X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=HMPID%2FAliHMPIDRecon.cxx;h=27069b2a598108cf7b39e40a3f5717767f5c8eab;hb=6db3170859444cc30c9e5a12dad1ed2b28eb1ea6;hp=e5b0c2385586b7d7f3ae46dc16360bc781ea65e5;hpb=76fd1a963950f0b9a1aabfd10b1e9c8a06bc8b6b;p=u%2Fmrichter%2FAliRoot.git diff --git a/HMPID/AliHMPIDRecon.cxx b/HMPID/AliHMPIDRecon.cxx index e5b0c238558..27069b2a598 100644 --- a/HMPID/AliHMPIDRecon.cxx +++ b/HMPID/AliHMPIDRecon.cxx @@ -22,98 +22,135 @@ ////////////////////////////////////////////////////////////////////////// #include "AliHMPIDRecon.h" //class header -#include "AliHMPIDParam.h" //CkovAngle() #include "AliHMPIDCluster.h" //CkovAngle() -#include //FitEllipse() #include //TracePhot() #include //HoughResponse() #include //CkovAngle() #include //CkovAngle() -const Double_t AliHMPIDRecon::fgkRadThick=1.5; -const Double_t AliHMPIDRecon::fgkWinThick=0.5; -const Double_t AliHMPIDRecon::fgkGapThick=8.0; -const Double_t AliHMPIDRecon::fgkWinIdx =1.5787; -const Double_t AliHMPIDRecon::fgkGapIdx =1.0005; - //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -AliHMPIDRecon::AliHMPIDRecon():TTask("RichRec","RichPat"), - fRadNmean(1.292), +AliHMPIDRecon::AliHMPIDRecon(): + TTask("RichRec","RichPat"), fPhotCnt(-1), + fPhotFlag(0x0), + fPhotCkov(0x0), + fPhotPhi(0x0), + fPhotWei(0x0), fCkovSigma2(0), fIsWEIGHT(kFALSE), fDTheta(0.001), fWindowWidth(0.045), - fTrkDir(TVector3(0,0,1)),fTrkPos(TVector2(30,40)) + fRingArea(0), + fRingAcc(0), + fTrkDir(0,0,1), // Just for test + fTrkPos(30,40), // Just for test + fMipPos(0,0), + fPc(0,0), + fParam(AliHMPIDParam::Instance()) { -// main ctor - for (Int_t i=0; i<3000; i++) { - fPhotFlag[i] = 0; - fPhotCkov[i] = -1; - fPhotPhi [i] = -1; - fPhotWei [i] = 0; - } -//hidden algorithm - fMipX=fMipY=fThTrkFit=fPhTrkFit=fCkovFit=fMipQ=fRadX=fRadY=-999; - fIdxMip=fNClu=0; - fCkovSig2=0; - for (Int_t i=0; i<100; i++) { - fXClu[i] = fYClu[i] = 0; - fClCk[i] = kTRUE; - } +//.. +//init of data members +//.. + + fParam->SetRefIdx(fParam->MeanIdxRad()); // initialization of ref index to a default one +} +//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +void AliHMPIDRecon::InitVars(Int_t n) +{ +//.. +//Init some variables +//.. + if(n<=0) return; + fPhotFlag = new Int_t[n]; + fPhotCkov = new Double_t[n]; + fPhotPhi = new Double_t[n]; + fPhotWei = new Double_t[n]; +// } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -void AliHMPIDRecon::CkovAngle(AliESDtrack *pTrk,TClonesArray *pCluLst,Double_t nmean) +void AliHMPIDRecon::DeleteVars()const +{ +//.. +//Delete variables +//.. + delete [] fPhotFlag; + delete [] fPhotCkov; + delete [] fPhotPhi; + delete [] fPhotWei; +} +//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +void AliHMPIDRecon::CkovAngle(AliESDtrack *pTrk,TClonesArray *pCluLst,Int_t index,Double_t nmean,Float_t xRa,Float_t yRa) { // Pattern recognition method based on Hough transform // Arguments: pTrk - track for which Ckov angle is to be found // pCluLst - list of clusters for this chamber // Returns: - track ckov angle, [rad], - AliHMPIDParam *pParam=AliHMPIDParam::Instance(); + + const Int_t nMinPhotAcc = 3; // Minimum number of photons required to perform the pattern recognition - if(pCluLst->GetEntries()>pParam->MultCut()) fIsWEIGHT = kTRUE; // offset to take into account bkg in reconstruction - else fIsWEIGHT = kFALSE; + Int_t nClusTot = pCluLst->GetEntries(); + if(nClusTot>fParam->MultCut()) fIsWEIGHT = kTRUE; // offset to take into account bkg in reconstruction + else fIsWEIGHT = kFALSE; - Float_t xRa,yRa,th,ph; - pTrk->GetHMPIDtrk(xRa,yRa,th,ph); //initialize this track: th and ph angles at middle of RAD + InitVars(nClusTot); + + Float_t xPc,yPc,th,ph; + pTrk->GetHMPIDtrk(xPc,yPc,th,ph); //initialize this track: th and ph angles at middle of RAD SetTrack(xRa,yRa,th,ph); - fRadNmean=nmean; + fParam->SetRefIdx(nmean); - Float_t dMin=999,mipX=-1,mipY=-1;Int_t chId=-1,mipId=-1,mipQ=-1; - fPhotCnt=0; + Float_t mipX=-1,mipY=-1; + Int_t chId=-1,mipQ=-1,sizeClu = -1; + + fPhotCnt=0; + for (Int_t iClu=0; iCluGetEntriesFast();iClu++){//clusters loop AliHMPIDCluster *pClu=(AliHMPIDCluster*)pCluLst->UncheckedAt(iClu); //get pointer to current cluster + if(iClu == index) { // this is the MIP! not a photon candidate: just store mip info + mipX = pClu->X(); + mipY = pClu->Y(); + mipQ=(Int_t)pClu->Q(); + sizeClu=pClu->Size(); + continue; + } chId=pClu->Ch(); - if(pClu->Q()>pParam->QCut()){ //charge compartible with MIP clusters - Float_t dX=fPc.X()-pClu->X(),dY=fPc.Y()-pClu->Y(),d =TMath::Sqrt(dX*dX+dY*dY); //distance between current cluster and intersection point - if( d < dMin) {mipId=iClu; dMin=d;mipX=pClu->X();mipY=pClu->Y();mipQ=(Int_t)pClu->Q();} //current cluster is closer, overwrite data for min cluster - }else{ //charge compatible with photon cluster - Double_t thetaCer,phiCer; - if(FindPhotCkov(pClu->X(),pClu->Y(),thetaCer,phiCer)){ //find ckov angle for this photon candidate - fPhotCkov[fPhotCnt]=thetaCer; //actual theta Cerenkov (in TRS) - fPhotPhi [fPhotCnt]=phiCer; //actual phi Cerenkov (in TRS): -pi to come back to "unusual" ref system (X,Y,-Z) - Printf("photon n. %i reconstructed theta = %f",fPhotCnt,fPhotCkov[fPhotCnt]); - fPhotCnt++; //increment counter of photon candidates - } + Double_t thetaCer,phiCer; + if(FindPhotCkov(pClu->X(),pClu->Y(),thetaCer,phiCer)){ //find ckov angle for this photon candidate + fPhotCkov[fPhotCnt]=thetaCer; //actual theta Cerenkov (in TRS) + fPhotPhi [fPhotCnt]=phiCer; //actual phi Cerenkov (in TRS): -pi to come back to "unusual" ref system (X,Y,-Z) + fPhotCnt++; //increment counter of photon candidates } }//clusters loop - if(fPhotCnt<=3) pTrk->SetHMPIDsignal(kNoPhotAccept); //no reconstruction with <=3 photon candidates - Int_t iNacc=FlagPhot(HoughResponse()); //flag photons according to individual theta ckov with respect to most probable - pTrk->SetHMPIDmip(mipX,mipY,mipQ,iNacc); //store mip info - if(mipId==-1) {pTrk->SetHMPIDsignal(kMipQdcCut); return;} //no clusters with QDC more the threshold at all - if(dMin>pParam->DistCut()) {pTrk->SetHMPIDsignal(kMipDistCut); return;} //closest cluster with enough charge is still too far from intersection - pTrk->SetHMPIDcluIdx(chId,mipId); //set index of cluster - if(iNacc<1){ - pTrk->SetHMPIDsignal(kNoPhotAccept); //no photon candidates is accepted + pTrk->SetHMPIDmip(mipX,mipY,mipQ,fPhotCnt); //store mip info in any case + pTrk->SetHMPIDcluIdx(chId,index+1000*sizeClu); //set index of cluster + + if(fPhotCntSetHMPIDsignal(kNoPhotAccept); //set the appropriate flag + return; } - else { - pTrk->SetHMPIDsignal(FindRingCkov(pCluLst->GetEntries())); //find best Theta ckov for ring i.e. track - pTrk->SetHMPIDchi2(fCkovSigma2); //errors squared + + + fMipPos.Set(mipX,mipY); + + +//PATTERN RECOGNITION STARTED: + + Int_t iNrec=FlagPhot(HoughResponse()); //flag photons according to individual theta ckov with respect to most probable + pTrk->SetHMPIDmip(mipX,mipY,mipQ,iNrec); //store mip info + + if(iNrecSetHMPIDsignal(kNoPhotAccept); //no photon candidates are accepted + return; } + Double_t thetaC = FindRingCkov(pCluLst->GetEntries()); //find the best reconstructed theta Cherenkov +// FindRingGeom(thetaC,2); + pTrk->SetHMPIDsignal(thetaC); //store theta Cherenkov + pTrk->SetHMPIDchi2(fCkovSigma2); //store errors squared + DeleteVars(); }//CkovAngle() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Bool_t AliHMPIDRecon::FindPhotCkov(Double_t cluX,Double_t cluY,Double_t &thetaCer,Double_t &phiCer) @@ -124,9 +161,9 @@ Bool_t AliHMPIDRecon::FindPhotCkov(Double_t cluX,Double_t cluY,Double_t &thetaCe TVector3 dirCkov; - Double_t zRad= -0.5*fgkRadThick-0.5*fgkWinThick; //z position of middle of RAD + Double_t zRad= -0.5*fParam->RadThick()-0.5*fParam->WinThick(); //z position of middle of RAD TVector3 rad(fTrkPos.X(),fTrkPos.Y(),zRad); //impact point at middle of RAD - TVector3 pc(cluX,cluY,0.5*fgkWinThick+fgkGapIdx); //mip at PC + TVector3 pc(cluX,cluY,0.5*fParam->WinThick()+fParam->GapIdx()); //mip at PC Double_t cluR = TMath::Sqrt((cluX-fTrkPos.X())*(cluX-fTrkPos.X())+ (cluY-fTrkPos.Y())*(cluY-fTrkPos.Y()));//ref. distance impact RAD-CLUSTER Double_t phi=(pc-rad).Phi(); //phi of photon @@ -147,7 +184,7 @@ Bool_t AliHMPIDRecon::FindPhotCkov(Double_t cluX,Double_t cluY,Double_t &thetaCe else if(dist<-kTol) ckov2=ckov; //cluster @ smaller ckov else{ //precision achived: ckov in DRS found dirCkov.SetMagThetaPhi(1,ckov,phi); // - RecPhot(dirCkov,thetaCer,phiCer); //find ckov (in TRS:the effective Cherenkov angle!) + Lors2Trs(dirCkov,thetaCer,phiCer); //find ckov (in TRS:the effective Cherenkov angle!) return kTRUE; } } @@ -158,30 +195,32 @@ TVector2 AliHMPIDRecon::TraceForward(TVector3 dirCkov)const //Trace forward a photon from (x,y) up to PC // Arguments: dirCkov photon vector in LORS // Returns: pos of traced photon at PC + TVector2 pos(-999,-999); Double_t thetaCer = dirCkov.Theta(); - if(thetaCer > TMath::ASin(1./fRadNmean)) return pos; //total refraction on WIN-GAP boundary - Double_t zRad= -0.5*fgkRadThick-0.5*fgkWinThick; //z position of middle of RAD - TVector3 posCkov(fTrkPos.X(),fTrkPos.Y(),zRad); //RAD: photon position is track position @ middle of RAD - Propagate(dirCkov,posCkov, -0.5*fgkWinThick); //go to RAD-WIN boundary - Refract (dirCkov, fRadNmean,fgkWinIdx); //RAD-WIN refraction - Propagate(dirCkov,posCkov, 0.5*fgkWinThick); //go to WIN-GAP boundary - Refract (dirCkov, fgkWinIdx,fgkGapIdx); //WIN-GAP refraction - Propagate(dirCkov,posCkov,0.5*fgkWinThick+fgkGapThick); //go to PC + if(thetaCer > TMath::ASin(1./fParam->GetRefIdx())) return pos; //total refraction on WIN-GAP boundary + Double_t zRad= -0.5*fParam->RadThick()-0.5*fParam->WinThick(); //z position of middle of RAD + TVector3 posCkov(fTrkPos.X(),fTrkPos.Y(),zRad); //RAD: photon position is track position @ middle of RAD + Propagate(dirCkov,posCkov, -0.5*fParam->WinThick()); //go to RAD-WIN boundary + Refract (dirCkov, fParam->GetRefIdx(),fParam->WinIdx()); //RAD-WIN refraction + Propagate(dirCkov,posCkov, 0.5*fParam->WinThick()); //go to WIN-GAP boundary + Refract (dirCkov, fParam->WinIdx(),fParam->GapIdx()); //WIN-GAP refraction + Propagate(dirCkov,posCkov,0.5*fParam->WinThick()+fParam->GapThick()); //go to PC pos.Set(posCkov.X(),posCkov.Y()); return pos; }//TraceForward() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -void AliHMPIDRecon::RecPhot(TVector3 dirCkov,Double_t &thetaCer,Double_t &phiCer) +void AliHMPIDRecon::Lors2Trs(TVector3 dirCkov,Double_t &thetaCer,Double_t &phiCer)const { //Theta Cerenkov reconstruction - // Arguments: (x,y) of initial point in LORS, dirCkov photon vector in LORS - // Returns: thetaCer theta cerenkov reconstructed + // Arguments: dirCkov photon vector in LORS + // Returns: thetaCer of photon in TRS + // phiCer of photon in TRS // TVector3 dirTrk; // dirTrk.SetMagThetaPhi(1,fTrkDir.Theta(),fTrkDir.Phi()); // Double_t thetaCer = TMath::ACos(dirCkov*dirTrk); - TRotation mtheta; mtheta.RotateY(- fTrkDir.Theta()); - TRotation mphi; mphi.RotateZ(- fTrkDir.Phi()); + TRotation mtheta; mtheta.RotateY(-fTrkDir.Theta()); + TRotation mphi; mphi.RotateZ(-fTrkDir.Phi()); TRotation mrot=mtheta*mphi; TVector3 dirCkovTRS; dirCkovTRS=mrot*dirCkov; @@ -189,21 +228,99 @@ void AliHMPIDRecon::RecPhot(TVector3 dirCkov,Double_t &thetaCer,Double_t &phiCer thetaCer= dirCkovTRS.Theta(); //actual value of thetaCerenkov of the photon } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -Double_t AliHMPIDRecon::FindRingArea(Double_t ckovAng)const +void AliHMPIDRecon::Trs2Lors(TVector3 dirCkov,Double_t &thetaCer,Double_t &phiCer)const +{ + //Theta Cerenkov reconstruction + // Arguments: dirCkov photon vector in TRS + // Returns: thetaCer of photon in LORS + // phiCer of photon in LORS + TRotation mtheta; mtheta.RotateY(fTrkDir.Theta()); + TRotation mphi; mphi.RotateZ(fTrkDir.Phi()); + TRotation mrot=mphi*mtheta; + TVector3 dirCkovLORS; + dirCkovLORS=mrot*dirCkov; + phiCer = dirCkovLORS.Phi(); //actual value of the phi of the photon + thetaCer= dirCkovLORS.Theta(); //actual value of thetaCerenkov of the photon +} +//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +void AliHMPIDRecon::FindRingGeom(Double_t ckovAng,Int_t level) { -// Find area inside the cerenkov ring which lays inside PCs -// Arguments: ckovAng - cerenkov angle +// Find area covered in the PC acceptance +// Arguments: ckovAng - cerenkov angle +// level - precision in finding area and portion of ring accepted (multiple of 50) // Returns: area of the ring in cm^2 for given theta ckov - const Int_t kN=100; + Int_t kN=50*level; + Int_t nPoints = 0; Double_t area=0; + + Bool_t first=kFALSE; + TVector2 pos1; + for(Int_t i=0;iIsInside(pos1.X(),pos1.Y(),0)) { + pos1 = IntWithEdge(fMipPos,pos1); // find the very first intersection... + } else { + if(!AliHMPIDParam::IsInDead(pos1.X(),pos1.Y())) nPoints++; //photon is accepted if not in dead zone + } + first=kTRUE; + continue; + } + TVector2 pos2=TracePhot(ckovAng,Double_t(TMath::TwoPi()*(i+1)/kN)); //trace the next photon + if(pos2.X()==-999) continue; //no area: open ring + if(!fParam->IsInside(pos2.X(),pos2.Y(),0)) { + pos2 = IntWithEdge(fMipPos,pos2); + } else { + if(!AliHMPIDParam::IsInDead(pos2.X(),pos2.Y())) nPoints++; //photon is accepted if not in dead zone + } + area+=TMath::Abs((pos1-fMipPos).X()*(pos2-fMipPos).Y()-(pos1-fMipPos).Y()*(pos2-fMipPos).X()); //add area of the triangle... + pos1 = pos2; } - return area; -}//FindRingArea() +//--- find area and length of the ring; + fRingAcc = (Double_t)nPoints/(Double_t)kN; + area*=0.5; + fRingArea = area; +}//FindRingGeom() +//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +TVector2 AliHMPIDRecon::IntWithEdge(TVector2 p1,TVector2 p2)const +{ +// It finds the intersection of the line for 2 points traced as photons +// and the edge of a given PC +// Arguments: 2 points obtained tracing the photons +// Returns: intersection point with detector (PC) edges + + Double_t xmin = (p1.X()=0 && pint.X()<=fParam->SizeAllX() && + pint.X()>=xmin && pint.X()<=xmax && + pint.Y()>=ymin && pint.Y()<=ymax) return pint; + //intersection with high X + pint.Set((Double_t)(p1.X() + (fParam->SizeAllY()-p1.Y())/m),(Double_t)(fParam->SizeAllY())); + if(pint.X()>=0 && pint.X()<=fParam->SizeAllX() && + pint.X()>=xmin && pint.X()<=xmax && + pint.Y()>=ymin && pint.Y()<=ymax) return pint; + //intersection with left Y + pint.Set(0.,(Double_t)(p1.Y() + m*(0-p1.X()))); + if(pint.Y()>=0 && pint.Y()<=fParam->SizeAllY() && + pint.Y()>=ymin && pint.Y()<=ymax && + pint.X()>=xmin && pint.X()<=xmax) return pint; + //intersection with righ Y + pint.Set((Double_t)(fParam->SizeAllX()),(Double_t)(p1.Y() + m*(fParam->SizeAllX()-p1.X()))); + if(pint.Y()>=0 && pint.Y()<=fParam->SizeAllY() && + pint.Y()>=ymin && pint.Y()<=ymax && + pint.X()>=xmin && pint.X()<=xmax) return pint; + return p1; +}//IntWithEdge() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Double_t AliHMPIDRecon::FindRingCkov(Int_t) { @@ -225,7 +342,7 @@ Double_t AliHMPIDRecon::FindRingCkov(Int_t) weightThetaCerenkov += fPhotCkov[i]*fPhotWei[i]; wei += fPhotWei[i]; //collect weight as sum of all candidate weghts - sigma2 += 1./Sigma2(fPhotCkov[i],fPhotPhi[i]); + sigma2 += 1./fParam->Sigma2(fTrkDir.Theta(),fTrkDir.Phi(),fPhotCkov[i],fPhotPhi[i]); } }//candidates loop @@ -256,6 +373,7 @@ Int_t AliHMPIDRecon::FlagPhot(Double_t ckov) Int_t iInsideCnt = 0; //count photons which Theta ckov inside the window for(Int_t i=0;i= tmin && fPhotCkov[i] <= tmax) { fPhotFlag[i]=2; iInsideCnt++; @@ -267,16 +385,15 @@ Int_t AliHMPIDRecon::FlagPhot(Double_t ckov) TVector2 AliHMPIDRecon::TracePhot(Double_t ckovThe,Double_t ckovPhi)const { // Trace a single Ckov photon from emission point somewhere in radiator up to photocathode taking into account ref indexes of materials it travereses -// Arguments: ckovThe,ckovPhi- photon ckov angles in DRS, [rad] +// Arguments: ckovThe,ckovPhi- photon ckov angles in TRS, [rad] // Returns: distance between photon point on PC and track projection - TRotation mtheta; mtheta.RotateY(fTrkDir.Theta()); - TRotation mphi; mphi.RotateZ(fTrkDir.Phi()); - TRotation mrot=mphi*mtheta; - TVector3 dirCkov,dirCkovTors; - - dirCkovTors.SetMagThetaPhi(1,ckovThe,ckovPhi); //initially photon is directed according to requested ckov angle - dirCkov=mrot*dirCkovTors; //now we know photon direction in LORS - return TraceForward(dirCkov); + + Double_t theta,phi; + TVector3 dirTRS,dirLORS; + dirTRS.SetMagThetaPhi(1,ckovThe,ckovPhi); //photon in TRS + Trs2Lors(dirTRS,theta,phi); + dirLORS.SetMagThetaPhi(1,theta,phi); //photon in LORS + return TraceForward(dirLORS); //now foward tracing }//TracePhot() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDRecon::Propagate(const TVector3 dir,TVector3 &pos,Double_t z)const @@ -327,8 +444,12 @@ Double_t AliHMPIDRecon::HoughResponse() Int_t bin = (Int_t)(0.5+angle/(fDTheta)); Double_t weight=1.; if(fIsWEIGHT){ - Double_t lowerlimit = ((Double_t)bin)*fDTheta - 0.5*fDTheta; Double_t upperlimit = ((Double_t)bin)*fDTheta + 0.5*fDTheta; - Double_t diffArea = FindRingArea(upperlimit)-FindRingArea(lowerlimit); + Double_t lowerlimit = ((Double_t)bin)*fDTheta - 0.5*fDTheta; Double_t upperlimit = ((Double_t)bin)*fDTheta + 0.5*fDTheta; + FindRingGeom(lowerlimit); + Double_t areaLow = GetRingArea(); + FindRingGeom(upperlimit); + Double_t areaHigh = GetRingArea(); + Double_t diffArea = areaHigh - areaLow; if(diffArea>0) weight = 1./diffArea; } photsw->Fill(angle,weight); @@ -353,397 +474,31 @@ Double_t AliHMPIDRecon::HoughResponse() return (Double_t)(locMax*fDTheta+0.5*fDTheta); //final most probable track theta ckov }//HoughResponse() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -Double_t AliHMPIDRecon::Sigma2(Double_t ckovTh, Double_t ckovPh)const -{ -// Analithical calculation of total error (as a sum of localization, geometrical and chromatic errors) on Cerenkov angle for a given Cerenkov photon -// created by a given MIP. Fromulae according to CERN-EP-2000-058 -// Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians] -// dip and azimuthal angles for MIP taken at the entrance to radiator, [radians] -// MIP beta -// Returns: absolute error on Cerenkov angle, [radians] - - TVector3 v(-999,-999,-999); - Double_t trkBeta = 1./(TMath::Cos(ckovTh)*fRadNmean); - - if(trkBeta > 1) trkBeta = 1; //protection against bad measured thetaCer - if(trkBeta < 0) trkBeta = 0.0001; // - - v.SetX(SigLoc (ckovTh,ckovPh,trkBeta)); - v.SetY(SigGeom(ckovTh,ckovPh,trkBeta)); - v.SetZ(SigCrom(ckovTh,ckovPh,trkBeta)); - - return v.Mag2(); -} -//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -Double_t AliHMPIDRecon::SigLoc(Double_t thetaC, Double_t phiC,Double_t betaM)const -{ -// Analithical calculation of localization error (due to finite segmentation of PC) on Cerenkov angle for a given Cerenkov photon -// created by a given MIP. Fromulae according to CERN-EP-2000-058 -// Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians] -// dip and azimuthal angles for MIP taken at the entrance to radiator, [radians] -// MIP beta -// Returns: absolute error on Cerenkov angle, [radians] - - Double_t phiDelta = phiC - fTrkDir.Phi(); - - Double_t sint = TMath::Sin(fTrkDir.Theta()); - Double_t cost = TMath::Cos(fTrkDir.Theta()); - Double_t sinf = TMath::Sin(fTrkDir.Phi()); - Double_t cosf = TMath::Cos(fTrkDir.Phi()); - Double_t sinfd = TMath::Sin(phiDelta); - Double_t cosfd = TMath::Cos(phiDelta); - Double_t tantheta = TMath::Tan(thetaC); - - Double_t alpha =cost-tantheta*cosfd*sint; // formula (11) - Double_t k = 1.-fRadNmean*fRadNmean+alpha*alpha/(betaM*betaM); // formula (after 8 in the text) - if (k<0) return 1e10; - Double_t mu =sint*sinf+tantheta*(cost*cosfd*sinf+sinfd*cosf); // formula (10) - Double_t e =sint*cosf+tantheta*(cost*cosfd*cosf-sinfd*sinf); // formula (9) - - Double_t kk = betaM*TMath::Sqrt(k)/(fgkGapThick*alpha); // formula (6) and (7) - Double_t dtdxc = kk*(k*(cosfd*cosf-cost*sinfd*sinf)-(alpha*mu/(betaM*betaM))*sint*sinfd); // formula (6) - Double_t dtdyc = kk*(k*(cosfd*sinf+cost*sinfd*cosf)+(alpha* e/(betaM*betaM))*sint*sinfd); // formula (7) pag.4 - - Double_t errX = 0.2,errY=0.25; //end of page 7 - return TMath::Sqrt(errX*errX*dtdxc*dtdxc + errY*errY*dtdyc*dtdyc); -} -//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -Double_t AliHMPIDRecon::SigCrom(Double_t thetaC, Double_t phiC,Double_t betaM)const -{ -// Analithical calculation of chromatic error (due to lack of knowledge of Cerenkov photon energy) on Cerenkov angle for a given Cerenkov photon -// created by a given MIP. Fromulae according to CERN-EP-2000-058 -// Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians] -// dip and azimuthal angles for MIP taken at the entrance to radiator, [radians] -// MIP beta -// Returns: absolute error on Cerenkov angle, [radians] - - Double_t phiDelta = phiC - fTrkDir.Phi(); - - Double_t sint = TMath::Sin(fTrkDir.Theta()); - Double_t cost = TMath::Cos(fTrkDir.Theta()); - Double_t cosfd = TMath::Cos(phiDelta); - Double_t tantheta = TMath::Tan(thetaC); - - Double_t alpha =cost-tantheta*cosfd*sint; // formula (11) - Double_t dtdn = cost*fRadNmean*betaM*betaM/(alpha*tantheta); // formula (12) - -// Double_t f = 0.00928*(7.75-5.635)/TMath::Sqrt(12.); - Double_t f = 0.0172*(7.75-5.635)/TMath::Sqrt(24.); - - return f*dtdn; -}//SigCrom() -//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -Double_t AliHMPIDRecon::SigGeom(Double_t thetaC, Double_t phiC,Double_t betaM)const + Double_t AliHMPIDRecon::FindRingExt(Double_t ckov,Int_t ch,Double_t xPc,Double_t yPc,Double_t thRa,Double_t phRa) { -// Analithical calculation of geometric error (due to lack of knowledge of creation point in radiator) on Cerenkov angle for a given Cerenkov photon -// created by a given MIP. Formulae according to CERN-EP-2000-058 -// Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians] -// dip and azimuthal angles for MIP taken at the entrance to radiator, [radians] -// MIP beta -// Returns: absolute error on Cerenkov angle, [radians] - - Double_t phiDelta = phiC - fTrkDir.Phi(); - - Double_t sint = TMath::Sin(fTrkDir.Theta()); - Double_t cost = TMath::Cos(fTrkDir.Theta()); - Double_t sinf = TMath::Sin(fTrkDir.Phi()); - Double_t cosfd = TMath::Cos(phiDelta); - Double_t costheta = TMath::Cos(thetaC); - Double_t tantheta = TMath::Tan(thetaC); - - Double_t alpha =cost-tantheta*cosfd*sint; // formula (11) - - Double_t k = 1.-fRadNmean*fRadNmean+alpha*alpha/(betaM*betaM); // formula (after 8 in the text) - if (k<0) return 1e10; - - Double_t eTr = 0.5*fgkRadThick*betaM*TMath::Sqrt(k)/(fgkGapThick*alpha); // formula (14) - Double_t lambda = 1.-sint*sint*sinf*sinf; // formula (15) - - Double_t c1 = 1./(1.+ eTr*k/(alpha*alpha*costheta*costheta)); // formula (13.a) - Double_t c2 = betaM*TMath::Power(k,1.5)*tantheta*lambda/(fgkGapThick*alpha*alpha); // formula (13.b) - Double_t c3 = (1.+eTr*k*betaM*betaM)/((1+eTr)*alpha*alpha); // formula (13.c) - Double_t c4 = TMath::Sqrt(k)*tantheta*(1-lambda)/(fgkGapThick*betaM); // formula (13.d) - Double_t dtdT = c1 * (c2+c3*c4); - Double_t trErr = fgkRadThick/(TMath::Sqrt(12.)*cost); - - return trErr*dtdT; -}//SigGeom() -//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -// -// From here HTA.... -// -//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -Bool_t AliHMPIDRecon::CkovHiddenTrk(AliESDtrack *pTrk,TClonesArray *pCluLst,Double_t nmean) -{ -// Pattern recognition method without any infos from tracking:HTA (Hidden Track Algorithm)... -// The method finds in the chmber the cluster with the highest charge -// compatibile with a MIP, then the strategy is applied -// Arguments: pTrk - pointer to ESD track -// pCluLs - list of clusters for a given chamber -// nmean - mean freon ref. index -// Returns: - 0=ok,1=not fitted - - AliHMPIDParam *pParam=AliHMPIDParam::Instance(); - - fRadNmean=nmean; - - if(pCluLst->GetEntriesFast()>100) return kFALSE; //boundary check for CluX,CluY... - Float_t mipX=-1,mipY=-1;Int_t mipId=-1,mipQ=-1; - Double_t qRef = 0; - Int_t nCh=0; - for (Int_t iClu=0;iCluGetEntriesFast();iClu++){ //clusters loop - AliHMPIDCluster *pClu=(AliHMPIDCluster*)pCluLst->UncheckedAt(iClu); //get pointer to current cluster - nCh = pClu->Ch(); - fXClu[iClu] = pClu->X();fYClu[iClu] = pClu->Y(); //store x,y for fitting procedure - fClCk[iClu] = kTRUE; //all cluster are accepted at this stage to be reconstructed - if(pClu->Q()>qRef){ //searching the highest charge to select a MIP - qRef = pClu->Q(); - mipId=iClu; mipX=pClu->X();mipY=pClu->Y();mipQ=(Int_t)pClu->Q(); - } - }//clusters loop - - fNClu = pCluLst->GetEntriesFast(); - if(qRef>pParam->QCut()){ //charge compartible with MIP clusters - fIdxMip = mipId; - fClCk[mipId] = kFALSE; - fMipX = mipX; fMipY=mipY; fMipQ = qRef; - if(!DoRecHiddenTrk(pCluLst)) { - pTrk->SetHMPIDsignal(kNoPhotAccept); - return kFALSE; - } //Do track and ring reconstruction,if problems returns 1 - pTrk->SetHMPIDtrk(fRadX,fRadY,fThTrkFit,fPhTrkFit); //store track intersection info - pTrk->SetHMPIDmip(fMipX,fMipY,(Int_t)fMipQ,fNClu); //store mip info - pTrk->SetHMPIDcluIdx(nCh,fIdxMip); //set cham number and index of cluster - pTrk->SetHMPIDsignal(fCkovFit); //find best Theta ckov for ring i.e. track - pTrk->SetHMPIDchi2(fCkovSig2); //errors squared -// Printf(" n clusters tot %i accepted %i",pCluLst->GetEntriesFast(),fNClu); - return kTRUE; - } - - return kFALSE; -}//CkovHiddenTrk() -//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -Bool_t AliHMPIDRecon::DoRecHiddenTrk(TClonesArray *pCluLst) -{ -// Pattern recognition method without any infos from tracking... -// First a preclustering filter to avoid part of the noise -// Then only ellipsed-rings are fitted (no possibility, -// for the moment, to reconstruct very inclined tracks) -// Finally a fitting with (th,ph) free, starting by very close values -// previously evaluated. -// Arguments: none -// Returns: none - Double_t phiRec; - if(!CluPreFilter(pCluLst)) {return kFALSE;} - if(!FitEllipse(phiRec)) {return kFALSE;} - Int_t nClTmp1 = pCluLst->GetEntriesFast()-1; //minus MIP... - Int_t nClTmp2 = 0; - while(nClTmp1 != nClTmp2){ - SetNClu(pCluLst->GetEntriesFast()); - if(!FitFree(phiRec)) {return kFALSE;} - nClTmp2 = NClu(); - if(nClTmp2!=nClTmp1) {nClTmp1=nClTmp2;nClTmp2=0;} - } - fNClu = nClTmp2; - return kTRUE; -}//DoRecHiddenTrk() -//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -Bool_t AliHMPIDRecon::CluPreFilter(TClonesArray *pCluLst) -{ -// Filter of bkg clusters -// based on elliptical-shapes... -// - if(pCluLst->GetEntriesFast()>50||pCluLst->GetEntriesFast()<4) return kFALSE; - else return kTRUE; -} -//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -Bool_t AliHMPIDRecon::FitEllipse(Double_t &phiRec) -{ -//Fit a set of clusters with an analitical conical section function: - // - // Ax^2 + B*y^2 + 2Hxy + 2Gx + 2Fy + 1 = 0 ---> conical section - // - // H*H - A*B > 0 hyperbola - // < 0 ellipse - // = 0 parabola - // - // tan 2alfa = 2H/(A-B) alfa=angle of rotation - // - // coordinate of the centre of the conical section: - // x = x' + a - // y = y' + b - // - // HF - BG - // a = --------- - // AB - H^2 - // - // HG - AF - // b = -------- - // AB - H^2 - Double_t cA,cB,cF,cG,cH; - Double_t aArg=-1; Int_t iErrFlg; //tmp vars for TMinuit - - if(!gMinuit) gMinuit = new TMinuit(5); //init MINUIT with this number of parameters (5 params) - gMinuit->mncler(); // reset Minuit list of paramters - gMinuit->SetObjectFit((TObject*)this); gMinuit->SetFCN(AliHMPIDRecon::FunMinEl); //set fit function - gMinuit->mnexcm("SET PRI",&aArg,1,iErrFlg); //suspend all printout from TMinuit - gMinuit->mnexcm("SET NOW",&aArg,0,iErrFlg); //suspend all warning printout from TMinuit - - Double_t d1,d2,d3; - TString sName; - - gMinuit->mnparm(0," A ",1,0.01,0,0,iErrFlg); - gMinuit->mnparm(1," B ",1,0.01,0,0,iErrFlg); - gMinuit->mnparm(2," H ",1,0.01,0,0,iErrFlg); - gMinuit->mnparm(3," G ",1,0.01,0,0,iErrFlg); - gMinuit->mnparm(4," F ",1,0.01,0,0,iErrFlg); - - gMinuit->mnexcm("SIMPLEX",&aArg,0,iErrFlg); - gMinuit->mnexcm("MIGRAD" ,&aArg,0,iErrFlg); - gMinuit->mnpout(0,sName,cA,d1,d2,d3,iErrFlg); - gMinuit->mnpout(1,sName,cB,d1,d2,d3,iErrFlg); - gMinuit->mnpout(2,sName,cH,d1,d2,d3,iErrFlg); - gMinuit->mnpout(3,sName,cG,d1,d2,d3,iErrFlg); - gMinuit->mnpout(4,sName,cF,d1,d2,d3,iErrFlg); - delete gMinuit; - - Double_t i2 = cA*cB-cH*cH; //quartic invariant : i2 > 0 ellipse, i2 < 0 hyperbola - if(i2<=0) return kFALSE; - Double_t aX = (cH*cF-cB*cG)/i2; //x centre of the canonical section - Double_t bY = (cH*cG-cA*cF)/i2; //y centre of the canonical section - Double_t alfa1 = TMath::ATan(2*cH/(cA-cB)); //alpha = angle of rotation of the conical section - if(alfa1<0) alfa1+=TMath::Pi(); - alfa1*=0.5; -// Double_t alfa2 = alfa1+TMath::Pi(); - Double_t phiref = TMath::ATan2(bY-fMipY,aX-fMipX); //evaluate in a unique way the angle of rotation comparing it - if(phiref<0) phiref+=TMath::TwoPi(); //with the vector that points to the centre from the mip - if(i2<0) phiref+=TMath::Pi(); - if(phiref>TMath::TwoPi()) phiref-=TMath::TwoPi(); - -// Printf(" alfa1 %f",alfa1*TMath::RadToDeg()); -// Printf(" alfa2 %f",alfa2*TMath::RadToDeg()); -// Printf(" firef %f",phiref*TMath::RadToDeg()); -// if(TMath::Abs(alfa1-phiref)mncler(); // reset Minuit list of paramters - gMinuit->SetObjectFit((TObject*)this); gMinuit->SetFCN(AliHMPIDRecon::FunMinPhot); //set fit function - gMinuit->mnexcm("SET PRI",&aArg,1,iErrFlg); //suspend all printout from TMinuit - gMinuit->mnexcm("SET NOW",&aArg,0,iErrFlg); //suspend all warning printout from TMinuit - - Double_t d1,d2,d3; - TString sName; - Double_t th,ph; - - gMinuit->mnparm(0," theta ", 0.01,0.01,0,TMath::PiOver2(),iErrFlg); - gMinuit->mnparm(1," phi ",phiRec,0.01,0,TMath::TwoPi() ,iErrFlg); - - gMinuit->FixParameter(1); - gMinuit->mnexcm("SIMPLEX" ,&aArg,0,iErrFlg); - gMinuit->mnexcm("MIGRAD" ,&aArg,0,iErrFlg); - gMinuit->Release(1); - gMinuit->mnexcm("MIGRAD" ,&aArg,0,iErrFlg); +// To find the acceptance of the ring even from external inputs. +// +// + Double_t xRa = xPc - (fParam->RadThick()+fParam->WinThick()+fParam->GapThick())*TMath::Cos(phRa)*TMath::Tan(thRa); //just linear extrapolation back to RAD + Double_t yRa = yPc - (fParam->RadThick()+fParam->WinThick()+fParam->GapThick())*TMath::Sin(phRa)*TMath::Tan(thRa); - gMinuit->mnpout(0,sName,th,d1,d2,d3,iErrFlg); - gMinuit->mnpout(1,sName,ph,d1,d2,d3,iErrFlg); - - Double_t outPar[2] = {th,ph}; Double_t g; Double_t f;Int_t flag = 3; - gMinuit->Eval(2, &g, f, outPar,flag); + Int_t nStep = 500; + Int_t nPhi = 0; - SetTrkFit(th,ph); - - return kTRUE; -} -//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -Double_t AliHMPIDRecon::FunConSect(Double_t *c,Double_t x,Double_t y) -{ - return c[0]*x*x+c[1]*y*y+2*c[2]*x*y+2*c[3]*x+2*c[4]*y+1; -} -//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -void AliHMPIDRecon::FunMinEl(Int_t &/* */,Double_t* /* */,Double_t &f,Double_t *par,Int_t /* */) -{ - AliHMPIDRecon *pRec=(AliHMPIDRecon*)gMinuit->GetObjectFit(); - Double_t minFun = 0; - Int_t np = pRec->NClu(); - for(Int_t i=0;iIdxMip()) continue; - Double_t el = pRec->FunConSect(par,pRec->XClu(i),pRec->YClu(i)); - minFun +=el*el; - } - f = minFun; -} -//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -void AliHMPIDRecon::FunMinPhot(Int_t &/* */,Double_t* /* */,Double_t &f,Double_t *par,Int_t iflag) -{ - AliHMPIDRecon *pRec=(AliHMPIDRecon*)gMinuit->GetObjectFit(); - Double_t sizeCh = 0.5*fgkRadThick+fgkWinThick+fgkGapThick; - Double_t thTrk = par[0]; - Double_t phTrk = par[1]; - Double_t xrad = pRec->MipX() - sizeCh*TMath::Tan(thTrk)*TMath::Cos(phTrk); - Double_t yrad = pRec->MipY() - sizeCh*TMath::Tan(thTrk)*TMath::Sin(phTrk); - pRec->SetRadXY(xrad,yrad); - pRec->SetTrack(xrad,yrad,thTrk,phTrk); - - Double_t meanCkov =0; - Double_t meanCkov2=0; - Double_t thetaCer,phiCer; - Int_t nClAcc = 0; - Int_t nClTot=pRec->NClu(); + Int_t ipc,ipadx,ipady; - for(Int_t i=0;iClCk(i))) continue; - pRec->FindPhotCkov(pRec->XClu(i),pRec->YClu(i),thetaCer,phiCer); - meanCkov += thetaCer; - meanCkov2 += thetaCer*thetaCer; - nClAcc++; - } - if(nClAcc==0) {f=999;return;} - meanCkov/=nClAcc; - Double_t rms = (meanCkov2 - meanCkov*meanCkov*nClAcc)/nClAcc; - if(rms<0) Printf(" rms2 = %f, strange!!!",rms); - rms = TMath::Sqrt(rms); - f = rms/TMath::Sqrt(nClAcc); - - - if(iflag==3) { - Printf("FunMinPhot before: photons candidates %i used %i",nClTot,nClAcc); - nClAcc = 0; - Double_t meanCkov1=0; - Double_t meanCkov2=0; - for(Int_t i=0;iClCk(i))) continue; - pRec->FindPhotCkov(pRec->XClu(i),pRec->YClu(i),thetaCer,phiCer); - if(TMath::Abs(thetaCer-meanCkov)<2*rms) { - meanCkov1 += thetaCer; - meanCkov2 += thetaCer*thetaCer; - nClAcc++; - } else pRec->SetClCk(i,kFALSE); - } - meanCkov1/=nClAcc; - Double_t rms2 = (meanCkov2 - meanCkov*meanCkov*nClAcc)/nClAcc; - Printf("FunMinPhot after: photons candidates %i used %i thetaCer %f",nClTot,nClAcc,meanCkov1); - pRec->SetCkovFit(meanCkov1); - pRec->SetCkovSig2(rms2); - pRec->SetNClu(nClAcc); - } -}//FunMinPhot() -//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -// -// ended Hidden track algorithm.... -// -//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ + if(ckov>0){ + SetTrack(xRa,yRa,thRa,phRa); + for(Int_t j=0;jIsInDead(pos.X(),pos.Y())) continue; + fParam->Lors2Pad(pos.X(),pos.Y(),ipc,ipadx,ipady); + ipadx+=(ipc%2)*fParam->kPadPcX; + ipady+=(ipc/2)*fParam->kPadPcY; + if(fParam->IsDeadPad(ipadx,ipady,ch)) continue; + nPhi++; + }//point loop + return ((Double_t)nPhi/(Double_t)nStep); + }//if + return -1; +}