X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=HMPID%2FAliHMPIDRecon.cxx;h=792da47cbc64c909f162de2bed36735a08692561;hb=d4f449df189e6dd10b76eb81f7fdf4aa9f9f50bd;hp=9db34ee4e65983d5c6c754f8f7cda9b3c8cbee9f;hpb=b4ad85e9031e8a3977706f35cdb33e3a58e6d579;p=u%2Fmrichter%2FAliRoot.git diff --git a/HMPID/AliHMPIDRecon.cxx b/HMPID/AliHMPIDRecon.cxx index 9db34ee4e65..792da47cbc6 100644 --- a/HMPID/AliHMPIDRecon.cxx +++ b/HMPID/AliHMPIDRecon.cxx @@ -22,87 +22,146 @@ ////////////////////////////////////////////////////////////////////////// #include "AliHMPIDRecon.h" //class header -#include "AliHMPIDParam.h" //CkovAngle() #include "AliHMPIDCluster.h" //CkovAngle() #include //TracePhot() #include //HoughResponse() #include //CkovAngle() #include //CkovAngle() - -const Double_t AliHMPIDRecon::fgkRadThick=1.5; -const Double_t AliHMPIDRecon::fgkWinThick=0.5; -const Double_t AliHMPIDRecon::fgkGapThick=8.0; -const Double_t AliHMPIDRecon::fgkWinIdx =1.5787; -const Double_t AliHMPIDRecon::fgkGapIdx =1.0005; +#include //CkovAngle() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -AliHMPIDRecon::AliHMPIDRecon():TTask("RichRec","RichPat"), - fRadNmean(1.292), +AliHMPIDRecon::AliHMPIDRecon(): + TNamed("RichRec","RichPat"), fPhotCnt(-1), + fPhotFlag(0x0), + fPhotClusIndex(0x0), + fPhotCkov(0x0), + fPhotPhi(0x0), + fPhotWei(0x0), fCkovSigma2(0), fIsWEIGHT(kFALSE), fDTheta(0.001), fWindowWidth(0.045), - fTrkDir(TVector3(0,0,1)),fTrkPos(TVector2(30,40)) + fRingArea(0), + fRingAcc(0), + fTrkDir(0,0,1), // Just for test + fTrkPos(30,40), // Just for test + fMipPos(0,0), + fPc(0,0), + fParam(AliHMPIDParam::Instance()) { -// main ctor - for (Int_t i=0; i<3000; i++) { - fPhotFlag[i] = 0; - fPhotCkov[i] = -1; - fPhotPhi [i] = -1; - fPhotWei [i] = 0; - } +//.. +//init of data members +//.. + + fParam->SetRefIdx(fParam->MeanIdxRad()); // initialization of ref index to a default one +} +//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +void AliHMPIDRecon::InitVars(Int_t n) +{ +//.. +//Init some variables +//.. + if(n<=0) return; + fPhotFlag = new Int_t[n]; + fPhotClusIndex = new Int_t[n]; + fPhotCkov = new Double_t[n]; + fPhotPhi = new Double_t[n]; + fPhotWei = new Double_t[n]; +// +} +//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +void AliHMPIDRecon::DeleteVars()const +{ +//.. +//Delete variables +//.. + delete [] fPhotFlag; + delete [] fPhotClusIndex; + delete [] fPhotCkov; + delete [] fPhotPhi; + delete [] fPhotWei; } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -void AliHMPIDRecon::CkovAngle(AliESDtrack *pTrk,TClonesArray *pCluLst,Double_t nmean) +void AliHMPIDRecon::CkovAngle(AliESDtrack *pTrk,TClonesArray *pCluLst,Int_t index,Double_t nmean,Float_t xRa,Float_t yRa) { // Pattern recognition method based on Hough transform // Arguments: pTrk - track for which Ckov angle is to be found // pCluLst - list of clusters for this chamber // Returns: - track ckov angle, [rad], - - AliHMPIDParam *pParam=AliHMPIDParam::Instance(); + + const Int_t nMinPhotAcc = 3; // Minimum number of photons required to perform the pattern recognition - if(pCluLst->GetEntries()>pParam->MultCut()) fIsWEIGHT = kTRUE; // offset to take into account bkg in reconstruction - else fIsWEIGHT = kFALSE; + Int_t nClusTot = pCluLst->GetEntries(); - Float_t xRa,yRa,th,ph; - pTrk->GetHMPIDtrk(xRa,yRa,th,ph); //initialize this track: th and ph angles at middle of RAD + InitVars(nClusTot); - th=TMath::Pi()- th; // right XYZ local orientation + Float_t xPc,yPc,th,ph; + pTrk->GetHMPIDtrk(xPc,yPc,th,ph); //initialize this track: th and ph angles at middle of RAD SetTrack(xRa,yRa,th,ph); - - fRadNmean=nmean; - Float_t dMin=999,mipX=-1,mipY=-1;Int_t chId=-1,mipId=-1,mipQ=-1; - fPhotCnt=0; + fParam->SetRefIdx(nmean); + + Float_t mipX=-1,mipY=-1; + Int_t chId=-1,mipQ=-1,sizeClu = -1; + + fPhotCnt=0; + + Int_t nPads = 0; + for (Int_t iClu=0; iCluGetEntriesFast();iClu++){//clusters loop - AliHMPIDCluster *pClu=(AliHMPIDCluster*)pCluLst->UncheckedAt(iClu); //get pointer to current cluster + AliHMPIDCluster *pClu=(AliHMPIDCluster*)pCluLst->UncheckedAt(iClu); //get pointer to current cluster + nPads+=pClu->Size(); + if(iClu == index) { // this is the MIP! not a photon candidate: just store mip info + mipX = pClu->X(); + mipY = pClu->Y(); + mipQ=(Int_t)pClu->Q(); + sizeClu=pClu->Size(); + continue; + } chId=pClu->Ch(); - if(pClu->Q()>pParam->QCut()){ //charge compartible with MIP clusters - Float_t dX=fPc.X()-pClu->X(),dY=fPc.Y()-pClu->Y(),d =TMath::Sqrt(dX*dX+dY*dY); //distance between current cluster and intersection point - if( d < dMin) {mipId=iClu; dMin=d;mipX=pClu->X();mipY=pClu->Y();mipQ=(Int_t)pClu->Q();} //current cluster is closer, overwrite data for min cluster - }else{ //charge compatible with photon cluster - Double_t thetaCer,phiCer; - if(FindPhotCkov(pClu->X(),pClu->Y(),thetaCer,phiCer)){ //find ckov angle for this photon candidate - fPhotCkov[fPhotCnt]=thetaCer; //actual theta Cerenkov (in TRS) - fPhotPhi [fPhotCnt]=phiCer; //actual phi Cerenkov (in TRS): -pi to come back to "unusual" ref system (X,Y,-Z) - fPhotCnt++; //increment counter of photon candidates - } + if(pClu->Q()>2*fParam->QCut()) continue; + Double_t thetaCer,phiCer; + if(FindPhotCkov(pClu->X(),pClu->Y(),thetaCer,phiCer)){ //find ckov angle for this photon candidate + fPhotCkov[fPhotCnt]=thetaCer; //actual theta Cerenkov (in TRS) + fPhotPhi [fPhotCnt]=phiCer; + fPhotClusIndex[fPhotCnt]=iClu; //actual phi Cerenkov (in TRS): -pi to come back to "unusual" ref system (X,Y,-Z) + fPhotCnt++; //increment counter of photon candidates } }//clusters loop - Int_t iNacc=FlagPhot(HoughResponse()); //flag photons according to individual theta ckov with respect to most probable - pTrk->SetHMPIDmip(mipX,mipY,mipQ,iNacc); //store mip info - if(mipId==-1) {pTrk->SetHMPIDsignal(kMipQdcCut); return;} //no clusters with QDC more the threshold at all - if(dMin>pParam->DistCut()) {pTrk->SetHMPIDsignal(kMipDistCut); return;} //closest cluster with enough charge is still too far from intersection - pTrk->SetHMPIDcluIdx(chId,mipId); //set index of cluster - if(iNacc<1) pTrk->SetHMPIDsignal(kNoPhotAccept); //no photon candidates is accepted - else pTrk->SetHMPIDsignal(FindRingCkov(pCluLst->GetEntries())); //find best Theta ckov for ring i.e. track + pTrk->SetHMPIDmip(mipX,mipY,mipQ,fPhotCnt); //store mip info in any case + pTrk->SetHMPIDcluIdx(chId,index+1000*sizeClu); //set index of cluster + + if(fPhotCntSetHMPIDsignal(kNoPhotAccept); //set the appropriate flag + return; + } + + fMipPos.Set(mipX,mipY); + +//PATTERN RECOGNITION STARTED: + if(fPhotCnt>fParam->MultCut()) fIsWEIGHT = kTRUE; // offset to take into account bkg in reconstruction + else fIsWEIGHT = kFALSE; + + Int_t iNrec=FlagPhot(HoughResponse(),pCluLst,pTrk); //flag photons according to individual theta ckov with respect to most probable - pTrk->SetHMPIDchi2(fCkovSigma2); //errors squared + pTrk->SetHMPIDmip(mipX,mipY,mipQ,iNrec); //store mip info -}//ThetaCerenkov() + if(iNrecSetHMPIDsignal(kNoPhotAccept); //no photon candidates are accepted + return; + } + + Int_t occupancy = (Int_t)(1000*(nPads/(6.*80.*48.))); + + Double_t thetaC = FindRingCkov(pCluLst->GetEntries()); //find the best reconstructed theta Cherenkov +// FindRingGeom(thetaC,2); + pTrk->SetHMPIDsignal(thetaC+occupancy); //store theta Cherenkov and chmaber occupancy + pTrk->SetHMPIDchi2(fCkovSigma2); //store experimental ring angular resolution squared + + DeleteVars(); +}//CkovAngle() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Bool_t AliHMPIDRecon::FindPhotCkov(Double_t cluX,Double_t cluY,Double_t &thetaCer,Double_t &phiCer) { @@ -112,24 +171,21 @@ Bool_t AliHMPIDRecon::FindPhotCkov(Double_t cluX,Double_t cluY,Double_t &thetaCe TVector3 dirCkov; - Double_t zRad= 0.5*AliHMPIDRecon::fgkRadThick - +AliHMPIDRecon::fgkWinThick - +AliHMPIDRecon::fgkGapThick; //z position of middle of RAD - - TVector3 rad(fTrkPos.X(),fTrkPos.Y(),zRad); //impact point at middle of RAD - TVector3 pc(cluX,cluY,0); //mip at PC: z=0 @ PC + Double_t zRad= -0.5*fParam->RadThick()-0.5*fParam->WinThick(); //z position of middle of RAD + TVector3 rad(fTrkPos.X(),fTrkPos.Y(),zRad); //impact point at middle of RAD + TVector3 pc(cluX,cluY,0.5*fParam->WinThick()+fParam->GapIdx()); //mip at PC Double_t cluR = TMath::Sqrt((cluX-fTrkPos.X())*(cluX-fTrkPos.X())+ (cluY-fTrkPos.Y())*(cluY-fTrkPos.Y()));//ref. distance impact RAD-CLUSTER - Double_t phi=(pc-rad).Phi(); //phi of photon + Double_t phi=(pc-rad).Phi(); //phi of photon Double_t ckov1=0; - Double_t ckov2=TMath::Pi()-fTrkDir.Theta()+0.75; //start to find theta cerenkov in DRS + Double_t ckov2=0.75+fTrkDir.Theta(); //start to find theta cerenkov in DRS const Double_t kTol=0.01; Int_t iIterCnt = 0; while(1){ if(iIterCnt>=50) return kFALSE; Double_t ckov=0.5*(ckov1+ckov2); - dirCkov.SetMagThetaPhi(1,TMath::Pi()-ckov,phi); + dirCkov.SetMagThetaPhi(1,ckov,phi); TVector2 posC=TraceForward(dirCkov); //trace photon with actual angles Double_t dist=cluR-(posC-fTrkPos).Mod(); //get distance between trial point and cluster position if(posC.X()==-999) dist = - 999; //total reflection problem @@ -138,8 +194,7 @@ Bool_t AliHMPIDRecon::FindPhotCkov(Double_t cluX,Double_t cluY,Double_t &thetaCe else if(dist<-kTol) ckov2=ckov; //cluster @ smaller ckov else{ //precision achived: ckov in DRS found dirCkov.SetMagThetaPhi(1,ckov,phi); // - RecPhot(dirCkov,thetaCer,phiCer); //find ckov (in TRS:the effective Cherenkov angle!) - thetaCer = TMath::Pi() - thetaCer; + Lors2Trs(dirCkov,thetaCer,phiCer); //find ckov (in TRS:the effective Cherenkov angle!) return kTRUE; } } @@ -150,32 +205,32 @@ TVector2 AliHMPIDRecon::TraceForward(TVector3 dirCkov)const //Trace forward a photon from (x,y) up to PC // Arguments: dirCkov photon vector in LORS // Returns: pos of traced photon at PC + TVector2 pos(-999,-999); - Double_t thetaCer = TMath::Pi()-dirCkov.Theta(); - if(thetaCer > TMath::ASin(1./fRadNmean)) return pos; //total refraction on WIN-GAP boundary - Double_t zRad= 0.5*AliHMPIDRecon::fgkRadThick - +AliHMPIDRecon::fgkWinThick - +AliHMPIDRecon::fgkGapThick; //z position of middle of RAD - TVector3 posCkov(fTrkPos.X(),fTrkPos.Y(),zRad); //RAD: photon position is track position @ middle of RAD - Propagate(dirCkov,posCkov,fgkWinThick+fgkGapThick); //go to RAD-WIN boundary - Refract (dirCkov, fRadNmean,fgkWinIdx ); //RAD-WIN refraction - Propagate(dirCkov,posCkov, fgkGapThick); //go to WIN-GAP boundary - Refract (dirCkov, fgkWinIdx,fgkGapIdx ); //WIN-GAP refraction - Propagate(dirCkov,posCkov, 0); //go to PC + Double_t thetaCer = dirCkov.Theta(); + if(thetaCer > TMath::ASin(1./fParam->GetRefIdx())) return pos; //total refraction on WIN-GAP boundary + Double_t zRad= -0.5*fParam->RadThick()-0.5*fParam->WinThick(); //z position of middle of RAD + TVector3 posCkov(fTrkPos.X(),fTrkPos.Y(),zRad); //RAD: photon position is track position @ middle of RAD + Propagate(dirCkov,posCkov, -0.5*fParam->WinThick()); //go to RAD-WIN boundary + Refract (dirCkov, fParam->GetRefIdx(),fParam->WinIdx()); //RAD-WIN refraction + Propagate(dirCkov,posCkov, 0.5*fParam->WinThick()); //go to WIN-GAP boundary + Refract (dirCkov, fParam->WinIdx(),fParam->GapIdx()); //WIN-GAP refraction + Propagate(dirCkov,posCkov,0.5*fParam->WinThick()+fParam->GapThick()); //go to PC pos.Set(posCkov.X(),posCkov.Y()); return pos; }//TraceForward() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -void AliHMPIDRecon::RecPhot(TVector3 dirCkov,Double_t &thetaCer,Double_t &phiCer) +void AliHMPIDRecon::Lors2Trs(TVector3 dirCkov,Double_t &thetaCer,Double_t &phiCer)const { //Theta Cerenkov reconstruction - // Arguments: (x,y) of initial point in LORS, dirCkov photon vector in LORS - // Returns: thetaCer theta cerenkov reconstructed + // Arguments: dirCkov photon vector in LORS + // Returns: thetaCer of photon in TRS + // phiCer of photon in TRS // TVector3 dirTrk; // dirTrk.SetMagThetaPhi(1,fTrkDir.Theta(),fTrkDir.Phi()); // Double_t thetaCer = TMath::ACos(dirCkov*dirTrk); - TRotation mtheta; mtheta.RotateY(- fTrkDir.Theta()); - TRotation mphi; mphi.RotateZ(- fTrkDir.Phi()); + TRotation mtheta; mtheta.RotateY(-fTrkDir.Theta()); + TRotation mphi; mphi.RotateZ(-fTrkDir.Phi()); TRotation mrot=mtheta*mphi; TVector3 dirCkovTRS; dirCkovTRS=mrot*dirCkov; @@ -183,21 +238,99 @@ void AliHMPIDRecon::RecPhot(TVector3 dirCkov,Double_t &thetaCer,Double_t &phiCer thetaCer= dirCkovTRS.Theta(); //actual value of thetaCerenkov of the photon } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -Double_t AliHMPIDRecon::FindRingArea(Double_t ckovAng)const +void AliHMPIDRecon::Trs2Lors(TVector3 dirCkov,Double_t &thetaCer,Double_t &phiCer)const { -// Find area inside the cerenkov ring which lays inside PCs -// Arguments: ckovAng - cerenkov angle + //Theta Cerenkov reconstruction + // Arguments: dirCkov photon vector in TRS + // Returns: thetaCer of photon in LORS + // phiCer of photon in LORS + TRotation mtheta; mtheta.RotateY(fTrkDir.Theta()); + TRotation mphi; mphi.RotateZ(fTrkDir.Phi()); + TRotation mrot=mphi*mtheta; + TVector3 dirCkovLORS; + dirCkovLORS=mrot*dirCkov; + phiCer = dirCkovLORS.Phi(); //actual value of the phi of the photon + thetaCer= dirCkovLORS.Theta(); //actual value of thetaCerenkov of the photon +} +//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +void AliHMPIDRecon::FindRingGeom(Double_t ckovAng,Int_t level) +{ +// Find area covered in the PC acceptance +// Arguments: ckovAng - cerenkov angle +// level - precision in finding area and portion of ring accepted (multiple of 50) // Returns: area of the ring in cm^2 for given theta ckov - const Int_t kN=100; + Int_t kN=50*level; + Int_t nPoints = 0; Double_t area=0; + + Bool_t first=kFALSE; + TVector2 pos1; + for(Int_t i=0;iIsInside(pos1.X(),pos1.Y(),0)) { + pos1 = IntWithEdge(fMipPos,pos1); // find the very first intersection... + } else { + if(!AliHMPIDParam::IsInDead(pos1.X(),pos1.Y())) nPoints++; //photon is accepted if not in dead zone + } + first=kTRUE; + continue; + } + TVector2 pos2=TracePhot(ckovAng,Double_t(TMath::TwoPi()*(i+1)/kN)); //trace the next photon + if(pos2.X()==-999) continue; //no area: open ring + if(!fParam->IsInside(pos2.X(),pos2.Y(),0)) { + pos2 = IntWithEdge(fMipPos,pos2); + } else { + if(!AliHMPIDParam::IsInDead(pos2.X(),pos2.Y())) nPoints++; //photon is accepted if not in dead zone + } + area+=TMath::Abs((pos1-fMipPos).X()*(pos2-fMipPos).Y()-(pos1-fMipPos).Y()*(pos2-fMipPos).X()); //add area of the triangle... + pos1 = pos2; } - return area; -}//FindRingArea() +//--- find area and length of the ring; + fRingAcc = (Double_t)nPoints/(Double_t)kN; + area*=0.5; + fRingArea = area; +}//FindRingGeom() +//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +TVector2 AliHMPIDRecon::IntWithEdge(TVector2 p1,TVector2 p2)const +{ +// It finds the intersection of the line for 2 points traced as photons +// and the edge of a given PC +// Arguments: 2 points obtained tracing the photons +// Returns: intersection point with detector (PC) edges + + Double_t xmin = (p1.X()=0 && pint.X()<=fParam->SizeAllX() && + pint.X()>=xmin && pint.X()<=xmax && + pint.Y()>=ymin && pint.Y()<=ymax) return pint; + //intersection with high X + pint.Set((Double_t)(p1.X() + (fParam->SizeAllY()-p1.Y())/m),(Double_t)(fParam->SizeAllY())); + if(pint.X()>=0 && pint.X()<=fParam->SizeAllX() && + pint.X()>=xmin && pint.X()<=xmax && + pint.Y()>=ymin && pint.Y()<=ymax) return pint; + //intersection with left Y + pint.Set(0.,(Double_t)(p1.Y() + m*(0-p1.X()))); + if(pint.Y()>=0 && pint.Y()<=fParam->SizeAllY() && + pint.Y()>=ymin && pint.Y()<=ymax && + pint.X()>=xmin && pint.X()<=xmax) return pint; + //intersection with righ Y + pint.Set((Double_t)(fParam->SizeAllX()),(Double_t)(p1.Y() + m*(fParam->SizeAllX()-p1.X()))); + if(pint.Y()>=0 && pint.Y()<=fParam->SizeAllY() && + pint.Y()>=ymin && pint.Y()<=ymax && + pint.X()>=xmin && pint.X()<=xmax) return pint; + return p1; +}//IntWithEdge() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Double_t AliHMPIDRecon::FindRingCkov(Int_t) { @@ -219,7 +352,7 @@ Double_t AliHMPIDRecon::FindRingCkov(Int_t) weightThetaCerenkov += fPhotCkov[i]*fPhotWei[i]; wei += fPhotWei[i]; //collect weight as sum of all candidate weghts - sigma2 += 1./Sigma2(fPhotCkov[i],fPhotPhi[i]); + sigma2 += 1./fParam->Sigma2(fTrkDir.Theta(),fTrkDir.Phi(),fPhotCkov[i],fPhotPhi[i]); } }//candidates loop @@ -230,7 +363,7 @@ Double_t AliHMPIDRecon::FindRingCkov(Int_t) return weightThetaCerenkov; }//FindCkovRing() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -Int_t AliHMPIDRecon::FlagPhot(Double_t ckov) +Int_t AliHMPIDRecon::FlagPhot(Double_t ckov,TClonesArray *pCluLst, AliESDtrack *pTrk) { // Flag photon candidates if their individual ckov angle is inside the window around ckov angle returned by HoughResponse() // Arguments: ckov- value of most probable ckov angle for track as returned by HoughResponse() @@ -250,29 +383,40 @@ Int_t AliHMPIDRecon::FlagPhot(Double_t ckov) Int_t iInsideCnt = 0; //count photons which Theta ckov inside the window for(Int_t i=0;i= tmin && fPhotCkov[i] <= tmax) { - fPhotFlag[i]=2; + fPhotFlag[i] = 0; + if(fPhotCkov[i] >= tmin && fPhotCkov[i] <= tmax) { + fPhotFlag[i]=2; + AddObjectToFriends(pCluLst,i,pTrk); iInsideCnt++; } } + return iInsideCnt; + }//FlagPhot() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +void AliHMPIDRecon::AddObjectToFriends(TClonesArray *pCluLst, Int_t photonIndex, AliESDtrack *pTrk) +{ +// Add AliHMPIDcluster object to ESD friends + + AliHMPIDCluster *pClu=(AliHMPIDCluster*)pCluLst->UncheckedAt(fPhotClusIndex[photonIndex]); + AliHMPIDCluster *pClus = new AliHMPIDCluster(*pClu); + pClus->SetChi2(fPhotCkov[photonIndex]); + pTrk->AddCalibObject(pClus); +} +//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ TVector2 AliHMPIDRecon::TracePhot(Double_t ckovThe,Double_t ckovPhi)const { // Trace a single Ckov photon from emission point somewhere in radiator up to photocathode taking into account ref indexes of materials it travereses -// Arguments: ckovThe,ckovPhi- photon ckov angles in DRS, [rad] +// Arguments: ckovThe,ckovPhi- photon ckov angles in TRS, [rad] // Returns: distance between photon point on PC and track projection - TRotation mtheta; mtheta.RotateY(fTrkDir.Theta()); - TRotation mphi; mphi.RotateZ(fTrkDir.Phi()); - TRotation mrot=mphi*mtheta; - TVector3 dirCkov,dirCkovTors; - - ckovThe = TMath::Pi()-ckovThe; - dirCkovTors.SetMagThetaPhi(1,ckovThe,ckovPhi); //initially photon is directed according to requested ckov angle - dirCkov=mrot*dirCkovTors; //now we know photon direction in LORS - return TraceForward(dirCkov); + Double_t theta,phi; + TVector3 dirTRS,dirLORS; + dirTRS.SetMagThetaPhi(1,ckovThe,ckovPhi); //photon in TRS + Trs2Lors(dirTRS,theta,phi); + dirLORS.SetMagThetaPhi(1,theta,phi); //photon in LORS + return TraceForward(dirLORS); //now foward tracing }//TracePhot() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDRecon::Propagate(const TVector3 dir,TVector3 &pos,Double_t z)const @@ -298,15 +442,16 @@ void AliHMPIDRecon::Refract(TVector3 &dir,Double_t n1,Double_t n2)const // n2 - ref idx of second substance // Returns: none // On exit: dir is new direction - Double_t sinref=(n1/n2)*TMath::Sin(TMath::Pi()-dir.Theta()); - if(sinref>1.) dir.SetXYZ(-999,-999,-999); - else dir.SetTheta(TMath::Pi()-TMath::ASin(sinref)); + Double_t sinref=(n1/n2)*TMath::Sin(dir.Theta()); + if(TMath::Abs(sinref)>1.) dir.SetXYZ(-999,-999,-999); + else dir.SetTheta(TMath::ASin(sinref)); }//Refract() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Double_t AliHMPIDRecon::HoughResponse() { // -// +// fIdxMip = mipId; + // Double_t kThetaMax=0.75; Int_t nChannels = (Int_t)(kThetaMax/fDTheta+0.5); @@ -322,8 +467,12 @@ Double_t AliHMPIDRecon::HoughResponse() Int_t bin = (Int_t)(0.5+angle/(fDTheta)); Double_t weight=1.; if(fIsWEIGHT){ - Double_t lowerlimit = ((Double_t)bin)*fDTheta - 0.5*fDTheta; Double_t upperlimit = ((Double_t)bin)*fDTheta + 0.5*fDTheta; - Double_t diffArea = FindRingArea(upperlimit)-FindRingArea(lowerlimit); + Double_t lowerlimit = ((Double_t)bin)*fDTheta - 0.5*fDTheta; Double_t upperlimit = ((Double_t)bin)*fDTheta + 0.5*fDTheta; + FindRingGeom(lowerlimit); + Double_t areaLow = GetRingArea(); + FindRingGeom(upperlimit); + Double_t areaHigh = GetRingArea(); + Double_t diffArea = areaHigh - areaLow; if(diffArea>0) weight = 1./diffArea; } photsw->Fill(angle,weight); @@ -338,102 +487,43 @@ Double_t AliHMPIDRecon::HoughResponse() Double_t sumPhots=phots->Integral(bin1,bin2); if(sumPhots<3) continue; // if less then 3 photons don't trust to this ring Double_t sumPhotsw=photsw->Integral(bin1,bin2); + if((Double_t)((i+0.5)*fDTheta)>0.7) continue; resultw->Fill((Double_t)((i+0.5)*fDTheta),sumPhotsw); } // evaluate the "BEST" theta ckov as the maximum value of histogramm Double_t *pVec = resultw->GetArray(); Int_t locMax = TMath::LocMax(nBin,pVec); - phots->Delete();photsw->Delete();resultw->Delete(); // Reset and delete objects + delete phots;delete photsw;delete resultw; // Reset and delete objects return (Double_t)(locMax*fDTheta+0.5*fDTheta); //final most probable track theta ckov }//HoughResponse() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -Double_t AliHMPIDRecon::Sigma2(Double_t ckovTh, Double_t ckovPh)const + Double_t AliHMPIDRecon::FindRingExt(Double_t ckov,Int_t ch,Double_t xPc,Double_t yPc,Double_t thRa,Double_t phRa) { -// Analithical calculation of total error (as a sum of localization, geometrical and chromatic errors) on Cerenkov angle for a given Cerenkov photon -// created by a given MIP. Fromulae according to CERN-EP-2000-058 -// Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians] -// dip and azimuthal angles for MIP taken at the entrance to radiator, [radians] -// MIP beta -// Returns: absolute error on Cerenkov angle, [radians] +// To find the acceptance of the ring even from external inputs. +// +// + Double_t xRa = xPc - (fParam->RadThick()+fParam->WinThick()+fParam->GapThick())*TMath::Cos(phRa)*TMath::Tan(thRa); //just linear extrapolation back to RAD + Double_t yRa = yPc - (fParam->RadThick()+fParam->WinThick()+fParam->GapThick())*TMath::Sin(phRa)*TMath::Tan(thRa); - TVector3 v(-999,-999,-999); - Double_t trkBeta = 1./(TMath::Cos(ckovTh)*fRadNmean); - - v.SetX(SigLoc (ckovTh,ckovPh,trkBeta)); - v.SetY(SigGeom(ckovTh,ckovPh,trkBeta)); - v.SetZ(SigCrom(ckovTh,ckovPh,trkBeta)); - - return v.Mag2(); -} -//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -Double_t AliHMPIDRecon::SigLoc(Double_t thetaC, Double_t phiC,Double_t betaM)const -{ -// Analithical calculation of localization error (due to finite segmentation of PC) on Cerenkov angle for a given Cerenkov photon -// created by a given MIP. Fromulae according to CERN-EP-2000-058 -// Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians] -// dip and azimuthal angles for MIP taken at the entrance to radiator, [radians] -// MIP beta -// Returns: absolute error on Cerenkov angle, [radians] - Double_t phiDelta = phiC - fTrkDir.Phi(); + Int_t nStep = 500; + Int_t nPhi = 0; - Double_t alpha =TMath::Cos(fTrkDir.Theta())-TMath::Tan(thetaC)*TMath::Cos(phiDelta)*TMath::Sin(fTrkDir.Theta()); - Double_t k = 1.-fRadNmean*fRadNmean+alpha*alpha/(betaM*betaM); - if (k<0) return 1e10; - - Double_t mu =TMath::Sin(fTrkDir.Theta())*TMath::Sin(fTrkDir.Phi())+TMath::Tan(thetaC)*(TMath::Cos(fTrkDir.Theta())*TMath::Cos(phiDelta)*TMath::Sin(fTrkDir.Phi())+TMath::Sin(phiDelta)*TMath::Cos(fTrkDir.Phi())); - Double_t e =TMath::Sin(fTrkDir.Theta())*TMath::Cos(fTrkDir.Phi())+TMath::Tan(thetaC)*(TMath::Cos(fTrkDir.Theta())*TMath::Cos(phiDelta)*TMath::Cos(fTrkDir.Phi())-TMath::Sin(phiDelta)*TMath::Sin(fTrkDir.Phi())); - - Double_t kk = betaM*TMath::Sqrt(k)/(8*alpha); - Double_t dtdxc = kk*(k*(TMath::Cos(phiDelta)*TMath::Cos(fTrkDir.Phi())-TMath::Cos(fTrkDir.Theta())*TMath::Sin(phiDelta)*TMath::Sin(fTrkDir.Phi()))-(alpha*mu/(betaM*betaM))*TMath::Sin(fTrkDir.Theta())*TMath::Sin(phiDelta)); - Double_t dtdyc = kk*(k*(TMath::Cos(phiDelta)*TMath::Sin(fTrkDir.Phi())+TMath::Cos(fTrkDir.Theta())*TMath::Sin(phiDelta)*TMath::Cos(fTrkDir.Phi()))+(alpha* e/(betaM*betaM))*TMath::Sin(fTrkDir.Theta())*TMath::Sin(phiDelta)); - - return TMath::Sqrt(0.2*0.2*dtdxc*dtdxc + 0.25*0.25*dtdyc*dtdyc); -} -//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -Double_t AliHMPIDRecon::SigCrom(Double_t thetaC, Double_t phiC,Double_t betaM)const -{ -// Analithical calculation of chromatic error (due to lack of knowledge of Cerenkov photon energy) on Cerenkov angle for a given Cerenkov photon -// created by a given MIP. Fromulae according to CERN-EP-2000-058 -// Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians] -// dip and azimuthal angles for MIP taken at the entrance to radiator, [radians] -// MIP beta -// Returns: absolute error on Cerenkov angle, [radians] - Double_t phiDelta = phiC - fTrkDir.Phi(); - Double_t alpha =TMath::Cos(fTrkDir.Theta())-TMath::Tan(thetaC)*TMath::Cos(phiDelta)*TMath::Sin(fTrkDir.Theta()); - - Double_t dtdn = TMath::Cos(fTrkDir.Theta())*fRadNmean*betaM*betaM/(alpha*TMath::Tan(thetaC)); - - Double_t f = 0.00928*(7.75-5.635)/TMath::Sqrt(12.); - - return f*dtdn; -}//SigCrom() -//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -Double_t AliHMPIDRecon::SigGeom(Double_t thetaC, Double_t phiC,Double_t betaM)const -{ -// Analithical calculation of geometric error (due to lack of knowledge of creation point in radiator) on Cerenkov angle for a given Cerenkov photon -// created by a given MIP. Formulae according to CERN-EP-2000-058 -// Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians] -// dip and azimuthal angles for MIP taken at the entrance to radiator, [radians] -// MIP beta -// Returns: absolute error on Cerenkov angle, [radians] - - Double_t phiDelta = phiC - fTrkDir.Phi(); - Double_t alpha =TMath::Cos(fTrkDir.Theta())-TMath::Tan(thetaC)*TMath::Cos(phiDelta)*TMath::Sin(fTrkDir.Theta()); - - Double_t k = 1.-fRadNmean*fRadNmean+alpha*alpha/(betaM*betaM); - if (k<0) return 1e10; - - Double_t eTr = 0.5*1.5*betaM*TMath::Sqrt(k)/(8*alpha); - Double_t lambda = 1.-TMath::Sin(fTrkDir.Theta())*TMath::Sin(fTrkDir.Theta())*TMath::Sin(phiC)*TMath::Sin(phiC); - - Double_t c = 1./(1.+ eTr*k/(alpha*alpha*TMath::Cos(thetaC)*TMath::Cos(thetaC))); - Double_t i = betaM*TMath::Tan(thetaC)*lambda*TMath::Power(k,1.5); - Double_t ii = 1.+eTr*betaM*i; - - Double_t err = c * (i/(alpha*alpha*8) + ii*(1.-lambda) / ( alpha*alpha*8*betaM*(1.+eTr)) ); - Double_t trErr = 1.5/(TMath::Sqrt(12.)*TMath::Cos(fTrkDir.Theta())); - - return trErr*err; -}//SigGeom() -//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ + Int_t ipc,ipadx,ipady; + + if(ckov>0){ + SetTrack(xRa,yRa,thRa,phRa); + for(Int_t j=0;jIsInDead(pos.X(),pos.Y())) continue; + fParam->Lors2Pad(pos.X(),pos.Y(),ipc,ipadx,ipady); + ipadx+=(ipc%2)*fParam->kPadPcX; + ipady+=(ipc/2)*fParam->kPadPcY; + if(ipadx<0 || ipady>160 || ipady<0 || ipady>144 || ch<0 || ch>6) continue; + if(fParam->IsDeadPad(ipadx,ipady,ch)) continue; + nPhi++; + }//point loop + return ((Double_t)nPhi/(Double_t)nStep); + }//if + return -1; +}