom->GetNumberOfSuperModules(); + for(Int_t k = 0; k < nTRU*nSup; k++){ + TMatrixD amptrus(nModulesPhi,nModulesEta) ; + TMatrixD timeRtrus(nModulesPhi,nModulesEta) ; + // Do we need to initialise? I think TMatrixD does it by itself... + for(Int_t i = 0; i < nModulesPhi; i++){ + for(Int_t j = 0; j < nModulesEta; j++){ + amptrus(i,j) = 0.0; + timeRtrus(i,j) = 0.0; + } + } + new((*ampmatrix)[k]) TMatrixD(amptrus) ; + new((*timeRmatrix)[k]) TMatrixD(timeRtrus) ; + } + + // List of Modules matrices initialized to 0. + for(Int_t k = 0; k < nSup ; k++){ + int mphi = nPhi; + // if(nSup>9) mphi = nPhi/2; // the same size + TMatrixD ampsmods( mphi, nZ); + for(Int_t i = 0; i < mphi; i++){ + for(Int_t j = 0; j < nZ; j++){ + ampsmods(i,j) = 0.0; + } + } + new((*ampmatrixsmod)[k]) TMatrixD(ampsmods) ; + } + + AliEMCALDigit * dig ; + + //Digits loop to fill TRU matrices with amplitudes. + for(Int_t idig = 0 ; idig < digits->GetEntriesFast() ; idig++){ + + dig = dynamic_cast(digits->At(idig)) ; + if(dig){ + amp = Float_t(dig->GetAmplitude()); // Energy of the digit (arbitrary units) + id = dig->GetId() ; // Id label of the cell + timeR = dig->GetTimeR() ; // Earliest time of the digit + if(amp<=0.0) AliDebug(1,Form(" id %i amp %f \n", id, amp)); + // printf(" FILLTRU : timeR %10.5e time %10.5e : amp %10.5e \n", timeR, dig->GetTime(), amp); + // Get eta and phi cell position in supermodule + Bool_t bCell = fGeom->GetCellIndex(id, iSupMod, nModule, nIphi, nIeta) ; + if(!bCell) + AliError(Form("%i Wrong cell id number %i ", idig, id)) ; + + fGeom->GetCellPhiEtaIndexInSModule(iSupMod,nModule,nIphi, nIeta,iphi,ieta); + // iphim, ietam - module indexes in SM + fGeom->GetModuleIndexesFromCellIndexesInSModule(iSupMod,iphi,ieta, iphim, ietam, nModule); + //if(iSupMod >9) + //printf("iSupMod %i nModule %i iphi %i ieta %i iphim %i ietam %i \n", + //iSupMod,nModule, iphi, ieta, iphim, ietam); + + // Check to which TRU in the supermodule belongs the cell. + // Supermodules are divided in a TRU matrix of dimension + // (fNTRUPhi,fNTRUEta). + // Each TRU is a cell matrix of dimension (nModulesPhi,nModulesEta) + + // First calculate the row and column in the supermodule + // of the TRU to which the cell belongs. + Int_t row = iphim / nModulesPhi; + Int_t col = ietam / nModulesEta; + //Calculate label number of the TRU + Int_t itru = fGeom->GetAbsTRUNumberFromNumberInSm(row, col, iSupMod); + + //Fill TRU matrix with cell values + TMatrixD * amptrus = dynamic_cast(ampmatrix->At(itru)) ; + TMatrixD * timeRtrus = dynamic_cast(timeRmatrix->At(itru)) ; + + if(!amptrus || !timeRtrus){ + AliError("Could not recover the TRU matrix with amplitudes or times"); + } + else{ + //Calculate row and column of the module inside the TRU with number itru + Int_t irow = iphim - row * nModulesPhi; + if(iSupMod > 9) + irow = iphim - row * nModulesPhi2; // size of matrix the same + Int_t icol = ietam - col * nModulesEta; + + (*amptrus)(irow,icol) += amp ; + if((*timeRtrus)(irow,icol) <0.0 || (*timeRtrus)(irow,icol) <= timeR){ // ?? + (*timeRtrus)(irow,icol) = timeR ; + } + } + //printf(" ieta %i iphi %i iSM %i || col %i row %i : itru %i -> amp %f\n", + // ieta, iphi, iSupMod, col, row, itru, amp); + //####################SUPERMODULE MATRIX ################## + TMatrixD * ampsmods = dynamic_cast(ampmatrixsmod->At(iSupMod)) ; + if(!ampsmods){ + AliError("Could not recover the matrix per SM"); + continue; + } + (*ampsmods)(iphim,ietam) += amp ; + // printf(" id %i iphim %i ietam %i SM %i : irow %i icol %i itru %i : amp %6.0f\n", + //id, iphim, ietam, iSupMod, irow, icol, itru, amp); + } + else AliError("Could not recover the digit"); + } + //assert(0); + //printf(" AliEMCALTrigger::FillTRU() is ended \n"); } //____________________________________________________________________________ void AliEMCALTrigger::Trigger() { //Main Method to select triggers. - AliRunLoader *rl = AliRunLoader::GetRunLoader(); - AliEMCALLoader *emcalLoader = dynamic_cast - (rl->GetDetectorLoader("EMCAL")); + TH1::AddDirectory(0); + AliRunLoader *runLoader = AliRunLoader::Instance(); + AliEMCALLoader *emcalLoader = 0; + if(runLoader) { + emcalLoader = dynamic_cast(runLoader->GetDetectorLoader("EMCAL")); + } + //Load EMCAL Geometry - rl->LoadgAlice(); - AliRun * gAlice = rl->GetAliRun(); - AliEMCAL * emcal = (AliEMCAL*)gAlice->GetDetector("EMCAL"); - AliEMCALGeometry * geom = emcal->GetGeometry(); + if (runLoader && runLoader->GetAliRun()){ + AliEMCAL* emcal = dynamic_cast(runLoader->GetAliRun()->GetDetector("EMCAL")); + if(emcal)fGeom = emcal->GetGeometry(); + } - if (geom==0) - AliFatal("Did not get geometry from EMCALLoader"); - + if (!fGeom) + fGeom = AliEMCALGeometry::GetInstance(AliEMCALGeometry::GetDefaultGeometryName()); + if (!fGeom) + AliFatal("Did not get geometry from EMCALLoader"); + //Define parameters - Int_t nSuperModules = geom->GetNumberOfSuperModules() ; //12 SM in EMCAL - Int_t nTRU = geom->GetNTRU();//3 TRU per super module + Int_t nSuperModules = fGeom->GetNumberOfSuperModules() ; //12 SM in EMCAL and 6/10 DCAL SMs + Int_t nTRU = fGeom->GetNTRU(); // 3 TRU per super module //Intialize data members each time the trigger is called in event loop - f2x2MaxAmp = -1; f2x2CellPhi = -1; f2x2CellEta = -1; - f4x4MaxAmp = -1; f4x4CellPhi = -1; f4x4CellEta = -1; + f2x2MaxAmp = -1; f2x2ModulePhi = -1; f2x2ModuleEta = -1; + fnxnMaxAmp = -1; fnxnModulePhi = -1; fnxnModuleEta = -1; - //Take the digits list if simulation - if(fSimulation){ - rl->LoadDigits("EMCAL"); + // Take the digits list if simulation + if(fSimulation && runLoader && emcalLoader){ // works than run seperate macros + runLoader->LoadDigits("EMCAL"); fDigitsList = emcalLoader->Digits() ; + runLoader->LoadSDigits("EMCAL"); } - cout<<"Simulation "<FillTRU(fDigitsList, amptrus, timeRtrus) ; - - //Do Cell Sliding and select Trigger - //Initialize varible that will contain maximum amplitudes and - //its corresponding cell position in eta and phi, and time. - TMatrixD * ampmax2 = new TMatrixD(4,nTRU) ; - TMatrixD * ampmax4 = new TMatrixD(4,nTRU) ; - - for(Int_t iSM = 1 ; iSM <= nSuperModules ; iSM++) { - //Do 2x2 and 4x4 sums, select maximums. - MakeSlidingCell(amptrus, timeRtrus, iSM, ampmax2, ampmax4, geom); - //Set the trigger - SetTriggers(iSM, ampmax2, ampmax4, geom) ; + // Delete old if unzero + if(fAmpTrus) {fAmpTrus->Delete(); delete fAmpTrus;} + if(fTimeRtrus) {fTimeRtrus->Delete(); delete fTimeRtrus;} + if(fAmpSMods) {fAmpSMods->Delete(); delete fAmpSMods;} + // Fill TRU and SM matrix + fAmpTrus = new TClonesArray("TMatrixD",nTRU); + fAmpTrus->SetName("AmpTrus"); + fTimeRtrus = new TClonesArray("TMatrixD",nTRU); + fTimeRtrus->SetName("TimeRtrus"); + fAmpSMods = new TClonesArray("TMatrixD",nSuperModules); + fAmpSMods->SetName("AmpSMods"); + + FillTRU(fDigitsList, fAmpTrus, fAmpSMods, fTimeRtrus); + + // Jet stuff - only one case, no freedom here + if(fGeom->GetNEtaSubOfTRU() == 6) { + if(fAmpJetMatrix) {delete fAmpJetMatrix; fAmpJetMatrix=0;} + if(fJetMatrixE) {delete fJetMatrixE; fJetMatrixE=0;} + + fAmpJetMatrix = new TMatrixD(17,12); // 17-phi(row), 12-eta(col) + fJetMatrixE = new TH2F("fJetMatrixE"," E of max patch in (#phi,#eta)", + 17, 80.*TMath::DegToRad(), (180.+20.*2/3.)*TMath::DegToRad(), 12, -0.7, 0.7); + for(Int_t row=0; rowGetNrows(); row++) { + for(Int_t col=0; colGetNcols(); col++) { + (*fAmpJetMatrix)(row,col) = 0.; + } + } + FillJetMatrixFromSMs(fAmpSMods, fAmpJetMatrix, fGeom); + } + if(!CheckConsistentOfMatrixes()) assert(0); + + // Do Tower Sliding and select Trigger + // Initialize varible that will contain maximum amplitudes and + // its corresponding tower position in eta and phi, and time. + TMatrixD ampmax2(4,nTRU) ; // 0-max amp, 1-irow, 2-icol, 3-timeR + TMatrixD ampmaxn(4,nTRU) ; + + for(Int_t iSM = 0 ; iSM < nSuperModules ; iSM++) { + //Do 2x2 and nxn sums, select maximums. + + MakeSlidingTowers(fAmpTrus, fTimeRtrus, iSM, ampmax2, ampmaxn); + + // Set the trigger + if(fIsolateInSuperModule) // here some discripency between tru and SM + SetTriggers(fAmpSMods,iSM,ampmax2,ampmaxn) ; + if(!fIsolateInSuperModule) + SetTriggers(fAmpTrus,iSM,ampmax2,ampmaxn) ; } + + // Do patch sliding and select Jet Trigger + // 0-max amp-meanFromVZERO(if), 1-irow, 2-icol, 3-timeR, + // 4-max amp , 5-meanFromVZERO (Nov 25, 2007) + // fAmpJetMax(6,1) + MakeSlidingPatch((*fAmpJetMatrix), fNJetPatchPhi, fAmpJetMax); // no timing information here + + //Print(); + // fDigitsList = 0; +} + +//____________________________________________________________________________ +void AliEMCALTrigger::GetTriggerInfo(TArrayF &triggerPosition, TArrayF &triggerAmplitudes) const +{ + // Template - should be defined; Nov 5, 2007 + triggerPosition[0] = 0.; + triggerAmplitudes[0] = 0.; +} + +//____________________________________________________________________________ +void AliEMCALTrigger::FillJetMatrixFromSMs(TClonesArray *ampmatrixsmod, TMatrixD* jetMat, AliEMCALGeometry *g) +{ + // Nov 5, 2007 + // Fill matrix for jet trigger from SM matrixes of modules + // + static int keyPrint = 0; + + if(ampmatrixsmod==0 || jetMat==0 || g==0) return; + Double_t amp = 0.0, ampSum=0.0; + + Int_t nEtaModSum = g->GetNZ() / g->GetNEtaSubOfTRU(); // should be 4 + Int_t nPhiModSum = g->GetNPhi() / g->GetNTRUPhi(); // should be 4 + + if(keyPrint) AliDebug(2,Form("%s",Form(" AliEMCALTrigger::FillJetMatrixFromSMs | nEtaModSum %i : nPhiModSum %i \n", nEtaModSum, nPhiModSum))); + Int_t jrow=0, jcol=0; // indexes of jet matrix + Int_t nEtaSM=0, nPhiSM=0; + for(Int_t iSM=0; iSMGetEntries(); iSM++) { + TMatrixD * ampsmods = dynamic_cast(ampmatrixsmod->At(iSM)); + + if(!ampsmods) return; + + Int_t nrow = ampsmods->GetNrows(); + Int_t ncol = ampsmods->GetNcols(); + //printf("%s",Form(" ######## SM %i : nrow %i : ncol %i ##### \n", iSM, nrow, ncol)); + for(Int_t row=0; row0.0) { + if(keyPrint) AliDebug(2,Form("%s",Form(" ** nPhiSm %i : nEtaSM %i : row %2.2i : col %2.2i -> ", nPhiSM, nEtaSM, row, col))); + if(nEtaSM == 0) { // positive Z + jrow = 3*nPhiSM + row/nPhiModSum; + jcol = 6 + col / nEtaModSum; + } else { // negative Z + if(iSM<=9) jrow = 3*nPhiSM + 2 - row/nPhiModSum; + else jrow = 3*nPhiSM + 1 - row/nPhiModSum; // half size + jcol = 5 - col / nEtaModSum; + } + if(keyPrint) AliDebug(2,Form("%s",Form(" jrow %2.2i : jcol %2.2i : amp %f (jetMat) \n", jrow, jcol, amp))); + + (*jetMat)(jrow,jcol) += amp; + ampSum += amp; // For controling + } else if(amp<0.0) { + AliDebug(1,Form(" jrow %2.2i : jcol %2.2i : amp %f (jetMat: amp<0) \n", jrow, jcol, amp)); + assert(0); + } + } + } + } // cycle on SM + if(ampSum <= 0.0) AliDebug(1,Form("ampSum %f (<=0.0) ", ampSum)); +} + +//____________________________________________________________________________ +void AliEMCALTrigger::MakeSlidingPatch(const TMatrixD &jm, const Int_t nPatchSize, TMatrixD &JetMax) +{ + // Sliding patch : nPatchSize x nPatchSize (OVERLAP) + static int keyPrint = 0; + if(keyPrint) AliDebug(2,Form(" AliEMCALTrigger::MakeSlidingPatch() was started \n")); + Double_t ampCur = 0.0, e=0.0; + ampJetMax(0,0) = 0.0; + ampJetMax(3,0) = 0.0; // unused now + ampJetMax(4,0) = ampJetMax(5,0) = 0.0; + for(Int_t row=0; rowGetNrows(); row ++) { + for(Int_t col=0; colGetNcols(); col++) { + ampCur = 0.; + // check on patch size + if( (row+nPatchSize-1) < fAmpJetMatrix->GetNrows() && (col+nPatchSize-1) < fAmpJetMatrix->GetNcols()){ + for(Int_t i = 0 ; i < nPatchSize ; i++) { + for(Int_t j = 0 ; j < nPatchSize ; j++) { + ampCur += jm(row+i, col+j); + } + } // end cycle on patch + if(ampCur > ampJetMax(0,0)){ + ampJetMax(0,0) = ampCur; + ampJetMax(1,0) = row; + ampJetMax(2,0) = col; + } + } // check on patch size + } + } + if(keyPrint) AliDebug(2,Form(" ampJetMax %i row %2i->%2i col %2i->%2i \n", Int_t(ampJetMax(0,0)), Int_t(ampJetMax(1,0)), Int_t(ampJetMax(1,0))+nPatchSize-1, Int_t(ampJetMax(2,0)), Int_t(ampJetMax(2,0))+nPatchSize-1)); + + Double_t eCorrJetMatrix=0.0; + if(fVZER0Mult > 0.0) { + // Correct patch energy (adc) and jet patch matrix energy + Double_t meanAmpBG = GetMeanEmcalPatchEnergy(Int_t(fVZER0Mult), nPatchSize)/0.0153; + ampJetMax(4,0) = ampJetMax(0,0); + ampJetMax(5,0) = meanAmpBG; + + Double_t eCorr = ampJetMax(0,0) - meanAmpBG; + AliDebug(2,Form(" ampJetMax(0,0) %f meanAmpBG %f eCorr %f : ampJetMax(4,0) %f \n", + ampJetMax(0,0), meanAmpBG, eCorr, ampJetMax(5,0))); + ampJetMax(0,0) = eCorr; + // -- + eCorrJetMatrix = GetMeanEmcalEnergy(Int_t(fVZER0Mult)) / 208.; + } + // Fill patch energy matrix + for(int row=Int_t(ampJetMax(1,0)); row 0.0) { // BG subtraction case + e -= eCorrJetMatrix; + fJetMatrixE->SetBinContent(row+1, col+1, e); + } else if(e > 0.0) { + fJetMatrixE->SetBinContent(row+1, col+1, e); + } + } + } + // PrintJetMatrix(); + // Set the jet trigger(s), multiple threshold now, Nov 19,2007 + for(Int_t i=0; i= fL1JetThreshold[i]) { + SetInput(GetNameOfJetTrigger(i)); + } + } +} + +//____________________________________________________________________________ +Double_t AliEMCALTrigger::GetEmcalSumAmp() const +{ + // Return sum of amplidutes from EMCal + // Used calibration coefficeint for transition to energy + return fAmpJetMatrix >0 ?fAmpJetMatrix->Sum() :0.0; +} + +//____________________________________________________________________________ +void AliEMCALTrigger::PrintJetMatrix() const +{ + // fAmpJetMatrix : (17,12); // 17-phi(row), 12-eta(col) + if(fAmpJetMatrix == 0) return; + + AliInfo(Form("\n #### jetMatrix : (%i,%i) ##### \n ", + fAmpJetMatrix->GetNrows(), fAmpJetMatrix->GetNcols())); + PrintMatrix(*fAmpJetMatrix); +} + +//____________________________________________________________________________ +void AliEMCALTrigger::PrintAmpTruMatrix(Int_t ind) const +{ + // Print matrix with TRU patches + TMatrixD * tru = dynamic_cast(fAmpTrus->At(ind)); + if(tru == 0) return; + AliInfo(Form("\n #### Amp TRU matrix(%i) : (%i,%i) ##### \n ", + ind, tru->GetNrows(), tru->GetNcols())); + PrintMatrix(*tru); +} + +//____________________________________________________________________________ +void AliEMCALTrigger::PrintAmpSmMatrix(Int_t ind) const +{ + // Print matrix with SM amplitudes + TMatrixD * sm = dynamic_cast(fAmpSMods->At(ind)); + if(sm == 0) return; + AliInfo(Form("\n #### Amp SM matrix(%i) : (%i,%i) ##### \n ", + ind, sm->GetNrows(), sm->GetNcols())); + PrintMatrix(*sm); +} + +//____________________________________________________________________________ +void AliEMCALTrigger::PrintMatrix(const TMatrixD &mat) const +{ + //Print matrix object + for(Int_t col=0; colGetEntries(); i++) { + TMatrixD * sm = dynamic_cast(fAmpSMods->At(i)); + if(sm) { + smCur = sm->Sum(); + sumSM += smCur; + + sumTruInSM = 0.0; + for(Int_t itru=0; itru<3; itru++) { // Cycle on tru inside SM + Int_t ind = 3*i + itru; + TMatrixD *tru = dynamic_cast(fAmpTrus->At(ind)); + if(tru) { + truSum = tru->Sum(); + sumTruInSM += truSum; + } + } + sumTru += sumTruInSM; + + if(sumTruInSM != smCur) { + AliDebug(1,Form(" sm %i : smCur %f -> sumTruInSM %f \n", i, smCur, sumTruInSM)); + return kFALSE; + } + } + } + Double_t sumJetMat = fAmpJetMatrix->Sum(); + if(pri || TMath::Abs(sumSM-sumTru)>0.0001 || TMath::Abs(sumSM-sumJetMat) > 0.0001) + AliDebug(1,Form(" sumSM %f : sumTru %f : sumJetMat %f \n", sumSM, sumTru, sumJetMat)); + if(TMath::Abs(sumSM - sumTru)>0.0001 || TMath::Abs(sumSM-sumJetMat) > 0.0001) return kFALSE; + else return kTRUE; +} + +//____________________________________________________________________________ +void AliEMCALTrigger::Browse(TBrowser* b) +{ + //Browse. + if(&fInputs) b->Add(&fInputs); + if(fAmpTrus) b->Add(fAmpTrus); + if(fTimeRtrus) b->Add(fTimeRtrus); + if(fAmpSMods) b->Add(fAmpSMods); + if(fAmpJetMatrix) b->Add(fAmpJetMatrix); + if(fJetMatrixE) b->Add(fJetMatrixE); + // if(c) b->Add(c); }