X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=ITS%2FAliITSgeom.cxx;h=502f8b0716c010abe6b23d0f4dc8388f51369293;hb=891c67bd76dbe8690d522daa4e20821760cb713c;hp=22e577c68bc04ac46fb5b2d5d5e29337718b0113;hpb=593e9459c35796d37d7f0ec1ad02e455de370f91;p=u%2Fmrichter%2FAliRoot.git diff --git a/ITS/AliITSgeom.cxx b/ITS/AliITSgeom.cxx index 22e577c68bc..502f8b0716c 100644 --- a/ITS/AliITSgeom.cxx +++ b/ITS/AliITSgeom.cxx @@ -13,37 +13,7 @@ * provided "as is" without express or implied warranty. * **************************************************************************/ -/* -$Log$ -Revision 1.4.4.5 2000/03/04 23:42:39 nilsen -Updated the comments/documentations and improved the maintainability of the -code. - -Revision 1.4.4.4 2000/03/02 21:27:07 nilsen -Added two functions, SetByAngles and SetTrans. - -Revision 1.4.4.3 2000/01/23 03:09:10 nilsen -// fixed compiler warnings for new function LtLErrorMatrix(...) - -Revision 1.4.4.2 2000/01/19 23:18:20 nilsen -Added transformations of Error matrix to AliITSgeom and fixed some typos -in AliITS.h and AliITShitIndex.h - -Revision 1.4.4.1 2000/01/12 19:03:32 nilsen -This is the version of the files after the merging done in December 1999. -See the ReadMe110100.txt file for details - -Revision 1.4 1999/10/15 07:03:20 fca -Fixed bug in GetModuleId(Int_t index,Int_t &lay,Int_t &lad, Int_t &det) and -a typo in the creator. aliroot need to be rerun to get a fixed geometry. - -Revision 1.3 1999/10/04 15:20:12 fca -Correct syntax accepted by g++ but not standard for static members, remove minor warnings - -Revision 1.2 1999/09/29 09:24:20 fca -Introduction of the Copyright and cvs Log - -*/ +/* $Id$ */ /////////////////////////////////////////////////////////////////////// // ITS geometry manipulation routines. // @@ -52,65 +22,27 @@ Introduction of the Copyright and cvs Log // By: Bjorn S. Nilsen // // version: 0.0.1 // // Updated May 27 1999. // -// Added Cylindrical random and global based changes. // -// Added function PrintComparison. // +// Added Cylindrical random and global based changes. // +// // +// Modified and added functions Feb. 7 2006 // /////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////// -// The structure ITS_geom: -// The structure ITS_geom has been defined to hold all of the -// information necessary to do the coordinate transformations for one -// detector between the ALICE Cartesian global and the detector local -// coordinate systems. The rotations are implemented in the following -// order, Rz*Ry*Rx*(Vglobal-Vtrans)=Vlocal (in matrix notation). -// In addition it contains an index to the TObjArray containing all of -// the information about the shape of the active detector volume, and -// any other useful detector parameters. See the definition of *fShape -// below and the classes AliITSgeomSPD, AliITSgeomSDD, and AliITSgeomSSD -// for a full description. This structure is not available outside of -// these routines. -// -// Int_t fShapeIndex -// The index to the array of detector shape information. In this way -// only an index is needed to be stored and not all of the shape -// information. This saves much space since most, if not all, of the -// detectors of a give type have the same shape information and are only -// placed in a different spot in the ALICE/ITS detector. -// -// Float_t fx0,fy0,fz0 -// The Cartesian translation vector used to define part of the -// coordinate transformation. The units of the translation are kept -// in the Monte Carlo distance units, usually cm. -// -// Float_t frx,fry,frz -// The three rotation angles that define the rotation matrix. The -// angles are, frx the rotation about the x axis. fry the rotation about -// the "new" or "rotated" y axis. frz the rotation about the "new" or -// "rotated" z axis. These angles, although redundant with the rotation -// matrix fr, are kept for speed. This allows for their retrieval without -// having to compute them each and every time. The angles are kept in -// radians -// -// Float_t fr[9] -// The 3x3 rotation matrix defined by the angles frx, fry, and frz, -// for the Global to Local transformation is -// |fr[0] fr[1] fr[2]| | cos(frz) sin(frz) 0| | cos(fry) 0 sin(fry)| -// fr=|fr[3] fr[4] fr[4]|=|-sin(frz) cos(frz) 0|*| 0 1 0 | -// |fr[6] fr[7] fr[8]| | 0 0 1| |-sin(fry) 0 cos(fry)| -// -// |1 0 0 | -// *|0 cos(frx) sin(frx)| -// |0 -sin(frx) cos(frx)| -// -// Even though this information is redundant with the three rotation -// angles, because this transformation matrix can be used so much it is -// kept to speed things up a lot. The coordinate system used is Cartesian. -// // The local coordinate system by, default, is show in the following // figures. Also shown are the ladder numbering scheme. //Begin_Html /* + + +
+ +

This shows the relative geometry differences between the ALICE Global +coordinate system and the local detector coordinate system. + +

+
+
 
 

@@ -142,7 +74,7 @@ pixel coordinate system.
 */
 //End_Html
-
+//
 ////////////////////////////////////////////////////////////////////////
 
 ////////////////////////////////////////////////////////////////////////
@@ -152,849 +84,325 @@ pixel coordinate system.
 //
 // Data Members:
 //
+// TString    fVersion 
+//     Transformation version.
+// Int_t      fTrans
+//     Flag to keep track of which transformation 
+// Int_t      fNmodules
+//      The total number of modules
 // Int_t fNlayers
 //     The number of ITS layers for this geometry. By default this
 //  is 6, but can be modified by the creator function if there are
 // more layers defined.
 //
-// Int_t *fNlad
+// TArrayI fNlad
 //     A pointer to an array fNlayers long containing the number of 
 // ladders for each layer. This array is typically created and filled 
 // by the AliITSgeom creator function.
 //
-// Int_t *fNdet
+// TArrayI fNdet
 //     A pointer to an array fNlayers long containing the number of
 // active detector volumes for each ladder. This array is typically
 // created and filled by the AliITSgeom creator function.
 //
-// ITS_geom **fg
-//     A pointer to an array of pointers pointing to the ITS_geom
-// structure containing the coordinate transformation information.
-// The ITS_geom structure corresponding to layer=lay, ladder=lad,
-// and detector=det is gotten by fg[lay-1][(fNlad[lay-1]*(lad-1)+det-1)].
-// In this way a lot of space is saved over trying to keep a three
-// dimensional array fNlayersXmax(fNlad)Xmax(fNdet), since the number
-// of detectors typically increases with layer number.
-//
-// TObjArray *fShape
-//     A pointer to an array of TObjects containing the detailed shape
-// information for each type of detector used in the ITS. For example
-// I have created AliITSgeomSPD, AliITSgeomSDD, and AliITSgeomSSD as
-// example structures, derived from TObjects, to hold the detector
-// information. I would recommend that one element in each of these
-// structures, that which describes the shape of the active volume,
-// be one of the ROOT classes derived from TShape. In this way it would
-// be easy to have the display program display the correct active
-// ITS volumes. See the example classes AliITSgeomSPD, AliITSgeomSDD,
-// and AliITSgeomSSD for a more detailed example.
-//
-// Inlined Member Functions:
-//
-// Int_t GetNdetectors(Int_t layer)
-//     This function returns the number of detectors/ladder for a give 
-// layer. In particular it returns fNdet[layer-1].
-//
-// Int_t GetNladders(Int_t layer)
-//     This function returns the number of ladders for a give layer. In
-// particular it returns fNlad[layer-1].
-//
-// Int_t GetNlayers()
-//     This function returns the number of layers defined in the ITS
-// geometry. In particular it returns fNlayers.
-//
-// GetAngles(Int_t layer,Int_t ladder,Int_t detector,
-//           Float_t &rx, Float_t &ry, Float_t &rz)
-//     This function returns the rotation angles for a give detector on
-// a give ladder in a give layer in the three floating point variables
-// provided. rx = frx, fy = fry, rz = frz. The angles are in radians
-//
-// GetTrans(Int_t layer,Int_t ladder,Int_t detector,
-//          Float_t &x, Float_t &y, Float_t &z)
-//     This function returns the Cartesian translation for a give
-// detector on a give ladder in a give layer in the three floating
-// point variables provided. x = fx0, y = fy0, z = fz0. The units are
-// those of the Monte Carlo, generally cm.
-//
-// SetTrans(Int_t layer,Int_t ladder,Int_t detector,
-//          Float_t x, Float_t y, Float_t z)
-//     This function sets a new translation vector, given by the three
-// variables x, y, and z, for the Cartesian coordinate transformation
-// for the detector defined by layer, ladder and detector.
+// TObjArray fGm containing objects of type AliITSgeomMatrix
+//     A pointer to an array of AliITSgeomMatrix classes. One element 
+// per module (detector) in the ITS. AliITSgeomMatrix basicly contains
+// all of the necessary information about the detector and it's coordinate
+// transformations.
 //
-// Int_t IsVersion()
-//     This function returns the version number of this AliITSgeom
-// class.
-//
-// AddShape(TObject *shape)
-//     This function adds one more shape element to the TObjArray
-// fShape. It is primarily used in the constructor functions of the
-// AliITSgeom class. The pointer *shape can be the pointer to any
-// class that is derived from TObject (this is true for nearly every
-// ROOT class). This does not appear to be working properly at this time.
-//
-// Int_t GetStartSPD()
-//     This functions returns the starting module index number for the
-// silicon pixels detectors (SPD). Typically this is zero. To loop over all
-// of the pixel detectors do: for(Int_t i=GetStartSPD();i<=GetLastSPD();i++)
-//
-// Int_t GetLastSPD()
-//     This functions returns the last module index number for the
-// silicon pixels detectors (SPD). To loop over all of the pixel detectors 
-// do: for(Int_t i=GetStartSPD();i<=GetLastSPD();i++)
-//
-// Int_t GetStartSDD()
-//     This functions returns the starting module index number for the
-// silicon drift detectors (SDD). To loop over all of the drift detectors 
-// do: for(Int_t i=GetStartSDD();i<=GetLastSDD();i++)
-//
-// Int_t GetLastSDD()
-//     This functions returns the last module index number for the
-// silicon drift detectors (SDD). To loop over all of the drift detectors 
-// do: for(Int_t i=GetStartSDD();i<=GetLastSDD();i++)
-//
-// Int_t GetStartSSD()
-//     This functions returns the starting module index number for the
-// silicon strip detectors (SSD). To loop over all of the strip detectors 
-// do: for(Int_t i=GetStartSSD();i<=GetLastSSD();i++)
-//
-// Int_t GetStartSSD()
-//     This functions returns the last module index number for the
-// silicon strip detectors (SSD). To loop over all of the strip detectors 
-// do: for(Int_t i=GetStartSSD();i<=GetLastSSD();i++)
-//
-// TObject *GetShape(Int_t lay,Int_t lad,Int_t det)
-//     This functions returns the shape object AliITSgeomSPD, AliITSgeomSDD,
-// or AliITSgeomSSD for that particular module designated by lay, lad, and
-// detector. In principle there can be additional shape objects. In this
-// way a minimum of shape objects are created since one AliITSgeomS?D shape
-// object is used for all modules of that type.
 ////////////////////////////////////////////////////////////////////////
+#include 
+#include 
+
+#include 
+#include 
+#include 
 
-#include 
-#include 
-#include 
-#include 
 #include "AliITSgeom.h"
-#include "AliITSgeomSPD.h"
-#include "TRandom.h"
+#include "AliLog.h"
 
 ClassImp(AliITSgeom)
 
-//_____________________________________________________________________
-AliITSgeom::AliITSgeom(){
-////////////////////////////////////////////////////////////////////////
-//     The default constructor for the AliITSgeom class. It, by default,
-// sets fNlayers to zero and zeros all pointers.
-////////////////////////////////////////////////////////////////////////
-  // Default constructor.
-  // Do not allocate anything zero everything
-   fNlayers = 0;
-   fNlad    = 0;
-   fNdet    = 0;
-   fg       = 0;
-   fShape   = 0;
-   return;
-}
-
-//_____________________________________________________________________
-AliITSgeom::~AliITSgeom(){
-////////////////////////////////////////////////////////////////////////
-//     The destructor for the AliITSgeom class. If the arrays fNlad,
-// fNdet, or fg have had memory allocated to them, there pointer values
-// are non zero, then this memory space is freed and they are set
-// to zero. In addition, fNlayers is set to zero. The destruction of
-// TObjArray fShape is, by default, handled by the TObjArray destructor.
-////////////////////////////////////////////////////////////////////////
-  // Default destructor.
-  // if arrays exist delete them. Then set everything to zero.
-   if(fg!=0){
-      for(Int_t i=0;ifNlayers) {
-         printf("error in file %s layer=%d min is 1 max is %d/n",
-                 filename,l,fNlayers);
-         continue;
-      }// end if l
-      if(fNlad[l-1]fNlayers) {
-         printf("error in file %s layer=%d min is 1 max is %d/n",
-                 filename,l,fNlayers);
-         continue;
-      }// end if l
-      l--; a--; d--; // shift layer, ladder, and detector counters to zero base
-      i = d + a*fNdet[l]; // position of this detector
-      g = &(fg[l][i]);
-
-      oor = byPI*o;
-      pr = byPI*p;
-      qr = byPI*q;
-      rr = byPI*r;
-      sr = byPI*s;
-      tr = byPI*t;
-
-      g->fx0   = x;
-      g->fy0   = y;
-      g->fz0   = z;
-//
-      si    = sin(oor);if(o== 90.0) si = +1.0;
-                      if(o==270.0) si = -1.0;
-                      if(o==  0.0||o==180.) si = 0.0;
-      lr[0] = si * cos(pr);
-      lr[1] = si * sin(pr);
-      lr[2] = cos(oor);if(o== 90.0||o==270.) lr[2] = 0.0;
-                      if(o== 0.0)           lr[2] = +1.0;
-                      if(o==180.0)          lr[2] = -1.0;
-//
-      si    =  sin(qr);if(q== 90.0) si = +1.0; 
-                       if(q==270.0) si = -1.0;
-                       if(q==  0.0||q==180.) si = 0.0;
-      lr[3] = si * cos(rr);
-      lr[4] = si * sin(rr);
-      lr[5] = cos(qr);if(q== 90.0||q==270.) lr[5] = 0.0;
-                      if(q==  0.0)          lr[5] = +1.0;
-                      if(q==180.0)          lr[5] = -1.0;
-//
-      si    = sin(sr);if(s== 90.0) si = +1.0;
-                      if(s==270.0) si = -1.0;
-                      if(s==  0.0||s==180.) si = 0.0;
-      lr[6] = si * cos(tr);
-      lr[7] = si * sin(tr);
-      lr[8] = cos(sr);if(s== 90.0||s==270.0) lr[8] =  0.0;
-                      if(s==  0.0)           lr[8] = +1.0;
-                      if(s==180.0)           lr[8] = -1.0;
-      // Normalize these elements
-      for(a=0;a<3;a++){// reuse float Si and integers a and d.
-         si = 0.0;
-         for(d=0;d<3;d++) si += lr[3*a+d]*lr[3*a+d];
-         si = TMath::Sqrt(1./si);
-         for(d=0;d<3;d++) g->fr[3*a+d] = lr[3*a+d] = si*lr[3*a+d];
-      } // end for a
-      // get angles from matrix up to a phase of 180 degrees.
-      oor     = atan2(lr[7],lr[8]);if(oor<0.0) oor += 2.0*PI;
-      pr     = asin(lr[2]);       if(pr<0.0) pr += 2.0*PI;
-      qr     = atan2(lr[3],lr[0]);if(qr<0.0) qr += 2.0*PI;
-      g->frx = oor;
-      g->fry = pr;
-      g->frz = qr;
-      // l = layer-1 at this point.
-           if(l==0||l==1) g->fShapeIndex = 0; // SPD's
-      else if(l==2||l==3) g->fShapeIndex = 1; // SDD's
-      else if(l==4||l==5) g->fShapeIndex = 2; // SSD's
-   } // end for ever loop
-   fclose(pf);
-}
-
-//________________________________________________________________________
-AliITSgeom::AliITSgeom(AliITSgeom &source){
-////////////////////////////////////////////////////////////////////////
-//     The copy constructor for the AliITSgeom class. It calls the
-// = operator function. See the = operator function for more details.
-////////////////////////////////////////////////////////////////////////
-
-    *this = source;  // Just use the = operator for now.
-
-    return;
-}
-
-//________________________________________________________________________
-void AliITSgeom::operator=(AliITSgeom &source){
-////////////////////////////////////////////////////////////////////////
-//     The = operator function for the AliITSgeom class. It makes an
-// independent copy of the class in such a way that any changes made
-// to the copied class will not affect the source class in any way.
-// This is required for many ITS alignment studies where the copied
-// class is then modified by introducing some misalignment.
-////////////////////////////////////////////////////////////////////////
-   Int_t i,j,k;
-
-   if(this == &source) return; // don't assign to ones self.
-
-   // if there is an old structure allocated delete it first.
-   if(fg != 0){
-      for(i=0;ifx0;
-   y    = g[1] - gl->fy0;
-   z    = g[2] - gl->fz0;
-   l[0] = gl->fr[0]*x + gl->fr[1]*y + gl->fr[2]*z;
-   l[1] = gl->fr[3]*x + gl->fr[4]*y + gl->fr[5]*z;
-   l[2] = gl->fr[6]*x + gl->fr[7]*y + gl->fr[8]*z;
-   return;
-}
-//________________________________________________________________________
-void AliITSgeom::GtoL(const Int_t *id,const Double_t *g,Double_t *l){
-////////////////////////////////////////////////////////////////////////
-//     The function that does the local active volume detector Cartesian
-// coordinate to global ALICE Cartesian coordinate transformation.
-// The local detector coordinate system is determined by the id[0]=layer, 
-// id[1]=ladder, and id[2]=detector numbers. The local coordinates are
-// entered by the three element Double_t array l and the global coordinate
-// values are returned by the three element Double_t array g. The order of the 
-// three elements are l[0]=x, l[1]=y, and l[2]=z, similarly for g.
-////////////////////////////////////////////////////////////////////////
-    GtoL(id[0],id[1],id[2],g,l);
-    return;
-}
-//________________________________________________________________________
-void AliITSgeom::GtoL(const Int_t index,const Double_t *g,Double_t *l){
-////////////////////////////////////////////////////////////////////////
-//     The function that does the local active volume detector Cartesian
-// coordinate to global ALICE Cartesian coordinate transformation.
-// The local detector coordinate system is determined by the detector
-// index numbers (see GetModuleIndex and GetModuleID). The local 
-// coordinates are entered by the three element Double_t array l and the 
-// global coordinate values are returned by the three element Double_t array g.
-// The order of the three elements are l[0]=x, l[1]=y, and l[2]=z, similarly 
-// for g.
-////////////////////////////////////////////////////////////////////////
-    Int_t    lay,lad,det;
-
-    this->GetModuleId(index,lay,lad,det);
-
-    GtoL(lay,lad,det,g,l);
-    return;
-}
-//________________________________________________________________________
-void AliITSgeom::GtoL(Int_t lay,Int_t lad,Int_t det,
-                       const Float_t *g,Float_t *l){
-////////////////////////////////////////////////////////////////////////
-//     The function that does the global ALICE Cartesian coordinate
-// to local active volume detector Cartesian coordinate transformation.
-// The local detector coordinate system is determined by the layer, 
-// ladder, and detector numbers. The global coordinates are entered by
-// the three element Float_t array g and the local coordinate values
-// are returned by the three element Float_t array l. The order of the 
-// three elements are g[0]=x, g[1]=y, and g[2]=z, similarly for l.
-////////////////////////////////////////////////////////////////////////
-    Int_t    i;
-    Double_t gd[3],ld[3];
-
-    for(i=0;i<3;i++) gd[i] = (Double_t) g[i];
-    GtoL(lay,lad,det,(Double_t *)gd,(Double_t *)ld);
-    for(i=0;i<3;i++) l[i] = (Float_t) ld[i];
-    return;
-}
-//________________________________________________________________________
-void AliITSgeom::GtoL(const Int_t *id,const Float_t *g,Float_t *l){
-////////////////////////////////////////////////////////////////////////
-//     The function that does the local active volume detector Cartesian
-// coordinate to global ALICE Cartesian coordinate transformation.
-// The local detector coordinate system is determined by the Int_t array id,
-// id[0]=layer, id[1]=ladder, and id[2]=detector numbers. The local 
-// coordinates are entered by the three element Float_t array l and the
-// global coordinate values are returned by the three element Float_t array g.
-// The order of the three elements are l[0]=x, l[1]=y, and l[2]=z, similarly
-// for g. The order of the three elements are g[0]=x, g[1]=y, and g[2]=z,
-// similarly for l.
-////////////////////////////////////////////////////////////////////////
-    Int_t    i;
-    Double_t gd[3],ld[3];
-
-    for(i=0;i<3;i++) gd[i] = (Double_t) g[i];
-    GtoL(id[0],id[1],id[2],(Double_t *)gd,(Double_t *)ld);
-    for(i=0;i<3;i++) l[i] = (Float_t) ld[i];
-    return;
-}
-//________________________________________________________________________
-void AliITSgeom::GtoL(const Int_t index,const Float_t *g,Float_t *l){
-////////////////////////////////////////////////////////////////////////
-//     The function that does the local active volume detector Cartesian
-// coordinate to global ALICE Cartesian coordinate transformation.
-// The local detector coordinate system is determined by the detector
-// index numbers (see GetModuleIndex and GetModuleID). The local 
-// coordinates are entered by the three element Float_t array l and the 
-// global coordinate values are returned by the three element Float_t array g.
-// The order of the three elements are l[0]=x, l[1]=y, and l[2]=z, similarly 
-// for g.
-////////////////////////////////////////////////////////////////////////
-    Int_t    lay,lad,det;
-    Int_t    i;
-    Double_t gd[3],ld[3];
-
-    this->GetModuleId(index,lay,lad,det);
-
-    for(i=0;i<3;i++) gd[i] = (Double_t) g[i];
-    GtoL(lay,lad,det,(Double_t *)gd,(Double_t *)ld);
-    for(i=0;i<3;i++) l[i] = (Float_t) ld[i];
-    return;
-}
-//________________________________________________________________________
-void AliITSgeom::LtoG(Int_t lay,Int_t lad,Int_t det,
-		      const Double_t *l,Double_t *g){
-////////////////////////////////////////////////////////////////////////
-//     The function that does the local active volume detector Cartesian
-// coordinate to global ALICE Cartesian coordinate transformation.
-// The local detector coordinate system is determined by the layer, 
-// ladder, and detector numbers. The local coordinates are entered by
-// the three element Float_t array l and the global coordinate values
-// are returned by the three element Float_t array g. The order of the 
-// three elements are l[0]=x, l[1]=y, and l[2]=z, similarly for g.
-////////////////////////////////////////////////////////////////////////
-   Double_t x,y,z;
-   ITS_geom *gl;
-
-   lay--; lad--; det--;
-   gl   = &(fg[lay][fNdet[lay]*lad+det]);
-
-   x    = gl->fr[0]*l[0] + gl->fr[3]*l[1] + gl->fr[6]*l[2];
-   y    = gl->fr[1]*l[0] + gl->fr[4]*l[1] + gl->fr[7]*l[2];
-   z    = gl->fr[2]*l[0] + gl->fr[5]*l[1] + gl->fr[8]*l[2];
-   g[0] = x + gl->fx0;
-   g[1] = y + gl->fy0;
-   g[2] = z + gl->fz0;
-   return;
-}
-//________________________________________________________________________
-void AliITSgeom::LtoG(const Int_t *id,const Double_t *l,Double_t *g){
-////////////////////////////////////////////////////////////////////////
-//     The function that does the local active volume detector Cartesian
-// coordinate to global ALICE Cartesian coordinate transformation.
-// The local detector coordinate system is determined by the three
-// element array Id containing as it's three elements Id[0]=layer, 
-// Id[1]=ladder, and Id[2]=detector numbers. The local coordinates
-// are entered by the three element Double_t array l and the global
-// coordinate values are returned by the three element Double_t array g.
-// The order of the three elements are l[0]=x, l[1]=y, and l[2]=z,
-// similarly for g.
-////////////////////////////////////////////////////////////////////////
-    LtoG(id[0],id[1],id[2],l,g);
-    return;
-}
-//________________________________________________________________________
-void AliITSgeom::LtoG(const Int_t index,const Double_t *l,Double_t *g){
-////////////////////////////////////////////////////////////////////////
-//     The function that does the local active volume detector Cartesian
-// coordinate to global ALICE Cartesian coordinate transformation.
-// The local detector coordinate system is determined by the detector  
-// index number (see GetModuleIndex and GetModuleId). The local coordinates
-// are entered by the three element Double_t array l and the global
-// coordinate values are returned by the three element Double_t array g.
-// The order of the three elements are l[0]=x, l[1]=y, and l[2]=z,
-// similarly for g.
-////////////////////////////////////////////////////////////////////////
-    Int_t    lay,lad,det;
-
-    this->GetModuleId(index,lay,lad,det);
-
-    LtoG(lay,lad,det,l,g);
-    return;
-}
-//________________________________________________________________________
-void AliITSgeom::LtoG(Int_t lay,Int_t lad,Int_t det,
-		      const Float_t *l,Float_t *g){
-////////////////////////////////////////////////////////////////////////
-//     The function that does the local active volume detector Cartesian
-// coordinate to global ALICE Cartesian coordinate transformation.
-// The local detector coordinate system is determined by the layer, 
-// ladder, and detector numbers. The local coordinates are entered by
-// the three element Float_t array l and the global coordinate values
-// are returned by the three element Float_t array g. The order of the 
-// three elements are l[0]=x, l[1]=y, and l[2]=z, similarly for g.
-////////////////////////////////////////////////////////////////////////
-    Int_t    i;
-    Double_t gd[3],ld[3];
-
-    for(i=0;i<3;i++) ld[i] = (Double_t) l[i];
-    LtoG(lay,lad,det,(Double_t *)ld,(Double_t *)gd);
-    for(i=0;i<3;i++) g[i] = (Float_t) gd[i];
-    return;
-}
-//________________________________________________________________________
-void AliITSgeom::LtoG(const Int_t *id,const Float_t *l,Float_t *g){
-////////////////////////////////////////////////////////////////////////
-//     The function that does the local active volume detector Cartesian
-// coordinate to global ALICE Cartesian coordinate transformation.
-// The local detector coordinate system is determined by the three
-// element array Id containing as it's three elements Id[0]=layer, 
-// Id[1]=ladder, and Id[2]=detector numbers. The local coordinates
-// are entered by the three element Float_t array l and the global
-// coordinate values are returned by the three element Float_t array g.
-// The order of the three elements are l[0]=x, l[1]=y, and l[2]=z,
-// similarly for g.
-////////////////////////////////////////////////////////////////////////
-    Int_t    i;
-    Double_t gd[3],ld[3];
-
-    for(i=0;i<3;i++) ld[i] = (Double_t) l[i];
-    LtoG(id[0],id[1],id[2],(Double_t *)ld,(Double_t *)gd);
-    for(i=0;i<3;i++) g[i] = (Float_t) gd[i];
+//______________________________________________________________________
+AliITSgeom::AliITSgeom():
+TObject(),
+fVersion("GEANT"),// Transformation version.
+fTrans(0),       // Flag to keep track of which transformation 
+fNmodules(0),    // The total number of modules
+fNlayers(0),     // The number of layers.
+fNlad(),         //[] Array of the number of ladders/layer(layer)
+fNdet(),         //[] Array of the number of detector/ladder(layer)
+fGm(0,0)        // Structure of translation. and rotation.
+{
+    //     The default constructor for the AliITSgeom class. It, by default,
+    // sets fNlayers to zero and zeros all pointers.
+    // Do not allocate anything zero everything.
+    // Inputs:
+    //    none.
+    // Outputs:
+    //    none.
+    // Return:
+    //    a zeroed AliITSgeom object.
+
+    fGm.SetOwner(kTRUE);
     return;
 }
-//________________________________________________________________________
-void AliITSgeom::LtoG(const Int_t index,const Float_t *l,Float_t *g){
-////////////////////////////////////////////////////////////////////////
-//     The function that does the local active volume detector Cartesian
-// coordinate to global ALICE Cartesian coordinate transformation.
-// The local detector coordinate system is determined by the detector  
-// index number (see GetModuleIndex and GetModuleId). The local coordinates
-// are entered by the three element Float_t array l and the global
-// coordinate values are returned by the three element Float_t array g.
-// The order of the three elements are l[0]=x, l[1]=y, and l[2]=z,
-// similarly for g.
-////////////////////////////////////////////////////////////////////////
-    Int_t    i,lay,lad,det;
-    Double_t gd[3],ld[3];
-
-    this->GetModuleId(index,lay,lad,det);
 
-    for(i=0;i<3;i++) ld[i] = (Double_t) l[i];
-    LtoG(lay,lad,det,(Double_t *)ld,(Double_t *)gd);
-    for(i=0;i<3;i++) g[i] = (Float_t) gd[i];
-    return;
-}
 //______________________________________________________________________
-void AliITSgeom::LtoL(const Int_t *id1,const Int_t *id2,
-		      Double_t *l1,Double_t *l2){
-////////////////////////////////////////////////////////////////////////
-//     The function that does the local active volume detector Cartesian
-// coordinate to a different local active volume detector Cartesian coordinate
-// transformation. The original local detector coordinate system is determined
-// by the detector array id1, id1[0]=layer, id1[1]=ladder, and id1[2]=detector
-// and the new coordinate system is determined by the detector array id2,
-// id2[0]=layer, id2[1]=ladder, and id2[2]=detector. The original local
-// coordinates are entered by the three element Double_t array l1 and the
-// other new local coordinate values are returned by the three element
-// Double_t array l2. The order of the three elements are l1[0]=x, l1[1]=y,
-// and l1[2]=z, similarly for l2.
-////////////////////////////////////////////////////////////////////////
-    Double_t g[3];
-
-    LtoG(id1,l1,g);
-    GtoL(id2,g,l2);
+AliITSgeom::AliITSgeom(Int_t itype,Int_t nlayers,const Int_t *nlads,
+                       const Int_t *ndets,Int_t mods):
+TObject(),
+fVersion("GEANT"),    // Transformation version.
+fTrans(itype),       // Flag to keep track of which transformation 
+fNmodules(mods),     // The total number of modules
+fNlayers(nlayers),   // The number of layers.
+fNlad(nlayers,nlads),//[] Array of the number of ladders/layer(layer)
+fNdet(nlayers,ndets),//[] Array of the number of detector/ladder(layer)
+fGm(mods,0)         // Structure of translation. and rotation.
+{
+    //     A simple constructor to set basic geometry class variables
+    // Inputs:
+    //      Int_t itype   the type of transformation kept.
+    //                    bit 0 => Standard GEANT
+    //                    bit 1 => ITS tracking
+    //                    bit 2 => A change in the coordinate system 
+    //                    has been made. others are still to be defined 
+    //                    as needed.
+    //      Int_t nlayers The number of ITS layers also set the size of 
+    //                    the arrays
+    //      Int_t *nlads  an array of the number of ladders for each 
+    //                    layer. This array must be nlayers long.
+    //      Int_t *ndets  an array of the number of detectors per ladder
+    //                    for each layer. This array must be nlayers long.
+    //      Int_t mods    The number of modules. Typically the sum of all the 
+    //                    detectors on every layer and ladder.
+    // Outputs:
+    //     none
+    // Return:
+    //     A properly inilized AliITSgeom object.
+
+    fGm.SetOwner(kTRUE);
     return;
 }
 //______________________________________________________________________
-void AliITSgeom::LtoL(const Int_t index1,const Int_t index2,
-		      Double_t *l1,Double_t *l2){
-////////////////////////////////////////////////////////////////////////
-//     The function that does the local active volume detector Cartesian
-// coordinate to a different local active volume detector Cartesian coordinate
-// transformation. The original local detector coordinate system is determined
-// by the detector index number index1, and the new coordinate system is
-// determined by the detector index number index2, (see GetModuleIndex and
-// GetModuleId). The original local coordinates are entered by the three
-// element Double_t array l1 and the other new local coordinate values are
-// returned by the three element Double_t array l2. The order of the three
-// elements are l1[0]=x, l1[1]=y, and l1[2]=z, similarly for l2.
-////////////////////////////////////////////////////////////////////////
-    Double_t g[3];
-
-    LtoG(index1,l1,g);
-    GtoL(index2,g,l2);
-    return;
-}
-//________________________________________________________________________
-void AliITSgeom::GtoLMomentum(Int_t lay,Int_t lad,Int_t det,
-			      const Double_t *g,Double_t *l){
-////////////////////////////////////////////////////////////////////////
-//     The function that does the global ALICE Cartesian momentum
-// to local active volume detector Cartesian momentum transformation.
-// The local detector coordinate system is determined by the layer, 
-// ladder, and detector numbers. The global momentums are entered by
-// the three element Double_t array g and the local momentums values
-// are returned by the three element Double_t array l. The order of the 
-// three elements are g[0]=x, g[1]=y, and g[2]=z, similarly for l.
-////////////////////////////////////////////////////////////////////////
-   Double_t px,py,pz;
-   ITS_geom *gl;
-
-   lay--; lad--; det--;
-   gl = &(fg[lay][fNdet[lay]*lad+det]);
-
-   px   = g[0];
-   py   = g[1];
-   pz   = g[2];
-   l[0] = gl->fr[0]*px + gl->fr[1]*py + gl->fr[2]*pz;
-   l[1] = gl->fr[3]*px + gl->fr[4]*py + gl->fr[5]*pz;
-   l[2] = gl->fr[6]*px + gl->fr[7]*py + gl->fr[8]*pz;
-   return;
-}
-//________________________________________________________________________
-void AliITSgeom::GtoLMomentum(Int_t lay,Int_t lad,Int_t det,
-			      const Float_t *g,Float_t *l){
-////////////////////////////////////////////////////////////////////////
-//     The function that does the global ALICE Cartesian momentum
-// to local active volume detector Cartesian momentum transformation.
-// The local detector coordinate system is determined by the layer, 
-// ladder, and detector numbers. The global momentums are entered by
-// the three element Float_t array g and the local momentums values
-// are returned by the three element Float_t array l. The order of the 
-// three elements are g[0]=x, g[1]=y, and g[2]=z, similarly for l.
-////////////////////////////////////////////////////////////////////////
-    Int_t i;
-    Double_t gd[3],ld[3];
-
-    for(i=0;i<3;i++) gd[i] = (Double_t) g[i];
-    GtoLMomentum(lay,lad,det,(Double_t *)gd,(Double_t *)ld);
-    for(i=0;i<3;i++) l[i] = (Float_t) ld[i];
-    return;
-}
-//________________________________________________________________________
-void AliITSgeom::LtoGMomentum(Int_t lay,Int_t lad,Int_t det,
-			      const Double_t *l,Double_t *g){
-////////////////////////////////////////////////////////////////////////
-//     The function that does the local active volume detector Cartesian
-// momentum to global ALICE Cartesian momentum transformation.
-// The local detector momentum system is determined by the layer, 
-// ladder, and detector numbers. The local momentums are entered by
-// the three element Double_t array l and the global momentum values
-// are returned by the three element Double_t array g. The order of the 
-// three elements are l[0]=x, l[1]=y, and l[2]=z, similarly for g.
-////////////////////////////////////////////////////////////////////////
-   Double_t px,py,pz;
-   ITS_geom *gl;
-
-   lay--; lad--; det--;
-   gl   = &(fg[lay][fNdet[lay]*lad+det]);
-
-   px   = gl->fr[0]*l[0] + gl->fr[3]*l[1] + gl->fr[6]*l[2];
-   py   = gl->fr[1]*l[0] + gl->fr[4]*l[1] + gl->fr[7]*l[2];
-   pz   = gl->fr[2]*l[0] + gl->fr[5]*l[1] + gl->fr[8]*l[2];
-   g[0] = px;
-   g[1] = py;
-   g[2] = pz;
-   return;
-}
-//________________________________________________________________________
-void AliITSgeom::LtoGMomentum(Int_t lay,Int_t lad,Int_t det,
-			      const Float_t *l,Float_t *g){
-////////////////////////////////////////////////////////////////////////
-//     The function that does the local active volume detector Cartesian
-// momentum to global ALICE Cartesian momentum transformation.
-// The local detector momentum system is determined by the layer, 
-// ladder, and detector numbers. The local momentums are entered by
-// the three element Float_t array l and the global momentum values
-// are returned by the three element Float_t array g. The order of the 
-// three elements are l[0]=x, l[1]=y, and l[2]=z, similarly for g.
-////////////////////////////////////////////////////////////////////////
-    Int_t i;
-    Double_t gd[3],ld[3];
-
-    for(i=0;i<3;i++) ld[i] = (Double_t) l[i];
-    LtoGMomentum(lay,lad,det,(Double_t *)ld,(Double_t *)gd);
-    for(i=0;i<3;i++) g[i] = (Float_t) gd[i];
+void AliITSgeom::Init(Int_t itype,Int_t nlayers,const Int_t *nlads,
+                      const Int_t *ndets,Int_t mods){
+    //     A simple Inilizer to set basic geometry class variables
+    // Inputs:
+    //      Int_t itype   the type of transformation kept.
+    //                    bit 0 => Standard GEANT
+    //                    bit 1 => ITS tracking
+    //                    bit 2 => A change in the coordinate system 
+    //                    has been made. others are still to be defined 
+    //                    as needed.
+    //      Int_t nlayers The number of ITS layers also set the size of 
+    //                    the arrays
+    //      Int_t *nlads  an array of the number of ladders for each 
+    //                    layer. This array must be nlayers long.
+    //      Int_t *ndets  an array of the number of detectors per ladder 
+    //                    for each layer. This array must be nlayers long.
+    //      Int_t mods    The number of modules. Typically the sum of all the 
+    //                    detectors on every layer and ladder.
+    // Outputs:
+    //     none
+    // Return:
+    //     A properly inilized AliITSgeom object.
+
+    fVersion  = "GEANT";     // Transformation version.
+    fTrans    = itype;       // Flag to keep track of which transformation 
+    fNmodules = mods;        // The total number of modules
+    fNlayers  = nlayers;     // The number of layers.
+    fNlad.Set(nlayers,nlads);//[] Array of the number of ladders/layer(layer)
+    fNdet.Set(nlayers,ndets);//[] Array of the number of detector/ladder(layer)
+    fGm.Clear();
+    fGm.Expand(mods);        // Structure of translation. and rotation.
+    fGm.SetOwner(kTRUE);
     return;
 }
 //______________________________________________________________________
-void AliITSgeom::LtoLMomentum(const Int_t *id1,const Int_t *id2,
-			      const Double_t *l1,Double_t *l2){
-////////////////////////////////////////////////////////////////////////
-//     The function that does the local active volume detector Cartesian
-// momentum to a different local active volume detector Cartesian momentum
-// transformation. The original local detector momentum system is determined
-// by the Int_t array id1 (id1[0]=lay, id1[1]=lad, id1[2]=det). The new local
-// coordinate system id determined by the Int_t array id2. The local
-// momentums are entered by the three element Double_t array l1 and the other
-// local momentum values are returned by the three element Double_t array l2.
-// The order of the three elements are l1[0]=x, l1[1]=y, and l1[2]=z,
-// similarly for l2.
-////////////////////////////////////////////////////////////////////////
-    Double_t g[3];
-
-    LtoGMomentum(id1[0],id1[1],id1[2],l1,g);
-    GtoLMomentum(id2[0],id2[1],id2[2],g,l2);
-    return;
+void AliITSgeom::CreateMatrix(Int_t mod,Int_t lay,Int_t lad,Int_t det,
+                              AliITSDetector idet,const Double_t tran[3],
+                              const Double_t rot[10]){
+    // Given the translation vector tran[3] and the rotation matrix rot[1],
+    // this function creates and adds to the TObject Array fGm the
+    // AliITSgeomMatrix object.
+    // The rot[10] matrix is set up like:
+    /*   / rot[0]  rot[1]  rot[2] \
+    //  |  rot[3]  rot[4]  rot[5]  |
+    //   \ rot[6]  rot[7]  rot[8] /  if(rot[9]!=0) then the Identity matrix
+    // is used regardless of the values in rot[0]-rot[8].
+    */
+    // Inputs:
+    //    Int_t           mod     The module number. The location in TObjArray
+    //    Int_t           lay     The layer where this module is
+    //    Int_t           lad     On which ladder this module is
+    //    Int_t           det     Which detector on this ladder this module is
+    //    AliITSDetector idet     The type of detector see AliITSgeom.h
+    //    Double_t       tran[3]  The translation vector
+    //    Double_t       rot[10]  The rotation matrix.
+    // Outputs:
+    //    none
+    // Return:
+    //    none.
+    Int_t id[3];
+    Double_t r[3][3] = {{1.0,0.0,0.0},{0.0,1.0,0.0},{0.0,0.0,1.0}};
+
+    if(mod<0||mod>=fGm.GetSize()){ 
+	Error("CreateMatrix","mod=%d is out of bounds max value=%d",mod,
+	      fGm.GetSize());
+	return;
+    } // end if
+    delete fGm.At(mod);
+    id[0] = lay; id[1] = lad; id[2] = det;
+    if(rot[9]!=0.0) { // null rotation
+        r[0][0] = rot[0]; r[0][1] = rot[1]; r[0][2] = rot[2];
+        r[1][0] = rot[3]; r[1][1] = rot[4]; r[1][2] = rot[5];
+        r[2][0] = rot[6]; r[2][1] = rot[7]; r[2][2] = rot[8];
+    } // end if
+    fGm.AddAt(new AliITSgeomMatrix(idet,id,r,tran),mod);
 }
 //______________________________________________________________________
-void AliITSgeom::GtoLErrorMatrix(const Int_t index,Double_t **g,Double_t **l){
-////////////////////////////////////////////////////////////////////////
-//      This converts an error matrix, expressed in global coordinates
-// into an error matrix expressed in local coordinates. Since the 
-// translations do not change the error matrix they are not included.
-// Definition: if GtoL is l[i] = T[i][j]*g[j], then from the definition
-// of the transformation matrix above T[i][j] = fr[3*i+j]. Then for a 
-// matrix l[i][l] = T[i][j]*g[j][k]*T[l][k] (sum over repeated indexes). 
-// Where T[l][k] is the transpose of T[k][l].
-////////////////////////////////////////////////////////////////////////
-    Double_t R[3][3],Rt[3][3];
-    Int_t    lay,lad,det,i,j,k,n;
-    ITS_geom *gl;
-
-    GetModuleId(index,lay,lad,det);
-    lay--;lad--;det--;
-    gl = &(fg[lay][fNdet[lay]*lad+det]);
-
-    for(i=0;i<3;i++)for(j=0;j<3;j++){
-	R[i][j] = Rt[j][i] = gl->fr[3*i+j];
-    } // end for i,j
+AliITSgeom::~AliITSgeom(){
+    //     The destructor for the AliITSgeom class. If the arrays fNlad,
+    // fNdet, or fGm have had memory allocated to them, there pointer values
+    // are non zero, then this memory space is freed and they are set
+    // to zero. In addition, fNlayers is set to zero. The destruction of
+    // Inputs:
+    //    none.
+    // Outputs:
+    //    none.
+    // Return:
+    //    none.
 
-    for(i=0;i<3;i++)for(j=0;j<3;j++)for(k=0;k<3;k++)for(n=0;n<3;n++){
-	l[i][n] = R[i][j]*g[j][k]*Rt[k][n];
-    } // end for i,j,k,l
     return;
 }
 //______________________________________________________________________
-void AliITSgeom::LtoGErrorMatrix(const Int_t index,Double_t **l,Double_t **g){
-////////////////////////////////////////////////////////////////////////
-//      This converts an error matrix, expressed in local coordinates
-// into an error matrix expressed in global coordinates. Since the 
-// translations do not change the error matrix they are not included.
-// Definition: if GtoL is l[i] = T[i][j]*g[j], then from the definition
-// of the transformation matrix above T[i][j] = fr[3*i+j]. Then for a 
-// matrix g[i][l] = T[j][i]*l[j][k]*T[k][l] (sum over repeated indexes). 
-// Where T[j][i] is the transpose of T[i][j].
-////////////////////////////////////////////////////////////////////////
-    Double_t R[3][3],Rt[3][3];
-    Int_t    lay,lad,det,i,j,k,n;
-    ITS_geom *gl;
-
-    GetModuleId(index,lay,lad,det);
-    lay--;lad--;det--;
-    gl = &(fg[lay][fNdet[lay]*lad+det]);
-
-    for(i=0;i<3;i++)for(j=0;j<3;j++){
-	R[i][j] = Rt[j][i] = gl->fr[3*i+j];
-    } // end for i,j
-
-    for(i=0;i<3;i++)for(j=0;j<3;j++)for(k=0;k<3;k++)for(n=0;n<3;n++){
-	g[i][n] = Rt[i][j]*l[j][k]*R[k][n];
-    } // end for i,j,k,l
+AliITSgeom::AliITSgeom(const AliITSgeom &source) : 
+TObject(source),
+fVersion(source.fVersion), // Transformation version.
+fTrans(source.fTrans),   // Flag to keep track of which transformation
+fNmodules(source.fNmodules),// The total number of modules
+fNlayers(source.fNlayers), // The number of layers.
+fNlad(source.fNlad),    // Array of the number of ladders/layer(layer)
+fNdet(source.fNdet),    // Array of the number of detector/ladder(layer)
+fGm(source.fGm.GetSize(),source.fGm.LowerBound())// Structure of 
+                                                  // translation and rotation.
+{
+    //     The copy constructor for the AliITSgeom class. It calls the
+    // = operator function. See the = operator function for more details.
+    // Inputs:
+    //     AliITSgeom &source  The AliITSgeom class with which to make this
+    //                         a copy of.
+    // Outputs:
+    //     none.
+    // Return:
+    //     none.
+    Int_t i,n;
+
+    n = source.fGm.GetLast()+1;
+    for(i=source.fGm.LowerBound();iLtoGErrorMatrix(index1,l1,(Double_t **)g);
-    this->GtoLErrorMatrix(index2,(Double_t **)g,l2);
-    return;
+    if(this == &source) return *this; // don't assign to ones self.
+
+    // if there is an old structure allocated delete it first.
+    this->fGm.Clear();
+
+    this->fVersion  = source.fVersion;
+    this->fTrans    = source.fTrans;
+    this->fNmodules = source.fNmodules;
+    this->fNlayers  = source.fNlayers;
+    this->fNlad     = source.fNlad;
+    this->fNdet     = source.fNdet;
+    this->fGm.Expand(this->fNmodules);
+    for(i=source.fGm.LowerBound();i=fNmodules) return -1;
+    GetGeomMatrix(i)->GetIndex(id);
+    if(id[0]==lay&&id[1]==lad&&id[2]==det) return i;
+    // Array of modules fGm is not in expected order. Search for this index
+    for(i=0;iGetIndex(id);
+        if(id[0]==lay&&id[1]==lad&&id[2]==det) return i;
+    } // end for i
+    // This layer ladder and detector combination does not exist return -1.
+    return -1;
 }
-//___________________________________________________________________________
-void AliITSgeom::GetModuleId(Int_t index,Int_t &lay,Int_t &lad,Int_t &det){
-////////////////////////////////////////////////////////////////////////
-//      This routine computes the layer, ladder and detector number 
-// given the module index number. The number of ladders and detectors
-// per layer is determined when this geometry package is constructed,
-// see AliITSgeom(const char *filename) for specifics.
-////////////////////////////////////////////////////////////////////////
+//______________________________________________________________________
+void AliITSgeom::GetModuleId(Int_t index,Int_t &lay,Int_t &lad,Int_t &det)
+const{
+    //      This routine computes the layer, ladder and detector number 
+    // given the module index number. The number of ladders and detectors
+    // per layer is determined when this geometry package is constructed,
+    // see AliITSgeom(const char *filename) for specifics.
+    // Inputs:
+    //     Int_t index  The module index number, starting from zero.
+    // Outputs:
+    //     Int_t lay    The layer number. Starting from 1.
+    //     Int_t lad    The ladder number. Starting from 1.
+    //     Int_t det    The detector number. Starting from 1.
+    // Return:
+    //     none.
+    Int_t id[3];
+    AliITSgeomMatrix *g = GetGeomMatrix(index);
+
+    if (g == 0x0){
+        Error("GetModuleId","Can not get GeoMatrix for index = %d",index);
+        lay = -1; lad = -1; det = -1;
+    }else{
+        g->GetIndex(id);
+        lay = id[0]; lad = id[1]; det = id[2];
+    }// End if
+    return;
+    // The old way kept for posterity.
+/*
     Int_t i,j,k;
-
     j = 0;
     for(k=0;kfr[i];
-   return;
-}
-//___________________________________________________________________________
-void AliITSgeom::GetRotMatrix(Int_t index,Double_t *mat){
-////////////////////////////////////////////////////////////////////////
-//     Returns, in the Double_t array pointed to by mat, the full rotation
-// matrix for the give detector defined by the module index number.
-// It returns all nine elements of fr in the ITS_geom structure. See the
-// description of the ITS_geom structure for further details of this
-// rotation matrix.
-////////////////////////////////////////////////////////////////////////
-   Int_t    lay,lad,det;
-
-   this->GetModuleId(index,lay,lad,det);
-   GetRotMatrix(lay,lad,det,mat);
-   return;
-}
-//___________________________________________________________________________
-void AliITSgeom::GetRotMatrix(Int_t lay,Int_t lad,Int_t det,Float_t *mat){
-////////////////////////////////////////////////////////////////////////
-//     Returns, in the Float_t array pointed to by mat, the full rotation
-// matrix for the give detector defined by layer, ladder, and detector.
-// It returns all nine elements of fr in the ITS_geom structure. See the
-// description of the ITS_geom structure for further details of this
-// rotation matrix.
-////////////////////////////////////////////////////////////////////////
-   Int_t    i;
-   Double_t matd[9];
-
-   GetRotMatrix(lay,lad,det,(Double_t *)matd);
-   for(i=0;i<9;i++) mat[i] = (Float_t) matd[i];
-   return;
-}
-
-//___________________________________________________________________________
-void AliITSgeom::GetRotMatrix(Int_t index,Float_t *mat){
-////////////////////////////////////////////////////////////////////////
-//     Returns, in the Float_t array pointed to by mat, the full rotation
-// matrix for the give detector defined by module index number.
-// It returns all nine elements of fr in the ITS_geom structure. See the
-// description of the ITS_geom structure for further details of this
-// rotation matrix.
-////////////////////////////////////////////////////////////////////////
-   Int_t    i,lay,lad,det;
-   Double_t matd[9];
-
-   this->GetModuleId(index,lay,lad,det);
-   GetRotMatrix(lay,lad,det,(Double_t *)matd);
-   for(i=0;i<9;i++) mat[i] = (Float_t) matd[i];
-   return;
+//______________________________________________________________________
+Int_t AliITSgeom::GetNDetTypes(Int_t &max)const{
+    // Finds and returns the number of detector types used and the
+    // maximum detector type value. Only counts id >=0 (no undefined
+    // values. See AliITSgeom.h for list of AliITSDetecor enumerated types.
+    // Inputs:
+    //    none.
+    // Outputs:
+    //    The maximum detector type used
+    // Return:
+    //    The number of detector types used
+    Int_t i,*n,id;
+
+    max = -1;
+    for(i=0;imax) max=id;
+    } // end for i
+    n = new Int_t[max+1];
+    for(i=0;i-1)n[id]++; // note id=-1 => undefined.
+    } // end for i
+    id = 0;
+    for(i=0;ifg[i][j].frx - other->fg[i][j].frx.
-// if(at least one of dfx0, dfy0, dfz0,dfrx,dfry,dfrz are non zero) then print
-// layer ladder detector dfx0 dfy0 dfz0 dfrx dfry dfrz
-// if(at least one of the 9 elements of dfr[] are non zero) then print
-// layer ladder detector dfr[0] dfr[1] dfr[2]
-//                       dfr[3] dfr[4] dfr[5]
-//                       dfr[6] dfr[7] dfr[8]
-// Only non zero values are printed to save space. The differences are
-// typical written to a file because there are usually a lot of numbers
-// printed out and it is usually easier to read them in some nice editor
-// rather than zooming quickly past you on a screen. fprintf is used to
-// do the printing. The fShapeIndex difference is not printed at this time.
-////////////////////////////////////////////////////////////////////////
-   Int_t    i,j,k,l;
-   Double_t xt,yt,zt,xo,yo,zo;
-   Double_t rxt,ryt,rzt,rxo,ryo,rzo;  // phi in radians
-   ITS_geom *gt,*go;
-   Bool_t   t;
-
-   for(i=0;ifNlayers;i++){
-      for(j=0;jfNlad[i];j++) for(k=0;kfNdet[i];k++){
-	 l   = this->fNdet[i]*j+k; // resolved index
-         gt  = &(this->fg[i][l]);
-	 go  = &(other->fg[i][l]);
-         xt  = gt->fx0; yt  = gt->fy0; zt  = gt->fz0;
-         xo  = go->fx0; yo  = go->fy0; zo  = go->fz0;
-         rxt = gt->frx; ryt = gt->fry; rzt = gt->frz;
-         rxo = go->frx; ryo = go->fry; rzo = go->frz;
-	 if(!(xt==xo&&yt==yo&&zt==zo&&rxt==rxo&&ryt==ryo&&rzt==rzo))
-	 fprintf(fp,"%1.1d %2.2d %2.2d dTrans=%f %f %f drot=%f %f %f\n",
-		 i+1,j+1,k+1,xt-xo,yt-yo,zt-zo,rxt-rxo,ryt-ryo,rzt-rzo);
-	 t = kFALSE;
-	 for(i=0;i<9;i++) t = gt->fr[i] != go->fr[i];
-	 if(t){
-	     fprintf(fp,"%1.1d %2.2d %2.2d dfr= %e %e %e\n",i+1,j+1,k+1,
-                 gt->fr[0]-go->fr[0],gt->fr[1]-go->fr[1],gt->fr[2]-go->fr[2]);
-	     fprintf(fp,"        dfr= %e %e %e\n",
-                 gt->fr[3]-go->fr[3],gt->fr[4]-go->fr[4],gt->fr[5]-go->fr[5]);
-	     fprintf(fp,"        dfr= %e %e %e\n",
-                 gt->fr[6]-go->fr[6],gt->fr[7]-go->fr[7],gt->fr[8]-go->fr[8]);
-	 }
-      } // end for j,k
-   } // end for i
-   return;
+//______________________________________________________________________
+Int_t AliITSgeom::GetNDetTypes(TArrayI &maxs,AliITSDetector *types)const{
+    // Finds and returns the number of detector types used and the
+    // number of each detector type. Only counts id >=0 (no undefined
+    // values. See AliITSgeom.h for list of AliITSDetecor enumerated types.
+    // Inputs:
+    //    none.
+    // Outputs:
+    //    The maximum detector type used
+    // Return:
+    //    The number of detector types used
+    Int_t i,j,*n,id,max;
+
+    max = -1;
+    for(i=0;imax) max=id;
+    } // end for i
+    n = new Int_t[max+1];
+    for(i=0;i-1)n[id]++; // note id=-1 => undefined.
+    } // end for i
+    id = 0;
+    for(i=0;i<=max;i++) if(n[i]!=0) id++;
+    maxs.Set(id);
+    j = 0;
+    for(i=0;i<=max;i++) if(n[i]!=0){
+        maxs[j] = n[i];
+        types[j++] = (AliITSDetector) i;
+    } // end for i/end if
+    delete[] n;
+    return id;
 }
-
-//___________________________________________________________________________
-void AliITSgeom::PrintData(FILE *fp,Int_t lay,Int_t lad,Int_t det){
-////////////////////////////////////////////////////////////////////////
-//     This function prints out the coordinate transformations for
-// the particular detector defined by layer, ladder, and detector
-// to the file pointed to by the File pointer fp. fprintf statements
-// are used to print out the numbers. The format is
-// layer ladder detector Trans= fx0 fy0 fz0 rot= frx fry frz Shape=fShapeIndex
-//                         dfr= fr[0] fr[1] fr[2]
-//                         dfr= fr[3] fr[4] fr[5]
-//                         dfr= fr[6] fr[7] fr[8]
-// By indicating which detector, some control over the information 
-// is given to the user. The output it written to the file pointed
-// to by the file pointer fp. This can be set to stdout if you want.
-////////////////////////////////////////////////////////////////////////
-   Int_t    i,j,k,l;
-   ITS_geom *gt;
-
-   i  = lay-1;
-   j  = lad-1;
-   k  = det-1;
-   l  = this->fNdet[i]*j+k; // resolved index
-   gt = &(this->fg[i][l]);
-   fprintf(fp,"%1.1d %2.2d %2.2d Trans=%f %f %f rot=%f %f %f Shape=%d\n",
-	   i+1,j+1,k+1,gt->fx0,gt->fy0,gt->fz0,gt->frx,gt->fry,gt->frz,
-           gt->fShapeIndex);
-   fprintf(fp,"        dfr= %e %e %e\n",gt->fr[0],gt->fr[1],gt->fr[2]);
-   fprintf(fp,"        dfr= %e %e %e\n",gt->fr[3],gt->fr[4],gt->fr[5]);
-   fprintf(fp,"        dfr= %e %e %e\n",gt->fr[6],gt->fr[7],gt->fr[8]);
-   return;
+//______________________________________________________________________
+Int_t AliITSgeom::GetStartDet(Int_t dtype)const{
+    // returns the starting module index value for a give type of detector id.
+    // This assumes that the detector types are different on different layers
+    // and that they are not mixed up.
+    // Inputs:
+    //    Int_t dtype A detector type number. 0 for SPD, 1 for SDD, 
+    //                and 2 for SSD.
+    // Outputs:
+    //    none.
+    // Return:
+    //    the module index for the first occurrence of that detector type.
+
+    switch(dtype){
+    case 0:
+        return GetModuleIndex(1,1,1);
+        break;
+    case 1:
+        return GetModuleIndex(3,1,1);
+        break;
+    case 2:
+        return GetModuleIndex(5,1,1);
+        break;
+    default:
+        Warning("GetStartDet","undefined detector type %d",dtype);
+        return 0;
+    } // end switch
+
+    Warning("GetStartDet","undefined detector type %d",dtype);
+    return 0;
 }
-//___________________________________________________________________________
-ofstream & AliITSgeom::PrintGeom(ofstream &R__b){
-////////////////////////////////////////////////////////////////////////
-//     The default Streamer function "written by ROOT" doesn't write out
-// the arrays referenced by pointers. Therefore, a specific Streamer function
-// has to be written. This function should not be modified but instead added
-// on to so that older versions can still be read. The proper handling of
-// the version dependent streamer function hasn't been written do to the lack
-// of finding an example at the time of writing.
-////////////////////////////////////////////////////////////////////////
-   // Stream an object of class AliITSgeom.
-    Int_t i,j,k;
-
-    R__b.setf(ios::scientific);
-    R__b << fNlayers << " ";
-    for(i=0;i> fNlayers;
-      if(fNlad!=0) delete[] fNlad;
-      if(fNdet!=0) delete[] fNdet;
-      fNlad = new Int_t[fNlayers];
-      fNdet = new Int_t[fNlayers];
-      for(i=0;i> fNlad[i];
-      for(i=0;i> fNdet[i];
-      if(fg!=0){
-	  for(i=0;i> fg[i][j].fShapeIndex;
-	      R__b >> fg[i][j].fx0;
-	      R__b >> fg[i][j].fy0;
-	      R__b >> fg[i][j].fz0;
-	      R__b >> fg[i][j].frx;
-	      R__b >> fg[i][j].fry;
-	      R__b >> fg[i][j].frz;
-	      for(k=0;k<9;k++) R__b >> fg[i][j].fr[k];
-	  } // end for j
-      } // end for i
-//      R__b >> fShape;
-      return R__b;
+//______________________________________________________________________
+void AliITSgeom::PrintData(FILE *fp,Int_t lay,Int_t lad,Int_t det)const{
+    //     This function prints out the coordinate transformations for
+    // the particular detector defined by layer, ladder, and detector
+    // to the file pointed to by the File pointer fp. fprintf statements
+    // are used to print out the numbers. The format is
+    // layer ladder detector Trans= fx0 fy0 fz0 rot= frx fry frz 
+    // Shape=fShapeIndex
+    //                         dfr= fr[0] fr[1] fr[2]
+    //                         dfr= fr[3] fr[4] fr[5]
+    //                         dfr= fr[6] fr[7] fr[8]
+    // By indicating which detector, some control over the information 
+    // is given to the user. The output it written to the file pointed
+    // to by the file pointer fp. This can be set to stdout if you want.
+    // Inputs:
+    //     FILE *fp           A file pointer to an opened file for 
+    //                        writing in which the results of the 
+    //                        comparison will be written.
+    //     Int_t lay          The layer number. Starting from 1.
+    //     Int_t lad          The ladder number. Starting from 1.
+    //     Int_t det          The detector number. Starting from 1.
+    // Outputs:
+    //     none
+    // Return:
+    //     none.
+    AliITSgeomMatrix *gt;
+    Double_t t[3],r[3],m[3][3];
+
+    gt = this->GetGeomMatrix(GetModuleIndex(lay,lad,det));
+    gt->GetTranslation(t);
+    gt->GetAngles(r);
+    fprintf(fp,"%1.1d %2.2d %2.2d Trans=%f %f %f rot=%f %f %f Shape=%d\n",
+            lay,lad,det,t[0],t[1],t[2],r[0],r[1],r[2],
+            gt->GetDetectorIndex());
+    gt->GetMatrix(m);
+    fprintf(fp,"        dfr= %e %e %e\n",m[0][0],m[0][1],m[0][2]);
+    fprintf(fp,"        dfr= %e %e %e\n",m[1][0],m[1][1],m[1][2]);
+    fprintf(fp,"        dfr= %e %e %e\n",m[2][0],m[2][1],m[2][2]);
+    return;
 }
-//___________________________________________________________________________
-void AliITSgeom::Streamer(TBuffer &R__b){
-////////////////////////////////////////////////////////////////////////
-//     The default Streamer function "written by ROOT" doesn't write out
-// the arrays referenced by pointers. Therefore, a specific Streamer function
-// has to be written. This function should not be modified but instead added
-// on to so that older versions can still be read. The proper handling of
-// the version dependent streamer function hasn't been written do to the lack
-// of finding an example at the time of writing.
-////////////////////////////////////////////////////////////////////////
-   // Stream an object of class AliITSgeom.
-    Int_t i,j,k;
 
-   if (R__b.IsReading()) {
-      Version_t R__v = R__b.ReadVersion(); if (R__v) { }
-      TObject::Streamer(R__b);
-      R__b >> fNlayers;
-      if(fNlad!=0) delete[] fNlad;
-      if(fNdet!=0) delete[] fNdet;
-      fNlad = new Int_t[fNlayers];
-      fNdet = new Int_t[fNlayers];
-      for(i=0;i> fNlad[i];
-      for(i=0;i> fNdet[i];
-      if(fg!=0){
-	  for(i=0;i> fg[i][j].fShapeIndex;
-	      R__b >> fg[i][j].fx0;
-	      R__b >> fg[i][j].fy0;
-	      R__b >> fg[i][j].fz0;
-	      R__b >> fg[i][j].frx;
-	      R__b >> fg[i][j].fry;
-	      R__b >> fg[i][j].frz;
-	      for(k=0;k<9;k++) R__b >> fg[i][j].fr[k];
-	  } // end for j
-      } // end for i
-      R__b >> fShape;
-   } else {
-      R__b.WriteVersion(AliITSgeom::IsA());
-      TObject::Streamer(R__b);
-      R__b << fNlayers;
-      for(i=0;ifrx   = rx;
-   g->fry   = ry;
-   g->frz   = rz;
-   g->fr[0] =  cz*cy;
-   g->fr[1] = -cz*sy*sx - sz*cx;
-   g->fr[2] = -cz*sy*cx + sz*sx;
-   g->fr[3] =  sz*cy;
-   g->fr[4] = -sz*sy*sx + cz*cx;
-   g->fr[5] = -sz*sy*cx - cz*sx;
-   g->fr[6] =  sy;
-   g->fr[7] =  cy*sx;
-   g->fr[8] =  cy*cx;
-   return;
+Int_t AliITSgeom::GetNearest(const Double_t g[3],Int_t lay)const{
+    //      Finds the Detector (Module) that is nearest the point g [cm] in
+    // ALICE Global coordinates. If layer !=0 then the search is restricted
+    // to Detectors (Modules) in that particular layer.
+    // Inputs:
+    //     Double_t g[3]  The ALICE Cartesian global coordinate from which the
+    //                    distance is to be calculated with.
+    //     Int_t lay      The layer to restrict the search to. If layer=0 then
+    //                    all layers are searched. Default is lay=0.
+    // Output:
+    //     none.
+    // Return:
+    //     The module number representing the nearest module.
+    Int_t    i,l,a,e,in=0;
+    Double_t d,dn=1.0e10;
+    Bool_t   t=lay!=0; // skip if lay = 0 default value check all layers.
+
+    for(i=0;iDistance2(g))Distance2(g);
+            if(da;e--){dn[e] = dn[e-1];in[e] = in[e-1];}
+                dn[a] = d; in[a] = i;
+            } // end if dfx0 += tran[0];
-         gl->fy0 += tran[1];
-         gl->fz0 += tran[2];
-         gl->frx +=  rot[0];
-         gl->fry +=  rot[1];
-         gl->frz +=  rot[2];
-         rx = gl->frx; ry = gl->fry; rz = gl->frz;
-         sx = sin(rx); cx = cos(rx);
-         sy = sin(ry); cy = cos(ry);
-         sz = sin(rz); cz = cos(rz);
-         gl->fr[0] =  cz*cy;
-         gl->fr[1] = -cz*sy*sx - sz*cx;
-         gl->fr[2] = -cz*sy*cx + sz*sx;
-         gl->fr[3] =  sz*cy;
-         gl->fr[4] = -sz*sy*sx + cz*cx;
-         gl->fr[5] = -sz*sy*cx - cz*sx;
-         gl->fr[6] =  sy;
-         gl->fr[7] =  cy*sx;
-         gl->fr[8] =  cy*cx;
-      } // end for j,k
-   } // end for i
-   return;
-}
-
-//___________________________________________________________________________
-void AliITSgeom::GlobalCylindericalChange(Float_t *tran,Float_t *rot){
-////////////////////////////////////////////////////////////////////////
-//     This function performs a cylindrical translation and rotation of
-// each ITS element by a fixed about in radius, rphi, and z from its
-// default position by an amount determined by the three element arrays
-// dtranslation and drotation. If every element of dtranslation and
-// drotation are zero then there is no change made the geometry. The
-// change is global in that the exact same distance change in translation
-// and rotation is done to every detector element in the exact same way.
-// The units of the translation are those of the Monte Carlo, usually cm,
-// and those of the rotation are in radians. The elements of dtranslation
-// are dtranslation[0] = r, dtranslation[1] = rphi, and dtranslation[2] = z.
-// The elements of drotation are drotation[0] = rx, drotation[1] = ry, and
-// drotation[2] = rz. A change in r will results in the increase of the
-// radius of each layer by the same about. A change in rphi will results in
-// the rotation of each layer by a different angle but by the same
-// circumferential distance. A change in z will result in a translation
-// of the ITS as a hole up or down the beam line. A change in the angles
-// will result in the inclination of the ITS with respect to the beam
-// line, except for an effective rotation about the beam axis which will
-// just rotate the ITS as a hole about the beam axis.
-////////////////////////////////////////////////////////////////////////
-   Int_t    i,j,k,l;
-   Double_t rx,ry,rz,r,phi,rphi; // phi in radians
-   Double_t sx,cx,sy,cy,sz,cz,r0;
-   ITS_geom *gl;
-
-   for(i=0;ify0,gl->fx0);
-	 phi   = atan2(gl->fy0,gl->fx0);
-	 rphi  = r0*phi;
-	 r    += tran[0];
-	 rphi += tran[1];
-	 phi   = rphi/r0;
-         gl->fx0  = r*TMath::Cos(phi);
-         gl->fy0  = r*TMath::Sin(phi);
-         gl->fz0 += tran[2];
-         gl->frx +=  rot[0];
-         gl->fry +=  rot[1];
-         gl->frz +=  rot[2];
-         rx = gl->frx; ry = gl->fry; rz = gl->frz;
-         sx = sin(rx); cx = cos(rx);
-         sy = sin(ry); cy = cos(ry);
-         sz = sin(rz); cz = cos(rz);
-         gl->fr[0] =  cz*cy;
-         gl->fr[1] = -cz*sy*sx - sz*cx;
-         gl->fr[2] = -cz*sy*cx + sz*sx;
-         gl->fr[3] =  sz*cy;
-         gl->fr[4] = -sz*sy*sx + cz*cx;
-         gl->fr[5] = -sz*sy*cx - cz*sx;
-         gl->fr[6] =  sy;
-         gl->fr[7] =  cy*sx;
-         gl->fr[8] =  cy*cx;
-      } // end for j,k
-   } // end for i
-   return;
+    GetTrans(md,x,y,z);
+    GetRotMatrix(md,rt);
+    al = TMath::ATan2(rt[1],rt[0])+TMath::Pi();
+    xout = yin;
+    if(md<(GetModuleIndex(2,1,1))) xout = -xout;
+    xout += (x*((Float_t)TMath::Cos(al))+y*((Float_t)TMath::Sin(al)));
+    zout  = -zin+z; 
 }
+//----------------------------------------------------------------------
 
-//___________________________________________________________________________
-void AliITSgeom::RandomChange(Float_t *stran,Float_t *srot){
-////////////////////////////////////////////////////////////////////////
-//     This function performs a Gaussian random displacement and/or
-// rotation about the present global position of each active
-// volume/detector of the ITS. The sigma of the random displacement
-// is determined by the three element array stran, for the
-// x y and z translations, and the three element array srot,
-// for the three rotation about the axis x y and z.
-////////////////////////////////////////////////////////////////////////
-   Int_t    i,j,k,l;
-   Double_t rx,ry,rz;
-   Double_t sx,cx,sy,cy,sz,cz;
-   TRandom  ran;
-   ITS_geom *gl;
-
-   for(i=0;ifx0 += ran.Gaus(0.0,stran[0]);
-         gl->fy0 += ran.Gaus(0.0,stran[1]);
-         gl->fz0 += ran.Gaus(0.0,stran[2]);
-         gl->frx += ran.Gaus(0.0, srot[0]);
-         gl->fry += ran.Gaus(0.0, srot[1]);
-         gl->frz += ran.Gaus(0.0, srot[2]);
-         rx = gl->frx; ry = gl->fry; rz = gl->frz;
-         sx = sin(rx); cx = cos(rx);
-         sy = sin(ry); cy = cos(ry);
-         sz = sin(rz); cz = cos(rz);
-         gl->fr[0] =  cz*cy;
-         gl->fr[1] = -cz*sy*sx - sz*cx;
-         gl->fr[2] = -cz*sy*cx + sz*sx;
-         gl->fr[3] =  sz*cy;
-         gl->fr[4] = -sz*sy*sx + cz*cx;
-         gl->fr[5] = -sz*sy*cx - cz*sx;
-         gl->fr[6] =  sy;
-         gl->fr[7] =  cy*sx;
-         gl->fr[8] =  cy*cx;
-      } // end for j,k
-   } // end for i
-   return;
-}
-
-//___________________________________________________________________________
-void AliITSgeom::RandomCylindericalChange(Float_t *stran,Float_t *srot){
-////////////////////////////////////////////////////////////////////////
-//     This function performs a Gaussian random displacement and/or
-// rotation about the present global position of each active
-// volume/detector of the ITS. The sigma of the random displacement
-// is determined by the three element array stran, for the
-// r rphi and z translations, and the three element array srot,
-// for the three rotation about the axis x y and z. This random change
-// in detector position allow for the simulation of a random uncertainty
-// in the detector positions of the ITS.
-////////////////////////////////////////////////////////////////////////
-   Int_t     i,j,k,l;
-   Double_t  rx,ry,rz,r,phi,x,y;  // phi in radians
-   Double_t  sx,cx,sy,cy,sz,cz,r0;
-   TRandom   ran;
-   ITS_geom  *gl;
-
-   for(i=0;ifx0;
-	 y     = gl->fy0;
-	 r = r0= TMath::Hypot(y,x);
-	 phi   = TMath::ATan2(y,x);
-	 r    += ran.Gaus(0.0,stran[0]);
-	 phi  += ran.Gaus(0.0,stran[1])/r0;
-         gl->fx0  = r*TMath::Cos(phi);
-         gl->fy0  = r*TMath::Sin(phi);
-         gl->fz0 += ran.Gaus(0.0,stran[2]);
-         gl->frx += ran.Gaus(0.0, srot[0]);
-         gl->fry += ran.Gaus(0.0, srot[1]);
-         gl->frz += ran.Gaus(0.0, srot[2]);
-         rx = gl->frx; ry = gl->fry; rz = gl->frz;
-         sx = sin(rx); cx = cos(rx);
-         sy = sin(ry); cy = cos(ry);
-         sz = sin(rz); cz = cos(rz);
-         gl->fr[0] =  cz*cy;
-         gl->fr[1] = -cz*sy*sx - sz*cx;
-         gl->fr[2] = -cz*sy*cx + sz*sx;
-         gl->fr[3] =  sz*cy;
-         gl->fr[4] = -sz*sy*sx + cz*cx;
-         gl->fr[5] = -sz*sy*cx - cz*sx;
-         gl->fr[6] =  sy;
-         gl->fr[7] =  cy*sx;
-         gl->fr[8] =  cy*cx;
-      } // end for j,k
-   } // end for i
-   return;
-}
-//______________________________________________________________________
-void AliITSgeom::GeantToTracking(AliITSgeom &source){
-/////////////////////////////////////////////////////////////////////////
-//     Copy the geometry data but change it to make coordinate systems
-// changes between the Global to the Local coordinate system used for 
-// ITS tracking. Basicly the difference is that the direction of the
-// y coordinate system for layer 1 is rotated about the z axis 180 degrees
-// so that it points in the same direction as it does in all of the other
-// layers.
-////////////////////////////////////////////////////////////////////////////
-   Double_t oor,pr,qr;
-   Int_t    i,j,k;
-   Double_t PI = TMath::Pi();
-
-   if(this == &source) return; // don't assign to ones self.
-
-   // if there is an old structure allocated delete it first.
-   if(fg != 0){
-      for(i=0;i