X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=HMPID%2FAliHMPIDParam.h;h=262c6b7863f0738d0eee82aa18d7141329bf6bd4;hb=5e078edab8b72e23257473680a353f95bda98056;hp=e62ae450f7574c4d77a9a47b77aa884e325d8589;hpb=58fc956414743840ac21b09be82492a1cc6c0485;p=u%2Fmrichter%2FAliRoot.git diff --git a/HMPID/AliHMPIDParam.h b/HMPID/AliHMPIDParam.h index e62ae450f75..262c6b7863f 100644 --- a/HMPID/AliHMPIDParam.h +++ b/HMPID/AliHMPIDParam.h @@ -8,6 +8,7 @@ #include #include //base class #include //Instance() +#include //Instance() #include //Lors2Mars() Mars2Lors() // Class providing all the needed parametrised information @@ -18,8 +19,10 @@ class AliHMPIDParam :public TNamed { public: //ctor&dtor - virtual ~AliHMPIDParam() {for(Int_t i=0;i<7;i++) delete fM[i]; delete fgInstance; fgInstance=0;} - void Print(Option_t *opt="") const; //print current parametrization + virtual ~AliHMPIDParam() {if (fgInstance){for(Int_t i=0;i<7;i++){delete fM[i];fM[i] = 0x0;};fgInstance=0;}} + + void Print(Option_t *opt="") const; //print current parametrization + static inline AliHMPIDParam* Instance(); //pointer to AliHMPIDParam singleton static inline AliHMPIDParam* InstanceNoGeo(); //pointer to AliHMPIDParam singleton without geometry.root for MOOD, displays, ... //geo info @@ -27,44 +30,70 @@ public: enum EPadxData{kPadPcX=80,kMinPx=0,kMaxPx=79,kMaxPcx=159}; //Segmentation structure along x enum EPadyData{kPadPcY=48,kMinPy=0,kMaxPy=47,kMaxPcy=143}; //Segmentation structure along y - static Float_t SizePadX ( ) {return fgCellX; /*return 0.804;*/} //pad size x, [cm] - static Float_t SizePadY ( ) {return fgCellY; /*0.84*/} //pad size y, [cm] - - static Float_t SizePcX ( ) {return fgPcX;} // PC size x - static Float_t SizePcY ( ) {return fgPcY;} // PC size y - static Float_t MaxPcX (Int_t iPc ) {return fgkMaxPcX[iPc];} // PC limits - static Float_t MaxPcY (Int_t iPc ) {return fgkMaxPcY[iPc];} // PC limits - static Float_t MinPcX (Int_t iPc ) {return fgkMinPcX[iPc];} // PC limits - static Float_t MinPcY (Int_t iPc ) {return fgkMinPcY[iPc];} // PC limits - static Int_t Nsig ( ) {return fgSigmas;} //Getter n. sigmas for noise - static Float_t SizeAllX ( ) {return fgAllX/*fgkMaxPcX[5]*/;} //all PCs size x, [cm] - static Float_t SizeAllY ( ) {return fgAllY/*fgkMaxPcY[5]*/;} //all PCs size y, [cm] - - static Float_t LorsX (Int_t pc,Int_t padx ) {return (padx +0.5)*SizePadX()+fgkMinPcX[pc]; } //center of the pad x, [cm] - - static Float_t LorsY (Int_t pc,Int_t pady ) {return (pady +0.5)*SizePadY()+fgkMinPcY[pc]; } //center of the pad y, [cm] + static Float_t SizePadX ( ) {return fgCellX; } //pad size x, [cm] + static Float_t SizePadY ( ) {return fgCellY; } //pad size y, [cm] - inline static void Lors2Pad(Float_t x,Float_t y,Int_t &pc,Int_t &px,Int_t &py); //(x,y)->(pc,px,py) + static Float_t SizePcX ( ) {return fgPcX; } // PC size x + static Float_t SizePcY ( ) {return fgPcY; } // PC size y + static Float_t MaxPcX (Int_t iPc ) {return fgkMaxPcX[iPc]; } // PC limits + static Float_t MaxPcY (Int_t iPc ) {return fgkMaxPcY[iPc]; } // PC limits + static Float_t MinPcX (Int_t iPc ) {return fgkMinPcX[iPc]; } // PC limits + static Float_t MinPcY (Int_t iPc ) {return fgkMinPcY[iPc]; } // PC limits + static Int_t Nsig ( ) {return fgSigmas; } //Getter n. sigmas for noise + static Float_t SizeAllX ( ) {return fgAllX; } //all PCs size x, [cm] + static Float_t SizeAllY ( ) {return fgAllY; } //all PCs size y, [cm] - static Int_t Abs (Int_t ch,Int_t pc,Int_t x,Int_t y) {return ch*100000000+pc*1000000+x*1000+y; } //(ch,pc,padx,pady)-> abs pad - static Int_t A2C (Int_t pad ) {return pad/100000000; } //abs pad -> chamber - static Int_t A2P (Int_t pad ) {return pad%100000000/1000000; } //abs pad -> pc - static Int_t A2X (Int_t pad ) {return pad%1000000/1000; } //abs pad -> pad X - static Int_t A2Y (Int_t pad ) {return pad%1000; } //abs pad -> pad Y + static Float_t LorsX (Int_t pc,Int_t padx ) {return (padx +0.5)*SizePadX()+fgkMinPcX[pc]; } //center of the pad x, [cm] + static Float_t LorsY (Int_t pc,Int_t pady ) {return (pady +0.5)*SizePadY()+fgkMinPcY[pc]; } //center of the pad y, [cm] - static Bool_t IsOverTh (Float_t q ) {return q >= fgSigmas; } //is digit over threshold? - - inline static Bool_t IsInDead(Float_t x,Float_t y ); //is point in dead area? - static Bool_t IsInside (Float_t x,Float_t y,Float_t d=0) {return x>-d&&y>-d&&x to be removed in future Mean ref index C6F14 - Double_t MeanIdxWin ()const {return 1.57819;} //<--TEMPORAR--> to be removed in future. Mean ref index quartz - Float_t DistCut ()const {return 1.0;} //<--TEMPORAR--> to be removed in future. Cut for MIP-TRACK residual - Float_t QCut ()const {return 100;} //<--TEMPORAR--> to be removed in future. Separation PHOTON-MIP charge - Float_t MultCut ()const {return 200;} //<--TEMPORAR--> to be removed in future. Multiplicity cut to activate WEIGHT procedure + inline static void Lors2Pad(Float_t x,Float_t y,Int_t &pc,Int_t &px,Int_t &py); //(x,y)->(pc,px,py) + static Int_t Abs (Int_t ch,Int_t pc,Int_t x,Int_t y) {return ch*100000000+pc*1000000+x*1000+y; } //(ch,pc,padx,pady)-> abs pad + static Int_t DDL2C (Int_t ddl ) {return ddl/2; } //ddl -> chamber + static Int_t A2C (Int_t pad ) {return pad/100000000; } //abs pad -> chamber + static Int_t A2P (Int_t pad ) {return pad%100000000/1000000; } //abs pad -> pc + static Int_t A2X (Int_t pad ) {return pad%1000000/1000; } //abs pad -> pad X + static Int_t A2Y (Int_t pad ) {return pad%1000; } //abs pad -> pad Y + static Bool_t IsOverTh (Float_t q ) {return q >= fgSigmas; } //is digit over threshold? + + Bool_t GetInstType ( )const{return fgInstanceType; } //return if the instance is from geom or ideal + + inline static Bool_t IsInDead(Float_t x,Float_t y ); //is the point in dead area? + inline static Int_t InHVSector( Float_t y ); //find HV sector + static Int_t Radiator( Float_t y ) {if (InHVSector(y)<0) return -1; return InHVSector(y)/2;} + static Bool_t IsInside (Float_t x,Float_t y,Float_t d=0) {return x>-d&&y>-d&&x=7.8)*0.0001;} + static Double_t LAbsWin(Double_t eV) {return (eV<8.2)*(818.8638-301.0436*eV+36.89642*eV*eV-1.507555*eV*eV*eV)+(eV>=8.2)*0.0001;}//fit from DiMauro data 28.10.03 + static Double_t LAbsGap(Double_t eV) {return (eV<7.75)*6512.399+(eV>=7.75)*3.90743e-2/(-1.655279e-1+6.307392e-2*eV-8.011441e-3*eV*eV+3.392126e-4*eV*eV*eV);} + static Double_t QEffCSI(Double_t eV) {return (eV>6.07267)*0.344811*(1-exp(-1.29730*(eV-6.07267)));}//fit from DiMauro data 28.10.03 + static Double_t GausPar(Double_t x,Double_t a1,Double_t a2,Double_t a3) {return a1*TMath::Exp(-0.5*((x-a2)/a3)*((x-a2)/a3));} + inline static Double_t FindTemp(Double_t tLow,Double_t tUp,Double_t y); //find the temperature of the C6F14 in a given point with coord. y (in x is uniform) + + + Double_t GetEPhotMean ()const {return fPhotEMean;} + Double_t GetRefIdx ()const {return fRefIdx;} //running refractive index + + Double_t MeanIdxRad ()const {return NIdxRad(fPhotEMean,fTemp);} + Double_t MeanIdxWin ()const {return NIdxWin(fPhotEMean);} + // + Float_t DistCut ()const {return 1.0;} //<--TEMPORAR--> to be removed in future. Cut for MIP-TRACK residual + Float_t QCut ()const {return 100;} //<--TEMPORAR--> to be removed in future. Separation PHOTON-MIP charge + Float_t MultCut ()const {return 200;} //<--TEMPORAR--> to be removed in future. Multiplicity cut to activate WEIGHT procedure + + Double_t RadThick ()const {return 1.5;} //<--TEMPORAR--> to be removed in future. Radiator thickness + Double_t WinThick ()const {return 0.5;} //<--TEMPORAR--> to be removed in future. Window thickness + Double_t GapThick ()const {return 8.0;} //<--TEMPORAR--> to be removed in future. Proximity gap thickness + Double_t WinIdx ()const {return 1.5787;} //<--TEMPORAR--> to be removed in future. Mean refractive index of WIN material (SiO2) + Double_t GapIdx ()const {return 1.0005;} //<--TEMPORAR--> to be removed in future. Mean refractive index of GAP material (CH4) static Int_t Stack(Int_t evt=-1,Int_t tid=-1); //Print stack info for event and tid static Int_t StackCount(Int_t pid,Int_t evt); //Counts stack particles of given sort in given event @@ -79,31 +108,72 @@ public: ph=TMath::ATan2(l[1],l[0]);} TVector3 Norm (Int_t c )const{Double_t n[3]; Norm(c,n); return TVector3(n); }//norm void Norm (Int_t c,Double_t *n )const{Double_t l[3]={0,0,1};fM[c]->LocalToMasterVect(l,n); }//norm - void Point (Int_t c,Double_t *p,Int_t plane )const{Lors2Mars(c,0,0,p,plane);} //point of given chamber plane + void Point (Int_t c,Double_t *p,Int_t plane )const{Lors2Mars(c,0,0,p,plane);} //point of given chamber plane + void SetTemp (Double_t temp ) {fTemp = temp;} //set actual temperature of the C6F14 + void SetEPhotMean (Double_t ePhotMean ) {fPhotEMean = ePhotMean;} //set mean photon energy + + void SetRefIdx (Double_t refRadIdx ) {fRefIdx = refRadIdx;} //set running refractive index + + void SetSigmas (Int_t sigmas ) {fgSigmas = sigmas;} //set sigma cut + void SetInstanceType(Bool_t inst ) {fgInstanceType = inst;} //kTRUE if from geomatry kFALSE if from ideal geometry + //For PID + Double_t SigLoc (Double_t trkTheta,Double_t trkPhi,Double_t ckovTh,Double_t ckovPh,Double_t beta);//error due to cathode segmetation + Double_t SigGeom (Double_t trkTheta,Double_t trkPhi,Double_t ckovTh,Double_t ckovPh,Double_t beta);//error due to unknown photon origin + Double_t SigCrom (Double_t trkTheta,Double_t trkPhi,Double_t ckovTh,Double_t ckovPh,Double_t beta);//error due to unknonw photon energy + Double_t Sigma2 (Double_t trkTheta,Double_t trkPhi,Double_t ckovTh,Double_t ckovPh );//photon candidate sigma^2 + + //Mathieson Getters + + static Double_t PitchAnodeCathode() {return fgkD;} + static Double_t SqrtK3x() {return fgkSqrtK3x;} + static Double_t K2x () {return fgkK2x;} + static Double_t K1x () {return fgkK1x;} + static Double_t K4x () {return fgkK4x;} + static Double_t SqrtK3y() {return fgkSqrtK3y;} + static Double_t K2y () {return fgkK2y;} + static Double_t K1y () {return fgkK1y;} + static Double_t K4y () {return fgkK4y;} + // enum EPlaneId {kPc,kRad,kAnod}; //3 planes in chamber + enum ETrackingFlags {kMipDistCut=-9,kMipQdcCut=-5,kNoPhotAccept=-11}; //flags for Reconstruction - static Int_t fgSigmas; //sigma Cut - - protected: static /*const*/ Float_t fgkMinPcX[6]; //limits PC static /*const*/ Float_t fgkMinPcY[6]; //limits PC static /*const*/ Float_t fgkMaxPcX[6]; //limits PC static /*const*/ Float_t fgkMaxPcY[6]; + +// Mathieson constants +// For HMPID --> x direction means parallel to the wires: K3 = 0.66 (NIM A270 (1988) 602-603) fig.1 +// For HMPID --> y direction means perpendicular to the wires: K3 = 0.90 (NIM A270 (1988) 602-603) fig.2 +// - static Float_t fgCellX, fgCellY, fgPcX, fgPcY, fgAllX, fgAllY; + static const Double_t fgkD; // ANODE-CATHODE distance 0.445/2 + + static const Double_t fgkSqrtK3x,fgkK2x,fgkK1x,fgkK4x; + static const Double_t fgkSqrtK3y,fgkK2y,fgkK1y,fgkK4y; +// + + static Int_t fgSigmas; //sigma Cut + static Bool_t fgInstanceType; //kTRUE if from geomatry kFALSE if from ideal geometry + + static Float_t fgCellX, fgCellY, fgPcX, fgPcY, fgAllX, fgAllY; //definition of HMPID geometric parameters AliHMPIDParam(Bool_t noGeo); //default ctor is protected to enforce it to be singleton static AliHMPIDParam *fgInstance; //static pointer to instance of AliHMPIDParam singleton TGeoHMatrix *fM[7]; //pointers to matrices defining HMPID chambers rotations-translations Float_t fX; //x shift of LORS with respect to rotated MARS - Float_t fY; //y shift of LORS with respect to rotated MARS - - - - ClassDef(AliHMPIDParam,0) //HMPID main parameters class + Float_t fY; //y shift of LORS with respect to rotated MARS + Double_t fRefIdx; //running refractive index of C6F14 + Double_t fPhotEMean; //mean energy of photon + Double_t fTemp; //actual temparature of C6F14 +private: + AliHMPIDParam(const AliHMPIDParam& r); //dummy copy constructor + AliHMPIDParam &operator=(const AliHMPIDParam& r); //dummy assignment operator + + ClassDef(AliHMPIDParam,1) //HMPID main parameters class }; //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ @@ -150,4 +220,32 @@ void AliHMPIDParam::Lors2Pad(Float_t x,Float_t y,Int_t &pc,Int_t &px,Int_t &py) else if(y>fgkMinPcY[4] && y