X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=HMPID%2FAliHMPIDCluster.cxx;h=6e9d6b3e5e880cb1a052ca0e5cd351faba3e76ca;hb=034e5c8cb185bad3d7f1fef872328f0acf9d79e4;hp=b610d3ca0ab01e1af617ac4f1a0deab1c1a8471a;hpb=d7149572f34ace6805966f7947b023cc880dc2c8;p=u%2Fmrichter%2FAliRoot.git diff --git a/HMPID/AliHMPIDCluster.cxx b/HMPID/AliHMPIDCluster.cxx index b610d3ca0ab..6e9d6b3e5e8 100644 --- a/HMPID/AliHMPIDCluster.cxx +++ b/HMPID/AliHMPIDCluster.cxx @@ -14,13 +14,72 @@ // ************************************************************************** #include "AliHMPIDCluster.h" //class header +#include //Solve() #include //Solve() #include //Solve() #include //Draw() +#include "AliLog.h" //FindCusterSize() + Bool_t AliHMPIDCluster::fgDoCorrSin=kTRUE; ClassImp(AliHMPIDCluster) + + +void AliHMPIDCluster::SetClusterParams(Double_t xL,Double_t yL,Int_t iCh ) +{ + //------------------------------------------------------------------------ + //Set the cluster properties for the AliCluster3D part + //------------------------------------------------------------------------ + + //Get the volume ID from the previously set PNEntry + UShort_t volId=AliGeomManager::LayerToVolUID(AliGeomManager::kHMPID,iCh); + + + //get L->T cs matrix for a given chamber + const TGeoHMatrix *t2l= AliGeomManager::GetTracking2LocalMatrix(volId); + + if(!fParam->GetInstType()) //if there is no geometry we cannot retrieve the volId (only for monitoring) + { + new(this) AliCluster3D(); return; + } + + + //transformation from the pad cs to local + xL -= 0.5*fParam->SizeAllX(); //size of all pads with dead zones included + yL -= 0.5*fParam->SizeAllY(); + + // Get the position in the tracking cs + Double_t posL[3]={xL, yL, 0.}; //this is the LORS of HMPID + Double_t posT[3]; + t2l->MasterToLocal(posL,posT); + + //Get the cluster covariance matrix in the tracking cs + Double_t covL[9] = { + 0.8*0.8/12., 0., 0.0, //pad size X + 0., 0.84*0.84/12., 0.0, //pad size Y + 0., 0., 0.1, //just 1 , no Z dimension ??? + }; + + TGeoHMatrix m; + m.SetRotation(covL); + m.Multiply(t2l); + m.MultiplyLeft(&t2l->Inverse()); + Double_t *covT = m.GetRotationMatrix(); + + new(this) AliCluster3D(volId, // Can be done safer + posT[0],posT[1],posT[2], + covT[0],covT[1],covT[2], + covT[4],covT[5], + covT[8], + 0x0); // No MC labels ? +} + + +AliHMPIDCluster::~AliHMPIDCluster(){ + if(fDigs) delete fDigs; fDigs=0; + } + //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDCluster::CoG() { @@ -29,35 +88,39 @@ void AliHMPIDCluster::CoG() // Returns: none Int_t minPadX=999,minPadY=999,maxPadX=-1,maxPadY=-1; //for box finding if(fDigs==0) return; //no digits in this cluster - fX=fY=fQRaw=0; //init summable parameters + fXX=fYY=fQRaw=0; //init summable parameters + fCh = -1; //init chamber Int_t maxQpad=-1,maxQ=-1; //to calculate the pad with the highest charge - AliHMPIDDigit *pDig; + AliHMPIDDigit *pDig=0x0; for(Int_t iDig=0;iDigGetEntriesFast();iDig++){ //digits loop pDig=(AliHMPIDDigit*)fDigs->At(iDig); //get pointer to next digit - + if(!pDig) continue; //protection if(pDig->PadPcX() > maxPadX) maxPadX = pDig->PadPcX(); // find the minimum box that contain the cluster MaxX if(pDig->PadPcY() > maxPadY) maxPadY = pDig->PadPcY(); // MaxY if(pDig->PadPcX() < minPadX) minPadX = pDig->PadPcX(); // MinX if(pDig->PadPcY() < minPadY) minPadY = pDig->PadPcY(); // MinY Float_t q=pDig->Q(); //get QDC - fX += pDig->LorsX()*q;fY +=pDig->LorsY()*q; //add digit center weighted by QDC + fXX += pDig->LorsX()*q;fYY +=pDig->LorsY()*q; //add digit center weighted by QDC fQRaw+=q; //increment total charge if(q>maxQ) {maxQpad = pDig->Pad();maxQ=(Int_t)q;} // to find pad with highest charge + fCh=pDig->Ch(); //initialize chamber number }//digits loop fBox=(maxPadX-minPadX+1)*100+maxPadY-minPadY+1; // dimension of the box: format Xdim*100+Ydim - if ( fQRaw != 0 ) fX/=fQRaw;fY/=fQRaw; //final center of gravity + if ( fQRaw != 0 ) {fXX/=fQRaw;fYY/=fQRaw;} //final center of gravity if(fDigs->GetEntriesFast()>1&&fgDoCorrSin)CorrSin(); //correct it by sinoid fQ = fQRaw; // Before starting fit procedure, Q and QRaw must be equal - fCh=pDig->Ch(); //initialize chamber number fMaxQpad = maxQpad; fMaxQ=maxQ; //store max charge pad to the field fChi2=0; // no Chi2 to find fNlocMax=0; // proper status from this method fSt=kCoG; + + if(fParam->GetInstType()) SetClusterParams(fXX,fYY,fCh); //need to fill the AliCluster3D part + }//CoG() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDCluster::CorrSin() @@ -66,9 +129,9 @@ void AliHMPIDCluster::CorrSin() // Arguments: none // Returns: none Int_t pc,px,py; - AliHMPIDParam::Lors2Pad(fX,fY,pc,px,py); //tmp digit to get it center - Float_t x=fX-AliHMPIDParam::LorsX(pc,px); //diff between cluster x and center of the pad contaning this cluster - fX+=3.31267e-2*TMath::Sin(2*TMath::Pi()/0.8*x)-2.66575e-3*TMath::Sin(4*TMath::Pi()/0.8*x)+2.80553e-3*TMath::Sin(6*TMath::Pi()/0.8*x)+0.0070; + fParam->Lors2Pad(fXX,fYY,pc,px,py); //tmp digit to get it center + Float_t x=fXX-fParam->LorsX(pc,px); //diff between cluster x and center of the pad contaning this cluster + fXX+=3.31267e-2*TMath::Sin(2*TMath::Pi()/0.8*x)-2.66575e-3*TMath::Sin(4*TMath::Pi()/0.8*x)+2.80553e-3*TMath::Sin(6*TMath::Pi()/0.8*x)+0.0070; } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDCluster::Draw(Option_t*) @@ -76,30 +139,83 @@ void AliHMPIDCluster::Draw(Option_t*) TMarker *pMark=new TMarker(X(),Y(),5); pMark->SetUniqueID(fSt);pMark->SetMarkerColor(kBlue); pMark->Draw(); } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -void AliHMPIDCluster::FitFunc(Int_t &iNpars, Double_t* /*deriv*/, Double_t &chi2, Double_t *par, Int_t /* */) +void AliHMPIDCluster::FitFunc(Int_t &iNpars, Double_t* deriv, Double_t &chi2, Double_t *par, Int_t iflag) { // Cluster fit function // par[0]=x par[1]=y par[2]=q for the first Mathieson shape // par[3]=x par[4]=y par[5]=q for the second Mathieson shape and so on up to iNpars/3 Mathieson shapes -// For each pad of the cluster calculates the difference between actual pad charge and the charge induced to this pad by all Mathieson distributions +// For each pad of the cluster calculates the difference between actual pad charge and the charge induced to this pad by all Mathieson distributions // Then the chi2 is calculated as the sum of this value squared for all pad in the cluster. // Arguments: iNpars - number of parameters which is number of local maxima of cluster * 3 // chi2 - function result to be minimised // par - parameters array of size iNpars // Returns: none - AliHMPIDCluster *pClu=(AliHMPIDCluster*)gMinuit->GetObjectFit(); - Int_t iNshape = iNpars/3; - + + AliHMPIDCluster *pClu=(AliHMPIDCluster*)TVirtualFitter::GetFitter()->GetObjectFit(); + + Int_t nPads = pClu->Size(); + chi2 = 0; - for(Int_t i=0;iSize();i++){ //loop on all pads of the cluster - Double_t dQpadMath = 0; //pad charge collector + + Int_t iNshape = iNpars/3; + + for(Int_t i=0;iDig(i)->IntMathieson(par[3*j],par[3*j+1]); // par[3*j+2] is charge par[3*j] is x par[3*j+1] is y of current Mathieson + Double_t fracMathi = pClu->Dig(i)->IntMathieson(par[3*j],par[3*j+1]); + dQpadMath+=par[3*j+2]*fracMathi; // par[3*j+2] is charge par[3*j] is x par[3*j+1] is y of current Mathieson + } + if(dQpadMath>0 && pClu->Dig(i)->Q()>0) { + chi2 +=TMath::Power((pClu->Dig(i)->Q()-dQpadMath),2)/pClu->Dig(i)->Q(); //chi2 function to be minimized } -// if(dQpadMath>0)chi2 +=TMath::Power((pClu->Dig(i)->Q()-dQpadMath),2)/dQpadMath; // - if(dQpadMath>0 && pClu->Dig(i)->Q()) - chi2 +=TMath::Power((pClu->Dig(i)->Q()-dQpadMath),2)/pClu->Dig(i)->Q(); // - } //loop on all pads of the cluster + } +//---calculate gradients... + if(iflag==2) { + Double_t **derivPart; + + derivPart = new Double_t*[iNpars]; + + for(Int_t j=0;jDig(i)->IntMathieson(par[3*j],par[3*j+1]); + derivPart[3*j ][i] += par[3*j+2]*(pClu->Dig(i)->MathiesonX(par[3*j]-pClu->Dig(i)->LorsX()-0.5*AliHMPIDParam::SizePadX())- + pClu->Dig(i)->MathiesonX(par[3*j]-pClu->Dig(i)->LorsX()+0.5*AliHMPIDParam::SizePadX()))* + pClu->Dig(i)->IntPartMathiY(par[3*j+1]); + derivPart[3*j+1][i] += par[3*j+2]*(pClu->Dig(i)->MathiesonY(par[3*j+1]-pClu->Dig(i)->LorsY()-0.5*AliHMPIDParam::SizePadY())- + pClu->Dig(i)->MathiesonY(par[3*j+1]-pClu->Dig(i)->LorsY()+0.5*AliHMPIDParam::SizePadY()))* + pClu->Dig(i)->IntPartMathiX(par[3*j]); + derivPart[3*j+2][i] += fracMathi; + } + } + //loop on all pads of the cluster + for(Int_t i=0;iDig(i)->IntMathieson(par[3*j],par[3*j+1]); + dQpadMath+=par[3*j+2]*fracMathi; + if(dQpadMath>0 && pClu->Dig(i)->Q()>0) { + deriv[3*j] += 2/pClu->Dig(i)->Q()*(pClu->Dig(i)->Q()-dQpadMath)*derivPart[3*j ][i]; + deriv[3*j+1] += 2/pClu->Dig(i)->Q()*(pClu->Dig(i)->Q()-dQpadMath)*derivPart[3*j+1][i]; + deriv[3*j+2] += 2/pClu->Dig(i)->Q()*(pClu->Dig(i)->Q()-dQpadMath)*derivPart[3*j+2][i]; + } + } + } + //delete array... + for(Int_t i=0;i0&&QRaw()>0) ratio = Q()/QRaw()*100; - Printf("%sCLU: ch=%i (%7.3f,%7.3f) Q=%8.3f Qraw=%8.3f(%3.0f%%) Size=%2i DimBox=%i LocMax=%i Chi2=%7.3f %s", + Printf("%sCLU: ch=%i (%7.3f,%7.3f) Q=%8.3f Qraw=%8.3f(%3.0f%%) Size=%2i DimBox=%i LocMax=%i Chi2=%7.3f %s", opt,Ch(),X(),Y(),Q(),QRaw(),ratio,Size(),fBox,fNlocMax,fChi2,status); if(fDigs) fDigs->Print(); }//Print() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -Int_t AliHMPIDCluster::Solve(TClonesArray *pCluLst,Bool_t isTryUnfold) +Int_t AliHMPIDCluster::Solve(TClonesArray *pCluLst,Int_t *pSigmaCut, Bool_t isTryUnfold) { //This methode is invoked when the cluster is formed to solve it. Solve the cluster means to try to unfold the cluster //into the local maxima number of clusters. This methode is invoked by AliHMPIDRconstructor::Dig2Clu() on cluster by cluster basis. @@ -138,92 +255,141 @@ Int_t AliHMPIDCluster::Solve(TClonesArray *pCluLst,Bool_t isTryUnfold) //Arguments: pCluLst - cluster list pointer where to add new cluster(s) // isTryUnfold - flag to switch on/off unfolding // Returns: number of local maxima of original cluster - CoG(); + const Int_t kMaxLocMax=6; //max allowed number of loc max for fitting +// + CoG(); //First calculate CoG for the given cluster + Int_t iCluCnt=pCluLst->GetEntriesFast(); //get current number of clusters already stored in the list by previous operations - if(isTryUnfold==kFALSE || Size()==1) { //if cluster contains single pad there is no way to improve the knowledge - (isTryUnfold)?fSt=kSi1:fSt=kNot; + + Int_t rawSize = Size(); //get current raw cluster size + + if(rawSize>100) { + fSt = kBig; + } else if(isTryUnfold==kFALSE) { + fSt = kNot; + } else if(rawSize==1) { + fSt = kSi1; + } + + if(rawSize>100 || isTryUnfold==kFALSE || rawSize==1) { //No deconv if: 1 - big cluster (also avoid no zero suppression!) + // 2 - flag is set to FALSE + if(fParam->GetInstType()) SetClusterParams(fXX,fYY,fCh); // 3 - size = 1 new ((*pCluLst)[iCluCnt++]) AliHMPIDCluster(*this); //add this raw cluster return 1; + } -//Phase 0. Initialise TMinuit - const Int_t kMaxLocMax=6; //max allowed number of loc max for fitting - if(!gMinuit) gMinuit = new TMinuit(100); //init MINUIT with this number of parameters (3 params per mathieson) - gMinuit->mncler(); // reset Minuit list of paramters - gMinuit->SetObjectFit((TObject*)this); gMinuit->SetFCN(AliHMPIDCluster::FitFunc); //set fit function - Double_t aArg=-1; //tmp vars for TMinuit - Int_t iErrFlg; - gMinuit->mnexcm("SET PRI",&aArg,1,iErrFlg); //suspend all printout from TMinuit - gMinuit->mnexcm("SET NOW",&aArg,0,iErrFlg); //suspend all warning printout from TMinuit + +//Phase 0. Initialise Fitter + Double_t arglist[10]; + Int_t ierflg = 0; + TVirtualFitter *fitter = TVirtualFitter::Fitter(this,3*6); //initialize Fitter + + delete fitter; //temporary solution to avoid the inteference with previous instances + fitter = TVirtualFitter::Fitter(this,3*6); //initialize Fitter + + arglist[0] = -1; + ierflg = fitter->ExecuteCommand("SET PRI", arglist, 1); // no printout + ierflg = fitter->ExecuteCommand("SET NOW", arglist, 0); //no warning messages + arglist[0] = 1; + ierflg = fitter->ExecuteCommand("SET GRA", arglist, 1); //force Fitter to use my gradient + + fitter->SetFCN(AliHMPIDCluster::FitFunc); + +// arglist[0] = 1; +// ierflg = fitter->ExecuteCommand("SET ERR", arglist ,1); + +// Set starting values and step sizes for parameters + //Phase 1. Find number of local maxima. Strategy is to check if the current pad has QDC more then all neigbours. Also find the box contaning the cluster fNlocMax=0; - for(Int_t iDig1=0;iDig1PadChX()-pDig2->PadChX()),1)+TMath::Sign(Int_t(pDig1->PadChY()-pDig2->PadChY()),1);//distance between pads if(dist==1) //means dig2 is a neighbour of dig1 if(pDig2->Q()>=pDig1->Q()) iCnt++; //count number of pads with Q more then Q of current pad + }//second digits loop + if(iCnt==0&&fNlocMaxLorsX();Double_t yStart=pDig1->LorsY(); - Double_t xMin=xStart-AliHMPIDParam::SizePadX(); - Double_t xMax=xStart+AliHMPIDParam::SizePadX(); - Double_t yMin=yStart-AliHMPIDParam::SizePadY(); - Double_t yMax=yStart+AliHMPIDParam::SizePadY(); - gMinuit->mnparm(3*fNlocMax ,Form("x%i",fNlocMax),xStart,0.1,xMin,xMax,iErrFlg); // X,Y,Q initial values of the loc max pad - gMinuit->mnparm(3*fNlocMax+1,Form("y%i",fNlocMax),yStart,0.1,yMin,yMax,iErrFlg); // X, Y constrained to be near the loc max - gMinuit->mnparm(3*fNlocMax+2,Form("q%i",fNlocMax),pDig1->Q(),0.1,0,100000,iErrFlg);// Q constrained to be positive + Double_t xMin=xStart-fParam->SizePadX(); + Double_t xMax=xStart+fParam->SizePadX(); + Double_t yMin=yStart-fParam->SizePadY(); + Double_t yMax=yStart+fParam->SizePadY(); + + ierflg = fitter->SetParameter(3*fNlocMax ,Form("x%i",fNlocMax),xStart,0.1,xMin,xMax); // X,Y,Q initial values of the loc max pad + ierflg = fitter->SetParameter(3*fNlocMax+1,Form("y%i",fNlocMax),yStart,0.1,yMin,yMax); // X, Y constrained to be near the loc max + ierflg = fitter->SetParameter(3*fNlocMax+2,Form("q%i",fNlocMax),pDig1->Q(),0.1,0,10000); // Q constrained to be positive + fNlocMax++; + }//if this pad is local maximum }//first digits loop //Phase 2. Fit loc max number of Mathiesons or add this current cluster to the list // case 1 -> no loc max found - if ( fNlocMax == 0) { // case of no local maxima found: pads with same charge... - gMinuit->mnparm(3*fNlocMax ,Form("x%i",fNlocMax),fX,0.1,0,0,iErrFlg); // Init values taken from CoG() -> fX,fY,fQRaw - gMinuit->mnparm(3*fNlocMax+1,Form("y%i",fNlocMax),fY,0.1,0,0,iErrFlg); // - gMinuit->mnparm(3*fNlocMax+2,Form("q%i",fNlocMax),fQRaw,0.1,0,100000,iErrFlg); // + if ( fNlocMax == 0) { // case of no local maxima found: pads with same charge... fNlocMax = 1; fSt=kNoLoc; + if(fParam->GetInstType()) SetClusterParams(fXX,fYY,fCh); //need to fill the AliCluster3D part + new ((*pCluLst)[iCluCnt++]) AliHMPIDCluster(*this); //add new unfolded cluster + + return fNlocMax; } // case 2 -> loc max found. Check # of loc maxima - if ( fNlocMax >= kMaxLocMax) // if # of local maxima exceeds kMaxLocMax... - { - fSt = kMax; new ((*pCluLst)[iCluCnt++]) AliHMPIDCluster(*this); //...add this raw cluster - } //or... - else{ //...resonable number of local maxima to fit and user requested it - Double_t arglist[10];arglist[0] = 10000;arglist[1] = 1.; //number of steps and sigma on pads charges - gMinuit->mnexcm("SIMPLEX" ,arglist,2,iErrFlg); //start fitting with Simplex - if (!iErrFlg) - gMinuit->mnexcm("MIGRAD" ,arglist,2,iErrFlg); //fitting improved by Migrad - if(iErrFlg) { + if ( fNlocMax >= kMaxLocMax) { + if(fParam->GetInstType()) SetClusterParams(fXX,fYY,fCh); // if # of local maxima exceeds kMaxLocMax... + fSt = kMax; new ((*pCluLst)[iCluCnt++]) AliHMPIDCluster(*this); //...add this raw cluster + } else { //or resonable number of local maxima to fit and user requested it + // Now ready for minimization step + arglist[0] = 500; //number of steps and sigma on pads charges + arglist[1] = 1.; // + + ierflg = fitter->ExecuteCommand("SIMPLEX",arglist,2); //start fitting with Simplex + if (!ierflg) + fitter->ExecuteCommand("MIGRAD" ,arglist,2); //fitting improved by Migrad + if(ierflg) { Double_t strategy=2; - gMinuit->mnexcm("SET STR",&strategy,1,iErrFlg); //change level of strategy - if(!iErrFlg) { - gMinuit->mnexcm("SIMPLEX" ,arglist,2,iErrFlg); - if (!iErrFlg) - gMinuit->mnexcm("MIGRAD" ,arglist,2,iErrFlg); //fitting improved by Migrad -// Printf("Try to improve fit --> err %d",iErrFlg); + ierflg = fitter->ExecuteCommand("SET STR",&strategy,1); //change level of strategy + if(!ierflg) { + ierflg = fitter->ExecuteCommand("SIMPLEX",arglist,2); //start fitting with Simplex + if (!ierflg) + fitter->ExecuteCommand("MIGRAD" ,arglist,2); //fitting improved by Migrad } } - if(iErrFlg) fSt=kAbn; //no convergence of the fit... - Double_t dummy; TString sName; //vars to get results from Minuit + if(ierflg) fSt=kAbn; //no convergence of the fit... + Double_t dummy; char sName[80]; //vars to get results from Minuit + Double_t edm, errdef; + Int_t nvpar, nparx; + for(Int_t i=0;imnpout(3*i ,sName, fX, fErrX , dummy, dummy, iErrFlg); // X - gMinuit->mnpout(3*i+1 ,sName, fY, fErrY , dummy, dummy, iErrFlg); // Y - gMinuit->mnpout(3*i+2 ,sName, fQ, fErrQ , dummy, dummy, iErrFlg); // Q - gMinuit->mnstat(fChi2,dummy,dummy,iErrFlg,iErrFlg,iErrFlg); // Chi2 of the fit - if(fSt!=kAbn) { - if(fNlocMax!=1)fSt=kUnf; // if unfolded - if(fNlocMax==1&&fSt!=kNoLoc) fSt=kLo1; // if only 1 loc max - if ( !IsInPc()) fSt = kEdg; // if Out of Pc - if(fSt==kNoLoc) fNlocMax=0; // if with no loc max (pads with same charge..) - } - new ((*pCluLst)[iCluCnt++]) AliHMPIDCluster(*this); //add new unfolded cluster + fitter->GetParameter(3*i ,sName, fXX, fErrX , dummy, dummy); // X + fitter->GetParameter(3*i+1 ,sName, fYY, fErrY , dummy, dummy); // Y + fitter->GetParameter(3*i+2 ,sName, fQ, fErrQ , dummy, dummy); // Q + fitter->GetStats(fChi2, edm, errdef, nvpar, nparx); //get fit infos + + if(fNlocMax>1)FindClusterSize(i,pSigmaCut); //find clustersize for deconvoluted clusters + //after this call, fSi temporarly is the calculated size. Later is set again + //to its original value + if(fSt!=kAbn) { + if(fNlocMax!=1)fSt=kUnf; // if unfolded + if(fNlocMax==1&&fSt!=kNoLoc) fSt=kLo1; // if only 1 loc max + if ( !IsInPc()) fSt = kEdg; // if Out of Pc + if(fSt==kNoLoc) fNlocMax=0; // if with no loc max (pads with same charge..) + } + if(fParam->GetInstType()) SetClusterParams(fXX,fYY,fCh); //need to fill the AliCluster3D part + new ((*pCluLst)[iCluCnt++]) AliHMPIDCluster(*this); //add new unfolded cluster + if(fNlocMax>1)SetSize(rawSize); //Original raw size is set again to its proper value } } @@ -231,3 +397,19 @@ Int_t AliHMPIDCluster::Solve(TClonesArray *pCluLst,Bool_t isTryUnfold) }//Solve() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +void AliHMPIDCluster::FindClusterSize(Int_t i,Int_t *pSigmaCut) +{ + +//Estimate of the clustersize for a deconvoluted cluster + Int_t size = 0; + for(Int_t iDig=0;iDigCh(); + Double_t qPad = Q()*pDig->IntMathieson(X(),Y()); //pad charge + AliDebug(1,Form("Chamber %i X %i Y %i SigmaCut %i pad %i qpadMath %8.2f qPadRaw %8.2f Qtotal %8.2f cluster n.%i",iCh,pDig->PadChX(),pDig->PadChY(), + pSigmaCut[iCh],iDig,qPad,pDig->Q(),QRaw(),i)); + if(qPad>pSigmaCut[iCh]) size++; + } + AliDebug(1,Form(" Calculated size %i",size)); + if(size>0) SetSize(size); //in case of size == 0, original raw clustersize used +}