X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=ITS%2FAliITSRecoParam.h;h=62a2b207b306e7766bc5d03f869f2a30543e9f08;hb=a4d010b146a124fb5fd0b520b2eeca4ca47d5476;hp=99d3725ba582f88f5bb8695ce060f4f1f890fecb;hpb=c7d6d7b74d79077932cbbf4f9cdbea9f2ed3d794;p=u%2Fmrichter%2FAliRoot.git diff --git a/ITS/AliITSRecoParam.h b/ITS/AliITSRecoParam.h index 99d3725ba58..62a2b207b30 100644 --- a/ITS/AliITSRecoParam.h +++ b/ITS/AliITSRecoParam.h @@ -15,6 +15,9 @@ #include "AliDetectorRecoParam.h" #include "AliITSgeomTGeo.h" +//#include "AliESDV0Params.h" + +class AliESDV0Params; class AliITSRecoParam : public AliDetectorRecoParam { @@ -29,10 +32,10 @@ class AliITSRecoParam : public AliDetectorRecoParam static Int_t GetLayersNotToSkip(Int_t i) { return fgkLayersNotToSkip[i]; } static Int_t GetLastLayerToTrackTo() { return fgkLastLayerToTrackTo; } - static Int_t GetMaxClusterPerLayer() { return fgkMaxClusterPerLayer; } - static Int_t GetMaxClusterPerLayer5() { return fgkMaxClusterPerLayer5; } - static Int_t GetMaxClusterPerLayer10() { return fgkMaxClusterPerLayer10; } - static Int_t GetMaxClusterPerLayer20() { return fgkMaxClusterPerLayer20; } + static Int_t GetMaxClusterPerLayer() { return kMaxClusterPerLayer; } + static Int_t GetMaxClusterPerLayer5() { return kMaxClusterPerLayer5; } + static Int_t GetMaxClusterPerLayer10() { return kMaxClusterPerLayer10; } + static Int_t GetMaxClusterPerLayer20() { return kMaxClusterPerLayer20; } static Int_t GetMaxDetectorPerLayer() { return fgkMaxDetectorPerLayer; } static Double_t Getriw() { return fgkriw; } static Double_t Getdiw() { return fgkdiw; } @@ -63,6 +66,81 @@ class AliITSRecoParam : public AliDetectorRecoParam static Double_t GetSPDdetzlength() { return fgkSPDdetzlength; } static Double_t GetSPDdetxlength() { return fgkSPDdetxlength; } + void PrintParameters() const; + + void SetTracker(Int_t tracker=0) { fTracker=tracker; } + void SetTrackerDefault() { SetTracker(0); } // = MI and SA + void SetTrackerMI() { SetTracker(1); } + void SetTrackerV2() { SetTracker(2); } + Int_t GetTracker() const { return fTracker; } + void SetTrackerSAOnly(Bool_t flag=kTRUE) { fITSonly=flag; } + Bool_t GetTrackerSAOnly() const { return fITSonly; } + void SetVertexer(Int_t vertexer=0) { fVertexer=vertexer; } + void SetVertexer3D() { SetVertexer(0); } + void SetVertexerZ() { SetVertexer(1); } + void SetVertexerCosmics() { SetVertexer(2); } + void SetVertexerIons() { SetVertexer(3); } + void SetVertexerSmearMC(Float_t smearx=0.005, Float_t smeary=0.005, Float_t smearz=0.01) { + fVertexerFastSmearX=smearx; fVertexerFastSmearY=smeary; fVertexerFastSmearZ=smearz; SetVertexer(4); + } + void SetVertexerFixedOnTDI() {SetVertexer(5);} // for injection tests + void SetVertexerFixedOnTED() {SetVertexer(6);} // for injection tests + Int_t GetVertexer() const { return fVertexer; } + Float_t GetVertexerFastSmearX() const {return fVertexerFastSmearX;} + Float_t GetVertexerFastSmearY() const {return fVertexerFastSmearY;} + Float_t GetVertexerFastSmearZ() const {return fVertexerFastSmearZ;} + + void SetPID(Int_t pid=0) {fPID=pid;} + void SetDefaultPID() {SetPID(0);} + void SetLandauFitPID() {SetPID(1);} + Int_t GetPID() const {return fPID;} + + void SetVertexer3DFiducialRegions(Float_t dzwid=40.0, Float_t drwid=2.5, Float_t dznar=0.5, Float_t drnar=0.5){ + SetVertexer3DWideFiducialRegion(dzwid,drwid); + SetVertexer3DNarrowFiducialRegion(dznar,drnar); + } + void SetVertexer3DWideFiducialRegion(Float_t dz=40.0, Float_t dr=2.5){ + fVtxr3DZCutWide=dz; fVtxr3DRCutWide=dr; + } + void SetVertexer3DNarrowFiducialRegion(Float_t dz=0.5, Float_t dr=0.5){ + fVtxr3DZCutNarrow=dz; fVtxr3DRCutNarrow=dr; + } + void SetVertexer3DDeltaPhiCuts(Float_t dphiloose=0.5, Float_t dphitight=0.025){ + fVtxr3DPhiCutLoose=dphiloose; + fVtxr3DPhiCutTight=dphitight; + } + void SetVertexer3DDCACut(Float_t dca=0.1){ + fVtxr3DDCACut=dca; + } + void SetVertexer3DDefaults(){ + SetVertexer3DFiducialRegions(); + SetVertexer3DDeltaPhiCuts(); + SetVertexer3DDCACut(); + } + void SetSPDVertexerPileupAlgoOff(){fVtxr3DPileupAlgo=3;} + void SetSPDVertexerPileupAlgoZ(){fVtxr3DPileupAlgo=0;} + void SetSPDVertexerPileupAlgo3DTwoSteps(){fVtxr3DPileupAlgo=1;} + void SetSPDVertexerPileupAlgo3DOneShot(){fVtxr3DPileupAlgo=2;} + void SetSPDVertexerHighMultAlgoDownscale(){fVtxr3DHighMultAlgo=0;} + void SetSPDVertexerHighMultAlgoTraces(){fVtxr3DHighMultAlgo=1;} + // + Bool_t GetSelectBestMIP03() const {return fSelectBestMIP03;} + Bool_t GetFlagFakes() const {return fFlagFakes;} + Bool_t GetUseImproveKalman() const {return fUseImproveKalman;} + void SetSelectBestMIP03(Bool_t v=kTRUE) {fSelectBestMIP03 = v;} + void SetFlagFakes(Bool_t v=kTRUE) {fFlagFakes = v;} + void SetUseImproveKalman(Bool_t v=kTRUE) {fUseImproveKalman = v;} + // + Float_t GetVertexer3DWideFiducialRegionZ() const {return fVtxr3DZCutWide;} + Float_t GetVertexer3DWideFiducialRegionR() const {return fVtxr3DRCutWide;} + Float_t GetVertexer3DNarrowFiducialRegionZ() const {return fVtxr3DZCutNarrow;} + Float_t GetVertexer3DNarrowFiducialRegionR() const {return fVtxr3DRCutNarrow;} + Float_t GetVertexer3DLooseDeltaPhiCut() const {return fVtxr3DPhiCutLoose;} + Float_t GetVertexer3DTightDeltaPhiCut() const {return fVtxr3DPhiCutTight;} + Float_t GetVertexer3DDCACut() const {return fVtxr3DDCACut;} + Int_t GetSPDVertexerPileupAlgo() const {return fVtxr3DPileupAlgo;} + UChar_t GetSPDVertexerHighMultAlgo() const {return fVtxr3DHighMultAlgo;} + Double_t GetSigmaY2(Int_t i) const { return fSigmaY2[i]; } Double_t GetSigmaZ2(Int_t i) const { return fSigmaZ2[i]; } @@ -76,6 +154,8 @@ class AliITSRecoParam : public AliDetectorRecoParam Double_t GetNSigma2RoadZC() const { return fNSigma2RoadZC; } Double_t GetNSigma2RoadYNonC() const { return fNSigma2RoadYNonC; } Double_t GetNSigma2RoadZNonC() const { return fNSigma2RoadZNonC; } + Double_t GetRoadMisal() const { return fRoadMisal; } + void SetRoadMisal(Double_t road=0) { fRoadMisal=road; } Double_t GetChi2PerCluster() const { return fChi2PerCluster; } Double_t GetMaxChi2PerCluster(Int_t i) const { return fMaxChi2PerCluster[i]; } @@ -89,6 +169,9 @@ class AliITSRecoParam : public AliDetectorRecoParam Double_t GetMaxRoad() const { return fMaxRoad; } Double_t GetMaxNormChi2ForGolden(Int_t i) const { return 3.+0.5*i; } + void SetSearchForExtraClusters(Bool_t opt=kTRUE){ fSearchForExtras=opt; } + Double_t GetSearchForExtraClusters() const { return fSearchForExtras; } + Double_t GetXVdef() const { return fXV; } Double_t GetYVdef() const { return fYV; } Double_t GetZVdef() const { return fZV; } @@ -111,33 +194,126 @@ class AliITSRecoParam : public AliDetectorRecoParam Double_t GetSigmaZDeadZoneHit2() const { return fSigmaZDeadZoneHit2; } Double_t GetXPassDeadZoneHits() const { return fXPassDeadZoneHits; } - + Bool_t GetSkipSubdetsNotInTriggerCluster() const { return fSkipSubdetsNotInTriggerCluster; } + void SetSkipSubdetsNotInTriggerCluster(Bool_t flag=kTRUE) { fSkipSubdetsNotInTriggerCluster=flag; } void SetUseTGeoInTracker(Int_t use=1) { fUseTGeoInTracker=use; return; } Int_t GetUseTGeoInTracker() const { return fUseTGeoInTracker; } + void SetStepSizeTGeo(Double_t size=0.1) { fStepSizeTGeo=size; return; } + Double_t GetStepSizeTGeo() const { return fStepSizeTGeo; } void SetAllowSharedClusters(Bool_t allow=kTRUE) { fAllowSharedClusters=allow; return; } Bool_t GetAllowSharedClusters() const { return fAllowSharedClusters; } void SetClusterErrorsParam(Int_t param=1) { fClusterErrorsParam=param; return; } Int_t GetClusterErrorsParam() const { return fClusterErrorsParam; } + void SetClusterMisalErrorY(Float_t e0,Float_t e1,Float_t e2,Float_t e3,Float_t e4,Float_t e5) { fClusterMisalErrorY[0]=e0; fClusterMisalErrorY[1]=e1; fClusterMisalErrorY[2]=e2; fClusterMisalErrorY[3]=e3; fClusterMisalErrorY[4]=e4; fClusterMisalErrorY[5]=e5; return; } + void SetClusterMisalErrorZ(Float_t e0,Float_t e1,Float_t e2,Float_t e3,Float_t e4,Float_t e5) { fClusterMisalErrorZ[0]=e0; fClusterMisalErrorZ[1]=e1; fClusterMisalErrorZ[2]=e2; fClusterMisalErrorZ[3]=e3; fClusterMisalErrorZ[4]=e4; fClusterMisalErrorZ[5]=e5; return; } + void SetClusterMisalError(Float_t err=0.) { SetClusterMisalErrorY(err,err,err,err,err,err); SetClusterMisalErrorZ(err,err,err,err,err,err); } + void SetClusterMisalErrorYBOn(Float_t e0,Float_t e1,Float_t e2,Float_t e3,Float_t e4,Float_t e5) { fClusterMisalErrorYBOn[0]=e0; fClusterMisalErrorYBOn[1]=e1; fClusterMisalErrorYBOn[2]=e2; fClusterMisalErrorYBOn[3]=e3; fClusterMisalErrorYBOn[4]=e4; fClusterMisalErrorYBOn[5]=e5; return; } + void SetClusterMisalErrorZBOn(Float_t e0,Float_t e1,Float_t e2,Float_t e3,Float_t e4,Float_t e5) { fClusterMisalErrorZBOn[0]=e0; fClusterMisalErrorZBOn[1]=e1; fClusterMisalErrorZBOn[2]=e2; fClusterMisalErrorZBOn[3]=e3; fClusterMisalErrorZBOn[4]=e4; fClusterMisalErrorZBOn[5]=e5; return; } + void SetClusterMisalErrorBOn(Float_t err=0.) { SetClusterMisalErrorYBOn(err,err,err,err,err,err); SetClusterMisalErrorZBOn(err,err,err,err,err,err); } + Float_t GetClusterMisalErrorY(Int_t i,Double_t b=0.) const { return (TMath::Abs(b)<0.0001 ? fClusterMisalErrorY[i] : fClusterMisalErrorYBOn[i]); } + Float_t GetClusterMisalErrorZ(Int_t i,Double_t b=0.) const { return (TMath::Abs(b)<0.0001 ? fClusterMisalErrorZ[i] : fClusterMisalErrorZBOn[i]); } + void SetUseAmplitudeInfo(Bool_t use=kTRUE) { for(Int_t i=0;i=AliITSgeomTGeo::kNLayers) return; fIPlanePlaneEff=i; } + Int_t GetIPlanePlaneEff() const {return fIPlanePlaneEff;} + void SetReadPlaneEffFrom0CDB(Bool_t read=kTRUE) { fReadPlaneEffFromOCDB=read; } + Bool_t GetReadPlaneEffFromOCDB() const { return fReadPlaneEffFromOCDB; } + void SetMinPtPlaneEff(Bool_t ptmin=0.) { fMinPtPlaneEff=ptmin; } + Double_t GetMinPtPlaneEff() const { return fMinPtPlaneEff; } + void SetMaxMissingClustersPlaneEff(Int_t max=0) { fMaxMissingClustersPlaneEff=max;} + Int_t GetMaxMissingClustersPlaneEff() const {return fMaxMissingClustersPlaneEff;} + void SetMaxMissingClustersOutPlaneEff(Int_t max=0) { fMaxMissingClustersOutPlaneEff=max;} + Int_t GetMaxMissingClustersOutPlaneEff() const {return fMaxMissingClustersOutPlaneEff;} + void SetRequireClusterInOuterLayerPlaneEff(Bool_t out=kTRUE) { fRequireClusterInOuterLayerPlaneEff=out;} + Bool_t GetRequireClusterInOuterLayerPlaneEff() const {return fRequireClusterInOuterLayerPlaneEff;} + void SetRequireClusterInInnerLayerPlaneEff(Bool_t in=kTRUE) { fRequireClusterInInnerLayerPlaneEff=in;} + Bool_t GetRequireClusterInInnerLayerPlaneEff() const {return fRequireClusterInInnerLayerPlaneEff;} + void SetOnlyConstraintPlaneEff(Bool_t con=kFALSE) { fOnlyConstraintPlaneEff=con; } + Bool_t GetOnlyConstraintPlaneEff() const { return fOnlyConstraintPlaneEff; } + void SetNSigXFromBoundaryPlaneEff(Double_t nsigx=0.) {if(nsigx<0.)fNSigXFromBoundaryPlaneEff=TMath::Abs(nsigx);else fNSigXFromBoundaryPlaneEff=nsigx;} + Double_t GetNSigXFromBoundaryPlaneEff() const {return fNSigXFromBoundaryPlaneEff;} + void SetNSigZFromBoundaryPlaneEff(Double_t nsigz=0.) {if(nsigz<0.)fNSigZFromBoundaryPlaneEff=TMath::Abs(nsigz);else fNSigZFromBoundaryPlaneEff=nsigz;} + Double_t GetNSigZFromBoundaryPlaneEff() const {return fNSigZFromBoundaryPlaneEff;} + void SetDistXFromBoundaryPlaneEff(Double_t distx=0.) {if(distx<0.)fDistXFromBoundaryPlaneEff=TMath::Abs(distx);else fDistXFromBoundaryPlaneEff=distx;} + Double_t GetDistXFromBoundaryPlaneEff() const {return fDistXFromBoundaryPlaneEff;} + void SetDistZFromBoundaryPlaneEff(Double_t distz=0.) {if(distz<0.)fDistZFromBoundaryPlaneEff=TMath::Abs(distz);else fDistZFromBoundaryPlaneEff=distz;} + Double_t GetDistZFromBoundaryPlaneEff() const {return fDistZFromBoundaryPlaneEff;} + void SetSwitchOnMaxDistNSigFrmBndPlaneEff(Bool_t flagbnd=kFALSE) {fSwitchOnMaxDistNSigFrmBndPlaneEff=flagbnd;} + Bool_t GetSwitchOnMaxDistNSigFrmBndPlaneEff() const {return fSwitchOnMaxDistNSigFrmBndPlaneEff;} + void SetSwitchOffStdSearchClusPlaneEff(Bool_t flagstdclus=kFALSE) {fSwitchOffStdSearchClusPlaneEff=flagstdclus;} + Bool_t GetSwitchOffStdSearchClusPlaneEff() const {return fSwitchOffStdSearchClusPlaneEff;} + void SetNSigXSearchClusterPlaneEff(Double_t nsigclx=0.) {if(nsigclx<0.)fNSigXSearchClusterPlaneEff=TMath::Abs(nsigclx);else fNSigXSearchClusterPlaneEff=nsigclx;} + Double_t GetNSigXSearchClusterPlaneEff() const {return fNSigXSearchClusterPlaneEff;} + void SetNSigZSearchClusterPlaneEff(Double_t nsigclz=0.) {if(nsigclz<0.)fNSigZSearchClusterPlaneEff=TMath::Abs(nsigclz);else fNSigZSearchClusterPlaneEff=nsigclz;} + Double_t GetNSigZSearchClusterPlaneEff() const {return fNSigZSearchClusterPlaneEff;} + void SetDistXSearchClusterPlaneEff(Double_t distclx=0.) {if(distclx<0.)fDistXSearchClusterPlaneEff=TMath::Abs(distclx);else fDistXSearchClusterPlaneEff=distclx;} + Double_t GetDistXSearchClusterPlaneEff() const {return fDistXSearchClusterPlaneEff;} + void SetDistZSearchClusterPlaneEff(Double_t distclz=0.) {if(distclz<0.)fDistZSearchClusterPlaneEff=TMath::Abs(distclz);else fDistZSearchClusterPlaneEff=distclz;} + Double_t GetDistZSearchClusterPlaneEff() const {return fDistZSearchClusterPlaneEff;} + void SetSwitchOnMaxDistNSigSrhClusPlaneEff(Bool_t flagbndcl=kFALSE) {fSwitchOnMaxDistNSigSrhClusPlaneEff=flagbndcl;} + Bool_t GetSwitchOnMaxDistNSigSrhClusPlaneEff() const {return fSwitchOnMaxDistNSigSrhClusPlaneEff;} + void SetDCACutPlaneEff(Double_t dcacpe=999.) {fDCACutPlaneEff=dcacpe;} + Double_t GetDCACutPlaneEff() const {return fDCACutPlaneEff;} + void SetVertexChi2CutPlaneEff(Double_t vtxchipe=999999999.) {fVertexChi2CutPlaneEff=vtxchipe;} + Double_t GetVertexChi2CutPlaneEff() const {return fVertexChi2CutPlaneEff;} + // + void SetImproveWithVertex(Bool_t impr=kFALSE) { fImproveWithVertex=impr; return; } + Bool_t GetImproveWithVertex() const { return fImproveWithVertex; } void SetExtendedEtaAcceptance(Bool_t ext=kTRUE) { fExtendedEtaAcceptance=ext; return; } Bool_t GetExtendedEtaAcceptance() const { return fExtendedEtaAcceptance; } void SetAllowProlongationWithEmptyRoad(Bool_t allow=kTRUE) { fAllowProlongationWithEmptyRoad=allow; return; } Bool_t GetAllowProlongationWithEmptyRoad() const { return fAllowProlongationWithEmptyRoad; } - void SetUseDeadZonesFromOCDB(Bool_t use=kTRUE) { fUseDeadZonesFromOCDB=use; return; } - Bool_t GetUseDeadZonesFromOCDB() const { return fUseDeadZonesFromOCDB; } + void SetUseBadZonesFromOCDB(Bool_t use=kTRUE) { fUseBadZonesFromOCDB=use; return; } + Bool_t GetUseBadZonesFromOCDB() const { return fUseBadZonesFromOCDB; } + + void SetUseSingleBadChannelsFromOCDB(Bool_t use=kTRUE) { fUseSingleBadChannelsFromOCDB=use; return; } + Bool_t GetUseSingleBadChannelsFromOCDB() const { return fUseSingleBadChannelsFromOCDB; } + + void SetMinFractionOfBadInRoad(Float_t frac=0) { fMinFractionOfBadInRoad=frac; return; } + Float_t GetMinFractionOfBadInRoad() const { return fMinFractionOfBadInRoad; } + void SetOutwardFindingSA() {fInwardFlagSA=kFALSE;} + void SetInwardFindingSA() {fInwardFlagSA=kTRUE;} + Bool_t GetInwardFindingSA() const {return fInwardFlagSA;} + void SetOuterStartLayerSA(Int_t lay) { fOuterStartLayerSA=lay; return; } + Int_t GetOuterStartLayerSA() const { return fOuterStartLayerSA; } + void SetInnerStartLayerSA(Int_t lay) { fInnerStartLayerSA=lay; return; } + Int_t GetInnerStartLayerSA() const { return fInnerStartLayerSA; } + void SetMinNPointsSA(Int_t np) { fMinNPointsSA=np; return; } + Int_t GetMinNPointsSA() const { return fMinNPointsSA;} void SetFactorSAWindowSizes(Double_t fact=1.) { fFactorSAWindowSizes=fact; return; } Double_t GetFactorSAWindowSizes() const { return fFactorSAWindowSizes; } @@ -153,17 +329,28 @@ class AliITSRecoParam : public AliDetectorRecoParam } Double_t GetMinLambdaSA() const {return fMinLambdaSA;} Double_t GetMaxLambdaSA() const {return fMaxLambdaSA;} - + + void SetSAMinClusterCharge(Float_t minq=0.) {fMinClusterChargeSA=minq;} + Float_t GetSAMinClusterCharge() const {return fMinClusterChargeSA;} void SetSAOnePointTracks() { fSAOnePointTracks=kTRUE; return; } Bool_t GetSAOnePointTracks() const { return fSAOnePointTracks; } - void SetSAUseAllClusters() { fSAUseAllClusters=kTRUE; return; } + void SetSAUseAllClusters(Bool_t opt=kTRUE) { fSAUseAllClusters=opt; return; } Bool_t GetSAUseAllClusters() const { return fSAUseAllClusters; } + void SetMaxSPDcontrForSAToUseAllClusters(Int_t contr=50) { fMaxSPDcontrForSAToUseAllClusters=contr; return; } + Int_t GetMaxSPDcontrForSAToUseAllClusters() const { return fMaxSPDcontrForSAToUseAllClusters; } + + void SetSAUsedEdxInfo(Bool_t opt=kTRUE) { fSAUsedEdxInfo=opt; return; } + Bool_t GetSAUsedEdxInfo() const { return fSAUsedEdxInfo; } + void SetFindV0s(Bool_t find=kTRUE) { fFindV0s=find; return; } Bool_t GetFindV0s() const { return fFindV0s; } + void SetStoreLikeSignV0s(Bool_t like=kFALSE) { fStoreLikeSignV0s=like; return; } + Bool_t GetStoreLikeSignV0s() const { return fStoreLikeSignV0s; } + void SetLayersParameters(); void SetLayerToSkip(Int_t i) { fLayersToSkip[i]=1; return; } @@ -176,46 +363,198 @@ class AliITSRecoParam : public AliDetectorRecoParam void SetUseUnfoldingInClusterFinderSSD(Bool_t use=kTRUE) { fUseUnfoldingInClusterFinderSSD=use; return; } Bool_t GetUseUnfoldingInClusterFinderSSD() const { return fUseUnfoldingInClusterFinderSSD; } + void SetUseBadChannelsInClusterFinderSSD(Bool_t use=kFALSE) { fUseBadChannelsInClusterFinderSSD=use; return; } + Bool_t GetUseBadChannelsInClusterFinderSSD() const { return fUseBadChannelsInClusterFinderSSD; } + + void SetUseSDDCorrectionMaps(Bool_t use=kTRUE) {fUseSDDCorrectionMaps=use;} + Bool_t GetUseSDDCorrectionMaps() const {return fUseSDDCorrectionMaps;} + void SetUseSDDClusterSizeSelection(Bool_t use=kTRUE) {fUseSDDClusterSizeSelection=use;} + Bool_t GetUseSDDClusterSizeSelection() const {return fUseSDDClusterSizeSelection;} + void SetMinClusterChargeSDD(Float_t qcut=0.){fMinClusterChargeSDD=qcut;} + Float_t GetMinClusterChargeSDD() const {return fMinClusterChargeSDD;} + + void SetUseChargeMatchingInClusterFinderSSD(Bool_t use=kTRUE) { fUseChargeMatchingInClusterFinderSSD=use; return; } + Bool_t GetUseChargeMatchingInClusterFinderSSD() const { return fUseChargeMatchingInClusterFinderSSD; } + + void SetUseCosmicRunShiftsSSD(Bool_t use=kFALSE) { fUseCosmicRunShiftsSSD=use; return; } + Bool_t GetUseCosmicRunShiftsSSD() const { return fUseCosmicRunShiftsSSD; } + + // SPD Tracklets (D. Elia) + void SetTrackleterPhiWindow(Float_t w=0.08) {fTrackleterPhiWindow=w;} + void SetTrackleterThetaWindow(Float_t w=0.025) {fTrackleterThetaWindow=w;} + void SetTrackleterPhiShift(Float_t w=0.0045) {fTrackleterPhiShift=w;} + Float_t GetTrackleterPhiWindow() const {return fTrackleterPhiWindow;} + Float_t GetTrackleterThetaWindow() const {return fTrackleterThetaWindow;} + Float_t GetTrackleterPhiShift() const {return fTrackleterPhiShift;} + void SetTrackleterRemoveClustersFromOverlaps(Bool_t use=kTRUE) { fTrackleterRemoveClustersFromOverlaps=use; return; } + Bool_t GetTrackleterRemoveClustersFromOverlaps() const { return fTrackleterRemoveClustersFromOverlaps; } + void SetTrackleterPhiOverlapCut(Float_t w=0.005) {fTrackleterPhiOverlapCut=w;} + void SetTrackleterZetaOverlapCut(Float_t w=0.05) {fTrackleterZetaOverlapCut=w;} + Float_t GetTrackleterPhiOverlapCut() const {return fTrackleterPhiOverlapCut;} + Float_t GetTrackleterZetaOverlapCut() const {return fTrackleterZetaOverlapCut;} + void SetTrackleterPhiRotationAngle(Float_t w=0.0) {fTrackleterPhiRotationAngle=w;} + Float_t GetTrackleterPhiRotationAngle() const {return fTrackleterPhiRotationAngle;} + Bool_t GetTrackleterStoreSPD2SingleCl() const {return fTrackleterStoreSPD2SingleCl;} + void SetTrackleterStoreSPD2SingleCl(Bool_t v=kTRUE) {fTrackleterStoreSPD2SingleCl = v;} + // + void SetTrackleterNStdDevCut(Float_t f=1.) {fTrackleterNStdDev = f<0.01 ? 0.01 : f;} + Float_t GetTrackleterNStdDevCut() const {return fTrackleterNStdDev;} + void SetTrackleterScaleDThetaBySin2T(Bool_t v=kFALSE) {fScaleDTBySin2T = v;} + Bool_t GetTrackleterScaleDThetaBySin2T() const {return fScaleDTBySin2T;} // + void SetSPDRemoveNoisyFlag(Bool_t value) {fSPDRemoveNoisyFlag = value;} + Bool_t GetSPDRemoveNoisyFlag() const {return fSPDRemoveNoisyFlag;} + void SetSPDRemoveDeadFlag(Bool_t value) {fSPDRemoveDeadFlag = value;} + Bool_t GetSPDRemoveDeadFlag() const {return fSPDRemoveDeadFlag;} + + // + void SetAlignFilterCosmics(Bool_t b=kTRUE) {fAlignFilterCosmics=b;} + void SetAlignFilterCosmicMergeTracks(Bool_t b=kTRUE) {fAlignFilterCosmicMergeTracks=b;} + void SetAlignFilterMinITSPoints(Int_t n=4) {fAlignFilterMinITSPoints=n;} + void SetAlignFilterMinITSPointsMerged(Int_t n=4) {fAlignFilterMinITSPointsMerged=n;} + void SetAlignFilterOnlyITSSATracks(Bool_t b=kTRUE) {fAlignFilterOnlyITSSATracks=b;} + void SetAlignFilterOnlyITSTPCTracks(Bool_t b=kFALSE) {fAlignFilterOnlyITSTPCTracks=b;} + void SetAlignFilterUseLayer(Int_t ilay,Bool_t use) {fAlignFilterUseLayer[ilay]=use;} + void SetAlignFilterSkipExtra(Bool_t b=kFALSE) {fAlignFilterSkipExtra=b;} + void SetAlignFilterMaxMatchingAngle(Float_t max=0.085/*5deg*/) {fAlignFilterMaxMatchingAngle=max;} + void SetAlignFilterMinAngleWrtModulePlanes(Float_t min=0.52/*30deg*/) {fAlignFilterMinAngleWrtModulePlanes=min;} + void SetAlignFilterMinPt(Float_t min=0.) {fAlignFilterMinPt=min;} + void SetAlignFilterMaxPt(Float_t max=1.e10) {fAlignFilterMaxPt=max;} + void SetAlignFilterFillQANtuples(Bool_t b=kTRUE) {fAlignFilterFillQANtuples=b;} + Bool_t GetAlignFilterCosmics() const {return fAlignFilterCosmics;} + Bool_t GetAlignFilterCosmicMergeTracks() const {return fAlignFilterCosmicMergeTracks;} + Int_t GetAlignFilterMinITSPoints() const {return fAlignFilterMinITSPoints;} + Int_t GetAlignFilterMinITSPointsMerged() const {return fAlignFilterMinITSPointsMerged;} + Bool_t GetAlignFilterOnlyITSSATracks() const {return fAlignFilterOnlyITSSATracks;} + Bool_t GetAlignFilterOnlyITSTPCTracks() const {return fAlignFilterOnlyITSTPCTracks;} + Bool_t GetAlignFilterUseLayer(Int_t i) const {return fAlignFilterUseLayer[i];} + Bool_t GetAlignFilterSkipExtra() const {return fAlignFilterSkipExtra;} + Float_t GetAlignFilterMaxMatchingAngle() const {return fAlignFilterMaxMatchingAngle;} + Float_t GetAlignFilterMinAngleWrtModulePlanes() const {return fAlignFilterMinAngleWrtModulePlanes;} + Float_t GetAlignFilterMinPt() const {return fAlignFilterMinPt;} + Float_t GetAlignFilterMaxPt() const {return fAlignFilterMaxPt;} + Bool_t GetAlignFilterFillQANtuples() const {return fAlignFilterFillQANtuples;} + + // Multiplicity Reconstructor + Float_t GetMultCutPxDrSPDin() const {return fMultCutPxDrSPDin;} + Float_t GetMultCutPxDrSPDout() const {return fMultCutPxDrSPDout;} + Float_t GetMultCutPxDz() const {return fMultCutPxDz;} + Float_t GetMultCutDCArz() const {return fMultCutDCArz;} + Float_t GetMultCutMinElectronProbTPC() const {return fMultCutMinElectronProbTPC;} + Float_t GetMultCutMinElectronProbESD() const {return fMultCutMinElectronProbESD;} + Float_t GetMultCutMinP() const {return fMultCutMinP;} + Float_t GetMultCutMinRGamma() const {return fMultCutMinRGamma;} + Float_t GetMultCutMinRK0() const {return fMultCutMinRK0;} + Float_t GetMultCutMinPointAngle() const {return fMultCutMinPointAngle;} + Float_t GetMultCutMaxDCADauther() const {return fMultCutMaxDCADauther;} + Float_t GetMultCutMassGamma() const {return fMultCutMassGamma;} + Float_t GetMultCutMassGammaNSigma() const {return fMultCutMassGammaNSigma;} + Float_t GetMultCutMassK0() const {return fMultCutMassK0;} + Float_t GetMultCutMassK0NSigma() const {return fMultCutMassK0NSigma;} + Float_t GetMultCutChi2cGamma() const {return fMultCutChi2cGamma;} + Float_t GetMultCutChi2cK0() const {return fMultCutChi2cK0;} + Float_t GetMultCutGammaSFromDecay() const {return fMultCutGammaSFromDecay;} + Float_t GetMultCutK0SFromDecay() const {return fMultCutK0SFromDecay;} + Float_t GetMultCutMaxDCA() const {return fMultCutMaxDCA;} + // + void SetMultCutPxDrSPDin(Float_t v=0.1) { fMultCutPxDrSPDin = v;} + void SetMultCutPxDrSPDout(Float_t v=0.15) { fMultCutPxDrSPDout = v;} + void SetMultCutPxDz(Float_t v=0.2) { fMultCutPxDz = v;} + void SetMultCutDCArz(Float_t v=0.5) { fMultCutDCArz = v;} + void SetMultCutMinElectronProbTPC(Float_t v=0.5) { fMultCutMinElectronProbTPC = v;} + void SetMultCutMinElectronProbESD(Float_t v=0.1) { fMultCutMinElectronProbESD = v;} + void SetMultCutMinP(Float_t v=0.05) { fMultCutMinP = v;} + void SetMultCutMinRGamma(Float_t v=2.) { fMultCutMinRGamma = v;} + void SetMultCutMinRK0(Float_t v=1.) { fMultCutMinRK0 = v;} + void SetMultCutMinPointAngle(Float_t v=0.98) { fMultCutMinPointAngle = v;} + void SetMultCutMaxDCADauther(Float_t v=0.5) { fMultCutMaxDCADauther = v;} + void SetMultCutMassGamma(Float_t v=0.03) { fMultCutMassGamma = v;} + void SetMultCutMassGammaNSigma(Float_t v=5.) { fMultCutMassGammaNSigma = v;} + void SetMultCutMassK0(Float_t v=0.03) { fMultCutMassK0 = v;} + void SetMultCutMassK0NSigma(Float_t v=5.) { fMultCutMassK0NSigma = v;} + void SetMultCutChi2cGamma(Float_t v=2.) { fMultCutChi2cGamma = v;} + void SetMultCutChi2cK0(Float_t v=2.) { fMultCutChi2cK0 = v;} + void SetMultCutGammaSFromDecay(Float_t v=-10.) { fMultCutGammaSFromDecay = v;} + void SetMultCutK0SFromDecay(Float_t v=-10.) { fMultCutK0SFromDecay = v;} + void SetMultCutMaxDCA(Float_t v=1.) { fMultCutMaxDCA = v;} + // + AliESDV0Params *GetESDV0Params() const {return fESDV0Params;} + // + // Lorentz angle + Bool_t GetCorrectLorentzAngleSPD() const {return fCorrectLorentzAngleSPD;} + Float_t GetTanLorentzAngleHolesSPD() const {return fTanLorentzAngleHolesSPD;} + Bool_t GetCorrectLorentzAngleSSD() const {return fCorrectLorentzAngleSSD;} + Float_t GetTanLorentzAngleHolesSSD() const {return fTanLorentzAngleHolesSSD;} + Float_t GetTanLorentzAngleElectronsSSD() const {return fTanLorentzAngleElectronsSSD;} + + void SetCorrectLorentzAngleSPD(Bool_t flag) {fCorrectLorentzAngleSPD=flag;} + void SetTanLorentzAngleHolesSPD(Float_t la) {fTanLorentzAngleHolesSPD=la;} + void SetCorrectLorentzAngleSSD(Bool_t flag) {fCorrectLorentzAngleSSD=flag;} + void SetTanLorentzAngleHolesSSD(Float_t la) {fTanLorentzAngleHolesSSD=la;} + void SetTanLorentzAngleElectronsSSD(Float_t la) {fTanLorentzAngleElectronsSSD=la;} + + // Option for local reconstruction + Bool_t SetOptReco(TString r); + void ReconstructOnlySPD(){fOptReco="SPD";} + TString GetOptReco() const {return fOptReco;} - enum {fgkMaxClusterPerLayer=70000}; //7000*10; // max clusters per layer - enum {fgkMaxClusterPerLayer5=28000};//7000*10*2/5; // max clusters per layer - enum {fgkMaxClusterPerLayer10=14000};//7000*10*2/10; // max clusters per layer - enum {fgkMaxClusterPerLayer20=7000};//7000*10*2/20; // max clusters per layer + // + enum {kMaxClusterPerLayer=70000}; //7000*10; // max clusters per layer + enum {kMaxClusterPerLayer5=28000};//7000*10*2/5; // max clusters per layer + enum {kMaxClusterPerLayer10=14000};//7000*10*2/10; // max clusters per layer + enum {kMaxClusterPerLayer20=7000};//7000*10*2/20; // max clusters per layer protected: // static const Int_t fgkLayersNotToSkip[AliITSgeomTGeo::kNLayers]; // array with layers not to skip - static const Int_t fgkLastLayerToTrackTo; // innermost layer - static const Int_t fgkMaxDetectorPerLayer; // max clusters per layer - static const Double_t fgkriw; // TPC inner wall radius - static const Double_t fgkdiw; // TPC inner wall x/X0 - static const Double_t fgkX0iw; // TPC inner wall X0 - static const Double_t fgkrcd; // TPC central drum radius - static const Double_t fgkdcd; // TPC central drum x/X0 - static const Double_t fgkX0cd; // TPC central drum X0 - static const Double_t fgkyr; // TPC rods y (tracking c.s.) - static const Double_t fgkdr; // TPC rods x/X0 - static const Double_t fgkzm; // TPC membrane z - static const Double_t fgkdm; // TPC membrane x/X0 - static const Double_t fgkrs; // ITS screen radius - static const Double_t fgkds; // ITS screed x/X0 - static const Double_t fgkrInsideITSscreen; // inside ITS screen radius - static const Double_t fgkrInsideSPD1; // inside SPD1 radius - static const Double_t fgkrPipe; // pipe radius - static const Double_t fgkrInsidePipe; // inside pipe radius - static const Double_t fgkrOutsidePipe; // outside pipe radius - static const Double_t fgkdPipe; // pipe x/X0 - static const Double_t fgkrInsideShield[2]; // inside SPD (0) SDD (1) shield radius - static const Double_t fgkrOutsideShield[2]; // outside SPD (0) SDD (1) shield radius - static const Double_t fgkdshield[2]; // SPD (0) SDD (1) shield x/X0 - static const Double_t fgkX0shield[2]; // SPD (0) SDD (1) shield X0 - static const Double_t fgkX0Air; // air X0 - static const Double_t fgkX0Be; // Berillium X0 - static const Double_t fgkBoundaryWidth; // to define track at detector boundary - static const Double_t fgkDeltaXNeighbDets; // max difference in radius between neighbouring detectors - static const Double_t fgkSPDdetzlength; // SPD ladder length in z - static const Double_t fgkSPDdetxlength; // SPD ladder length in x + static const Int_t fgkLastLayerToTrackTo=0; // innermost layer + static const Int_t fgkMaxDetectorPerLayer=1000; // max clusters per layer + static const Double_t fgkriw; // TPC inner wall radius + static const Double_t fgkdiw; // TPC inner wall x/X0 + static const Double_t fgkX0iw; // TPC inner wall X0 + static const Double_t fgkrcd; // TPC central drum radius + static const Double_t fgkdcd; // TPC central drum x/X0 + static const Double_t fgkX0cd; // TPC central drum X0 + static const Double_t fgkyr; // TPC rods y (tracking c.s.) + static const Double_t fgkdr; // TPC rods x/X0 + static const Double_t fgkzm; // TPC membrane z + static const Double_t fgkdm; // TPC membrane x/X0 + static const Double_t fgkrs; // ITS screen radius + static const Double_t fgkds; // ITS screed x/X0 + static const Double_t fgkrInsideITSscreen; // inside ITS screen radius + static const Double_t fgkrInsideSPD1; // inside SPD1 radius + static const Double_t fgkrPipe; // pipe radius + static const Double_t fgkrInsidePipe; // inside pipe radius + static const Double_t fgkrOutsidePipe; // outside pipe radius + static const Double_t fgkdPipe; // pipe x/X0 + static const Double_t fgkrInsideShield[2]; // inside SPD (0) SDD (1) shield radius + static const Double_t fgkrOutsideShield[2]; // outside SPD (0) SDD (1) shield radius + static const Double_t fgkdshield[2]; // SPD (0) SDD (1) shield x/X0 + static const Double_t fgkX0shield[2]; // SPD (0) SDD (1) shield X0 + static const Double_t fgkX0Air; // air X0 + static const Double_t fgkX0Be; // Berillium X0 + static const Double_t fgkBoundaryWidth; // to define track at detector boundary + static const Double_t fgkDeltaXNeighbDets; // max difference in radius between neighbouring detectors + static const Double_t fgkSPDdetzlength; // SPD ladder length in z (=7.072-2*0.056) + static const Double_t fgkSPDdetxlength; // SPD ladder length in x (=1.410-2*0.056) + + + Int_t fTracker; // ITS tracker to be used (see AliITSReconstructor) + Bool_t fITSonly; // tracking only in ITS (no TPC) + Int_t fVertexer; // ITS vertexer to be used (see AliITSReconstructor) + Int_t fPID; // ITS PID method to be used (see AliITSReconstructor) + + + // SPD 3D Vertexer configuration + Float_t fVtxr3DZCutWide; // Z extension of the wide fiducial region for vertexer 3D + Float_t fVtxr3DRCutWide; // R extension of the wide fiducial region for vertexer 3D + Float_t fVtxr3DZCutNarrow; // Z extension of the narrow fiducial region for vertexer 3D + Float_t fVtxr3DRCutNarrow; // R extension of the narrow fiducial region for vertexer 3D + Float_t fVtxr3DPhiCutLoose; // loose deltaPhi cut to define tracklets in vertexer 3D + Float_t fVtxr3DPhiCutTight; // tight deltaPhi cut to define tracklets in vertexer 3D + Float_t fVtxr3DDCACut; // cut on tracklet-to-tracklet DCA in vertexer3D + Int_t fVtxr3DPileupAlgo; // pileup algorithm (0 = VtxZ, 1 = 3D - 2 step, 2 = 3D all in once) + UChar_t fVtxr3DHighMultAlgo; // downscaling if 0 - traces if 1 Int_t fLayersToSkip[AliITSgeomTGeo::kNLayers]; // array with layers to skip (MI,SA) @@ -234,6 +573,8 @@ class AliITSRecoParam : public AliDetectorRecoParam Double_t fNSigma2RoadYC; // y Double_t fNSigma2RoadZNonC; // z Double_t fNSigma2RoadYNonC; // y + + Double_t fRoadMisal; // [cm] increase of road for misalignment (MI) // // chi2 cuts Double_t fMaxChi2PerCluster[AliITSgeomTGeo::kNLayers-1]; // max chi2 for MIP (MI) @@ -248,6 +589,8 @@ class AliITSRecoParam : public AliDetectorRecoParam Double_t fMaxChi2In; // (NOT USED) Double_t fMaxChi2sR[AliITSgeomTGeo::kNLayers]; // (NOT USED) Double_t fChi2PerCluster; // (NOT USED) + // search for extra clusters + Bool_t fSearchForExtras; // swicth yes/no for the search of extra-clusters in RefitInward step // // default primary vertex (MI,V2) Double_t fXV; // x @@ -275,34 +618,184 @@ class AliITSRecoParam : public AliDetectorRecoParam Double_t fSigmaZDeadZoneHit2; // z error virtual cls Double_t fXPassDeadZoneHits; // x distance between clusters + Bool_t fSkipSubdetsNotInTriggerCluster; // skip the subdetectors that are not in the trigger cluster Int_t fUseTGeoInTracker; // use TGeo to get material budget in tracker MI + Double_t fStepSizeTGeo; // step size (cm) + // in AliITStrackerMI::CorrectFor*Material methods Bool_t fAllowSharedClusters; // if kFALSE don't set to kITSin tracks with shared clusters (MI) Int_t fClusterErrorsParam; // parametrization for cluster errors (MI), see AliITSRecoParam::GetError() + Float_t fClusterMisalErrorY[AliITSgeomTGeo::kNLayers]; // [cm] additional error on cluster Y pos. due to misalignment (MI,SA) + Float_t fClusterMisalErrorZ[AliITSgeomTGeo::kNLayers]; // [cm] additional error on cluster Z pos. due to misalignment (MI,SA) + Float_t fClusterMisalErrorYBOn[AliITSgeomTGeo::kNLayers]; // [cm] additional error on cluster Y pos. due to misalignment (MI,SA) + Float_t fClusterMisalErrorZBOn[AliITSgeomTGeo::kNLayers]; // [cm] additional error on cluster Z pos. due to misalignment (MI,SA) + Bool_t fUseAmplitudeInfo[AliITSgeomTGeo::kNLayers]; // use cluster charge in cluster-track matching (SDD,SSD) (MI) + + // Plane Efficiency evaluation Bool_t fComputePlaneEff; // flag to enable computation of PlaneEfficiency Bool_t fHistoPlaneEff; // flag to enable auxiliary PlaneEff histograms (e.g. residual distributions) + Bool_t fUseTrackletsPlaneEff; // flag to enable estimate of SPD PlaneEfficiency using tracklets + Bool_t fMCTrackletsPlaneEff; // flag to enable the use of MC info for corrections (SPD PlaneEff using tracklets) + Bool_t fBkgTrackletsPlaneEff; // flag to evaluate background instead of normal use (SPD PlaneEff using tracklets) + Float_t fTrackleterPhiWindowL1; // Search window in phi for inner layer (1) (SPD PlaneEff using tracklets) + Float_t fTrackleterPhiWindowL2; // Search window in phi for outer layer (2) (SPD PlaneEff using tracklets) + Float_t fTrackleterZetaWindowL1; // Search window in zeta for inner layer (1) (SPD PlaneEff using tracklets) + Float_t fTrackleterZetaWindowL2; // Search window in zeta for outer layer (2) (SPD PlaneEff using tracklets) + Bool_t fUpdateOncePerEventPlaneEff; // option to update chip efficiency once/event (to avoid doubles) + Int_t fMinContVtxPlaneEff; // min number of contributors to ESD vtx for SPD PlaneEff using tracklets + Int_t fIPlanePlaneEff; // index of the plane (in the range [-1,5]) to study the efficiency (-1 ->Tracklets) + Bool_t fReadPlaneEffFromOCDB; // enable initial reading of Plane Eff statistics from OCDB + // The analized events would be used to increase the statistics + Double_t fMinPtPlaneEff; // minimum p_t of the track to be used for Plane Efficiency evaluation + Int_t fMaxMissingClustersPlaneEff; // max n. of (other) layers without a cluster associated to the track + Int_t fMaxMissingClustersOutPlaneEff; // max n. of outermost layers without a cluster associated to the track + Bool_t fRequireClusterInOuterLayerPlaneEff; // if kTRUE, then only tracks with an associated cluster on the closest + Bool_t fRequireClusterInInnerLayerPlaneEff; // outer/inner layer are used. It has no effect for outermost/innermost layer + Bool_t fOnlyConstraintPlaneEff; // if kTRUE, use only constrained tracks at primary vertex for Plane Eff. + Double_t fNSigXFromBoundaryPlaneEff; // accept one track for PlaneEff if distance from border (in loc x or z) + Double_t fNSigZFromBoundaryPlaneEff; // is greater than fNSigXFromBoundaryPlaneEff * Track_precision + Double_t fDistXFromBoundaryPlaneEff; // accept one track for PlaneEff if distance from border (in loc x or z) + Double_t fDistZFromBoundaryPlaneEff; // is greater than fDistXFromBoundaryPlaneEff centimeters + Bool_t fSwitchOnMaxDistNSigFrmBndPlaneEff; //if kTRUE,use max(fDistXFromBoundaryPlaneEff,fNSigXFromBoundaryPlaneEff) to accept tracks + Bool_t fSwitchOffStdSearchClusPlaneEff; //if kTRUE,use fNSigXSearchClusterPlaneEff and fDistXSearchClusterPlaneEff + Double_t fNSigXSearchClusterPlaneEff; // cluster search in distance from track impact point (in loc x or z) + Double_t fNSigZSearchClusterPlaneEff; // less than fNSigXSearchClusterPlaneEff * Track_precision + Double_t fDistXSearchClusterPlaneEff; // cluster found in distance from track impact point (in loc x or z) + Double_t fDistZSearchClusterPlaneEff; // is greater than fDistXSearchClusterPlaneEff centimeters + Bool_t fSwitchOnMaxDistNSigSrhClusPlaneEff; //if kTRUE,use max(fDistXSearchClusterPlaneEff,fNSigXSearchClusterPlaneEff) to accept tracks + Double_t fDCACutPlaneEff; // this set the cut on DCA in rphi plane when evaluating PlaneEff(SPD0) + Double_t fVertexChi2CutPlaneEff; // and also with a cut on the chi2 + + Bool_t fImproveWithVertex; // use the method AliITStrackV2::Improve() to point to the vertex during prolongation Bool_t fExtendedEtaAcceptance; // enable jumping from TPC to SPD at large eta (MI) - Bool_t fUseDeadZonesFromOCDB; // enable using OCDB info on dead modules.. (MI) + Bool_t fUseBadZonesFromOCDB; // enable using OCDB info on dead modules and chips (MI) + Bool_t fUseSingleBadChannelsFromOCDB; // enable using OCDB info on bad single SPD pixels and SDD anodes (MI) + Float_t fMinFractionOfBadInRoad; // to decide whether to skip the layer (MI) Bool_t fAllowProlongationWithEmptyRoad; // allow to prolong even if road is empty (MI) + Int_t fInwardFlagSA; // flag for inward track finding in SA + Int_t fOuterStartLayerSA; // outer ITS layer to start track in SA outward + Int_t fInnerStartLayerSA; // inner ITS layer to start track in SA inward + Int_t fMinNPointsSA; // min. number of ITS clusters for a SA track Double_t fFactorSAWindowSizes; // larger window sizes in SA Int_t fNLoopsSA; // number of loops in tracker SA Double_t fMinPhiSA; // minimum phi value for SA windows Double_t fMaxPhiSA; // maximum phi value for SA windows Double_t fMinLambdaSA; // minimum lambda value for SA windows Double_t fMaxLambdaSA; // maximum lambda value for SA windows - + Float_t fMinClusterChargeSA; // minimum SDD,SSD cluster charge for SA tarcker Bool_t fSAOnePointTracks; // one-cluster tracks in SA (only for cosmics!) Bool_t fSAUseAllClusters; // do not skip clusters used by MI (same track twice in AliESDEvent!) + Int_t fMaxSPDcontrForSAToUseAllClusters; // maximum nContr of SPD vertex for which trackerSA will reuse all ITS clusters + Bool_t fSAUsedEdxInfo; // use/not use dE/dx in ITS for assign mass hypothesis + + Bool_t fSelectBestMIP03; // (MI) Multiply norm chi2 by interpolated one in hypthesis analysis + Bool_t fFlagFakes; // (MI) preform shared cluster analysis and flag candidates for fakes + Bool_t fUseImproveKalman; // (MI) Use ImproveKalman version of AliITSTrackV2 instead of Improve Bool_t fFindV0s; // flag to enable V0 finder (MI) + Bool_t fStoreLikeSignV0s; // flag to store like-sign V0s (MI) // cluster unfolding in ITS cluster finders Bool_t fUseUnfoldingInClusterFinderSPD; // SPD Bool_t fUseUnfoldingInClusterFinderSDD; // SDD Bool_t fUseUnfoldingInClusterFinderSSD; // SSD - ClassDef(AliITSRecoParam,2) // ITS reco parameters + Bool_t fUseBadChannelsInClusterFinderSSD; // flag to switch on bad channels in CF SSD + + Bool_t fUseSDDCorrectionMaps; // flag for use of SDD maps in C.F. + Bool_t fUseSDDClusterSizeSelection; // cut on SDD cluster size + Float_t fMinClusterChargeSDD; // cut on SDD cluster charge + + Bool_t fUseChargeMatchingInClusterFinderSSD; // SSD + + // SPD Tracklets (D. Elia) + Float_t fTrackleterPhiWindow; // Search window in phi + Float_t fTrackleterThetaWindow; // Search window in theta + Float_t fTrackleterPhiShift; // Phi shift reference value (at 0.5 T) + Bool_t fTrackleterRemoveClustersFromOverlaps; // Option to skip clusters in the overlaps + Float_t fTrackleterPhiOverlapCut; // Fiducial window in phi for overlap cut + Float_t fTrackleterZetaOverlapCut; // Fiducial window in eta for overlap cut + Float_t fTrackleterPhiRotationAngle; // Angle to rotate cluster in the SPD inner layer for combinatorial reco only + Float_t fTrackleterNStdDev; // cut on the number of standard deviations + Bool_t fScaleDTBySin2T; // scale Dtheta by 1/sin^2(theta) + Bool_t fTrackleterStoreSPD2SingleCl; // request storing of L2 singles + // + Bool_t fTrackleterBuildCl2TrkRefs; // build cluster to track references in AliMultiplicity + // + Bool_t fUseCosmicRunShiftsSSD; // SSD time shifts for cosmic run 2007/2008 (use for data taken up to 18 sept 2008) + + + // SPD flags to specify whether noisy and dead pixels + // should be removed at the local reconstruction step (default and safe way is true for both) + Bool_t fSPDRemoveNoisyFlag; // Flag saying whether noisy pixels should be removed + Bool_t fSPDRemoveDeadFlag; // Flag saying whether dead pixels should be removed + + // VertexerFast configuration + Float_t fVertexerFastSmearX; // gaussian sigma for x MC vertex smearing + Float_t fVertexerFastSmearY; // gaussian sigma for y MC vertex smearing + Float_t fVertexerFastSmearZ; // gaussian sigma for z MC vertex smearing + + // PWGPP/AliAlignmentDataFilterITS configuration + Bool_t fAlignFilterCosmics; // flag for cosmics case + Bool_t fAlignFilterCosmicMergeTracks; // merge cosmic tracks + Int_t fAlignFilterMinITSPoints; // min points per track + Int_t fAlignFilterMinITSPointsMerged; // min points for merged tracks + Bool_t fAlignFilterOnlyITSSATracks; // only ITS SA tracks + Bool_t fAlignFilterOnlyITSTPCTracks; // only ITS+TPC tracks + Bool_t fAlignFilterUseLayer[AliITSgeomTGeo::kNLayers]; // layers to use + Bool_t fAlignFilterSkipExtra; // no extra cls in array + Float_t fAlignFilterMaxMatchingAngle; // matching for cosmics + Float_t fAlignFilterMinAngleWrtModulePlanes; // min angle track-to-sensor + Float_t fAlignFilterMinPt; // min pt + Float_t fAlignFilterMaxPt; // max pt + Bool_t fAlignFilterFillQANtuples; // fill QA ntuples + + // Multiplicity reconstructor settings + // cuts for flagging secondaries + Float_t fMultCutPxDrSPDin; // max P*DR for primaries involving at least 1 SPD + Float_t fMultCutPxDrSPDout; // max P*DR for primaries not involving any SPD + Float_t fMultCutPxDz; // max P*DZ for primaries + Float_t fMultCutDCArz; // max DR or DZ for primares + // + // cuts for flagging tracks in V0s + Float_t fMultCutMinElectronProbTPC; // min probability for e+/e- PID involving TPC + Float_t fMultCutMinElectronProbESD; // min probability for e+/e- PID not involving TPC + // + Float_t fMultCutMinP; // min P of V0 + Float_t fMultCutMinRGamma; // min transv. distance from ESDVertex to V0 for gammas + Float_t fMultCutMinRK0; // min transv. distance from ESDVertex to V0 for K0s + Float_t fMultCutMinPointAngle; // min pointing angle cosine + Float_t fMultCutMaxDCADauther; // max DCA of daughters at V0 + Float_t fMultCutMassGamma; // max gamma mass + Float_t fMultCutMassGammaNSigma; // max standard deviations from 0 for gamma + Float_t fMultCutMassK0; // max K0 mass difference from PGD value + Float_t fMultCutMassK0NSigma; // max standard deviations for K0 mass from PDG value + Float_t fMultCutChi2cGamma; // max constrained chi2 cut for gammas + Float_t fMultCutChi2cK0; // max constrained chi2 cut for K0s + Float_t fMultCutGammaSFromDecay; // min path*P for gammas + Float_t fMultCutK0SFromDecay; // min path*P for K0s + Float_t fMultCutMaxDCA; // max DCA for V0 at ESD vertex + // Lorentz angle + Bool_t fCorrectLorentzAngleSPD; // flag to enable correction + Float_t fTanLorentzAngleHolesSPD; // angle for holes in SPD + Bool_t fCorrectLorentzAngleSSD; // flag to enable correction + Float_t fTanLorentzAngleHolesSSD; // tan(angle) for holes in SSD @ B = 0.5 T + Float_t fTanLorentzAngleElectronsSSD; // tan(angle) for electrons in SSD @ B = 0.5 T + // + // Possibility of reconstructing only part of the ITS + TString fOptReco; // "All" by default. It can be any + // combination of "SPD" "SDD" and "SSD" + + private: + AliESDV0Params * fESDV0Params; // declare the AliESDV0Params to be able to used in AliITSV0Finder + + AliITSRecoParam(const AliITSRecoParam & param); + AliITSRecoParam & operator=(const AliITSRecoParam ¶m); + + ClassDef(AliITSRecoParam,54) // ITS reco parameters }; #endif + +