X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=ITS%2FAliITSv11GeometrySPD.cxx;h=6870ef8f60dd2664be17fc14346517c5654c6403;hb=049f9caca33984ae0bc2d9c887996c7357847a78;hp=01c5aad47e70277558ee4044bbc36b0b8293fc8a;hpb=a53658c691be6d93f97262c79dde35fd73660119;p=u%2Fmrichter%2FAliRoot.git diff --git a/ITS/AliITSv11GeometrySPD.cxx b/ITS/AliITSv11GeometrySPD.cxx index 01c5aad47e7..6870ef8f60d 100644 --- a/ITS/AliITSv11GeometrySPD.cxx +++ b/ITS/AliITSv11GeometrySPD.cxx @@ -1,5 +1,5 @@ /************************************************************************** - * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * + * Copyright(c) 2007-2009, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * @@ -12,14 +12,53 @@ * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ - +// // This class Defines the Geometry for the ITS services and support cones -// outside of the ceneteral volume (except for the Ceneteral support -// cylinders. Other classes define the rest of the ITS. Specificaly the ITS -// The SSD support cone,SSD Support centeral cylinder, SDD support cone, -// The SDD cupport centeral cylinder, the SPD Thermal Sheald, The supports +// outside of the central volume (except for the Central support +// cylinders). Other classes define the rest of the ITS, specifically the +// SSD support cone, the SSD Support central cylinder, the SDD support cone, +// the SDD support central cylinder, the SPD Thermal Shield, The supports // and cable trays on both the RB26 (muon dump) and RB24 sides, and all of -// the cabling from the ladders/stave ends out past the TPC. +// the cabling from the ladders/stave ends out past the TPC. +// +// Here is the calling sequence associated with this file +// SPDSector(TGeoVolume *moth,TGeoManager *mgr) +// -----CarbonFiberSector(TGeoVolume *moth,Double_t &xAAtubeCenter0, +// Double_t &yAAtubeCenter0,TGeoManager *mgr) +// -----2* SPDsectorShape(Int_t n,const Double_t *xc,const Double_t *yc, +// | const Double_t *r,const Double_t *ths, +// | const Double_t *the,Int_t npr,Int_t &m, +// | Double_t **xp,Double_t **yp) +// -----StavesInSector(TGeoVolume *moth,TGeoManager *mgr) +// -----3* CreaeStave(Int_t layer,TArrayD &sizes,Bool_t addClips, +// | TGeoManager *mgr) +// | -----2* CreateHalfStave(Boot_t isRight,Int_t layer, +// | Int_t idxCentral,Int_t idxSide, +// | TArrayD &sizes,Bool_t addClips, +// | TGeoManager *mgr) +// | -----CreateGrondingFoil(Bool_t isRight,TArrayD &sizes, +// | | TGeoManager *mgr) +// | | -----4* CreateGroundingFoilSingle(Int_t type, +// | | TArrayD &sizes, +// | | TGeoManger *mgr) +// | |----CreateLadder(Int_t layer, TArrayD &sizes, +// | | TGeoManager *mgr) +// | |----CreateMCM(Bool_t isRight,TArrayD &sizes, +// | | TGeoManger *mgr) +// | |----CreatePixelBus(Bool_t isRight,TArrayD &sizes, +// | | TGeoManager *mgr) +// | -----CreateClip(TArrayD &sizes,TGeoManager *mgr) +// |----GetSectorMountingPoints(Int_t index,Double_t &x0, +// | Double_t &y0,Double_t &x1, +// | Double_t y1) +// -----3* ParallelPosition(Double_t dist1,Double_t dist2, +// Double_t phi,Double_t &x,Double_t &y) +// +// Obsoleate or presently unused routines are: setAddStave(Bool_t *mask), +// CreatePixelBusAndExtensions(...) which calles CreateExtender(...). + +/* $Id$ */ + // General Root includes #include @@ -27,94 +66,217 @@ #include #include #include +#include + // Root Geometry includes #include -#include -#include -#include // contaings TGeoTubeSeg -#include +#include // contains TGeoTubeSeg #include #include -#include #include #include #include +#include + +// AliRoot includes +#include "AliLog.h" #include "AliMagF.h" #include "AliRun.h" -//#include -//#include -//#include + +// Declaration file #include "AliITSv11GeometrySPD.h" +// Constant definistions +const Double_t AliITSv11GeometrySPD::fgkGapLadder = + AliITSv11Geometry::fgkmicron*75.; // 75 microns +const Double_t AliITSv11GeometrySPD::fgkGapHalfStave = + AliITSv11Geometry::fgkmicron*120.; // 120 microns + ClassImp(AliITSv11GeometrySPD) +//______________________________________________________________________ +AliITSv11GeometrySPD::AliITSv11GeometrySPD(/*Double_t gap*/): +AliITSv11Geometry(),// Default constructor of base class +fAddStave(), // [DEBUG] must be TRUE for all staves which will be + // mounted in the sector (used to check overlaps) +fSPDsectorX0(0), // X of first edge of sector plane for stave +fSPDsectorY0(0), // Y of first edge of sector plane for stave +fSPDsectorX1(0), // X of second edge of sector plane for stave +fSPDsectorY1(0), // Y of second edge of sector plane for stave +fTubeEndSector() // coordinate of cooling tube ends +{ + // + // Default constructor. + // This does not initialize anything and is provided just for + // completeness. It is recommended to use the other one. + // The alignment gap is specified as argument (default = 0.0075 cm). + // Inputs: + // none. + // Outputs: + // none. + // Return: + // A default constructed AliITSv11GeometrySPD class. + // + Int_t i = 0,j=0,k=0; + + for (i = 0; i < 6; i++) fAddStave[i] = kTRUE; + for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){ + this->fTubeEndSector[k][0][i][j] = 0.0; + this->fTubeEndSector[k][1][i][j] = 0.0; + } // end for i,j +} +//______________________________________________________________________ +AliITSv11GeometrySPD::AliITSv11GeometrySPD(Int_t debug/*, Double_t gap*/): +AliITSv11Geometry(debug),// Default constructor of base class +fAddStave(), // [DEBUG] must be TRUE for all staves which will be + // mounted in the sector (used to check overlaps) +fSPDsectorX0(0), // X of first edge of sector plane for stave +fSPDsectorY0(0), // Y of first edge of sector plane for stave +fSPDsectorX1(0), // X of second edge of sector plane for stave +fSPDsectorY1(0), // Y of second edge of sector plane for stave +fTubeEndSector() // coordinate of cooling tube ends +{ + // + // Constructor with debug setting argument + // This is the constructor which is recommended to be used. + // It sets a debug level, and initializes the name of the object. + // The alignment gap is specified as argument (default = 0.0075 cm). + // Inputs: + // Int_t debug Debug level, 0= no debug output. + // Outputs: + // none. + // Return: + // A default constructed AliITSv11GeometrySPD class. + // + Int_t i = 0,j=0,k=0; -#define SQ(A) (A)*(A) + for (i = 0; i < 6; i++) fAddStave[i] = kTRUE; + for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){ + this->fTubeEndSector[k][0][i][j] = 0.0; + this->fTubeEndSector[k][1][i][j] = 0.0; + } // end for i,j +} +//______________________________________________________________________ +AliITSv11GeometrySPD::AliITSv11GeometrySPD(const AliITSv11GeometrySPD &s): +AliITSv11Geometry(s),// Base Class Copy constructor +fAddStave(), // [DEBUG] must be TRUE for all staves which will be + // mounted in the sector (used to check overlaps) +fSPDsectorX0(s.fSPDsectorX0), // X of first edge of sector plane for stave +fSPDsectorY0(s.fSPDsectorY0), // Y of first edge of sector plane for stave +fSPDsectorX1(s.fSPDsectorX1), // X of second edge of sector plane for stave +fSPDsectorY1(s.fSPDsectorY1) // Y of second edge of sector plane for stave +{ + // + // Copy Constructor + // Inputs: + // AliITSv11GeometrySPD &s source class + // Outputs: + // none. + // Return: + // A copy of a AliITSv11GeometrySPD class. + // + Int_t i=0,j=0,k=0; + for (i = 0; i < 6; i++) this->fAddStave[i] = s.fAddStave[i]; + for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){ + this->fTubeEndSector[k][0][i][j] = s.fTubeEndSector[k][0][i][j]; + this->fTubeEndSector[k][1][i][j] = s.fTubeEndSector[k][1][i][j]; + } // end for i,j +} //______________________________________________________________________ -Int_t AliITSv11GeometrySPD::CreateSPDCenteralMaterials(Int_t &medOffset, - Int_t &matOffset){ - // Define the specific materials used for the ITS SPD centeral - // detectors. Note, These are the same old names. By the ALICE - // naming convension, these should start out at ITS SPD .... - // This data has been taken from AliITSvPPRasymmFMD::CreateMaterials(). - // Intputs: - // Int_t &medOffset The starting number of the list of media - // Int_t &matOffset The starting number of the list of Materials +AliITSv11GeometrySPD& AliITSv11GeometrySPD::operator=(const + AliITSv11GeometrySPD &s) +{ + // + // = operator + // Inputs: + // AliITSv11GeometrySPD &s source class // Outputs: - // Int_t &medOffset The ending number of the list of media - // Int_t &matOffset The ending number of the list of Materials + // none. // Return: - // the last material number used +1 (the next avaiable material number). - //Begin_Html - /* - -

The SPD Sector definition. - -

The SPD all sector end view with thermal sheald. - -

SPD side view cross section with condes and thermal shealds. -

Cross section A-A -

Cross section B-B -

Cross section C-C -

Cross section D-D -

Cross section F-F -

Cross section G-G - */ - //End_Html - const Double_t ktmaxfd = 0.1*fgkDegree; // Degree - const Double_t kstemax = 1.0*fgkcm; // cm - const Double_t kdeemax = 0.1; // Fraction of particle's energy 0fAddStave[i] = s.fAddStave[i]; + this->fSPDsectorX0=s.fSPDsectorX0; + this->fSPDsectorY0=s.fSPDsectorY0; + this->fSPDsectorX1=s.fSPDsectorX1; + this->fSPDsectorY1=s.fSPDsectorY1; + for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){ + this->fTubeEndSector[k][0][i][j] = s.fTubeEndSector[k][0][i][j]; + this->fTubeEndSector[k][1][i][j] = s.fTubeEndSector[k][1][i][j]; + } // end for i,j + return *this; +} +//______________________________________________________________________ +TGeoMedium* AliITSv11GeometrySPD::GetMedium(const char* mediumName, + TGeoManager *mgr) const +{ + // + // This function is used to recovery any medium + // used to build the geometry volumes. + // If the required medium does not exists, + // a NULL pointer is returned, and an error message is written. + // + Char_t itsMediumName[30]; + + sprintf(itsMediumName, "ITS_%s", mediumName); + TGeoMedium* medium = mgr->GetMedium(itsMediumName); + if (!medium) AliError(Form("Medium <%s> not found", mediumName)); + + return medium; +} +//______________________________________________________________________ +Int_t AliITSv11GeometrySPD::CreateSPDCentralMaterials(Int_t &medOffset, + Int_t &matOffset) const +{ + // + // Define the specific materials used for the ITS SPD central detectors. + // --- + // NOTE: These are the same old names. + // By the ALICE naming conventions, they start with "ITS SPD ...." + // Data taken from ** AliITSvPPRasymmFMD::CreateMaterials() **. + // --- + // Arguments [the ones passed by reference contain output values]: + // - medOffset --> (by ref) starting number of the list of media + // - matOffset --> (by ref) starting number of the list of Materials + // --- + // Inputs: + // Int_t &medOffset Starting number of the list of media + // Int_t &matOffset Starting number of the list of materials + // Outputs: + // Int_t &medOffset Ending number of the list of media + // Int_t &matOffset Ending number of the list of materials + // Return: + // The last material indexused +1. (= next avaiable material index) + // + const Double_t ktmaxfd = 0.1 * fgkDegree; // Degree + const Double_t kstemax = 1.0 * fgkcm; // cm + const Double_t kdeemax = 0.1;//Fraction of particle's energy 0Field()->Integ()); Double_t fieldm = (gAlice->Field()->Max()); + Double_t params[8] = {8 * 0.0}; + params[1] = (Double_t) ifield; params[2] = fieldm; params[3] = ktmaxfdSi; @@ -123,556 +285,671 @@ Int_t AliITSv11GeometrySPD::CreateSPDCenteralMaterials(Int_t &medOffset, params[6] = kepsilSi; params[7] = kstminSi; - mat = new TGeoMaterial("SI",28.086,14.0,2.33*fgkgcm3, - TGeoMaterial::kMatStateSolid,25.0*fgkCelsius, - 0.0*fgkPascal); + // Definition of materials and mediums. + // Last argument in material definition is its pressure, + // which is initialized to ZERO. + // For better readability, it is simply set to zero. + // Then the writing "0.0 * fgkPascal" is replaced by "0." + // (Alberto) + + // silicon definition for ITS (overall) + mat = new TGeoMaterial("ITS_SI", 28.086, 14.0, 2.33 * fgkgcm3, + TGeoMaterial::kMatStateSolid, 25.0*fgkCelsius, 0.); mat->SetIndex(matindex); - med = new TGeoMedium("SI",medindex++,mat,params); - //med = new TGeoMedium("SI",medindex++,matindex++,0,ifield, - // fieldm,ktmaxfdSi,kstemaxSi,kdeemaxSi,kepsilSi,kstminSi); - // - mat = new TGeoMaterial("SPD SI CHIP",28.086,14.0,2.33*fgkgcm3, - TGeoMaterial::kMatStateSolid,25.0*fgkCelsius, - 0.0*fgkPascal); + med = new TGeoMedium("SI", medindex++, mat, params); + + // silicon for ladder chips + mat = new TGeoMaterial("SPD SI CHIP", 28.086, 14.0, 2.33 * fgkgcm3, + TGeoMaterial::kMatStateSolid, 25.0*fgkCelsius, 0.); mat->SetIndex(matindex); - med = new TGeoMedium("SPD SI CHIP",medindex++,mat,params); - //med = new TGeoMedium("SPD SI CHIP",medindex++,matindex++,0,ifield, - // fieldm,ktmaxfdSi,kstemaxSi,kdeemaxSi,kepsilSi,kstminSi); - // - mat = new TGeoMaterial("SPD SI BUS",28.086,14.0,2.33*fgkgcm3, - TGeoMaterial::kMatStateSolid,25.0*fgkCelsius, - 0.0*fgkPascal); + med = new TGeoMedium("SPD SI CHIP", medindex++, mat, params); + + // silicon for pixel bus + mat = new TGeoMaterial("SPD SI BUS", 28.086, 14.0, 2.33 * fgkgcm3, + TGeoMaterial::kMatStateSolid, 25.0*fgkCelsius, 0.); mat->SetIndex(matindex); - med = new TGeoMedium("SPD SI BUS",medindex++,mat,params); - //med = new TGeoMedium("SPD SI BUS",medindex++,matindex++,0,ifield, - // fieldm,ktmaxfdSi,kstemaxSi,kdeemaxSi,kepsilSi,kstminSi); - // - mix = new TGeoMixture("C (M55J)",4,1.9866*fgkgcm3);// Carbon fiber by fractional weight "C (M55J)" + med = new TGeoMedium("SPD SI BUS", medindex++, mat, params); + + // carbon fiber material is defined as a mix of C-O-N-H + // defined in terms of fractional weights according to 'C (M55J)' + // it is used for the support and clips + mix = new TGeoMixture("C (M55J)", 4, 1.9866 * fgkgcm3); mix->SetIndex(matindex); - mix->DefineElement(0,12.0107,6.0,0.908508078); // Carbon by fractional weight - mix->DefineElement(1,14.0067,7.0,0.010387573); // Nitrogen by fractional weight - mix->DefineElement(2,15.9994,8.0,0.055957585); // Oxigen by fractional weight - mix->DefineElement(3,1.00794,1.0,0.025146765); // Hydrogen by fractional weight - mix->SetPressure(0.0*fgkPascal); - mix->SetTemperature(25.0*fgkCelsius); + mix->DefineElement(0, 12.01070, 6.0, 0.908508078);// C by fractional weight + mix->DefineElement(1, 14.00670, 7.0, 0.010387573);// N by fractional weight + mix->DefineElement(2, 15.99940, 8.0, 0.055957585);// O by fractional weight + mix->DefineElement(3, 1.00794, 1.0, 0.025146765);// H by fractional weight + mix->SetPressure(0.0 * fgkPascal); + mix->SetTemperature(25.0 * fgkCelsius); mix->SetState(TGeoMaterial::kMatStateSolid); params[3] = ktmaxfd; params[4] = kstemax; params[5] = kdeemax; params[6] = kepsil; params[7] = kstmin; - med = new TGeoMedium("ITSspdCarbonFiber",medindex++,mix,params); - //med = new TGeoMedium("ITSspdCarbonFiber",medindex++,matindex++,0,ifield, - // fieldm,ktmaxfd,kstemax,kdeemax,kepsil,kstmin); - // - mix = new TGeoMixture("Air",4,1.20479E-3*fgkgcm3);// Carbon fiber by fractional weight + med = new TGeoMedium("ITSspdCarbonFiber", medindex++, mix, params); + + // air defined as a mixture of C-N-O-Ar: + // it is used to fill all containers + mix = new TGeoMixture("Air", 4, 1.20479E-3 * fgkgcm3); mix->SetIndex(matindex); - mix->DefineElement(0,12.0107,6.0,0.000124); // Carbon by fractional weight - mix->DefineElement(1,14.0067,7.0,0.755267); // Nitrogen by fractional weight - mix->DefineElement(2,15.9994,8.0,0.231781); // Oxigen by fractional weight - mix->DefineElement(3,39.948,18.0,0.012827); // Argon by fractional weight - mix->SetPressure(101325.0*fgkPascal); // 1 atmosphere - mix->SetTemperature(25.0*fgkCelsius); + mix->DefineElement(0, 12.0107, 6.0, 0.000124); // C by fractional weight + mix->DefineElement(1, 14.0067, 7.0, 0.755267); // N by fractional weight + mix->DefineElement(2, 15.9994, 8.0, 0.231781); // O by fractional weight + mix->DefineElement(3, 39.9480, 18.0, 0.012827); // Ar by fractional weight + mix->SetPressure(101325.0 * fgkPascal); // = 1 atmosphere + mix->SetTemperature(25.0 * fgkCelsius); mix->SetState(TGeoMaterial::kMatStateGas); params[3] = ktmaxfdAir; params[4] = kstemaxAir; params[5] = kdeemaxAir; params[6] = kepsilAir; params[7] = kstminAir; - med = new TGeoMedium("ITSspdAir",medindex++,mix,params); - //med = new TGeoMedium("ITSspdAir",medindex++,matindex++,0,ifield, - // fieldm,ktmaxfdAir,kstemaxAir,kdeemaxAir,kepsilAir,kstminAir); - // - mix = new TGeoMixture("INOX",9,8.03*fgkgcm3);// Carbon fiber by fractional weight + med = new TGeoMedium("ITSspdAir", medindex++, mix, params); + + // inox stainless steel, defined as a mixture + // used for all metallic parts + mix = new TGeoMixture("INOX", 9, 8.03 * fgkgcm3); mix->SetIndex(matindex); - mix->DefineElement(0,12.0107, 6.0,0.0003); // Carbon by fractional weight - mix->DefineElement(1,54.9380,25.0,0.02); // Iron by fractional weight - mix->DefineElement(2,28.0855,14.0,0.01); // Sodium by fractional weight - mix->DefineElement(3,30.9738,15.0,0.00045); // by fractional weight - mix->DefineElement(4,32.066 ,16.0,0.0003); // by fractional weight - mix->DefineElement(5,58.6928,28.0,0.12); // Nickel by fractional weight - mix->DefineElement(6,55.9961,24.0,0.17); // by fractional weight - mix->DefineElement(7,95.84 ,42.0,0.025); // by fractional weight - mix->DefineElement(8,55.845 ,26.0,0.654); // by fractional weight - mix->SetPressure(0.0*fgkPascal); // - mix->SetTemperature(25.0*fgkCelsius); + mix->DefineElement(0, 12.0107, 6., .0003); // C by fractional weight + mix->DefineElement(1, 54.9380, 25., .02); // Fe by fractional weight + mix->DefineElement(2, 28.0855, 14., .01); // Na by fractional weight + mix->DefineElement(3, 30.9738, 15., .00045); // P by fractional weight + mix->DefineElement(4, 32.066 , 16., .0003); // S by fractional weight + mix->DefineElement(5, 58.6928, 28., .12); // Ni by fractional weight + mix->DefineElement(6, 55.9961, 24., .17); // by fractional weight + mix->DefineElement(7, 95.84 , 42., .025); // by fractional weight + mix->DefineElement(8, 55.845 , 26., .654); // by fractional weight + mix->SetPressure(0.0 * fgkPascal); + mix->SetTemperature(25.0 * fgkCelsius); mix->SetState(TGeoMaterial::kMatStateSolid); params[3] = ktmaxfdAir; params[4] = kstemaxAir; params[5] = kdeemaxAir; params[6] = kepsilAir; params[7] = kstminAir; - med = new TGeoMedium("ITSspdStainlessSteel",medindex++,mix,params); - //med = new TGeoMedium("ITSspdStainlessSteel",medindex++,matindex++,0,ifield, - // fieldm,ktmaxfdAir,kstemaxAir,kdeemaxAir,kepsilAir,kstminAir); - // - mix = new TGeoMixture("Freon",2,1.63*fgkgcm3);// Carbon fiber by fractional weight + med = new TGeoMedium("ITSspdStainlessSteel", medindex++, mix, params); + + // freon gas which fills the cooling system (C+F) + mix = new TGeoMixture("Freon", 2, 1.63 * fgkgcm3); mix->SetIndex(matindex); - mix->DefineElement(0,12.0107,6.0,4); // Carbon by fractional weight - mix->DefineElement(1,18.9984032,9.0,10); // Florine by fractional weight - mix->SetPressure(101325.0*fgkPascal); // 1 atmosphere - mix->SetTemperature(25.0*fgkCelsius); + mix->DefineElement(0, 12.0107 , 6.0, 4); // C by fractional weight + mix->DefineElement(1, 18.9984032, 9.0, 10); // F by fractional weight + mix->SetPressure(101325.0 * fgkPascal); // = 1 atmosphere + mix->SetTemperature(25.0 * fgkCelsius); mix->SetState(TGeoMaterial::kMatStateLiquid); params[3] = ktmaxfdAir; params[4] = kstemaxAir; params[5] = kdeemaxAir; params[6] = kepsilAir; params[7] = kstminAir; - med = new TGeoMedium("ITSspdCoolingFluid",medindex++,mix,params); - //med = new TGeoMedium("ITSspdCoolingFluid",medindex++,matindex++,0,ifield, - // fieldm,ktmaxfdAir,kstemaxAir,kdeemaxAir,kepsilAir,kstminAir); - // + med = new TGeoMedium("ITSspdCoolingFluid", medindex++, mix, params); + + // return the next index to be used in case of adding new materials medOffset = medindex; matOffset = matindex; return matOffset; } //______________________________________________________________________ -void AliITSv11GeometrySPD::InitSPDCenteral(Int_t offset,TVirtualMC *vmc){ - // Do any SPD Centeral detector related initilizations, setting - // transport cuts for example. - // Some GEANT3 Physics switches - // "MULTS" - // Multiple scattering. The variable IMULS controls this process. For - // more information see [PHYS320 or 325 or 328]. - // 0 - No multiple scattering. - // 1 - Multiple scattering according to Molière theory. Default setting. - // 2 - Same as 1. Kept for backward compatibility. - // 3 - Pure Gaussian scattering according to the Rossi formula. - // "DRAY" - // delta ray production. The variable IDRAY controls this process. See [PHYS430] - // 0 - No delta rays production. - // 1 - delta rays production with generation of . Default setting. - // 2 - delta rays production without generation of . - // "LOSS" - // Continuous energy loss. The variable ILOSS controls this process. - // 0 - No continuous energy loss, IDRAY is set to 0. - // 1 - Continuous energy loss with generation of delta rays above - // DCUTE (common/GCUTS/) and restricted Landau fluctuations below DCUTE. - // 2 - Continuous energy loss without generation of delta rays and full - // Landau-Vavilov-Gauss fluctuations. In this case the variable IDRAY - // is forced to 0 to avoid double counting of fluctuations. Default setting. - // 3 - Same as 1, kept for backward compatibility. - // 4 - Energy loss without fluctuation. The value obtained from the tables is - // used directly. - // Intputs: - // Int_t offset The material/medium index offset. - // TVirturalMC *vmc The pointer to the virtual Monte Carlo default gMC. - // Outputs: - // none. - // Return: - // none. - Int_t i,n=4; - - for(i=0;iGstpar(i+offset,"CUTGAM",30.0*fgkKeV); - vmc->Gstpar(i+offset,"CUTELE",30.0*fgkKeV); - vmc->Gstpar(i+offset,"CUTNEU",30.0*fgkKeV); - vmc->Gstpar(i+offset,"CUTHAD",30.0*fgkKeV); - vmc->Gstpar(i+offset,"CUTMUO",30.0*fgkKeV); - vmc->Gstpar(i+offset,"BCUTE",30.0*fgkKeV); - vmc->Gstpar(i+offset,"BCUTM",30.0*fgkKeV); - vmc->Gstpar(i+offset,"DCUTE",30.0*fgkKeV); - vmc->Gstpar(i+offset,"DCUTM",30.0*fgkKeV); - //vmc->Gstpar(i+offset,"PPCUTM",); - //vmc->Gstpar(i+offset,"PAIR",); - //vmc->Gstpar(i+offset,"COMPT",); - //vmc->Gstpar(i+offset,"PHOT",); - //vmc->Gstpar(i+offset,"PFIS",); - vmc->Gstpar(i+offset,"DRAY",1); - //vmc->Gstpar(i+offset,"ANNI",); - //vmc->Gstpar(i+offset,"BREM",); - //vmc->Gstpar(i+offset,"HADR",); - //vmc->Gstpar(i+offset,"MUNU",); - //vmc->Gstpar(i+offset,"DCAY",); - vmc->Gstpar(i+offset,"LOSS",1); - //vmc->Gstpar(i+offset,"MULS",); - //vmc->Gstpar(i+offset,"GHCOR1",); - //vmc->Gstpar(i+offset,"BIRK1",); - //vmc->Gstpar(i+offset,"BRIK2",); - //vmc->Gstpar(i+offset,"BRIK3",); - //vmc->Gstpar(i+offset,"LABS",); - //vmc->Gstpar(i+offset,"SYNC",); - //vmc->Gstpar(i+offset,"STRA",); - } // end for i +void AliITSv11GeometrySPD::InitSPDCentral(Int_t offset, TVirtualMC *vmc) const +{ + // + // Do all SPD Central detector initializations (e.g.: transport cuts). + // --- + // Here follow some GEANT3 physics switches, which are interesting + // for these settings to be defined: + // - "MULTS" (MULtiple Scattering): + // the variable IMULS controls this process. See [PHYS320/325/328] + // 0 - No multiple scattering. + // 1 - (DEFAULT) Multiple scattering according to Moliere theory. + // 2 - Same as 1. Kept for backward compatibility. + // 3 - Pure Gaussian scattering according to the Rossi formula. + // - "DRAY" (Delta RAY production) + // The variable IDRAY controls this process. See [PHYS430] + // 0 - No delta rays production. + // 1 - (DEFAULT) Delta rays production with generation of. + // 2 - Delta rays production without generation of. + // - "LOSS" (continuous energy loss) + // The variable ILOSS controls this process. + // 0 - No continuous energy loss, IDRAY is set to 0. + // 1 - Continuous energy loss with generation of delta rays above + // DCUTE (common/GCUTS/) and restricted Landau fluctuations + // below DCUTE. + // 2 - (DEFAULT) Continuous energy loss without generation of + // delta rays + // and full Landau-Vavilov-Gauss fluctuations. + // In this case the variable IDRAY is forced to 0 to avoid + // double counting of fluctuations. + // 3 - Same as 1, kept for backward compatibility. + // 4 - Energy loss without fluctuation. + // The value obtained from the tables is used directly. + // --- + // Arguments: + // Int_t offset --> the material/medium index offset + // TVirtualMC *vmc --> pointer to the virtual Monte Carlo default gMC + // + + Int_t i, n = 4; + + for(i=0;iGstpar(i+offset, "CUTGAM", 30.0 * fgkKeV); + vmc->Gstpar(i+offset, "CUTELE", 30.0 * fgkKeV); + vmc->Gstpar(i+offset, "CUTNEU", 30.0 * fgkKeV); + vmc->Gstpar(i+offset, "CUTHAD", 30.0 * fgkKeV); + vmc->Gstpar(i+offset, "CUTMUO", 30.0 * fgkKeV); + vmc->Gstpar(i+offset, "BCUTE", 30.0 * fgkKeV); + vmc->Gstpar(i+offset, "BCUTM", 30.0 * fgkKeV); + vmc->Gstpar(i+offset, "DCUTE", 30.0 * fgkKeV); + vmc->Gstpar(i+offset, "DCUTM", 30.0 * fgkKeV); + //vmc->Gstpar(i+offset, "PPCUTM", ); + //vmc->Gstpar(i+offset, "PAIR", ); + //vmc->Gstpar(i+offset, "COMPT", ); + //vmc->Gstpar(i+offset, "PHOT", ); + //vmc->Gstpar(i+offset, "PFIS", ); + vmc->Gstpar(i+offset, "DRAY", 1); + //vmc->Gstpar(i+offset, "ANNI", ); + //vmc->Gstpar(i+offset, "BREM", ); + //vmc->Gstpar(i+offset, "HADR", ); + //vmc->Gstpar(i+offset, "MUNU", ); + //vmc->Gstpar(i+offset, "DCAY", ); + vmc->Gstpar(i+offset, "LOSS", 1); + //vmc->Gstpar(i+offset, "MULS", ); + //vmc->Gstpar(i+offset, "GHCOR1", ); + //vmc->Gstpar(i+offset, "BIRK1", ); + //vmc->Gstpar(i+offset, "BRIK2", ); + //vmc->Gstpar(i+offset, "BRIK3", ); + //vmc->Gstpar(i+offset, "LABS", ); + //vmc->Gstpar(i+offset, "SYNC", ); + //vmc->Gstpar(i+offset, "STRA", ); + } } //______________________________________________________________________ -void AliITSv11GeometrySPD::SPDSector(TGeoVolume *moth,TGeoManager *mgr){ - // Position of the Carbon Fiber Assembly based on distance - // of closest point of SPD stave to beam pipe figures - // all-sections-modules.ps of 7.22mm at section A-A. +void AliITSv11GeometrySPD::SPDSector(TGeoVolume *moth, TGeoManager *mgr) +{ + // + // Creates a single SPD carbon fiber sector and places it + // in a container volume passed as first argument ('moth'). + // Second argument points to the TGeoManager which coordinates + // the overall volume creation. + // The position of the sector is based on distance of + // closest point of SPD stave to beam pipe + // (figures all-sections-modules.ps) of 7.22mm at section A-A. + // + + // Begin_Html + /* + +

The SPD Sector definition. In + HPGL format. + +

The SPD all sector end view with thermal sheald. + +

SPD side view cross section with condes and thermal shealds. +

Cross section A-A. +

Cross updated section A-A. +

Cross section B-B. +

Cross section C-C. +

Cross section D-D. +

Cross section E-E. +

Cross section F-F. +

Cross section G-G. + */ + // End_Html + // Inputs: - // TGeoVolume *moth the mother volume which this - // object/volume is to be placed in. + // TGeoVolume *moth Pointer to mother volume where this object + // is to be placed in + // TGeoManager *mgr Pointer to the TGeoManager used, defaule is + // gGeoManager. // Outputs: - // none. + // none. // Return: - // none. - const Double_t kSPDclossesStaveAA = 7.22*fgkmm; - const Double_t kSectorStartingAngle = -72.0*fgkDegree; - const Double_t kNSectorsTotal = 10.; // number - const Double_t kSectorRelativeAngle = 360./kNSectorsTotal*fgkDegree; - const Double_t kBeamPipeRadius = 0.5*60.0*fgkmm; + // none. + // Updated values for kSPDclossesStaveAA, kBeamPipeRadius, and + // staveThicknessAA are taken from + // http://physics.mps.ohio-state.edu/~nilsen/ITSfigures/Sezione_layerAA.pdf // - Int_t i; - Double_t angle,radiusSector,xAAtubeCenter0,yAAtubeCenter0; - Double_t staveThicknessAA=1.03*fgkmm; // get from stave geometry. - TGeoCombiTrans *secRot=new TGeoCombiTrans(); + const Double_t kSPDclossesStaveAA = 7.25* fgkmm; + const Double_t kSectorStartingAngle = -72.0 * fgkDegree; + const Int_t kNSectorsTotal = 10; + const Double_t kSectorRelativeAngle = 36.0 * fgkDegree; // = 360.0 / 10 + const Double_t kBeamPipeRadius = 0.5 * 59.6 * fgkmm; // diam. = 59.6 mm + //const Double_t staveThicknessAA = 0.9 *fgkmm; // nominal thickness + const Double_t staveThicknessAA = 1.02 * fgkmm; // get from stave geometry. + + Int_t i, j, k; + Double_t angle, radiusSector, xAAtubeCenter0, yAAtubeCenter0; + TGeoCombiTrans *secRot = new TGeoCombiTrans(), *comrot; TGeoVolume *vCarbonFiberSector; TGeoMedium *medSPDcf; - medSPDcf = mgr->GetMedium("ITSspdCarbonFiber"); + // Define an assembly and fill it with the support of + // a single carbon fiber sector and staves in it + medSPDcf = GetMedium("SPD C (M55J)$", mgr); vCarbonFiberSector = new TGeoVolumeAssembly("ITSSPDCarbonFiberSectorV"); vCarbonFiberSector->SetMedium(medSPDcf); - CarbonFiberSector(vCarbonFiberSector,xAAtubeCenter0,yAAtubeCenter0); - vCarbonFiberSector->SetVisibility(kFALSE); // logical volume - // Compute the radial shift out of the sectors. - radiusSector = kBeamPipeRadius+kSPDclossesStaveAA+staveThicknessAA; - radiusSector *= radiusSector; // squaring; - radiusSector -= xAAtubeCenter0*xAAtubeCenter0; - radiusSector = -yAAtubeCenter0+TMath::Sqrt(radiusSector); + CarbonFiberSector(vCarbonFiberSector, xAAtubeCenter0, yAAtubeCenter0, mgr); + + // Compute the radial shift out of the sectors + radiusSector = kBeamPipeRadius + kSPDclossesStaveAA + staveThicknessAA; + radiusSector = GetSPDSectorTranslation(fSPDsectorX0.At(1), fSPDsectorY0.At(1), + fSPDsectorX1.At(1), fSPDsectorY1.At(1), radiusSector); + //radiusSector *= radiusSector; // squaring; + //radiusSector -= xAAtubeCenter0 * xAAtubeCenter0; + //radiusSector = -yAAtubeCenter0 + TMath::Sqrt(radiusSector); + + AliDebug(1, Form("SPDSector : radiusSector=%f\n",radiusSector)); + i = 1; + AliDebug(1, Form("i= %d x0=%f y0=%f x1=%f y1=%f\n", i, + fSPDsectorX0.At(i), fSPDsectorY0.At(i), + fSPDsectorX1.At(i),fSPDsectorY1.At(i))); + + // add 10 single sectors, by replicating the virtual sector defined above + // and placing at different angles + Double_t shiftX, shiftY, tub[2][6][3]; + for(i=0;i<2;i++)for(j=0;j<6;j++)for(k=0;k<3;k++) tub[i][j][k] = fTubeEndSector[0][i][j][k]; angle = kSectorStartingAngle; secRot->RotateZ(angle); - for(i=0;i<(Int_t)kNSectorsTotal;i++){ - secRot->SetDx(-radiusSector*TMath::Sin(angle/fgkRadian)); - secRot->SetDy(radiusSector*TMath::Cos(angle/fgkRadian)); - //secRot->RegisterYourself(); - moth->AddNode(vCarbonFiberSector,i+1,new TGeoCombiTrans(*secRot)); - printf("i=%d angle=%g angle[rad]=%g radiusSector=%g x=%g y=%g \n", - i,angle,angle/fgkRadian,radiusSector, - -radiusSector*TMath::Sin(angle/fgkRadian), - radiusSector*TMath::Cos(angle/fgkRadian)); + TGeoVolumeAssembly *vcenteral = new TGeoVolumeAssembly("ITSSPD"); + moth->AddNode(vcenteral, 1, 0); + for(i = 0; i < kNSectorsTotal; i++) { + shiftX = -radiusSector * TMath::Sin(angle/fgkRadian); + shiftY = radiusSector * TMath::Cos(angle/fgkRadian); + //cout << "ANGLE = " << angle << endl; + shiftX += 0.1094 * TMath::Cos((angle + 196.)/fgkRadian); + shiftY += 0.1094 * TMath::Sin((angle + 196.)/fgkRadian); + //shiftX -= 0.105; + //shiftY -= 0.031; + //shiftX -= 0.11 * TMath::Cos(angle/fgkRadian); // add by Alberto + //shiftY -= 0.11 * TMath::Sin(angle/fgkRadian); // don't ask me where that 0.11 comes from! + secRot->SetDx(shiftX); + secRot->SetDy(shiftY); + comrot = new TGeoCombiTrans(*secRot); + vcenteral->AddNode(vCarbonFiberSector,i+1,comrot); + for(j=0;j<2;j++)for(k=0;k<6;k++) // Transform Tube ends for each sector + comrot->LocalToMaster(tub[j][k],fTubeEndSector[i][j][k]); + if(GetDebug(5)) { + AliInfo(Form("i=%d angle=%g angle[rad]=%g radiusSector=%g " + "x=%g y=%g \n",i, angle, angle/fgkRadian, + radiusSector, shiftX, shiftY)); + } // end if GetDebug(5) angle += kSectorRelativeAngle; secRot->RotateZ(kSectorRelativeAngle); } // end for i - if(GetDebug()){ - moth->PrintNodes(); - } // end if GetDebug(). + if(GetDebug(3)) moth->PrintNodes(); delete secRot; + + CreateCones(moth); } //______________________________________________________________________ void AliITSv11GeometrySPD::CarbonFiberSector(TGeoVolume *moth, - Double_t &xAAtubeCenter0, - Double_t &yAAtubeCenter0, - TGeoManager *mgr){ + Double_t &xAAtubeCenter0, Double_t &yAAtubeCenter0, TGeoManager *mgr) +{ + // // Define the detail SPD Carbon fiber support Sector geometry. - // Based on the drawings ALICE-Pixel "Construzione Profilo Modulo" - // March 25 2004 and ALICE-SUPPORTO "construzione Profilo Modulo" - // Define Outside radii as negitive, Outside in the sence that the - // center of the arc is outside of the object. - // February 16 2004. + // Based on the drawings: + /* + http:///QA-construzione-profilo-modulo.ps + */ + // - ALICE-Pixel "Costruzione Profilo Modulo" (march 25 2004) + // - ALICE-SUPPORTO "Costruzione Profilo Modulo" + // --- + // Define outside radii as negative, where "outside" means that the + // center of the arc is outside of the object (feb 16 2004). + // --- + // Arguments [the one passed by ref contain output values]: // Inputs: - // TGeoVolume *moth The mother volume to put this object + // TGeoVolume *moth the voulme which will contain this object + // TGeoManager *mgr TGeo builder defauls is gGeoManager // Outputs: - // Double_t &xAAtubeCenter0 The x location of the outer surface - // of the cooling tube center for tube 0. - // This location helps determine where - // this sector is to be located (information - // used for this is the distance the - // center of the #0 detector is from the - // beam pipe. Measurements taken at - // cross section A-A. - // Double_t &yAAtubeCenter0 The y location of the outer surface - // of the cooling tube center for tube 0 - // This location helps determine where - // this sector is to be located (information - // used for this is the distance the - // center of the #0 detector is from the - // beam pipe. Measurements taken at - // cross section A-A. - // TGeoManager *mgr The TGeoManager as needed, default is - // gGeoManager. + // Double_t &xAAtubeCenter0 (by ref) x location of the outer surface + // of the cooling tube center for tube 0. + // Double_t &yAAtubeCenter0 (by ref) y location of the outer surface + // of the cooling tube center for tube 0. // Return: - // none. - TGeoMedium *medSPDcf = 0; // SPD support cone Carbon Fiber materal number. - //TGeoMedium *medSPDfs = 0; // SPD support cone inserto stesalite 4411w. - //TGeoMedium *medSPDfo = 0; // SPD support cone foam, Rohacell 50A. - TGeoMedium *medSPDss = 0; // SPD support cone screw material,Stainless - TGeoMedium *medSPDair = 0; // SPD support cone Air - //TGeoMedium *medSPDal = 0; // SPD support cone SDD mounting bracket Al - TGeoMedium *medSPDcoolfl = 0; // SPD cooling fluid, Freeon - medSPDcf = mgr->GetMedium("ITSspdCarbonFiber"); - //medSPDfs = mgr->GetMedium("ITSspdStaselite4411w"); - //medSPDfo = mgr->GetMedium("ITSspdRohacell50A"); - medSPDss = mgr->GetMedium("ITSspdStainlessSteel"); - medSPDair= mgr->GetMedium("ITSspdAir"); - medSPDcoolfl= mgr->GetMedium("ITSspdCoolingFluid"); - // - const Double_t ksecDz = 0.5*500.0*fgkmm; - const Double_t ksecLen = 30.0*fgkmm; - const Double_t ksecCthick = 0.20*fgkmm; - const Double_t ksecDipLength = 3.2*fgkmm; - const Double_t ksecDipRadii = 0.4*fgkmm; - //const Double_t ksecCoolingTubeExtraDepth = 0.86*fgkmm; - // These positions, ksecX*,ksecY* are the center of curvatures - // for the different point around the SPD sector. The radii, - // inner and outer, are the radous of curvature about the centers - // ksecX* and ksecY*. To draw this SPD sector, first plot all of - // the ksecX and ksecY points and draw circles of the specified - // radius about these points. Connect the circles, such that the - // lines are tangent to the circles, in accordance with the - // radii being "Inside" or "Outside". These lines and the - // corresponding arc's are the surface of this SPD sector. - const Double_t ksecX0 = -10.725*fgkmm; - const Double_t ksecY0 = -14.853*fgkmm; - const Double_t ksecR0 = -0.8*fgkmm; // Outside - const Double_t ksecX1 = -13.187*fgkmm; - const Double_t ksecY1 = -19.964*fgkmm; - const Double_t ksecR1 = +0.6*fgkmm; // Inside - //const Double_t ksecDip0 = 5.9*fgkmm; - // - const Double_t ksecX2 = -3.883*fgkmm; - const Double_t ksecY2 = -17.805*fgkmm; - const Double_t ksecR2 = +0.80*fgkmm; // Inside Guess. - const Double_t ksecX3 = -3.123*fgkmm; - const Double_t ksecY3 = -14.618*fgkmm; - const Double_t ksecR3 = -0.6*fgkmm; // Outside - //const Double_t ksecDip1 = 8.035*fgkmm; - // - const Double_t ksecX4 = +11.280*fgkmm; - const Double_t ksecY4 = -14.473*fgkmm; - const Double_t ksecR4 = +0.8*fgkmm; // Inside - const Double_t ksecX5 = +19.544*fgkmm; - const Double_t ksecY5 = +10.961*fgkmm; - const Double_t ksecR5 = +0.8*fgkmm; // Inside - //const Double_t ksecDip2 = 4.553*fgkmm; - // - const Double_t ksecX6 = +10.830*fgkmm; - const Double_t ksecY6 = +16.858*fgkmm; - const Double_t ksecR6 = +0.6*fgkmm; // Inside - const Double_t ksecX7 = +11.581*fgkmm; - const Double_t ksecY7 = +13.317*fgkmm; - const Double_t ksecR7 = -0.6*fgkmm; // Outside - //const Double_t ksecDip3 = 6.978*fgkmm; - // - const Double_t ksecX8 = -0.733*fgkmm; - const Double_t ksecY8 = +17.486*fgkmm; - const Double_t ksecR8 = +0.6*fgkmm; // Inside - const Double_t ksecX9 = +0.562*fgkmm; - const Double_t ksecY9 = +14.486*fgkmm; - const Double_t ksecR9 = -0.6*fgkmm; // Outside - //const Double_t ksecDip4 = 6.978*fgkmm; - // - const Double_t ksecX10 = -12.252*fgkmm; - const Double_t ksecY10 = +16.298*fgkmm; - const Double_t ksecR10 = +0.6*fgkmm; // Inside - const Double_t ksecX11 = -10.445*fgkmm; - const Double_t ksecY11 = +13.162*fgkmm; - const Double_t ksecR11 = -0.6*fgkmm; // Outside - //const Double_t ksecDip5 = 6.978*fgkmm; - // - const Double_t ksecX12 = -22.276*fgkmm; - const Double_t ksecY12 = +12.948*fgkmm; - const Double_t ksecR12 = +0.85*fgkmm; // Inside - //const Double_t ksecX13 = *fgkmm; - //const Double_t ksecY13 = *fgkmm; - const Double_t ksecR13 = -0.8*fgkmm; // Outside - const Double_t ksecAngleSide13 = 36.0*fgkDegree; + // none. + // --- + // Int the two variables passed by reference values will be stored + // which will then be used to correctly locate this sector. + // The information used for this is the distance between the + // center of the #0 detector and the beam pipe. + // Measurements are taken at cross section A-A. + // + + //TGeoMedium *medSPDfs = 0;//SPD support cone inserto stesalite 4411w + //TGeoMedium *medSPDfo = 0;//SPD support cone foam, Rohacell 50A. + //TGeoMedium *medSPDal = 0;//SPD support cone SDD mounting bracket Al + TGeoMedium *medSPDcf = GetMedium("SPD C (M55J)$", mgr); + TGeoMedium *medSPDss = GetMedium("INOX$", mgr); + TGeoMedium *medSPDair = GetMedium("AIR$", mgr); + TGeoMedium *medSPDcoolfl = GetMedium("Freon$", mgr); //ITSspdCoolingFluid + // + const Double_t ksecDz = 0.5 * 500.0 * fgkmm; + //const Double_t ksecLen = 30.0 * fgkmm; + const Double_t ksecCthick = 0.2 * fgkmm; + const Double_t ksecDipLength = 3.2 * fgkmm; + const Double_t ksecDipRadii = 0.4 * fgkmm; + //const Double_t ksecCoolingTubeExtraDepth = 0.86 * fgkmm; + // + // The following positions ('ksecX#' and 'ksecY#') and radii ('ksecR#') + // are the centers and radii of curvature of all the rounded corners + // between the straight borders of the SPD sector shape. + // To draw this SPD sector, the following steps are followed: + // 1) the (ksecX, ksecY) points are plotted + // and circles of the specified radii are drawn around them. + // 2) each pair of consecutive circles is connected by a line + // tangent to them, in accordance with the radii being "internal" + // or "external" with respect to the closed shape which describes + // the sector itself. + // The resulting connected shape is the section + // of the SPD sector surface in the transverse plane (XY). + // + const Double_t ksecX0 = -10.725 * fgkmm; + const Double_t ksecY0 = -14.853 * fgkmm; + const Double_t ksecR0 = -0.8 * fgkmm; // external + const Double_t ksecX1 = -13.187 * fgkmm; + const Double_t ksecY1 = -19.964 * fgkmm; + const Double_t ksecR1 = +0.6 * fgkmm; // internal // (modif. by Alberto) + //const Double_t ksecR1 = +0.8 * fgkmm; // internal // (modif. by Alberto) + + // const Double_t ksecDip0 = 5.9 * fgkmm; + // + //const Double_t ksecX2 = -3.883 * fgkmm; + const Double_t ksecX2 = -3.833 * fgkmm; // (corr. by Alberto) + const Double_t ksecY2 = -17.805 * fgkmm; + const Double_t ksecR2 = +0.6 * fgkmm; // internal (guess) + const Double_t ksecX3 = -3.123 * fgkmm; + const Double_t ksecY3 = -14.618 * fgkmm; + const Double_t ksecR3 = -0.6 * fgkmm; // external + //const Double_t ksecDip1 = 8.035 * fgkmm; + // + const Double_t ksecX4 = +11.280 * fgkmm; + const Double_t ksecY4 = -14.473 * fgkmm; + const Double_t ksecR4 = +0.8 * fgkmm; // internal + const Double_t ksecX5 = +19.544 * fgkmm; + const Double_t ksecY5 = +10.961 * fgkmm; + const Double_t ksecR5 = +0.8 * fgkmm; // internal + //const Double_t ksecDip2 = 4.553 * fgkmm; + // + const Double_t ksecX6 = +10.830 * fgkmm; + const Double_t ksecY6 = +16.858 * fgkmm; + const Double_t ksecR6 = +0.6 * fgkmm; // internal + const Double_t ksecX7 = +11.581 * fgkmm; + const Double_t ksecY7 = +13.317 * fgkmm; + const Double_t ksecR7 = -0.6 * fgkmm; // external + //const Double_t ksecDip3 = 6.978 * fgkmm; + // + const Double_t ksecX8 = -0.733 * fgkmm; + const Double_t ksecY8 = +17.486 * fgkmm; + const Double_t ksecR8 = +0.6 * fgkmm; // internal + const Double_t ksecX9 = +0.562 * fgkmm; + //const Double_t ksecY9 = +14.486 * fgkmm; // correction by + const Double_t ksecY9 = +14.107 * fgkmm; // Alberto + const Double_t ksecR9 = -0.6 * fgkmm; // external + //const Double_t ksecDip4 = 6.978 * fgkmm; + // + const Double_t ksecX10 = -12.252 * fgkmm; + const Double_t ksecY10 = +16.298 * fgkmm; + const Double_t ksecR10 = +0.6 * fgkmm; // internal + const Double_t ksecX11 = -10.445 * fgkmm; + const Double_t ksecY11 = +13.162 * fgkmm; + const Double_t ksecR11 = -0.6 * fgkmm; // external + //const Double_t ksecDip5 = 6.978 * fgkmm; + // + const Double_t ksecX12 = -22.276 * fgkmm; + const Double_t ksecY12 = +12.948 * fgkmm; + const Double_t ksecR12 = +0.85 * fgkmm; // internal + const Double_t ksecR13 = -0.8 * fgkmm; // external + const Double_t ksecAngleSide13 = 36.0 * fgkDegree; // const Int_t ksecNRadii = 20; const Int_t ksecNPointsPerRadii = 4; const Int_t ksecNCoolingTubeDips = 6; - // Since the Rounded parts are aproximated by a regular polygon and - // a cooling tube of the propper diameter must fit, a scaling factor + // + // Since the rounded parts are approximated by a regular polygon + // and a cooling tube of the propper diameter must fit, a scaling factor // increases the size of the polygon for the tube to fit. //const Double_t ksecRCoolScale = 1./TMath::Cos(TMath::Pi()/ - // (Double_t)ksecNPointsPerRadii); - const Double_t ksecZEndLen = 30.00*fgkmm; - //const Double_t ksecZFlangLen= 45.00*fgkmm; - const Double_t ksecTl = 0.860*fgkmm; - const Double_t ksecCthick2 = 0.600*fgkmm; - //const Double_t ksecCthick3 = 1.800*fgkmm; - //const Double_t ksecSidelen = 22.00*fgkmm; - //const Double_t ksecSideD5 = 3.679*fgkmm; - //const Double_t ksecSideD12 = 7.066*fgkmm; - const Double_t ksecRCoolOut = 2.400*fgkmm; - const Double_t ksecRCoolIn = 2.000*fgkmm; - const Double_t ksecDl1 = 5.900*fgkmm; - const Double_t ksecDl2 = 8.035*fgkmm; - const Double_t ksecDl3 = 4.553*fgkmm; - const Double_t ksecDl4 = 6.978*fgkmm; - const Double_t ksecDl5 = 6.978*fgkmm; - const Double_t ksecDl6 = 6.978*fgkmm; - const Double_t ksecCoolTubeThick = 0.04*fgkmm; - const Double_t ksecCoolTubeROuter = 2.6*fgkmm; - const Double_t ksecCoolTubeFlatX = 3.696*fgkmm; - const Double_t ksecCoolTubeFlatY = 0.68*fgkmm; - //const Double_t ksecBeamX0 = 0.0*fgkmm; // guess - //const Double_t ksecBeamY0 = (15.223+40.)*fgkmm; // guess - // - const Int_t ksecNPoints = (ksecNPointsPerRadii+1)*ksecNRadii + 8; - Double_t secX[ksecNRadii] = {ksecX0,ksecX1,-1000.0,ksecX2 ,ksecX3 ,-1000.0, - ksecX4,ksecX5,-1000.0,ksecX6 ,ksecX7 ,-1000.0, - ksecX8,ksecX9,-1000.0,ksecX10,ksecX11,-1000.0, - ksecX12,-1000.0}; - Double_t secY[ksecNRadii] = {ksecY0,ksecY1,-1000.0,ksecY2 ,ksecY3 ,-1000.0, - ksecY4,ksecY5,-1000.0,ksecY6 ,ksecY7 ,-1000.0, - ksecY8,ksecY9,-1000.0,ksecY10,ksecY11,-1000.0, - ksecY12,-1000.0}; - Double_t secR[ksecNRadii] ={ksecR0 ,ksecR1 ,-.5*ksecDipLength-ksecDipRadii, - ksecR2 ,ksecR3 ,-.5*ksecDipLength-ksecDipRadii, - ksecR4 ,ksecR5 ,-.5*ksecDipLength-ksecDipRadii, - ksecR6 ,ksecR7 ,-.5*ksecDipLength-ksecDipRadii, - ksecR8 ,ksecR9 ,-.5*ksecDipLength-ksecDipRadii, - ksecR10,ksecR11,-.5*ksecDipLength-ksecDipRadii, - ksecR12,ksecR13};/* - Double_t secDip[ksecNRadii]={0.0,0.0,ksecDip0,0.0,0.0,ksecDip1, - 0.0,0.0,ksecDip2,0.0,0.0,ksecDip3, - 0.0,0.0,ksecDip4,0.0,0.0,ksecDip5, - 0.0,0.0};*/ + // (Double_t)ksecNPointsPerRadii); + const Double_t ksecZEndLen = 30.000 * fgkmm; + //const Double_t ksecZFlangLen = 45.000 * fgkmm; + const Double_t ksecTl = 0.860 * fgkmm; + const Double_t ksecCthick2 = 0.600 * fgkmm; + //const Double_t ksecCthick3 = 1.80 * fgkmm; + //const Double_t ksecSidelen = 22.0 * fgkmm; + //const Double_t ksecSideD5 = 3.679 * fgkmm; + //const Double_t ksecSideD12 = 7.066 * fgkmm; + const Double_t ksecRCoolOut = 2.400 * fgkmm; + const Double_t ksecRCoolIn = 2.000 * fgkmm; + const Double_t ksecDl1 = 5.900 * fgkmm; + const Double_t ksecDl2 = 8.035 * fgkmm; + const Double_t ksecDl3 = 4.553 * fgkmm; + const Double_t ksecDl4 = 6.978 * fgkmm; + const Double_t ksecDl5 = 6.978 * fgkmm; + const Double_t ksecDl6 = 6.978 * fgkmm; + const Double_t ksecCoolTubeThick = 0.04 * fgkmm; + const Double_t ksecCoolTubeROuter = 2.6 * fgkmm; + const Double_t ksecCoolTubeFlatX = 3.696 * fgkmm; + const Double_t ksecCoolTubeFlatY = 0.68 * fgkmm; + //const Double_t ksecBeamX0 = 0.0 * fgkmm; // guess + //const Double_t ksecBeamY0 = (15.223 + 40.) * fgkmm; // guess + // + // redefine some of the points already defined above + // in the format of arrays (???) + const Int_t ksecNPoints = (ksecNPointsPerRadii + 1) * ksecNRadii + 8; + Double_t secX[ksecNRadii] = { + ksecX0, ksecX1, -1000.0, + ksecX2, ksecX3, -1000.0, + ksecX4, ksecX5, -1000.0, + ksecX6, ksecX7, -1000.0, + ksecX8, ksecX9, -1000.0, + ksecX10, ksecX11, -1000.0, + ksecX12, -1000.0 + }; + Double_t secY[ksecNRadii] = { + ksecY0, ksecY1, -1000.0, + ksecY2, ksecY3, -1000.0, + ksecY4, ksecY5, -1000.0, + ksecY6, ksecY7, -1000.0, + ksecY8, ksecY9, -1000.0, + ksecY10, ksecY11, -1000.0, + ksecY12, -1000.0 + }; + Double_t secR[ksecNRadii] = { + ksecR0, ksecR1, -.5 * ksecDipLength - ksecDipRadii, + ksecR2, ksecR3, -.5 * ksecDipLength - ksecDipRadii, + ksecR4, ksecR5, -.5 * ksecDipLength - ksecDipRadii, + ksecR6, ksecR7, -.5 * ksecDipLength - ksecDipRadii, + ksecR8, ksecR9, -.5 * ksecDipLength - ksecDipRadii, + ksecR10, ksecR11, -.5 * ksecDipLength - ksecDipRadii, + ksecR12, ksecR13 + }; + /* + Double_t secDip[ksecNRadii] = { + 0., 0., ksecDip0, 0., 0., ksecDip1, + 0., 0., ksecDip2, 0., 0., ksecDip3, + 0., 0., ksecDip4, 0., 0., ksecDip5, + 0., 0. + }; + */ Double_t secX2[ksecNRadii]; Double_t secY2[ksecNRadii]; Double_t secR2[ksecNRadii] = { - ksecR0,ksecR1,ksecRCoolOut,ksecR2,ksecR3,ksecRCoolOut,ksecR4,ksecR5, - ksecRCoolOut,ksecR6,ksecR7,ksecRCoolOut,ksecR8,ksecR9,ksecRCoolOut, - ksecR10,ksecR11,ksecRCoolOut,ksecR12,ksecR13}; - Double_t secDip2[ksecNCoolingTubeDips]={ksecDl1,ksecDl2,ksecDl3, - ksecDl4,ksecDl5,ksecDl6}; + ksecR0, ksecR1, ksecRCoolOut, + ksecR2, ksecR3, ksecRCoolOut, + ksecR4, ksecR5, ksecRCoolOut, + ksecR6, ksecR7, ksecRCoolOut, + ksecR8, ksecR9, ksecRCoolOut, + ksecR10, ksecR11, ksecRCoolOut, + ksecR12, ksecR13 + }; + Double_t secDip2[ksecNCoolingTubeDips] = { + ksecDl1, ksecDl2, ksecDl3, + ksecDl4, ksecDl5, ksecDl6 + }; Double_t secX3[ksecNRadii]; Double_t secY3[ksecNRadii]; - const Int_t ksecDipIndex[ksecNCoolingTubeDips] = {2,5,8,11,14,17}; + const Int_t ksecDipIndex[ksecNCoolingTubeDips] = {2, 5, 8, 11, 14, 17}; Double_t secAngleStart[ksecNRadii]; Double_t secAngleEnd[ksecNRadii]; Double_t secAngleStart2[ksecNRadii]; Double_t secAngleEnd2[ksecNRadii]; - Double_t secAngleTurbo[ksecNCoolingTubeDips] = {0.0,0.0,0.0,0.0,0.0,0.0}; + Double_t secAngleTurbo[ksecNCoolingTubeDips] = {0., 0., 0., 0., 0., 0.0}; //Double_t secAngleStart3[ksecNRadii]; //Double_t secAngleEnd3[ksecNRadii]; - Double_t xpp[ksecNPoints],ypp[ksecNPoints]; - Double_t xpp2[ksecNPoints],ypp2[ksecNPoints]; - Double_t *xp[ksecNRadii],*xp2[ksecNRadii]; - Double_t *yp[ksecNRadii],*yp2[ksecNRadii]; - TGeoXtru *sA0,*sA1,*sB0,*sB1; - TGeoEltu *sTA0,*sTA1; - TGeoTube *sTB0,*sTB1,*sM0; + Double_t xpp[ksecNPoints], ypp[ksecNPoints]; + Double_t xpp2[ksecNPoints], ypp2[ksecNPoints]; + Double_t *xp[ksecNRadii], *xp2[ksecNRadii]; + Double_t *yp[ksecNRadii], *yp2[ksecNRadii]; + TGeoXtru *sA0, *sA1, *sB0, *sB1,*sB2; + TGeoBBox *sB3; + TGeoEltu *sTA0, *sTA1; + TGeoTube *sTB0, *sTB1; //,*sM0; TGeoRotation *rot; TGeoTranslation *trans; TGeoCombiTrans *rotrans; - Double_t t,t0,t1,a,b,x0,y0,x1,y1; - Int_t i,j,k,m; + Double_t t, t0, t1, a, b, x0, y0,z0, x1, y1; + Int_t i, j, k, m; Bool_t tst; - if(moth==0){ - Error("CarbonFiberSector","moth=%p",moth); - return; - } // end if moth==0 - //SetDebug(3); - for(i=0;i0.0&&secR[j]>0.0)if(secAngleStart[i]>secAngleEnd[i]) - secAngleEnd[i] += 360.0; - secAngleStart2[i] = secAngleStart[i]; - secAngleEnd2[i] = secAngleEnd[i]; + // + // find starting and ending angles for all but cooling tube sections + secAngleStart[0] = 0.5 * ksecAngleSide13; + for(i = 0; i < ksecNRadii - 2; i++) { + tst = kFALSE; + for(j=0;j 0.0 && secR[j] > 0.0) { + if(secAngleStart[i] > secAngleEnd[i]) secAngleEnd[i] += 360.0; + } // end if(secR[i]>0.0 && secR[j]>0.0) + secAngleStart2[i] = secAngleStart[i]; + secAngleEnd2[i] = secAngleEnd[i]; } // end for i - secAngleEnd[ksecNRadii-2] = secAngleStart[ksecNRadii-2] + - (secAngleEnd[ksecNRadii-5]- - secAngleStart[ksecNRadii-5]); - if(secAngleEnd[ksecNRadii-2]<0.0) secAngleEnd[ksecNRadii-2] += 360.0; - secAngleStart[ksecNRadii-1] = secAngleEnd[ksecNRadii-2] - 180.0; - secAngleEnd[ksecNRadii-1] = secAngleStart[0]; + secAngleEnd[ksecNRadii-2] = secAngleStart[ksecNRadii-2] + + (secAngleEnd[ksecNRadii-5] - secAngleStart[ksecNRadii-5]); + if (secAngleEnd[ksecNRadii-2] < 0.0) secAngleEnd[ksecNRadii-2] += 360.0; + secAngleStart[ksecNRadii-1] = secAngleEnd[ksecNRadii-2] - 180.0; + secAngleEnd[ksecNRadii-1] = secAngleStart[0]; secAngleStart2[ksecNRadii-2] = secAngleStart[ksecNRadii-2]; secAngleEnd2[ksecNRadii-2] = secAngleEnd[ksecNRadii-2]; secAngleStart2[ksecNRadii-1] = secAngleStart[ksecNRadii-1]; secAngleEnd2[ksecNRadii-1] = secAngleEnd[ksecNRadii-1]; - // Find location of circle last rounded corner. + // + // find location of circle last rounded corner. i = 0; - j = ksecNRadii-2; + j = ksecNRadii - 2; t0 = TanD(secAngleStart[i]-90.); t1 = TanD(secAngleEnd[j]-90.); t = secY[i] - secY[j]; - // Note, secR[i=0] <0; secR[j=18]>0; and secR[j+1=19] <0 - t += (-secR[i]+secR[j+1])*SinD(secAngleStart[i]); - t -= (secR[j]-secR[j+1])*SinD(secAngleEnd[j]); - t += t1*secX[j] - t0*secX[i]; - t += t1*(secR[j]-secR[j+1])*CosD(secAngleEnd[j]); - t -= t0*(-secR[i]+secR[j+1])*CosD(secAngleStart[i]); - secX[ksecNRadii-1] = t/(t1-t0); - secY[ksecNRadii-1] = TanD(90.+0.5*ksecAngleSide13)* - (secX[ksecNRadii-1]-secX[0]) + secY[0]; + // NOTE: secR[i=0] < 0; secR[j=18] > 0; and secR[j+1=19] < 0 + t += (-secR[i]+secR[j+1]) * SinD(secAngleStart[i]); + t -= (secR[j]-secR[j+1]) * SinD(secAngleEnd[j]); + t += t1 * secX[j] - t0*secX[i]; + t += t1 * (secR[j] - secR[j+1]) * CosD(secAngleEnd[j]); + t -= t0 * (-secR[i]+secR[j+1]) * CosD(secAngleStart[i]); + secX[ksecNRadii-1] = t / (t1-t0); + secY[ksecNRadii-1] = TanD(90.0+0.5*ksecAngleSide13)* + (secX[ksecNRadii-1]-secX[0])+secY[0]; secX2[ksecNRadii-1] = secX[ksecNRadii-1]; secY2[ksecNRadii-1] = secY[ksecNRadii-1]; secX3[ksecNRadii-1] = secX[ksecNRadii-1]; secY3[ksecNRadii-1] = secY[ksecNRadii-1]; + // find location of cooling tube centers - for(i=0;iSurface for locating - // this sector around the beam pipe. This needs to be - // double checked, but I need my notes for that, Bjorn Nilsen - xAAtubeCenter0 = x0+(x1-x0)*t*0.5; - yAAtubeCenter0 = y0+(y1-y0)*t*0.5; - } // end if i==0 - if(a+b*(a-x0)/(b-y0)>0.0){ - secX[j] = a + TMath::Abs(y1-y0)*2.0*ksecDipRadii/t0; - secY[j] = b - TMath::Sign(2.0*ksecDipRadii,y1-y0)*(x1-x0)/t0; - secX2[j] = a + TMath::Abs(y1-y0)*ksecTl/t0; - secY2[j] = b - TMath::Sign(ksecTl,y1-y0)*(x1-x0)/t0; - secX3[j] = a + TMath::Abs(y1-y0)*(2.0*ksecDipRadii- - 0.5*ksecCoolTubeFlatY)/t0; - secY3[j] = b - TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY, - y1-y0)*(x1-x0)/t0; - }else{ - secX[j] = a - TMath::Abs(y1-y0)*2.0*ksecDipRadii/t0; - secY[j] = b + TMath::Sign(2.0*ksecDipRadii,y1-y0)*(x1-x0)/t0; - secX2[j] = a - TMath::Abs(y1-y0)*ksecTl/t0; - secY2[j] = b + TMath::Sign(ksecTl,y1-y0)*(x1-x0)/t0; - secX3[j] = a - TMath::Abs(y1-y0)*(2.0*ksecDipRadii- - 0.5*ksecCoolTubeFlatY)/t0; - secY3[j] = b + TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY, - y1-y0)*(x1-x0)/t0; - } // end if - // Set up Start and End angles to correspond to start/end of dips. - t1 = (secDip2[i]-TMath::Abs(secR[j]))/t0; - secAngleStart[j] = TMath::RadToDeg()*TMath::ATan2( - y0+(y1-y0)*t1-secY[j],x0+(x1-x0)*t1-secX[j]); - if(secAngleStart[j]<0.0) secAngleStart[j] += 360.0; + for(i = 0; i < ksecNCoolingTubeDips; i++) { + j = ksecDipIndex[i]; + x0 = secX[j-1] + TMath::Abs(secR[j-1]) * CosD(secAngleEnd[j-1]); + y0 = secY[j-1] + TMath::Abs(secR[j-1]) * SinD(secAngleEnd[j-1]); + x1 = secX[j+1] + TMath::Abs(secR[j+1]) * CosD(secAngleStart[j+1]); + y1 = secY[j+1] + TMath::Abs(secR[j+1]) * SinD(secAngleStart[j+1]); + t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1)); + t = secDip2[i] / t0; + a = x0+(x1-x0) * t; + b = y0+(y1-y0) * t; + if(i == 0) { + // get location of tube center->Surface for locating + // this sector around the beam pipe. + // This needs to be double checked, but I need my notes for that. + // (Bjorn Nilsen) + xAAtubeCenter0 = x0 + (x1 - x0) * t * 0.5; + yAAtubeCenter0 = y0 + (y1 - y0) * t * 0.5; + }// end if i==0 + if(a + b*(a - x0) / (b - y0) > 0.0) { + secX[j] = a + TMath::Abs(y1-y0) * 2.0 * ksecDipRadii/t0; + secY[j] = b - TMath::Sign(2.0*ksecDipRadii,y1-y0) * (x1-x0)/t0; + secX2[j] = a + TMath::Abs(y1-y0) * ksecTl/t0; + secY2[j] = b - TMath::Sign(ksecTl,y1-y0) * (x1-x0) / t0; + secX3[j] = a + TMath::Abs(y1-y0) * + (2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY)/t0; + secY3[j] = b - TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY, + y1-y0)*(x1-x0)/t0; + } else { + secX[j] = a - TMath::Abs(y1-y0)*2.0*ksecDipRadii/t0; + secY[j] = b + TMath::Sign(2.0*ksecDipRadii,y1-y0)*(x1-x0)/t0; + secX2[j] = a - TMath::Abs(y1-y0)*ksecTl/t0; + secY2[j] = b + TMath::Sign(ksecTl,y1-y0)*(x1-x0)/t0; + secX3[j] = a - TMath::Abs(y1-y0)*(2.0*ksecDipRadii-0.5* + ksecCoolTubeFlatY)/t0; + secY3[j] = b + TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY, + y1-y0)*(x1-x0)/t0; + } // end if(a+b*(a-x0)/(b-y0)>0.0) + + // Set up Start and End angles to correspond to start/end of dips. + t1 = (secDip2[i]-TMath::Abs(secR[j])) / t0; + secAngleStart[j] =TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j], + x0+(x1-x0)*t1-secX[j]); + if (secAngleStart[j]<0.0) secAngleStart[j] += 360.0; secAngleStart2[j] = secAngleStart[j]; t1 = (secDip2[i]+TMath::Abs(secR[j]))/t0; - secAngleEnd[j] = TMath::RadToDeg()*TMath::ATan2( - y0+(y1-y0)*t1-secY[j],x0+(x1-x0)*t1-secX[j]); - if(secAngleEnd[j]<0.0) secAngleEnd[j] += 360.0; - secAngleEnd2[j] = secAngleEnd[j]; - if(secAngleEnd[j]>secAngleStart[j]) secAngleEnd[j] -= 360.0; + secAngleEnd[j] = TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j], + x0+(x1-x0)*t1-secX[j]); + if (secAngleEnd[j]<0.0) secAngleEnd[j] += 360.0; + secAngleEnd2[j] = secAngleEnd[j]; + if (secAngleEnd[j]>secAngleStart[j]) secAngleEnd[j] -= 360.0; secR[j] = TMath::Sqrt(secR[j]*secR[j]+4.0*ksecDipRadii*ksecDipRadii); } // end for i - // Spcial cases + + // Special cases secAngleStart2[8] -= 360.; secAngleStart2[11] -= 360.; - // - SPDsectorShape(ksecNRadii,secX,secY,secR,secAngleStart,secAngleEnd, - ksecNPointsPerRadii,m,xp,yp); + + SPDsectorShape(ksecNRadii, secX, secY, secR, secAngleStart, secAngleEnd, + ksecNPointsPerRadii, m, xp, yp); + // Fix up dips to be square. - for(i=0;iSetName("ITS SPD Carbon fiber support Sector A0"); - sA0->DefinePolygon(m,xpp,ypp); - sA0->DefineSection(0,-ksecDz); - sA0->DefineSection(1,ksecDz); - // - InsidePoint(xpp[m-1],ypp[m-1],xpp[0],ypp[0],xpp[1],ypp[1], - ksecCthick,xpp2[0],ypp2[0]); - for(i=1;iDefinePolygon(m, xpp, ypp); + sA0->DefineSection(0, -ksecDz); + sA0->DefineSection(1, ksecDz); + + // store the edges of each XY segment which defines + // one of the plane zones where staves will have to be placed + fSPDsectorX0.Set(ksecNCoolingTubeDips); + fSPDsectorY0.Set(ksecNCoolingTubeDips); + fSPDsectorX1.Set(ksecNCoolingTubeDips); + fSPDsectorY1.Set(ksecNCoolingTubeDips); + Int_t ixy0, ixy1; + for(i = 0; i < ksecNCoolingTubeDips; i++) { + // Find index in xpp[] and ypp[] corresponding to where the + // SPD ladders are to be attached. Order them according to + // the ALICE numbering schema. Using array of indexes (+-1 for + // cooling tubes. For any "bend/dip/edge, there are + // ksecNPointsPerRadii+1 points involved. + if(i == 0) j = 1; + else if (i == 1) j = 0; + else j = i; + ixy0 = (ksecDipIndex[j]-1)*(ksecNPointsPerRadii+1)+ + (ksecNPointsPerRadii); + ixy1 = (ksecDipIndex[j]+1) * (ksecNPointsPerRadii+1); + fSPDsectorX0[i] = sA0->GetX(ixy0); + fSPDsectorY0[i] = sA0->GetY(ixy0); + fSPDsectorX1[i] = sA0->GetX(ixy1); + fSPDsectorY1[i] = sA0->GetY(ixy1); + } // end for i + + //printf("SectorA#%d ",0); + InsidePoint(xpp[m-1],ypp[m-1],xpp[0],ypp[0],xpp[1],ypp[1],ksecCthick, + xpp2[0],ypp2[0]); + for(i = 1; i < m - 1; i++) { + j = i / (ksecNPointsPerRadii+1); + //printf("SectorA#%d ",i); InsidePoint(xpp[i-1],ypp[i-1],xpp[i],ypp[i],xpp[i+1],ypp[i+1], ksecCthick,xpp2[i],ypp2[i]); } // end for i + //printf("SectorA#%d ",m); InsidePoint(xpp[m-2],ypp[m-2],xpp[m-1],ypp[m-1],xpp[0],ypp[0], ksecCthick,xpp2[m-1],ypp2[m-1]); - // Fix center value of cooling tube dip. + // Fix center value of cooling tube dip and // find location of cooling tube centers - for(i=0;iSetName("ITS SPD Carbon fiber support Sector Air A1"); - sA1->DefinePolygon(m,xpp2,ypp2); - sA1->DefineSection(0,-ksecDz); - sA1->DefineSection(1,ksecDz); + sA1->DefinePolygon(m, xpp2, ypp2); + sA1->DefineSection(0, -ksecDz); + sA1->DefineSection(1, ksecDz); // // Error in TGeoEltu. Semi-axis X must be < Semi-axis Y (?). - sTA0 = new TGeoEltu("ITS SPD Cooling Tube TA0", - 0.5* ksecCoolTubeFlatY, 0.5* ksecCoolTubeFlatX,ksecDz); - sTA1 = new TGeoEltu("ITS SPD Cooling Tube coolant TA1", - sTA0->GetA()-ksecCoolTubeThick, + sTA0 = new TGeoEltu("ITS SPD Cooling Tube TA0", 0.5 * ksecCoolTubeFlatY, + 0.5 * ksecCoolTubeFlatX, ksecDz); + sTA1 = new TGeoEltu("ITS SPD Cooling Tube coolant TA1", + sTA0->GetA() - ksecCoolTubeThick, sTA0->GetB()-ksecCoolTubeThick,ksecDz); - // SPDsectorShape(ksecNRadii,secX2,secY2,secR2,secAngleStart2,secAngleEnd2, - ksecNPointsPerRadii,m,xp,yp); - // + ksecNPointsPerRadii, m, xp, yp); sB0 = new TGeoXtru(2); sB0->SetName("ITS SPD Carbon fiber support Sector End B0"); - sB0->DefinePolygon(m,xpp,ypp); - sB0->DefineSection(0,ksecDz); - sB0->DefineSection(1,ksecDz+ksecZEndLen); - // + sB0->DefinePolygon(m, xpp, ypp); + sB0->DefineSection(0, ksecDz); + sB0->DefineSection(1, ksecDz + ksecZEndLen); + + //printf("SectorB#%d ",0); InsidePoint(xpp[m-1],ypp[m-1],xpp[0],ypp[0],xpp[1],ypp[1], ksecCthick2,xpp2[0],ypp2[0]); - for(i=1;iSetName("ITS SPD Carbon fiber support Sector Air End B1"); - sB1->DefinePolygon(m,xpp2,ypp2); - sB1->DefineSection(0,ksecDz); - sB1->DefineSection(1,ksecDz+ksecLen); - sTB0 = new TGeoTube("ITS SPD Cooling Tube End TB0",0.0, - 0.5*ksecCoolTubeROuter,0.5*ksecLen); - sTB1 = new TGeoTube("ITS SPD Cooling Tube End coolant TB0",0.0, - sTB0->GetRmax()-ksecCoolTubeThick,0.5*ksecLen); - // - sM0 = new TGeoTube("ITS SPD Sensitive Virutual Volume M0",0.0,8.0, - sA0->GetZ(1)+sB0->GetZ(1)); - // - if(GetDebug()){ - cout<<"medSPDcf= "<Dump(); - cout<<"medSPDss= "<Dump(); - cout<<"medSPDair= "<Dump(); - cout<<"medSPDcoolfl= "<Dump(); - sM0->InspectShape(); + sB1->DefinePolygon(m, xpp2, ypp2); + sB1->DefineSection(0,sB0->GetZ(0)); + sB1->DefineSection(1,sB0->GetZ(1)-ksecCthick2); + const Double_t kspdEndHoleRadius1=5.698*fgkmm; + const Double_t kspdEndHoleRadius2=2.336*fgkmm; + const Double_t kspdEndHoleDisplacement=6.29*fgkmm; + k = (m-1)/4; + for(i=0;i<=k;i++){ + t= ((Double_t)i)/((Double_t)(k)); + if(!CFHolePoints(t,kspdEndHoleRadius1,kspdEndHoleRadius2, + kspdEndHoleDisplacement,xpp2[i],ypp2[i])){ + Warning("CarbonFiberSector","CFHolePoints failed " + "i=%d m=%d k=%d t=%e",i,m,k,t); + } // end if + // simitry in each quadrant. + xpp2[2*k-i] = -xpp2[i]; + ypp2[2*k-i] = ypp2[i]; + xpp2[2*k+i] = -xpp2[i]; + ypp2[2*k+i] = -ypp2[i]; + xpp2[4*k-i] = xpp2[i]; + ypp2[4*k-i] = -ypp2[i]; + }// end for i + //xpp2[m-1] = xpp2[0]; // begining point in + //ypp2[m-1] = ypp2[0]; // comment with end point + sB2 = new TGeoXtru(2); + sB2->SetName("ITS SPD Hole in Carbon fiber support End plate"); + sB2->DefinePolygon(4*k, xpp2, ypp2); + sB2->DefineSection(0,sB1->GetZ(1)); + sB2->DefineSection(1,sB0->GetZ(1)); + // SPD sector mount blocks + const Double_t kMountBlock[3] = {0.5*(1.8-0.2)*fgkmm,0.5*22.0*fgkmm, + 0.5*45.0*fgkmm}; + sB3 = new TGeoBBox((Double_t*)kMountBlock); + // SPD sector cooling tubes + sTB0 = new TGeoTube("ITS SPD Cooling Tube End TB0", 0.0, + 0.5*ksecCoolTubeROuter,0.5*(sB1->GetZ(1)-sB1->GetZ(0))); + sTB1 = new TGeoTube("ITS SPD Cooling Tube End coolant TB0", 0.0, + sTB0->GetRmax() - ksecCoolTubeThick,sTB0->GetDz()); + // + if(GetDebug(3)) { + if(medSPDcf) medSPDcf->Dump(); else AliInfo("medSPDcf = 0"); + if(medSPDss) medSPDss->Dump(); else AliInfo("medSPDss = 0"); + if(medSPDair) medSPDair->Dump(); else AliInfo("medSPDAir = 0"); + if(medSPDcoolfl) medSPDcoolfl->Dump();else AliInfo("medSPDcoolfl = 0"); sA0->InspectShape(); sA1->InspectShape(); sB0->InspectShape(); sB1->InspectShape(); - } // end if GetDebug - // - TGeoVolume *vM0,*vA0,*vA1,*vTA0,*vTA1,*vB0,*vB1,*vTB0,*vTB1; - vM0 = new TGeoVolume("ITSSPDSensitiveVirtualvolumeM0",sM0,medSPDair); - vM0->SetVisibility(kTRUE); - vM0->SetLineColor(7); // light Blue - vM0->SetLineWidth(1); - vM0->SetFillColor(vM0->GetLineColor()); - vM0->SetFillStyle(4090); // 90% transparent - vA0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorA0",sA0,medSPDcf); + sB2->InspectShape(); + } // end if(GetDebug(3)) + + // create the assembly of the support and place staves on it + TGeoVolumeAssembly *vM0 = new TGeoVolumeAssembly( + "ITSSPDSensitiveVirtualvolumeM0"); + StavesInSector(vM0); + // create other volumes with some graphical settings + TGeoVolume *vA0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorA0", + sA0, medSPDcf); vA0->SetVisibility(kTRUE); vA0->SetLineColor(4); // Blue vA0->SetLineWidth(1); vA0->SetFillColor(vA0->GetLineColor()); vA0->SetFillStyle(4010); // 10% transparent - vA1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorAirA1",sA1,medSPDair); + TGeoVolume *vA1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorAirA1", + sA1, medSPDair); vA1->SetVisibility(kTRUE); vA1->SetLineColor(7); // light Blue vA1->SetLineWidth(1); vA1->SetFillColor(vA1->GetLineColor()); vA1->SetFillStyle(4090); // 90% transparent - vTA0 = new TGeoVolume("ITSSPDCoolingTubeTA0",sTA0,medSPDss); + TGeoVolume *vTA0 = new TGeoVolume("ITSSPDCoolingTubeTA0", sTA0, medSPDss); vTA0->SetVisibility(kTRUE); - vTA0->SetLineColor(1); // Black + vTA0->SetLineColor(15); // gray vTA0->SetLineWidth(1); vTA0->SetFillColor(vTA0->GetLineColor()); vTA0->SetFillStyle(4000); // 0% transparent - vTA1 = new TGeoVolume("ITSSPDCoolingTubeFluidTA1",sTA1,medSPDcoolfl); + TGeoVolume *vTA1 = new TGeoVolume("ITSSPDCoolingTubeFluidTA1", + sTA1, medSPDcoolfl); vTA1->SetVisibility(kTRUE); vTA1->SetLineColor(6); // Purple vTA1->SetLineWidth(1); vTA1->SetFillColor(vTA1->GetLineColor()); vTA1->SetFillStyle(4000); // 0% transparent - vB0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndB0",sB0,medSPDcf); + TGeoVolume *vB0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndB0", + sB0, medSPDcf); vB0->SetVisibility(kTRUE); - vB0->SetLineColor(4); // Blue + vB0->SetLineColor(1); // Black vB0->SetLineWidth(1); vB0->SetFillColor(vB0->GetLineColor()); - vB0->SetFillStyle(4010); // 10% transparent - vB1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndAirB1", - sB1,medSPDair); + vB0->SetFillStyle(4000); // 0% transparent + TGeoVolume *vB1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndAirB1", + sB1, medSPDair); vB1->SetVisibility(kTRUE); - vB1->SetLineColor(7); // light Blue + vB1->SetLineColor(0); // white vB1->SetLineWidth(1); vB1->SetFillColor(vB1->GetLineColor()); - vB1->SetFillStyle(4090); // 90% transparent - vTB0 = new TGeoVolume("ITSSPDCoolingTubeEndTB0",sTB0,medSPDss); + vB1->SetFillStyle(4100); // 100% transparent + TGeoVolume *vB2 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndAirB2", + sB2, medSPDair); + vB2->SetVisibility(kTRUE); + vB2->SetLineColor(0); // white + vB2->SetLineWidth(1); + vB2->SetFillColor(vB2->GetLineColor()); + vB2->SetFillStyle(4100); // 100% transparent + TGeoVolume *vB3 = new TGeoVolume( + "ITSSPDCarbonFiberSupportSectorMountBlockB3",sB3, medSPDcf); + vB3->SetVisibility(kTRUE); + vB3->SetLineColor(1); // Black + vB3->SetLineWidth(1); + vB3->SetFillColor(vB3->GetLineColor()); + vB3->SetFillStyle(4000); // 0% transparent + TGeoVolume *vTB0 = new TGeoVolume("ITSSPDCoolingTubeEndTB0",sTB0,medSPDss); vTB0->SetVisibility(kTRUE); - vTB0->SetLineColor(1); // Black + vTB0->SetLineColor(15); // gray vTB0->SetLineWidth(1); vTB0->SetFillColor(vTB0->GetLineColor()); vTB0->SetFillStyle(4000); // 0% transparent - vTB1 = new TGeoVolume("ITSSPDCoolingTubeEndFluidTB1",sTB1,medSPDcoolfl); + TGeoVolume *vTB1 = new TGeoVolume("ITSSPDCoolingTubeEndFluidTB1",sTB1, + medSPDcoolfl); vTB1->SetVisibility(kTRUE); - vTB1->SetLineColor(6); // Purple + vTB1->SetLineColor(7); // light blue vTB1->SetLineWidth(1); vTB1->SetFillColor(vTB1->GetLineColor()); - vTB1->SetFillStyle(4000); // 0% transparent - // + vTB1->SetFillStyle(4050); // 0% transparent + + // add volumes to mother container passed as argument of this method moth->AddNode(vM0,1,0); // Add virtual volume to mother vA0->AddNode(vA1,1,0); // Put air inside carbon fiber. - vB0->AddNode(vB1,1,0); // Put air inside carbon fiber. - vTA0->AddNode(vTA1,1,0); // Put air inside carbon fiber. - vTB0->AddNode(vTB1,1,0); // Put air inside carbon fiber. - for(i=0;iAddNode(vB1,1,0); // Put air inside carbon fiber ends. + vB0->AddNode(vB2,1,0); // Put air wholes inside carbon fiber ends + vTA0->AddNode(vTA1,1,0); // Put cooling liquid indide tube middel. + vTB0->AddNode(vTB1,1,0); // Put cooling liquid inside tube end. + Double_t tubeEndLocal[3]={0.0,0.0,sTA0->GetDz()}; + for(i = 0; i < ksecNCoolingTubeDips; i++) { x0 = secX3[ksecDipIndex[i]]; y0 = secY3[ksecDipIndex[i]]; - t = 90.0-secAngleTurbo[i]; + t = 90.0 - secAngleTurbo[i]; trans = new TGeoTranslation("",x0,y0,0.5*(sB1->GetZ(0)+sB1->GetZ(1))); - vB1->AddNode(vTB0,i+1,trans); - rot = new TGeoRotation("",0.0,0.0,t); - rotrans = new TGeoCombiTrans("",x0,y0,0.0,rot); - vM0->AddNode(vTA0,i+1,rotrans); - //delete rot; // rot owned by AliITSv11GeometerySPD::CarbonFiberSector + vB1->AddNode(vTB0, i+1, trans); + // Find location of tube ends for later use. + trans->LocalToMaster(tubeEndLocal,fTubeEndSector[0][0][i]); + rot = new TGeoRotation("", 0.0, 0.0, t); + rotrans = new TGeoCombiTrans("", x0, y0, 0.0, rot); + vM0->AddNode(vTA0, i+1, rotrans); } // end for i - vM0->AddNode(vA0,1,0); - vM0->AddNode(vB0,1,0); + vM0->AddNode(vA0, 1, 0); + vM0->AddNode(vB0, 1, 0); // Reflection. - vM0->AddNode(vB0,2,new TGeoRotation("",90.,0.,90.,90.,180.,0.)); - if(GetDebug()){ + rot = new TGeoRotation("", 90., 0., 90., 90., 180., 0.); + vM0->AddNode(vB0,2,rot); + // Find location of tube ends for later use. + for(i=0;iLocalToMaster( + fTubeEndSector[0][0][i],fTubeEndSector[0][1][i]); + // left side + t = -TMath::RadToDeg()*TMath::ATan2( + sB0->GetX(0)-sB0->GetX(sB0->GetNvert()-1), + sB0->GetY(0)-sB0->GetY(sB0->GetNvert()-1)); + rot = new TGeoRotation("",t,0.0,0.0);// z axis rotation + x0 = 0.5*(sB0->GetX(0)+sB0->GetX(sB0->GetNvert()-1))+ + sB3->GetDX()*TMath::Cos(t*TMath::DegToRad()); + y0 = 0.5*(sB0->GetY(0)+sB0->GetY(sB0->GetNvert()-1))+ + sB3->GetDX()*TMath::Sin(t*TMath::DegToRad()); + z0 = sB0->GetZ(0)+sB3->GetDZ(); + rotrans = new TGeoCombiTrans("",x0,y0,z0,rot); + vM0->AddNode(vB3,1,rotrans); // Put Mounting bracket on sector + rotrans = new TGeoCombiTrans("",x0,y0,-z0,rot); + vM0->AddNode(vB3,2,rotrans); // Put Mounting bracket on sector + /* + j = 0; // right side, find point with largest x value + x1 = sB0->GetX(0); + for(i=1;iGetNvert();i++)if(sB0->GetX(i)>x1) {j=i;x1=sB0->GetX(i);} + j--; // Too big by 1 + //t = -TMath::RadToDeg()*TMath::ATan2( + // sB0->GetX(j)-sB0->GetX(j-1), + // sB0->GetY(j)-sB0->GetY(j-1)); + */ + t *= -1.0; + rot = new TGeoRotation("",t,0.0,0.0); // z axis rotation + /* // this way gets correct orientation but wrong "height" + x0 = 0.5*(sB0->GetX(j)+sB0->GetX(j-1))+ + sB3->GetDX()*TMath::Cos(t*TMath::DegToRad()); + y0 = 0.5*(sB0->GetY(j)+sB0->GetY(j-1))+ + sB3->GetDX()*TMath::Sin(t*TMath::DegToRad()); + z0 = sB0->GetZ(0)+sB3->GetDZ(); + */ // I don't understand the need for this factor 3.5. + // posibly the SPD sector as coded isn't symetric which the + // plans would suggest. + x0 = -0.5*(sB0->GetX(0)+sB0->GetX(sB0->GetNvert()-1))-3.5* + sB3->GetDX()*TMath::Cos(t*TMath::DegToRad()); + y0 = 0.5*(sB0->GetY(0)+sB0->GetY(sB0->GetNvert()-1))-3.5* + sB3->GetDX()*TMath::Sin(t*TMath::DegToRad()); + rotrans = new TGeoCombiTrans("",1.01*x0,y0,z0,rot); + vM0->AddNode(vB3,3,rotrans); // Put Mounting bracket on sector + rotrans = new TGeoCombiTrans("",1.01*x0,y0,-z0,rot); + vM0->AddNode(vB3,4,rotrans); // Put Mounting bracket on sector + if(GetDebug(3)){ vM0->PrintNodes(); vA0->PrintNodes(); vA1->PrintNodes(); vB0->PrintNodes(); vB1->PrintNodes(); + vB2->PrintNodes(); + vB3->PrintNodes(); vTA0->PrintNodes(); vTA1->PrintNodes(); vTB0->PrintNodes(); vTB1->PrintNodes(); - } // end if GetDebug + } // end if(GetDebug(3)) +} +//______________________________________________________________________ +Bool_t AliITSv11GeometrySPD::CFHolePoints(Double_t s,Double_t r1, + Double_t r2,Double_t l,Double_t &x,Double_t &y) const +{ // + // Step along arck a distancs ds and compute boundry of + // two holes (radius r1 and r2) a distance l apart (along + // x-axis). + // Inputs: + // Double_t s fractional Distance along arcs [0-1] + // where 0-> alpha=beta=0, 1-> alpha=90 degrees. + // Double_t r1 radius at center circle + // Double_t r2 radius of displaced circle + // Double_t l Distance displaced circle is displaces (x-axis) + // Output: + // Double_t x x coordinate along double circle. + // Double_t y y coordinate along double circle. + // Return: + // logical, kFALSE if an error + // + Double_t alpha,beta; + Double_t ac,bc,scb,sca,t,alphac,betac; // at intersection of two circles + + x=y=0.0; + ac = r1*r1-l*l-r2*r2; + bc = 2.*l*r2; + if(bc==0.0) {printf("bc=0 l=%e r2=%e\n",l,r2);return kFALSE;} + betac = TMath::ACos(ac/bc); + alphac = TMath::Sqrt(bc*bc-ac*ac)/(2.*l*r1); + scb = r2*betac; + sca = r1*alphac; + t = r1*0.5*TMath::Pi() - sca + scb; + if(s<= scb/t){ + beta = s*t/r2; + x = r2*TMath::Cos(beta) + l; + y = r2*TMath::Sin(beta); + //printf("betac=%e scb=%e t=%e s=%e beta=%e x=%e y=%e\n", + // betac,scb,t,s,beta,x,y); + return kTRUE; + }else{ + beta = (s*t-scb+sca)/(r1*0.5*TMath::Pi()); + alpha = beta*0.5*TMath::Pi(); + x = r1*TMath::Cos(alpha); + y = r1*TMath::Sin(alpha); + //printf("alphac=%e sca=%e t=%e s=%e beta=%e alpha=%e x=%e y=%e\n", + // alphac,sca,t,s,beta,alpha,x,y); + return kTRUE; + } // end if + return kFALSE; } -//---------------------------------------------------------------------- -void AliITSv11GeometrySPD::SPDsectorShape(Int_t n,const Double_t *xc, -const Double_t *yc,const Double_t *r,const Double_t *ths,const Double_t *the, - Int_t npr,Int_t &m,Double_t **xp,Double_t **yp){ +//______________________________________________________________________ +Bool_t AliITSv11GeometrySPD::GetSectorMountingPoints(Int_t index,Double_t &x0, + Double_t &y0, Double_t &x1, Double_t &y1) const +{ + // + // Returns the edges of the straight borders in the SPD sector shape, + // which are used to mount staves on them. + // Coordinate system is that of the carbon fiber sector volume. + // --- + // Index numbering is as follows: + // /5 + // /\/4 + // 1\ \/3 + // 0|___\/2 + // --- + // Arguments [the ones passed by reference contain output values]: + // Int_t index --> location index according to above scheme [0-5] + // Double_t &x0 --> (by ref) x0 location or the ladder sector [cm] + // Double_t &y0 --> (by ref) y0 location of the ladder sector [cm] + // Double_t &x1 --> (by ref) x1 location or the ladder sector [cm] + // Double_t &y1 --> (by ref) y1 location of the ladder sector [cm] + // TGeoManager *mgr --> The TGeo builder + // --- + // The location is described by a line going from (x0, y0) to (x1, y1) + // --- + // Returns kTRUE if no problems encountered. + // Returns kFALSE if a problem was encountered (e.g.: shape not found). + // + Int_t isize = fSPDsectorX0.GetSize(); + + x0 = x1 = y0 = y1 = 0.0; + if(index < 0 || index > isize) { + AliError(Form("index = %d: allowed 0 --> %", index, isize)); + return kFALSE; + } // end if(index<0||index>isize) + x0 = fSPDsectorX0[index]; + x1 = fSPDsectorX1[index]; + y0 = fSPDsectorY0[index]; + y1 = fSPDsectorY1[index]; + return kTRUE; +} +//______________________________________________________________________ +void AliITSv11GeometrySPD::SPDsectorShape(Int_t n,const Double_t *xc, + const Double_t *yc, const Double_t *r, + const Double_t *ths, const Double_t *the, + Int_t npr, Int_t &m, Double_t **xp, Double_t **yp) const +{ + // // Code to compute the points that make up the shape of the SPD // Carbon fiber support sections // Inputs: - // Int_t n Size of arrays xc,yc, and r. - // Double_t *xc Array of x values for radii centers. - // Double_t *yc Array of y values for radii centers. - // Double_t *r Array of signed radii values. - // Double_t *ths Array of starting angles [degrees]. - // Double_t *the Array of ending angles [degrees]. - // Int_t npr The number of lines segments to aproximate the arc. - // Outputs: - // Int_t m The number of enetries in the arrays *xp[npr+1] - // and *yp[npr+1]. - // Double_t **xp Array of x coordinate values of the line segments - // which make up the SPD support sector shape. - // Double_t **yp Array of y coordinate values of the line segments - // which make up the SPD support sector shape. - // Return: - // none. - Int_t i,k; - Double_t t,t0,t1; - - m = n*(npr+1); - if(GetDebug(2)){ - cout <<" X \t Y \t R \t S \t E"<< m <MakeBox("ITSSPDchip",medSPDSiChip, + 0.5*chipWidth,0.5*chipThickness,0.5*chipLength); + // the sensor as well + TGeoVolume *volSens = mgr->MakeBox(GetSenstiveVolumeName(layer),medSi, + 0.5*sensWidth,0.5*sensThickness,0.5*sensLength); + // the guard ring shape is the subtraction of two boxes with the + // same center. + TGeoBBox *shIn = new TGeoBBox(0.5*sensWidth,sensThickness,0.5*sensLength); + TGeoBBox *shOut = new TGeoBBox(0.5*sensWidth+guardRingWidth, + 0.5*sensThickness,0.5*sensLength+guardRingWidth); + shIn->SetName("ITSSPDinnerBox"); + shOut->SetName("ITSSPDouterBox"); + TGeoCompositeShape *shBorder = new TGeoCompositeShape( + "ITSSPDgaurdRingBorder",Form("%s-%s",shOut->GetName(),shIn->GetName())); + TGeoVolume *volBorder = new TGeoVolume("ITSSPDgaurdRing",shBorder,medSi); + // bump bonds for one whole column + TGeoVolume *volBB = mgr->MakeBox("ITSSPDbb",medBumpBond,0.5*bbWidth, + 0.5*bbThickness,0.5*bbLength); + // set colors of all objects for visualization + volSens->SetLineColor(kYellow + 1); + volChip->SetLineColor(kGreen); + volBorder->SetLineColor(kYellow + 3); + volBB->SetLineColor(kGray); + + // ** MOVEMENTS ** + // sensor is translated along thickness (X) and width (Y) + Double_t ySens = 0.5 * (thickness - sensThickness); + Double_t zSens = 0.0; + // we want that the x of the ladder is the same as the one of + // its sensitive volume + TGeoTranslation *trSens = new TGeoTranslation(0.0, ySens, zSens); + // bump bonds are translated along all axes: + // keep same Y used for sensors, but change the Z + TGeoTranslation *trBB[160]; + Double_t x = 0.0; + Double_t y = 0.5 * (thickness - bbThickness) - sensThickness; + Double_t z = -0.5 * sensLength + guardRingWidth + fgkmm*0.425 - bbPos; + Int_t i; + for (i = 0; i < 160; i++) { + trBB[i] = new TGeoTranslation(x, y, z); + switch(i) { + case 31:case 63:case 95:case 127: + z += fgkmm * 0.625 + fgkmm * 0.2; + break; + default: + z += fgkmm * 0.425; + } // end switch + } // end for i + // the chips are translated along the length (Z) and thickness (X) + TGeoTranslation *trChip[5] = {0, 0, 0, 0, 0}; + x = -xSens; + y = 0.5 * (chipThickness - thickness); + z = 0.0; + for (i = 0; i < 5; i++) { + z = -0.5*length + guardRingWidth + + (Double_t)i*chipSpacing + ((Double_t)(i) + 0.5)*chipLength; + trChip[i] = new TGeoTranslation(x, y, z); + } // end ofr i + + // add nodes to container + container->AddNode(volSens, 1, trSens); + container->AddNode(volBorder, 1, trSens); + for (i = 0; i < 160; i++) container->AddNode(volBB,i+1,trBB[i]); + for (i = 0; i < 5; i++) container->AddNode(volChip,i+3,trChip[i]); + // return the container + return container; +} + +/* +//______________________________________________________________________ +TGeoVolume* AliITSv11GeometrySPD::CreateLadder + (Int_t layer, TArrayD &sizes, TGeoManager *mgr) const +{ + // + // Creates the "ladder" = silicon sensor + 5 chips. + // Returns a TGeoVolume containing the following components: + // - the sensor (TGeoBBox), whose name depends on the layer + // - 5 identical chips (TGeoBBox) + // - a guard ring around the sensor (subtraction of TGeoBBoxes), + // which is separated from the rest of sensor because it is not + // a sensitive part + // - bump bondings (TGeoBBox stripes for the whole width of the + // sensor, one per column). + // --- + // Arguments: + // 1 - the owner layer (MUST be 1 or 2 or a fatal error is raised) + // 2 - a TArrayD passed by reference, which will contain relevant + // dimensions related to this object: + // size[0] = 'thickness' (the smallest dimension) + // size[1] = 'length' (the direction along the ALICE Z axis) + // size[2] = 'width' (extension in the direction perp. to the + // above ones) + // 3 - the used TGeoManager + + // ** CRITICAL CHECK ****************************************************** + // layer number can be ONLY 1 or 2 + if (layer != 1 && layer != 2) AliFatal("Layer number MUST be 1 or 2"); + + // ** MEDIA *************************************************************** + + TGeoMedium *medAir = GetMedium("AIR$",mgr); + TGeoMedium *medSPDSiChip = GetMedium("SPD SI CHIP$",mgr); // SPD SI CHIP + TGeoMedium *medSi = GetMedium("SI$",mgr); + TGeoMedium *medBumpBond = GetMedium("COPPER$",mgr); // ??? BumpBond + + // ** SIZES *************************************************************** + + Double_t chipThickness = fgkmm * 0.150; + Double_t chipWidth = fgkmm * 15.950; + Double_t chipLength = fgkmm * 13.600; + Double_t chipSpacing = fgkmm * 0.400; // separation of chips along Z + Double_t sensThickness = fgkmm * 0.200; + Double_t sensLength = fgkmm * 69.600; + Double_t sensWidth = fgkmm * 12.800; + Double_t guardRingWidth = fgkmm * 0.560; // guard ring around sensor + Double_t bbLength = fgkmm * 0.042; + Double_t bbWidth = sensWidth; + Double_t bbThickness = fgkmm * 0.012; + Double_t bbPos = 0.080; // Z position w.r. to left pixel edge + + // the three dimensions of the box which contains the ladder + // are returned in the 'sizes' argument, and are used for volumes positionement + // for readability purpose, they are linked by reference to a more meaningful name + sizes.Set(3); + Double_t &thickness = sizes[0]; + Double_t &length = sizes[1]; + Double_t &width = sizes[2]; + // the container is a box which exactly enclose all the stuff + width = chipWidth; + length = sensLength + 2.0*guardRingWidth; + thickness = sensThickness + chipThickness + bbThickness; + + // ** VOLUMES ************************************************************* + + // This is a sensitive volume. + // Local X must correspond to x coordinate of the sensitive volume: + // to respect this, the origin of the local reference system + // must be shifted from the middle of the box, using + // an additional option ('originShift') when creating the container shape: + Double_t xSens = 0.5 * (width - sensWidth - 2.0*guardRingWidth); + Double_t originShift[3] = {-xSens, 0., 0.}; + + // now the container is a TGeoBBox with this shift, + // and the volume is made of air (it does not exist in reality) + TGeoBBox *shLadder = new TGeoBBox(0.5*width, 0.5*thickness, 0.5*length, originShift); + TGeoVolume *vLadder = new TGeoVolume(Form("ITSSPDlay%d-Ladder", layer), shLadder, medAir); + + // the chip is a common box + TGeoVolume *vChip = mgr->MakeBox("ITSSPDchip", medSPDSiChip, + 0.5*chipWidth, 0.5*chipThickness, 0.5*chipLength); + + // to build the sensor with its guard ring, we create a TGeoBBox with the size + // of the sensor + guard ring, and we insert the true sensor into it as an + // internal node: this simplifies the implementation with the same result + TGeoVolume *vSensGuard = mgr->MakeBox(Form("%s-guardRing", GetSenstiveVolumeName(layer)), + medSi, + 0.5*sensWidth + guardRingWidth, + 0.5*sensThickness, + 0.5*sensLength + guardRingWidth); + TGeoVolume *vSens = mgr->MakeBox(GetSenstiveVolumeName(layer), medSi, + 0.5*sensWidth,0.5*sensThickness,0.5*sensLength); + vSensGuard->AddNode(vSens, 0); + vSensGuard->SetTransparency(50); + + // bump bond is a common box for one whole column + TGeoVolume *vBB = mgr->MakeBox("ITSSPDbb", medBumpBond, + 0.5*bbWidth, 0.5*bbThickness, 0.5*bbLength); + + // set colors of all objects for visualization + vLadder->SetLineColor(kRed); + vSens->SetLineColor(kYellow + 1); + vChip->SetLineColor(kGreen); + vSensGuard->SetLineColor(kYellow + 3); + vBB->SetLineColor(kGray); + + // ** MOVEMENTS ** + // sensor is translated along thickness (Y) and width (X) + Double_t ySens = 0.5 * (thickness - sensThickness); + Double_t zSens = 0.0; + // we want that the x of the ladder is the same as the one of + // its sensitive volume + TGeoTranslation *trSens = new TGeoTranslation(0.0, ySens, zSens); + // bump bonds are translated along all axes: + // keep same Y used for sensors, but change the Z + TGeoTranslation *trBB[160]; + Double_t x = 0.0; + Double_t y = 0.5 * (thickness - bbThickness) - sensThickness; + Double_t z = -0.5 * sensLength + guardRingWidth + fgkmm*0.425 - bbPos; + Int_t i; + for (i = 0; i < 160; i++) { + trBB[i] = new TGeoTranslation(x, y, z); + switch(i) { + case 31:case 63:case 95:case 127: + z += fgkmm * 0.625 + fgkmm * 0.2; + break; + default: + z += fgkmm * 0.425; + } // end switch + } // end for i + // the chips are translated along the length (Z) and thickness (X) + TGeoTranslation *trChip[5] = {0, 0, 0, 0, 0}; + x = -xSens; + y = 0.5 * (chipThickness - thickness); + z = 0.0; + for (i = 0; i < 5; i++) { + z = -0.5*length + guardRingWidth + + (Double_t)i*chipSpacing + ((Double_t)(i) + 0.5)*chipLength; + trChip[i] = new TGeoTranslation(x, y, z); + } // end ofr i + + // add nodes to container + vLadder->AddNode(vSensGuard, 1, trSens); + //vLadderAddNode(volBorder, 1, trSens); + for (i = 0; i < 160; i++) vLadder->AddNode(vBB,i+1,trBB[i]); + for (i = 0; i < 5; i++) vLadder->AddNode(vChip,i+3,trChip[i]); + // return the container + return vLadder; +} +*/ + +//______________________________________________________________________ +TGeoVolume* AliITSv11GeometrySPD::CreateClip(TArrayD &sizes,Bool_t isDummy, + TGeoManager *mgr) const +{ + // + // Creates the carbon fiber clips which are added to the central ladders. + // They have a complicated shape which is approximated by a TGeoXtru + // Implementation of a single clip over an half-stave. + // It has a complicated shape which is approximated to a section like this: + // + // 6 + // /\ . + // 7 //\\ 5 + // / 1\\___________________4 + // 0 \___________________ + // 2 3 + // with a finite thickness for all the shape + // Its local reference frame is such that point A corresponds to origin. + // + Double_t fullLength = fgkmm * 12.6; // = x4 - x0 + Double_t flatLength = fgkmm * 5.4; // = x4 - x3 + Double_t inclLongLength = fgkmm * 5.0; // = 5-6 + Double_t inclShortLength = fgkmm * 2.0; // = 6-7 + Double_t fullHeight = fgkmm * 2.8; // = y6 - y3 + Double_t thickness = fgkmm * 0.18; // thickness + Double_t totalLength = fgkmm * 52.0; // total length in Z + Double_t holeSize = fgkmm * 5.0; // dimension of cubic + // hole inserted for pt1000 + Double_t angle1 = 27.0; // supplementary of angle DCB + Double_t angle2; // angle DCB + Double_t angle3; // angle of GH with vertical + + angle2 = 0.5 * (180.0 - angle1); + angle3 = 90.0 - TMath::ACos(fullLength - flatLength - + inclLongLength*TMath::Cos(angle1)) * + TMath::RadToDeg(); + angle1 *= TMath::DegToRad(); + angle2 *= TMath::DegToRad(); + angle3 *= TMath::DegToRad(); + + Double_t x[8], y[8]; + + x[0] = 0.0; + x[1] = x[0] + fullLength - flatLength - inclLongLength*TMath::Cos(angle1); + x[2] = x[0] + fullLength - flatLength; + x[3] = x[0] + fullLength; + x[4] = x[3]; + x[5] = x[4] - flatLength + thickness * TMath::Cos(angle2); + x[6] = x[1]; + x[7] = x[0]; + + y[0] = 0.0; + y[1] = y[0] + inclShortLength * TMath::Cos(angle3); + y[2] = y[1] - inclLongLength * TMath::Sin(angle1); + y[3] = y[2]; + y[4] = y[3] + thickness; + y[5] = y[4]; + y[6] = y[1] + thickness; + y[7] = y[0] + thickness; + + sizes.Set(7); + sizes[0] = totalLength; + sizes[1] = fullHeight; + sizes[2] = y[2]; + sizes[3] = y[6]; + sizes[4] = x[0]; + sizes[5] = x[3]; + sizes[6] = x[2]; + + if(isDummy){// use this argument when on ewant just the + // positions without create any volume + return NULL; + } // end if isDummy + + TGeoXtru *shClip = new TGeoXtru(2); + shClip->SetName("ITSSPDshclip"); + shClip->DefinePolygon(8, x, y); + shClip->DefineSection(0, -0.5*totalLength, 0., 0., 1.0); + shClip->DefineSection(1, 0.5*totalLength, 0., 0., 1.0); + + TGeoBBox *shHole = new TGeoBBox("ITSSPDSHClipHole",0.5*holeSize, + 0.5*holeSize,0.5*holeSize); + TGeoTranslation *tr1 = new TGeoTranslation("ITSSPDTRClipHole1",x[2],0.0, + fgkmm*14.); + TGeoTranslation *tr2 = new TGeoTranslation("ITSSPDTRClipHole2",x[2],0.0, + 0.0); + TGeoTranslation *tr3 = new TGeoTranslation("ITSSPDTRClipHole3",x[2],0.0, + -fgkmm*14.); + tr1->RegisterYourself(); + tr2->RegisterYourself(); + tr3->RegisterYourself(); + + //TString strExpr("ITSSPDshclip-("); + TString strExpr(shClip->GetName()); + strExpr.Append("-("); + strExpr.Append(Form("%s:%s+", shHole->GetName(), tr1->GetName())); + strExpr.Append(Form("%s:%s+", shHole->GetName(), tr2->GetName())); + strExpr.Append(Form("%s:%s)", shHole->GetName(), tr3->GetName())); + TGeoCompositeShape *shClipHole = new TGeoCompositeShape( + "ITSSPDSHClipHoles",strExpr.Data()); + + TGeoMedium *mat = GetMedium("SPD C (M55J)$", mgr); + TGeoVolume *vClip = new TGeoVolume("ITSSPDclip", shClipHole, mat); + vClip->SetLineColor(kGray + 2); + return vClip; +}//______________________________________________________________________ +TGeoCompositeShape* AliITSv11GeometrySPD::CreateGroundingFoilShape + (Int_t itype,Double_t &length,Double_t &width, + Double_t thickness,TArrayD &sizes) +{ + // + // Creates the typical composite shape of the grounding foil: + // + // +---------------------------------------------------------+ + // | 5 6 9 | + // | +-----------+ +------------+ 10 + // | O | | | + // | 3 /-----+ 4 +------+ + // | 1 / 7 8 + // | /----------/ + // +-----/ 2 + + // 0 + // Z + 11 + // + // This shape is used 4 times: two layers of glue, one in kapton + // and one in aluminum, taking into account that the aliminum + // layer has small differences in the size of some parts. + // --- + // In order to overcome problems apparently due to a large number + // of points, the shape creation is done according the following + // steps: + // 1) a TGeoBBox is created with a size right enough to contain + // the whole shape (0-1-X-13) + // 2) holes are defined as other TGeoBBox which are subtracted + // from the main shape + // 3) a TGeoXtru is defined connecting the points (0-->11-->0) + // and is also subtracted from the main shape + // --- + // The argument ("type") is used to choose between all these + // possibilities: + // - type = 0 --> kapton layer + // - type = 1 --> aluminum layer + // - type = 2 --> glue layer between support and GF + // - type = 3 --> glue layer between GF and ladders + // Returns: a TGeoCompositeShape which will then be used to shape + // several volumes. Since TGeoXtru is used, the local reference + // frame of this object has X horizontal and Y vertical w.r to + // the shape drawn above, and Z axis going perpendicularly to the screen. + // This is not the correct reference for the half stave, for which + // the "long" dimension is Z and the "short" is X, while Y goes in + // the direction of thickness. This will imply some rotations when + // using the volumes created with this shape. + + // suffix to differentiate names + Char_t type[10]; + + // size of the virtual box containing exactly this volume + length = fgkmm * 243.18; + width = fgkmm * 15.95; + if (itype == 1) { + length -= fgkmm * 0.4; + width -= fgkmm * 0.4; + } // end if itype==1 + switch (itype) { + case 0: + sprintf(type,"Kap"); + break; + case 1: + sprintf(type,"Alu"); + break; + case 2: + sprintf(type,"Glue1"); + break; + case 3: + sprintf(type,"Glue2"); + break; + } + // we divide the shape in several slices along the horizontal + // direction (local X) here we define define the length of all + // sectors (from leftmost to rightmost) + Int_t i; + Double_t sliceLength[] = { 140.71, 2.48, 26.78, 4.00, + 10.00, 24.40, 10.00, 24.81 }; + for (i = 0; i < 8; i++) sliceLength[i] *= fgkmm; + if (itype == 1) { + sliceLength[0] -= fgkmm * 0.2; + sliceLength[4] -= fgkmm * 0.2; + sliceLength[5] += fgkmm * 0.4; + sliceLength[6] -= fgkmm * 0.4; + } // end if itype ==1 + + // as shown in the drawing, we have four different widths + // (along local Y) in this shape: + Double_t widthMax = fgkmm * 15.95; + Double_t widthMed1 = fgkmm * 15.00; + Double_t widthMed2 = fgkmm * 11.00; + Double_t widthMin = fgkmm * 4.40; + if (itype == 1) { + widthMax -= fgkmm * 0.4; + widthMed1 -= fgkmm * 0.4; + widthMed2 -= fgkmm * 0.4; + widthMin -= fgkmm * 0.4; + } // end if itype==1 + + // create the main shape + TGeoBBox *shGroundFull = 0; + shGroundFull = new TGeoBBox(Form("ITSSPDSHgFoil%sFull", type), + 0.5*length,0.5*width, 0.5*thickness); + + // create the polygonal shape to be subtracted to give the correct + // shape to the borders its vertices are defined in sugh a way that + // this polygonal will be placed in the correct place considered + // that the origin of the local reference frame is in the center + // of the main box: we fix the starting point at the lower-left + // edge of the shape (point 12), and add all points in order, + // following a clockwise rotation + + Double_t x[13], y[13]; + x[ 0] = -0.5 * length + sliceLength[0]; + y[ 0] = -0.5 * widthMax; + + x[ 1] = x[0] + sliceLength[1]; + y[ 1] = y[0] + (widthMax - widthMed1); + + x[ 2] = x[1] + sliceLength[2]; + y[ 2] = y[1]; + + x[ 3] = x[2] + sliceLength[3]; + y[ 3] = y[2] + (widthMed1 - widthMed2); + + x[ 4] = x[3] + sliceLength[4]; + y[ 4] = y[3]; + + x[ 5] = x[4]; + y[ 5] = y[4] + (widthMed2 - widthMin); + + x[ 6] = x[5] + sliceLength[5]; + y[ 6] = y[5]; + + x[ 7] = x[6]; + y[ 7] = y[4]; + + x[ 8] = x[7] + sliceLength[6]; + y[ 8] = y[7]; + + x[ 9] = x[8]; + y[ 9] = y[6]; + + x[10] = x[9] + sliceLength[7] + 0.5; + y[10] = y[9]; + + x[11] = x[10]; + y[11] = y[0] - 0.5; + + x[12] = x[0]; + y[12] = y[11]; + + // create the shape + TGeoXtru *shGroundXtru = new TGeoXtru(2); + shGroundXtru->SetName(Form("ITSSPDSHgFoil%sXtru", type)); + shGroundXtru->DefinePolygon(13, x, y); + shGroundXtru->DefineSection(0, -thickness, 0., 0., 1.0); + shGroundXtru->DefineSection(1, thickness, 0., 0., 1.0); + + // define a string which will express the algebric operations among volumes + // and add the subtraction of this shape from the main one + TString strComposite(Form("ITSSPDSHgFoil%sFull-(%s+", type, + shGroundXtru->GetName())); + + // define the holes according to size information coming from drawings: + Double_t holeLength = fgkmm * 10.00; + Double_t holeWidth = fgkmm * 7.50; + Double_t holeSepX0 = fgkmm * 7.05; // separation between center + // of first hole and left border + Double_t holeSepXC = fgkmm * 14.00; // separation between the centers + // of two consecutive holes + Double_t holeSepX1 = fgkmm * 15.42; // separation between centers of + // 5th and 6th hole + Double_t holeSepX2 = fgkmm * 22.00; // separation between centers of + // 10th and 11th hole + if (itype == 1) { + holeSepX0 -= fgkmm * 0.2; + holeLength += fgkmm * 0.4; + holeWidth += fgkmm * 0.4; + } // end if itype==1 + sizes.Set(7); + sizes[0] = holeLength; + sizes[1] = holeWidth; + sizes[2] = holeSepX0; + sizes[3] = holeSepXC; + sizes[4] = holeSepX1; + sizes[5] = holeSepX2; + sizes[6] = fgkmm * 4.40; + + // X position of hole center (will change for each hole) + Double_t holeX = -0.5*length; + // Y position of center of all holes (= 4.4 mm from upper border) + Double_t holeY = 0.5*(width - holeWidth) - widthMin; + + // create a shape for the holes (common) + TGeoBBox *shHole = 0; + shHole = new TGeoBBox(Form("ITSSPD%sGfoilHole", type),0.5*holeLength, + 0.5*holeWidth, thickness); + + // insert the holes in the XTRU shape: + // starting from the first value of X, they are simply + // shifted along this axis + char name[200]; + TGeoTranslation *transHole[11]; + for (i = 0; i < 11; i++) { + // set the position of the hole, depending on index + if (i == 0) { + holeX += holeSepX0; + }else if (i < 5) { + holeX += holeSepXC; + }else if (i == 5) { + holeX += holeSepX1; + }else if (i < 10) { + holeX += holeSepXC; + }else { + holeX += holeSepX2; + } // end if else if's + //cout << i << " --> X = " << holeX << endl; + sprintf(name,"ITSSPDTRgFoil%sHole%d", type, i); + transHole[i] = new TGeoTranslation(name, holeX, holeY, 0.0); + transHole[i]->RegisterYourself(); + strComposite.Append(Form("ITSSPD%sGfoilHole:%s", type, name)); + if (i < 10) strComposite.Append("+"); else strComposite.Append(")"); + } // end for i + + // create composite shape + TGeoCompositeShape *shGround = new TGeoCompositeShape( + Form("ITSSPDSHgFoil%s", type), strComposite.Data()); + + return shGround; +} +//______________________________________________________________________ +TGeoVolume* AliITSv11GeometrySPD::CreateGroundingFoil(Bool_t isRight, + TArrayD &sizes, TGeoManager *mgr) +{ + // + // Create a volume containing all parts of the grounding foil a + // for a half-stave. + // It consists of 4 layers with the same shape but different thickness: + // 1) a layer of glue + // 2) the aluminum layer + // 3) the kapton layer + // 4) another layer of glue + // --- + // Arguments: + // 1: a boolean value to know if it is the grounding foir for + // the right or left side + // 2: a TArrayD which will contain the dimension of the container box: + // - size[0] = length along Z (the beam line direction) + // - size[1] = the 'width' of the stave, which defines, together + // with Z, the plane of the carbon fiber support + // - size[2] = 'thickness' (= the direction along which all + // stave components are superimposed) + // 3: the TGeoManager + // --- + // The return value is a TGeoBBox volume containing all grounding + // foil components. + // to avoid strange behaviour of the geometry manager, + // create a suffix to be used in the names of all shapes + // + char suf[5]; + if (isRight) strcpy(suf, "R"); else strcpy(suf, "L"); + // this volume will be created in order to ease its placement in + // the half-stave; then, it is added here the small distance of + // the "central" edge of each volume from the Z=0 plane in the stave + // reference (which coincides with ALICE one) + Double_t dist = fgkmm * 0.71; + + // define materials + TGeoMedium *medKap = GetMedium("SPD KAPTON(POLYCH2)$", mgr); + TGeoMedium *medAlu = GetMedium("AL$", mgr); + TGeoMedium *medGlue = GetMedium("EPOXY$", mgr); //??? GLUE_GF_SUPPORT + + // compute the volume shapes (thicknesses change from one to the other) + Double_t kpLength, kpWidth, alLength, alWidth; + TArrayD kpSize, alSize, glSize; + Double_t kpThickness = fgkmm * 0.04; + Double_t alThickness = fgkmm * 0.01; +//cout << "AL THICKNESS" << alThickness << endl; + //Double_t g0Thickness = fgkmm * 0.1175 - fgkGapHalfStave; + //Double_t g1Thickness = fgkmm * 0.1175 - fgkGapLadder; + Double_t g0Thickness = fgkmm * 0.1275 - fgkGapHalfStave; + Double_t g1Thickness = fgkmm * 0.1275 - fgkGapLadder; + TGeoCompositeShape *kpShape = CreateGroundingFoilShape(0,kpLength,kpWidth, + kpThickness, kpSize); + TGeoCompositeShape *alShape = CreateGroundingFoilShape(1,alLength,alWidth, + alThickness, alSize); + TGeoCompositeShape *g0Shape = CreateGroundingFoilShape(2,kpLength,kpWidth, + g0Thickness, glSize); + TGeoCompositeShape *g1Shape = CreateGroundingFoilShape(3,kpLength,kpWidth, + g1Thickness, glSize); + // create the component volumes and register their sizes in the + // passed arrays for readability reasons, some reference variables + // explicit the meaning of the array slots + TGeoVolume *kpVol = new TGeoVolume(Form("ITSSPDgFoilKap%s",suf), + kpShape, medKap); + TGeoVolume *alVol = new TGeoVolume(Form("ITSSPDgFoilAlu%s",suf), + alShape, medAlu); + TGeoVolume *g0Vol = new TGeoVolume(Form("ITSSPDgFoilGlue%s",suf), + g0Shape, medGlue); + TGeoVolume *g1Vol = new TGeoVolume(Form("ITSSPDgFoilGlue%s",suf), + g1Shape, medGlue); + // set colors for the volumes + kpVol->SetLineColor(kRed); + alVol->SetLineColor(kGray); + g0Vol->SetLineColor(kYellow); + g1Vol->SetLineColor(kYellow); + // create references for the final size object + if (sizes.GetSize() != 3) sizes.Set(3); + Double_t &fullThickness = sizes[0]; + Double_t &fullLength = sizes[1]; + Double_t &fullWidth = sizes[2]; + // kapton leads the larger dimensions of the foil + // (including the cited small distance from Z=0 stave reference plane) + // the thickness is the sum of the ones of all components + fullLength = kpLength + dist; + fullWidth = kpWidth; + fullThickness = kpThickness + alThickness + g0Thickness + g1Thickness; + // create the container + TGeoMedium *air = GetMedium("AIR$", mgr); + TGeoVolume *container = mgr->MakeBox(Form("ITSSPDgFOIL-%s",suf), + air, 0.5*fullThickness, 0.5*fullWidth, 0.5*fullLength); + // create the common correction rotation (which depends of what side + // we are building) + TGeoRotation *rotCorr = new TGeoRotation(*gGeoIdentity); + if (isRight) rotCorr->RotateY(90.0); + else rotCorr->RotateY(-90.0); + // compute the translations, which are in the length and + // thickness directions + Double_t x, y, z, shift = 0.0; + if (isRight) shift = dist; + // glue (bottom) + x = -0.5*(fullThickness - g0Thickness); + z = 0.5*(fullLength - kpLength) - shift; + TGeoCombiTrans *glTrans0 = new TGeoCombiTrans(x, 0.0, z, rotCorr); + // kapton + x += 0.5*(g0Thickness + kpThickness); + TGeoCombiTrans *kpTrans = new TGeoCombiTrans(x, 0.0, z, rotCorr); + // aluminum + x += 0.5*(kpThickness + alThickness); + z = 0.5*(fullLength - alLength) - shift - 0.5*(kpLength - alLength); + TGeoCombiTrans *alTrans = new TGeoCombiTrans(x, 0.0, z, rotCorr); + // glue (top) + x += 0.5*(alThickness + g1Thickness); + z = 0.5*(fullLength - kpLength) - shift; + TGeoCombiTrans *glTrans1 = new TGeoCombiTrans(x, 0.0, z, rotCorr); + + //cout << fgkGapHalfStave << endl; + //cout << g0Thickness << endl; + //cout << kpThickness << endl; + //cout << alThickness << endl; + //cout << g1Thickness << endl; + + // add to container + container->SetLineColor(kMagenta-10); + container->AddNode(kpVol, 1, kpTrans); + container->AddNode(alVol, 1, alTrans); + container->AddNode(g0Vol, 1, glTrans0); + container->AddNode(g1Vol, 2, glTrans1); + // to add the grease we remember the sizes of the holes, stored as + // additional parameters in the kapton layer size: + // - sizes[3] = hole length + // - sizes[4] = hole width + // - sizes[5] = position of first hole center + // - sizes[6] = standard separation between holes + // - sizes[7] = separation between 5th and 6th hole + // - sizes[8] = separation between 10th and 11th hole + // - sizes[9] = separation between the upper hole border and + // the foil border + Double_t holeLength = kpSize[0]; + Double_t holeWidth = kpSize[1]; + Double_t holeFirstZ = kpSize[2]; + Double_t holeSepZ = kpSize[3]; + Double_t holeSep5th6th = kpSize[4]; + Double_t holeSep10th11th = kpSize[5]; + Double_t holeSepY = kpSize[6]; + // volume (common) + // Grease has not been defined to date. Need much more information + // no this material! + TGeoMedium *grease = GetMedium("SPD KAPTON(POLYCH2)$", mgr); // ??? GREASE + TGeoVolume *hVol = mgr->MakeBox("ITSSPDGrease", grease, + 0.5*fullThickness, 0.5*holeWidth, 0.5*holeLength); + hVol->SetLineColor(kBlue); + // displacement of volumes in the container + Int_t idx = 1; // copy numbers start from 1. + x = 0.0; + y = 0.5*(fullWidth - holeWidth) - holeSepY; + if (isRight) z = holeFirstZ - 0.5*fullLength + dist; + else z = 0.5*fullLength - holeFirstZ - dist; + for (Int_t i = 0; i < 11; i++) { + TGeoTranslation *t = 0; + t = new TGeoTranslation(x, y, -z); + container->AddNode(hVol, idx++, t); + if (i < 4) shift = holeSepZ; + else if (i == 4) shift = holeSep5th6th; + else if (i < 9) shift = holeSepZ; + else shift = holeSep10th11th; + if (isRight) z += shift; + else z -= shift; + } // end for i + return container; +} +//___________________________________________________________________ +TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateMCM(Bool_t isRight, + TArrayD &sizes, TGeoManager *mgr) const +{ + // + // Create a TGeoAssembly containing all the components of the MCM. + // The TGeoVolume container is rejected due to the possibility of overlaps + // when placing this object on the carbon fiber sector. + // The assembly contains: + // - the thin part of the MCM (integrated circuit) + // - the MCM chips (specifications from EDMS) + // - the cap which covers the zone where chips are bound to MCM + // --- + // The local reference frame of this assembly is defined in such a way + // that all volumes are contained in a virtual box whose center + // is placed exactly in the middle of the occupied space w.r to all + // directions. This will ease the positioning of this object in the + // half-stave. The sizes of this virtual box are stored in + // the array passed by reference. + // --- + // Arguments: + // - a boolean flag to know if this is the "left" or "right" MCM, when + // looking at the stave from above (i.e. the direction from which + // one sees bus over ladders over grounding foil) and keeping the + // continuous border in the upper part, one sees the thicker part + // on the left or right. + // - an array passed by reference which will contain the size of + // the virtual container. + // - a pointer to the used TGeoManager. + // + + // to distinguish the "left" and "right" objects, a suffix is created + char suf[5]; + if (isRight) strcpy(suf, "R"); else strcpy(suf, "L"); + + // ** MEDIA ** + TGeoMedium *medBase = GetMedium("SPD KAPTON(POLYCH2)$",mgr);// ??? MCM BASE + TGeoMedium *medChip = GetMedium("SPD SI CHIP$",mgr); + TGeoMedium *medCap = GetMedium("AL$",mgr); + + // The shape of the MCM is divided into 3 sectors with different + // widths (Y) and lengths (X), like in this sketch: + // + // 0 1 2 + // +---------------------+-----------------------------------+ + // | 4 sect 2 | + // | 6 sect 1 /-------------------+ + // | sect 0 /--------------/ 3 + // +--------------------/ 5 + // 8 7 + // + // the inclination of all oblique borders (6-7, 4-5) is always 45 degrees. + // From drawings we can parametrize the dimensions of all these sectors, + // then the shape of this part of the MCM is implemented as a + // TGeoXtru centerd in the virtual XY space. + // The first step is definig the relevant sizes of this shape: + Int_t i, j; + Double_t mcmThickness = fgkmm * 0.35; + Double_t sizeXtot = fgkmm * 105.6; // total distance (0-2) + // resp. 7-8, 5-6 and 3-4 + Double_t sizeXsector[3] = {fgkmm * 28.4, fgkmm * 41.4, fgkmm * 28.8}; + // resp. 0-8, 1-6 and 2-3 + Double_t sizeYsector[3] = {fgkmm * 15.0, fgkmm * 11.0, fgkmm * 8.0}; + Double_t sizeSep01 = fgkmm * 4.0; // x(6)-x(7) + Double_t sizeSep12 = fgkmm * 3.0; // x(4)-x(5) + + // define sizes of chips (last is the thickest) + Double_t chipLength[5] = { 4.00, 6.15, 3.85, 5.60, 18.00 }; + Double_t chipWidth[5] = { 3.00, 4.10, 3.85, 5.60, 5.45 }; + Double_t chipThickness[5] = { 0.60, 0.30, 0.30, 1.00, 1.20 }; + TString name[5]; + name[0] = "ITSSPDanalog"; + name[1] = "ITSSPDpilot"; + name[2] = "ITSSPDgol"; + name[3] = "ITSSPDrx40"; + name[4] = "ITSSPDoptical"; + Color_t color[5] = { kCyan, kGreen, kYellow, kBlue, kOrange }; + + // define the sizes of the cover + Double_t capThickness = fgkmm * 0.3; + Double_t capHeight = fgkmm * 1.7; + + // compute the total size of the virtual container box + sizes.Set(3); + Double_t &thickness = sizes[0]; + Double_t &length = sizes[1]; + Double_t &width = sizes[2]; + length = sizeXtot; + width = sizeYsector[0]; + thickness = mcmThickness + capHeight; + + // define all the relevant vertices of the polygon + // which defines the transverse shape of the MCM. + // These values are used to several purposes, and + // for each one, some points must be excluded + Double_t xRef[9], yRef[9]; + xRef[0] = -0.5*sizeXtot; + yRef[0] = 0.5*sizeYsector[0]; + xRef[1] = xRef[0] + sizeXsector[0] + sizeSep01; + yRef[1] = yRef[0]; + xRef[2] = -xRef[0]; + yRef[2] = yRef[0]; + xRef[3] = xRef[2]; + yRef[3] = yRef[2] - sizeYsector[2]; + xRef[4] = xRef[3] - sizeXsector[2]; + yRef[4] = yRef[3]; + xRef[5] = xRef[4] - sizeSep12; + yRef[5] = yRef[4] - sizeSep12; + xRef[6] = xRef[5] - sizeXsector[1]; + yRef[6] = yRef[5]; + xRef[7] = xRef[6] - sizeSep01; + yRef[7] = yRef[6] - sizeSep01; + xRef[8] = xRef[0]; + yRef[8] = -yRef[0]; + + // the above points are defined for the "right" MCM (if ve view the + // stave from above) in order to change to the "left" one, we must + // change the sign to all X values: + if (isRight) for (i = 0; i < 9; i++) xRef[i] = -xRef[i]; + + // the shape of the MCM and glue layer are done excluding point 1, + // which is not necessary and cause the geometry builder to get confused + j = 0; + Double_t xBase[8], yBase[8]; + for (i = 0; i < 9; i++) { + if (i == 1) continue; + xBase[j] = xRef[i]; + yBase[j] = yRef[i]; + j++; + } // end for i + + // the MCM cover is superimposed over the zones 1 and 2 only + Double_t xCap[6], yCap[6]; + j = 0; + for (i = 1; i <= 6; i++) { + xCap[j] = xRef[i]; + yCap[j] = yRef[i]; + j++; + } // end for i + + // define positions of chips, + // which must be added to the bottom-left corner of MCM + // and divided by 1E4; + Double_t chipX[5], chipY[5]; + if (isRight) { + chipX[0] = 666320.; + chipX[1] = 508320.; + chipX[2] = 381320.; + chipX[3] = 295320.; + chipX[4] = 150320.; + chipY[0] = 23750.; + chipY[1] = 27750.; + chipY[2] = 20750.; + chipY[3] = 42750.; + chipY[4] = 39750.; + } else { + chipX[0] = 389730.; + chipX[1] = 548630.; + chipX[2] = 674930.; + chipX[3] = 761430.; + chipX[4] = 905430.; + chipY[0] = 96250.; + chipY[1] = 91950.; + chipY[2] = 99250.; + chipY[3] = 107250.; + chipY[4] = 109750.; + } // end if isRight + for (i = 0; i < 5; i++) { + chipX[i] *= 0.00001; + chipY[i] *= 0.00001; + if (isRight) { + chipX[i] += xRef[3]; + chipY[i] += yRef[3]; + } else { + chipX[i] += xRef[8]; + chipY[i] += yRef[8]; + } // end for isRight + chipLength[i] *= fgkmm; + chipWidth[i] *= fgkmm; + chipThickness[i] *= fgkmm; + } // end for i + + // create shapes for MCM + Double_t z1, z2; + TGeoXtru *shBase = new TGeoXtru(2); + z1 = -0.5*thickness; + z2 = z1 + mcmThickness; + shBase->DefinePolygon(8, xBase, yBase); + shBase->DefineSection(0, z1, 0., 0., 1.0); + shBase->DefineSection(1, z2, 0., 0., 1.0); + + // create volumes of MCM + TGeoVolume *volBase = new TGeoVolume("ITSSPDbase", shBase, medBase); + volBase->SetLineColor(kRed); + + // to create the border of the MCM cover, it is required the + // subtraction of two shapes the outer is created using the + // reference points defined here + TGeoXtru *shCapOut = new TGeoXtru(2); + shCapOut->SetName(Form("ITSSPDshCAPOUT%s", suf)); + z1 = z2; + z2 = z1 + capHeight - capThickness; + shCapOut->DefinePolygon(6, xCap, yCap); + shCapOut->DefineSection(0, z1, 0., 0., 1.0); + shCapOut->DefineSection(1, z2, 0., 0., 1.0); + // the inner is built similarly but subtracting the thickness + Double_t angle, cs; + Double_t xin[6], yin[6]; + if (!isRight) { + angle = 45.0; + cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) ); + xin[0] = xCap[0] + capThickness; + yin[0] = yCap[0] - capThickness; + xin[1] = xCap[1] - capThickness; + yin[1] = yin[0]; + xin[2] = xin[1]; + yin[2] = yCap[2] + capThickness; + xin[3] = xCap[3] - capThickness*cs; + yin[3] = yin[2]; + xin[4] = xin[3] - sizeSep12; + yin[4] = yCap[4] + capThickness; + xin[5] = xin[0]; + yin[5] = yin[4]; + } else { + angle = 45.0; + cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) ); + xin[0] = xCap[0] - capThickness; + yin[0] = yCap[0] - capThickness; + xin[1] = xCap[1] + capThickness; + yin[1] = yin[0]; + xin[2] = xin[1]; + yin[2] = yCap[2] + capThickness; + xin[3] = xCap[3] - capThickness*cs; + yin[3] = yin[2]; + xin[4] = xin[3] + sizeSep12; + yin[4] = yCap[4] + capThickness; + xin[5] = xin[0]; + yin[5] = yin[4]; + } // end if !isRight + TGeoXtru *shCapIn = new TGeoXtru(2); + shCapIn->SetName(Form("ITSSPDshCAPIN%s", suf)); + shCapIn->DefinePolygon(6, xin, yin); + shCapIn->DefineSection(0, z1 - 0.01, 0., 0., 1.0); + shCapIn->DefineSection(1, z2 + 0.01, 0., 0., 1.0); + // compose shapes + TGeoCompositeShape *shCapBorder = new TGeoCompositeShape( + Form("ITSSPDshBORDER%s", suf), + Form("%s-%s", shCapOut->GetName(), + shCapIn->GetName())); + // create volume + TGeoVolume *volCapBorder = new TGeoVolume("ITSSPDcapBoarder", + shCapBorder,medCap); + volCapBorder->SetLineColor(kGreen); + // finally, we create the top of the cover, which has the same + // shape of outer border and a thickness equal of the one othe + // cover border one + TGeoXtru *shCapTop = new TGeoXtru(2); + z1 = z2; + z2 = z1 + capThickness; + shCapTop->DefinePolygon(6, xCap, yCap); + shCapTop->DefineSection(0, z1, 0., 0., 1.0); + shCapTop->DefineSection(1, z2, 0., 0., 1.0); + TGeoVolume *volCapTop = new TGeoVolume("ITSSPDcapTop", shCapTop, medCap); + volCapTop->SetLineColor(kBlue); + + // create container assembly with right suffix + TGeoVolumeAssembly *mcmAssembly = new TGeoVolumeAssembly( + Form("ITSSPDmcm%s", suf)); + + // add mcm layer + mcmAssembly->AddNode(volBase, 1, gGeoIdentity); + // add chips + for (i = 0; i < 5; i++) { + TGeoVolume *box = gGeoManager->MakeBox(name[i],medChip, + 0.5*chipLength[i], 0.5*chipWidth[i], 0.5*chipThickness[i]); + TGeoTranslation *tr = new TGeoTranslation(chipX[i],chipY[i], + 0.5*(-thickness + chipThickness[i]) + mcmThickness); + box->SetLineColor(color[i]); + mcmAssembly->AddNode(box, 1, tr); + } // end for i + // add cap border + mcmAssembly->AddNode(volCapBorder, 1, gGeoIdentity); + // add cap top + mcmAssembly->AddNode(volCapTop, 1, gGeoIdentity); + + return mcmAssembly; +} + +/* +//__________________________________________________________________________________________ +TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBus +(Bool_t isRight, TArrayD &sizes, TGeoManager *mgr) const +{ + // + // The pixel bus is implemented as a TGeoBBox with some objects on it, + // which could affect the particle energy loss. + // --- + // In order to avoid confusion, the bus is directly displaced + // according to the axis orientations which are used in the final stave: + // X --> thickness direction + // Y --> width direction + // Z --> length direction + // + + + // ** MEDIA ** + + //PIXEL BUS + TGeoMedium *medBus = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr); + TGeoMedium *medPt1000 = GetMedium("CERAMICS$",mgr); // ??? PT1000 + // Capacity + TGeoMedium *medCap = GetMedium("SDD X7R capacitors$",mgr); + // ??? Resistance + // TGeoMedium *medRes = GetMedium("SDD X7R capacitors$",mgr); + TGeoMedium *medRes = GetMedium("ALUMINUM$",mgr); + TGeoMedium *medExt = GetMedium("SDDKAPTON (POLYCH2)$", mgr); + // ** SIZES & POSITIONS ** + Double_t busLength = 170.501 * fgkmm; // length of plane part + Double_t busWidth = 13.800 * fgkmm; // width + Double_t busThickness = 0.280 * fgkmm; // thickness + Double_t pt1000Length = fgkmm * 1.50; + Double_t pt1000Width = fgkmm * 3.10; + Double_t pt1000Thickness = fgkmm * 0.60; + Double_t pt1000Y, pt1000Z[10];// position of the pt1000's along the bus + Double_t capLength = fgkmm * 2.55; + Double_t capWidth = fgkmm * 1.50; + Double_t capThickness = fgkmm * 1.35; + Double_t capY[2], capZ[2]; + + Double_t resLength = fgkmm * 2.20; + Double_t resWidth = fgkmm * 0.80; + Double_t resThickness = fgkmm * 0.35; + Double_t resY[2], resZ[2]; + + Double_t extThickness = fgkmm * 0.25; + Double_t ext1Length = fgkmm * (26.7 - 10.0); + Double_t ext2Length = fgkmm * (285.0 - ext1Length + extThickness); + Double_t extWidth = fgkmm * 11.0; + Double_t extHeight = fgkmm * 2.5; + + + // position of pt1000, resistors and capacitors depends on the + // bus if it's left or right one + if (!isRight) { + pt1000Y = 64400.; + pt1000Z[0] = 66160.; + pt1000Z[1] = 206200.; + pt1000Z[2] = 346200.; + pt1000Z[3] = 486200.; + pt1000Z[4] = 626200.; + pt1000Z[5] = 776200.; + pt1000Z[6] = 916200.; + pt1000Z[7] = 1056200.; + pt1000Z[8] = 1196200.; + pt1000Z[9] = 1336200.; + resZ[0] = 1397500.; + resY[0] = 26900.; + resZ[1] = 682500.; + resY[1] = 27800.; + capZ[0] = 1395700.; + capY[0] = 45700.; + capZ[1] = 692600.; + capY[1] = 45400.; + } else { + pt1000Y = 66100.; + pt1000Z[0] = 319700.; + pt1000Z[1] = 459700.; + pt1000Z[2] = 599700.; + pt1000Z[3] = 739700.; + pt1000Z[4] = 879700.; + pt1000Z[5] = 1029700.; + pt1000Z[6] = 1169700.; + pt1000Z[7] = 1309700.; + pt1000Z[8] = 1449700.; + pt1000Z[9] = 1589700.; + capY[0] = 44500.; + capZ[0] = 266700.; + capY[1] = 44300.; + capZ[1] = 974700.; + resZ[0] = 266500.; + resY[0] = 29200.; + resZ[1] = 974600.; + resY[1] = 29900.; + } // end if isRight + Int_t i; + pt1000Y *= 1E-4 * fgkmm; + for (i = 0; i < 10; i++) { + pt1000Z[i] *= 1E-4 * fgkmm; + if (i < 2) { + capZ[i] *= 1E-4 * fgkmm; + capY[i] *= 1E-4 * fgkmm; + resZ[i] *= 1E-4 * fgkmm; + resY[i] *= 1E-4 * fgkmm; + } // end if iM2 + } // end for i + + Double_t &fullLength = sizes[1]; + Double_t &fullWidth = sizes[2]; + Double_t &fullThickness = sizes[0]; + fullLength = busLength; + fullWidth = busWidth; + // add the thickness of the thickest component on bus (capacity) + fullThickness = busThickness + capThickness; + // ** VOLUMES ** + TGeoVolumeAssembly *container = new TGeoVolumeAssembly("PixelBus"); + TGeoVolume *bus = mgr->MakeBox("Bus", medBus, 0.5*busThickness, 0.5*busWidth, 0.5*busLength); + TGeoVolume *pt1000 = mgr->MakeBox("PT1000", medPt1000, 0.5*pt1000Thickness, 0.5*pt1000Width, 0.5*pt1000Length); + TGeoVolume *res = mgr->MakeBox("Resistor", medRes, 0.5*resThickness, 0.5*resWidth, 0.5*resLength); + TGeoVolume *cap = mgr->MakeBox("Capacitor", medCap, 0.5*capThickness, 0.5*capWidth, 0.5*capLength); + TGeoVolume *ext1 = mgr->MakeBox("Extender1", medExt, 0.5*extThickness, 0.5*extWidth, 0.5*ext1Length); + TGeoVolume *ext2 = mgr->MakeBox("Extender2", medExt, 0.5*extHeight - extThickness, 0.5*extWidth, 0.5*extThickness); + TGeoVolume *ext3 = mgr->MakeBox("Extender3", medExt, extThickness, 0.5*extWidth, 0.5*ext2Length); + bus->SetLineColor(kYellow + 2); + pt1000->SetLineColor(kGreen + 3); + res->SetLineColor(kRed + 1); + cap->SetLineColor(kBlue - 7); + ext1->SetLineColor(kGray); + ext2->SetLineColor(kGray); + ext3->SetLineColor(kGray); + + // ** MOVEMENTS AND POSITIONEMENT ** + // bus + TGeoTranslation *trBus = new TGeoTranslation(0.5 * (busThickness - + fullThickness), 0.0, 0.0); + container->AddNode(bus, 0, trBus); + Double_t zRef, yRef, x, y, z; + if (isRight) { + zRef = -0.5*fullLength; + yRef = -0.5*fullWidth; + } else { + zRef = -0.5*fullLength; + yRef = -0.5*fullWidth; + } // end if isRight + // pt1000 + x = 0.5*(pt1000Thickness - fullThickness) + busThickness; + for (i = 0; i < 10; i++) { + y = yRef + pt1000Y; + z = zRef + pt1000Z[i]; + TGeoTranslation *tr = new TGeoTranslation(x, y, z); + container->AddNode(pt1000, i, tr); + } // end for i + // capacitors + x = 0.5*(capThickness - fullThickness) + busThickness; + for (i = 0; i < 2; i++) { + y = yRef + capY[i]; + z = zRef + capZ[i]; + TGeoTranslation *tr = new TGeoTranslation(x, y, z); + container->AddNode(cap, i, tr); + } // end for i + // resistors + x = 0.5*(resThickness - fullThickness) + busThickness; + for (i = 0; i < 2; i++) { + y = yRef + resY[i]; + z = zRef + resZ[i]; + TGeoTranslation *tr = new TGeoTranslation(x, y, z); + container->AddNode(res, i, tr); + } // end for i + // extender + if (isRight) { + y = 0.5 * (-fullWidth + extWidth); + z = 0.5 * (-fullLength + fgkmm * 10.0); + } + else { + y = 0.5 * (fullWidth - extWidth); + z = 0.5 * ( fullLength - fgkmm * 10.0); + } + x = 0.5 * (extThickness - fullThickness) + busThickness; + //y = 0.5 * (fullWidth - extWidth); + TGeoTranslation *trExt1 = new TGeoTranslation(x, y, z); + if (isRight) { + z -= 0.5 * (ext1Length - extThickness); + } + else { + z += 0.5 * (ext1Length - extThickness); + } + x += 0.5*(extHeight - extThickness); + TGeoTranslation *trExt2 = new TGeoTranslation(x, y, z); + if (isRight) { + z -= 0.5 * (ext2Length - extThickness); + } + else { + z += 0.5 * (ext2Length - extThickness); + } + x += 0.5*(extHeight - extThickness) + extThickness; + TGeoTranslation *trExt3 = new TGeoTranslation(x, y, z); + container->AddNode(ext1, 0, trExt1); + container->AddNode(ext2, 0, trExt2); + container->AddNode(ext3, 0, trExt3); + + + sizes[3] = yRef + pt1000Y; + sizes[4] = zRef + pt1000Z[2]; + sizes[5] = zRef + pt1000Z[7]; + + return container; +} +*/ + +//______________________________________________________________________ +TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBus +(Bool_t isRight, Int_t ilayer, TArrayD &sizes, TGeoManager *mgr) const +{ + // + // The pixel bus is implemented as a TGeoBBox with some objects on it, + // which could affect the particle energy loss. + // --- + // In order to avoid confusion, the bus is directly displaced + // according to the axis orientations which are used in the final stave: + // X --> thickness direction + // Y --> width direction + // Z --> length direction + // + + // ** CRITICAL CHECK ****************************************************** + // layer number can be ONLY 1 or 2 + if (ilayer != 1 && ilayer != 2) AliFatal("Layer number MUST be 1 or 2"); + + // ** MEDIA ** + //PIXEL BUS + TGeoMedium *medBus = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr); + TGeoMedium *medPt1000 = GetMedium("CERAMICS$",mgr); // ??? PT1000 + // Capacity + TGeoMedium *medCap = GetMedium("SDD X7R capacitors$",mgr); + // ??? Resistance + //TGeoMedium *medRes = GetMedium("SDD X7R capacitors$",mgr); + TGeoMedium *medRes = GetMedium("ALUMINUM$",mgr); + TGeoMedium *medExt = GetMedium("SDDKAPTON (POLYCH2)$", mgr); + // ** SIZES & POSITIONS ** + Double_t busLength = 170.501 * fgkmm; // length of plane part + Double_t busWidth = 13.800 * fgkmm; // width + Double_t busThickness = 0.280 * fgkmm; // thickness + Double_t pt1000Length = fgkmm * 1.50; + Double_t pt1000Width = fgkmm * 3.10; + Double_t pt1000Thickness = fgkmm * 0.60; + Double_t pt1000Y, pt1000Z[10];// position of the pt1000's along the bus + Double_t capLength = fgkmm * 2.55; + Double_t capWidth = fgkmm * 1.50; + Double_t capThickness = fgkmm * 1.35; + Double_t capY[2], capZ[2]; + + Double_t resLength = fgkmm * 2.20; + Double_t resWidth = fgkmm * 0.80; + Double_t resThickness = fgkmm * 0.35; + Double_t resY[2], resZ[2]; + + Double_t extThickness = fgkmm * 0.25; + Double_t ext1Length = fgkmm * (26.7 - 10.0); + Double_t ext2Length = fgkmm * (284.0 - ext1Length + extThickness); + Double_t extWidth = fgkmm * 11.0; + Double_t extHeight = fgkmm * 2.5; + + // position of pt1000, resistors and capacitors depends on the + // bus if it's left or right one + if (!isRight) { + pt1000Y = 64400.; + pt1000Z[0] = 66160.; + pt1000Z[1] = 206200.; + pt1000Z[2] = 346200.; + pt1000Z[3] = 486200.; + pt1000Z[4] = 626200.; + pt1000Z[5] = 776200.; + pt1000Z[6] = 916200.; + pt1000Z[7] = 1056200.; + pt1000Z[8] = 1196200.; + pt1000Z[9] = 1336200.; + resZ[0] = 1397500.; + resY[0] = 26900.; + resZ[1] = 682500.; + resY[1] = 27800.; + capZ[0] = 1395700.; + capY[0] = 45700.; + capZ[1] = 692600.; + capY[1] = 45400.; + } else { + pt1000Y = 66100.; + pt1000Z[0] = 319700.; + pt1000Z[1] = 459700.; + pt1000Z[2] = 599700.; + pt1000Z[3] = 739700.; + pt1000Z[4] = 879700.; + pt1000Z[5] = 1029700.; + pt1000Z[6] = 1169700.; + pt1000Z[7] = 1309700.; + pt1000Z[8] = 1449700.; + pt1000Z[9] = 1589700.; + capY[0] = 44500.; + capZ[0] = 266700.; + capY[1] = 44300.; + capZ[1] = 974700.; + resZ[0] = 266500.; + resY[0] = 29200.; + resZ[1] = 974600.; + resY[1] = 29900.; + } // end if isRight + Int_t i; + pt1000Y *= 1E-4 * fgkmm; + for (i = 0; i < 10; i++) { + pt1000Z[i] *= 1E-4 * fgkmm; + if (i < 2) { + capZ[i] *= 1E-4 * fgkmm; + capY[i] *= 1E-4 * fgkmm; + resZ[i] *= 1E-4 * fgkmm; + resY[i] *= 1E-4 * fgkmm; + } // end if iM2 + } // end for i + + Double_t &fullLength = sizes[1]; + Double_t &fullWidth = sizes[2]; + Double_t &fullThickness = sizes[0]; + fullLength = busLength; + fullWidth = busWidth; + // add the thickness of the thickest component on bus (capacity) + fullThickness = busThickness + capThickness; + + // ** VOLUMES ** + TGeoVolumeAssembly *container = new TGeoVolumeAssembly("ITSSPDpixelBus"); + TGeoVolume *bus = mgr->MakeBox("ITSSPDbus", medBus, 0.5*busThickness, + 0.5*busWidth, 0.5*busLength); + TGeoVolume *pt1000 = mgr->MakeBox("ITSSPDpt1000",medPt1000, + 0.5*pt1000Thickness,0.5*pt1000Width, 0.5*pt1000Length); + TGeoVolume *res = mgr->MakeBox("ITSSPDresistor", medRes, 0.5*resThickness, + 0.5*resWidth, 0.5*resLength); + TGeoVolume *cap = mgr->MakeBox("ITSSPDcapacitor", medCap, 0.5*capThickness, + 0.5*capWidth, 0.5*capLength); + + TGeoVolume *ext1 = mgr->MakeBox("Extender1", medExt, 0.5*extThickness, 0.5*extWidth, 0.5*ext1Length); + TGeoVolume *ext2 = mgr->MakeBox("Extender2", medExt, 0.5*extHeight - 2.*extThickness, 0.5*extWidth, 0.5*extThickness); + TGeoVolume *ext3 = mgr->MakeBox("Extender3", medExt, 0.5*extThickness, 0.5*(extWidth-0.8*fgkmm), 0.5*ext2Length + extThickness); // Hardcode fix of a small overlap + bus->SetLineColor(kYellow + 2); + pt1000->SetLineColor(kGreen + 3); + res->SetLineColor(kRed + 1); + cap->SetLineColor(kBlue - 7); + ext1->SetLineColor(kGray); + ext2->SetLineColor(kGray); + ext3->SetLineColor(kGray); + + // ** MOVEMENTS AND POSITIONEMENT ** + // bus + TGeoTranslation *trBus = new TGeoTranslation(0.5 * (busThickness - + fullThickness), 0.0, 0.0); + container->AddNode(bus, 1, trBus); + Double_t zRef, yRef, x, y, z; + if (isRight) { + zRef = -0.5*fullLength; + yRef = -0.5*fullWidth; + } else { + zRef = -0.5*fullLength; + yRef = -0.5*fullWidth; + } // end if isRight + // pt1000 + x = 0.5*(pt1000Thickness - fullThickness) + busThickness; + for (i = 0; i < 10; i++) { + y = yRef + pt1000Y; + z = zRef + pt1000Z[i]; + TGeoTranslation *tr = new TGeoTranslation(x, y, z); + container->AddNode(pt1000, i+1, tr); + } // end for i + // capacitors + x = 0.5*(capThickness - fullThickness) + busThickness; + for (i = 0; i < 2; i++) { + y = yRef + capY[i]; + z = zRef + capZ[i]; + TGeoTranslation *tr = new TGeoTranslation(x, y, z); + container->AddNode(cap, i+1, tr); + } // end for i + // resistors + x = 0.5*(resThickness - fullThickness) + busThickness; + for (i = 0; i < 2; i++) { + y = yRef + resY[i]; + z = zRef + resZ[i]; + TGeoTranslation *tr = new TGeoTranslation(x, y, z); + container->AddNode(res, i+1, tr); + } // end for i + + // extender + if (ilayer == 2) { + if (isRight) { + y = 0.5 * (fullWidth - extWidth) - 0.1; + z = 0.5 * (-fullLength + fgkmm * 10.0); + } + else { + y = 0.5 * (fullWidth - extWidth) - 0.1; + z = 0.5 * ( fullLength - fgkmm * 10.0); + } + } + else { + if (isRight) { + y = -0.5 * (fullWidth - extWidth); + z = 0.5 * (-fullLength + fgkmm * 10.0); + } + else { + y = -0.5 * (fullWidth - extWidth); + z = 0.5 * ( fullLength - fgkmm * 10.0); + } + } + x = 0.5 * (extThickness - fullThickness) + busThickness; + //y = 0.5 * (fullWidth - extWidth); + TGeoTranslation *trExt1 = new TGeoTranslation(x, y, z); + if (isRight) { + z -= 0.5 * (ext1Length - extThickness); + } + else { + z += 0.5 * (ext1Length - extThickness); + } + x += 0.5*(extHeight - 3.*extThickness); + TGeoTranslation *trExt2 = new TGeoTranslation(x, y, z); + if (isRight) { + z -= 0.5 * (ext2Length - extThickness) + 2.5*extThickness; + } + else { + z += 0.5 * (ext2Length - extThickness) + 2.5*extThickness; + } + x += 0.5*(extHeight - extThickness) - 2.*extThickness; + TGeoTranslation *trExt3 = new TGeoTranslation(x, y, z); + container->AddNode(ext1, 0, trExt1); + container->AddNode(ext2, 0, trExt2); + container->AddNode(ext3, 0, trExt3); + + sizes[3] = yRef + pt1000Y; + sizes[4] = zRef + pt1000Z[2]; + sizes[5] = zRef + pt1000Z[7]; + + return container; +} + +//______________________________________________________________________ +TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateConeModule(TGeoManager *mgr) const +{ + TGeoMedium *medInox = GetMedium("INOX$",mgr); + TGeoMedium *medExt = GetMedium("SDDKAPTON (POLYCH2)$", mgr); + TGeoMedium *medPlate = GetMedium("SPD C (M55J)$", mgr); + + Double_t extThickness = fgkmm * 0.25; + Double_t ext1Length = fgkmm * (26.7 - 10.0); + Double_t ext2Length = fgkmm * (285.0 - ext1Length + extThickness); + + Double_t cableThickness = 1.5 * fgkmm; + Double_t cableL1 = 350.0 * fgkmm - extThickness - ext1Length - ext2Length; + Double_t cableL2 = 426.0 * fgkmm; + //Double_t cableL3 = 570.0 * fgkmm; + Double_t cableL3 = 57.0 * fgkmm; + Double_t cableW1 = 11.0 * fgkmm; + Double_t cableW2 = 30.0 * fgkmm; + Double_t cableW3 = 50.0 * fgkmm; + + Double_t mcmThickness = 1.2 *fgkmm; + Double_t mcmLength = cableL1 + cableL2 + cableL3; + Double_t mcmWidth = cableW1; + + Double_t plateLength = 200.0 * fgkmm; + Double_t plateWidth = 50.0 * fgkmm; + Double_t plateThickness = 5.0 * fgkmm; + + Double_t x[12], y[12]; + + x[0] = 7.5; + y[0] = 0.0 + 0.5 * cableW1; + + x[1] = x[0] + cableL1 - 0.5*(cableW2 - cableW1); + y[1] = y[0]; + + x[2] = x[0] + cableL1; + y[2] = y[1] + 0.5*(cableW2 - cableW1); + + x[3] = x[2] + cableL2; + y[3] = y[2]; + + x[4] = x[3] + 0.5*(cableW3 - cableW2); + y[4] = y[3] + 0.5*(cableW3 - cableW2); + + x[5] = x[4] + cableL3 - 0.5*(cableW3 - cableW2); + y[5] = y[4]; + + for (Int_t i = 6; i < 12; i++) { + x[i] = x[11 - i]; + y[i] = -y[11 - i]; + } + + TGeoVolumeAssembly *container = new TGeoVolumeAssembly("ITSSPDConeModule"); + + TGeoXtru *shCable = new TGeoXtru(2); + shCable->DefinePolygon(12, x, y); + shCable->DefineSection(0, 0., 0., 0., 1.0); + shCable->DefineSection(1, cableThickness, 0., 0., 1.0); + + TGeoVolume *volCable = new TGeoVolume("ITSSPDExtender", shCable, medExt); + volCable->SetLineColor(kGreen); + + TGeoVolume *volTube = gGeoManager->MakeTube("ITSSPDCoolingTubeCone", medInox, 4.*fgkmm, 5.*fgkmm, 0.5*(x[5] - x[0])); + volTube->SetLineColor(kGray); + + Double_t thickness = cableThickness + mcmThickness; + TGeoBBox *shOut = new TGeoBBox("ITSSPD_shape_plateout", 0.5*plateThickness, 0.5*plateLength, 0.5*plateWidth); + TGeoBBox *shIn = new TGeoBBox("ITSSPD_shape_platein", 0.5*thickness, 0.52*plateLength, 0.5*cableW2); + Char_t string[255]; + sprintf(string, "%s-%s", shOut->GetName(), shIn->GetName()); + TGeoCompositeShape *shPlate = new TGeoCompositeShape("ITSSPDPlate_shape", string); + TGeoVolume *volPlate = new TGeoVolume("ITSSPDPlate", shPlate, medPlate); + volPlate->SetLineColor(kRed); + + TGeoVolume *volMCMExt = gGeoManager->MakeBox("ITSSPDextenderMCM", medExt, 0.5*mcmThickness, 0.5*mcmLength, 0.5*mcmWidth); + volMCMExt->SetLineColor(kGreen+3); + + TGeoRotation *rot = new TGeoRotation(*gGeoIdentity); + rot->RotateX(90.0); + rot->RotateZ(90.0); + container->AddNode(volCable, 0, rot); + + TGeoTranslation *combi = new TGeoTranslation(cableThickness + 0.5*mcmThickness, x[0] + 0.5*mcmLength, 0.0); + container->AddNode(volMCMExt, 0, combi); + + TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity); + rot1->RotateX(87.5); + TGeoCombiTrans *tr = new TGeoCombiTrans(1.0, x[0] + 0.5*(x[5] - x[0]), -2.95, rot1); + container->AddNode(volTube, 0, tr); + + TGeoTranslation *tr1 = new TGeoTranslation(0.5*plateThickness - 0.5*(plateThickness-thickness), x[3] - x[0] - 0.52*plateLength, 0.0); + container->AddNode(volPlate, 0, tr1); + + return container; +} + +//______________________________________________________________________ +void AliITSv11GeometrySPD::CreateCones(TGeoVolume *moth) const +{ + + TGeoVolumeAssembly *module = CreateConeModule(gGeoManager); + + //Double_t angle[10] = {18., 54., 90., 126., 162., -18., -54., -90., -126., -162.}; + Double_t angle1[10] = {18., 54., 90., 129., 165., 201.0, 237.0, 273.0, 309.0, 345.0}; + Double_t angle2[10] = {18., 53., 90., 126., 162., 198.0, 233.0, 270.0, 309.0, 342.0}; + for (Int_t i = 0; i < 10; i++) { + TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity); + rot1->RotateY(-90.0); + rot1->RotateX(43.7); + angle1[i] -= 1.5; + rot1->RotateZ(90.0 - angle1[i]); + TGeoCombiTrans *tr1 = new TGeoCombiTrans(0.0, 0.0, 40.4, rot1); + moth->AddNode(module, 2*i, tr1); + TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity); + rot2->RotateY(90.0); + rot2->RotateX(-43.7); + angle2[i] -= 1.5; + rot2->RotateZ(90.0 - angle2[i]); + TGeoCombiTrans *tr2 = new TGeoCombiTrans(0.0, 0.0, -40.4, rot2); + if (i != 1 && i != 6) + moth->AddNode(module, 2*i+1, tr2); + } +} + +//______________________________________________________________________ +TGeoVolume* AliITSv11GeometrySPD::CreateExtender( + const Double_t *extenderParams, const TGeoMedium *extenderMedium, + TArrayD& sizes) const +{ + // + // ------------------ CREATE AN EXTENDER ------------------------ + // + // This function creates the following picture (in plane xOy) + // Should be useful for the definition of the pixel bus and MCM extenders + // The origin corresponds to point 0 on the picture, at half-width + // in Z direction + // + // Y 7 6 5 + // ^ +---+---------------------+ + // | / | + // | / | + // 0------> X / +---------------------+ + // / / 3 4 + // / / + // 9 8 / / + // +-----------+ / + // | / + // | / + // ---> +-----------+---+ + // | 0 1 2 + // | + // origin (0,0,0) + // + // + // Takes 6 parameters in the following order : + // |--> par 0 : inner length [0-1] / [9-8] + // |--> par 1 : thickness ( = [0-9] / [4-5]) + // |--> par 2 : angle of the slope + // |--> par 3 : total height in local Y direction + // |--> par 4 : outer length [3-4] / [6-5] + // |--> par 5 : width in local Z direction + // + Double_t slopeDeltaX = (extenderParams[3] - extenderParams[1] + * TMath::Cos(extenderParams[2])) / + TMath::Tan(extenderParams[2]); + Double_t extenderXtruX[10] = { + 0 , + extenderParams[0] , + extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2]) , + extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+ + slopeDeltaX , + extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+ + slopeDeltaX + extenderParams[4], + extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+ + slopeDeltaX + extenderParams[4], + extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+ + slopeDeltaX , + extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+ + slopeDeltaX - extenderParams[1] * TMath::Sin(extenderParams[2]) , + extenderParams[0] , + 0 + }; + Double_t extenderXtruY[10] = { + 0 , + 0 , + extenderParams[1] * (1-TMath::Cos(extenderParams[2])) , + extenderParams[3] - extenderParams[1] , + extenderParams[3] - extenderParams[1] , + extenderParams[3] , + extenderParams[3] , + extenderParams[3]-extenderParams[1]*(1-TMath::Cos(extenderParams[2])) , + extenderParams[1] , + extenderParams[1] + }; + + if (sizes.GetSize() != 3) sizes.Set(3); + Double_t &thickness = sizes[0]; + Double_t &length = sizes[1]; + Double_t &width = sizes[2]; + + thickness = extenderParams[3]; + width = extenderParams[5]; + length = extenderParams[0]+extenderParams[1]* + TMath::Sin(extenderParams[2])+slopeDeltaX+extenderParams[4]; + + // creation of the volume + TGeoXtru *extenderXtru = new TGeoXtru(2); + TGeoVolume *extenderXtruVol = new TGeoVolume("ITSSPDextender",extenderXtru, + extenderMedium); + extenderXtru->DefinePolygon(10,extenderXtruX,extenderXtruY); + extenderXtru->DefineSection(0,-0.5*extenderParams[4]); + extenderXtru->DefineSection(1, 0.5*extenderParams[4]); + return extenderXtruVol; +} +//______________________________________________________________________ +TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBusAndExtensions +(Bool_t /*zpos*/, TGeoManager *mgr) const +{ + // + // Creates an assembly which contains the pixel bus and its extension + // and the extension of the MCM. + // By: Renaud Vernet + // NOTE: to be defined its material and its extension in the outside + // direction + // + // ==== constants ===== + //get the media + // PIXEL BUS + //TGeoMedium *medPixelBus = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr); + // IXEL BUS EXTENDER + TGeoMedium *medPBExtender = GetMedium("SDDKAPTON (POLYCH2)$",mgr); + //MCM EXTENDER + TGeoMedium *medMCMExtender = GetMedium("SDDKAPTON (POLYCH2)$",mgr); + // //geometrical constants + const Double_t kPbextenderThickness = 0.07 * fgkmm; + //design=?? 70 deg. seems OK + const Double_t kPbExtenderSlopeAngle = 70.0 * TMath::Pi()/180.; + // = 2.6 - (0.28+0.05+0.35) cf design + const Double_t kPbExtenderHeight = 1.92 * fgkmm; + const Double_t kPbExtenderWidthY = 11.0 * fgkmm; + //design=?? 70 deg. seems OK + const Double_t kMcmExtenderSlopeAngle = 70.0 * TMath::Pi()/180.; + const Double_t kMcmExtenderThickness = 0.10 * fgkmm; + const Double_t kMcmExtenderHeight = 1.8 * fgkmm; + const Double_t kMcmExtenderWidthY = kPbExtenderWidthY; + // const Double_t groundingThickness = 0.07 * fgkmm; + // const Double_t grounding2pixelBusDz = 0.625 * fgkmm; + // const Double_t pixelBusThickness = 0.28 * fgkmm; + // const Double_t groundingWidthX = 170.501 * fgkmm; + // const Double_t pixelBusContactDx = 1.099 * fgkmm; + // const Double_t pixelBusWidthY = 13.8 * fgkmm; + //design=20 deg. + // const Double_t pixelBusContactPhi = 20.0 * TMath::Pi()/180. + // const Double_t pbExtenderTopZ = 2.72 * fgkmm; + // const Double_t mcmThickness = 0.35 * fgkmm; + // const Double_t halfStaveTotalLength = 247.64 * fgkmm; + // const Double_t deltaYOrigin = 15.95/2.* fgkmm; + // const Double_t deltaXOrigin = 1.1 * fgkmm; + // const Double_t deltaZOrigin = halfStaveTotalLength / 2.; + // const Double_t grounding2pixelBusDz2 = grounding2pixelBusDz+ + // groundingThickness/2. + pixelBusThickness/2.; + // const Double_t pixelBusWidthX = groundingWidthX; + // const Double_t pixelBusRaiseLength = (pixelBusContactDx- + // pixelBusThickness*TMath::Sin(pixelBusContactPhi))/ + // TMath::Cos(pixelBusContactPhi); + // const Double_t pbExtenderBaseZ = grounding2pixelBusDz2 + + // pixelBusRaiseLength*TMath::Sin(pixelBusContactPhi) + + // 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi)* + // TMath::Tan(pixelBusContactPhi); + // const Double_t pbExtenderDeltaZ = pbExtenderTopZ-pbExtenderBaseZ; + // const Double_t pbExtenderEndPointX = 2*deltaZOrigin - + // groundingWidthX - 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi); + // const Double_t pbExtenderXtru3L = 1.5 * fgkmm; //arbitrary ? + // const Double_t pbExtenderXtru4L = (pbExtenderDeltaZ + + // pixelBusThickness*(TMath::Cos(extenderSlope)-2))/ + // TMath::Sin(extenderSlope); + // const Double_t kMcmExtenderEndPointX = deltaZOrigin - 48.2 * fgkmm; + // const Double_t kMcmExtenderXtru3L = 1.5 * fgkmm; + // //===== end constants ===== + const Double_t kPbExtenderInnerLength = 10. * fgkmm; + const Double_t kPbExtenderOuterLength = 15. * fgkmm; + const Double_t kMcmExtenderInnerLength = 10. * fgkmm; + const Double_t kMcmExtenderOuterLength = 15. * fgkmm; + Double_t pbExtenderParams[6] = {kPbExtenderInnerLength, //0 + kPbextenderThickness, //1 + kPbExtenderSlopeAngle, //2 + kPbExtenderHeight, //3 + kPbExtenderOuterLength, //4 + kPbExtenderWidthY}; //5 + + Double_t mcmExtenderParams[6] = {kMcmExtenderInnerLength, //0 + kMcmExtenderThickness, //1 + kMcmExtenderSlopeAngle, //2 + kMcmExtenderHeight, //3 + kMcmExtenderOuterLength, //4 + kMcmExtenderWidthY}; //5 + + TArrayD sizes(3); + TGeoVolume* pbExtender = CreateExtender(pbExtenderParams,medPBExtender, + sizes); + if(GetDebug(1))printf("CREATED AN EXTENDER : THICKNESS = %5.5f cm\t" + "LENGTH=%5.5f cm\tWIDTH=%5.5f cm\n",sizes[0],sizes[1],sizes[2]); + TGeoVolume* mcmExtender = CreateExtender(mcmExtenderParams,medMCMExtender, + sizes); + if(GetDebug(1))printf("CREATED AN EXTENDER : THICKNESS = %5.5f cm\t" + "LENGTH=%5.5f cm\tWIDTH=%5.5f cm\n",sizes[0],sizes[1],sizes[2]); + // Double_t pixelBusValues[5] = {pixelBusWidthX, //0 + // pixelBusThickness, //1 + // pixelBusContactPhi, //2 + // pixelBusRaiseLength, //3 + // pixelBusWidthY}; //4 + + // Double_t pbExtenderValues[8] = {pixelBusRaiseLength, //0 + // pixelBusContactPhi, //1 + // pbExtenderXtru3L, //2 + // pixelBusThickness, //3 + // extenderSlope, //4 + // pbExtenderXtru4L, //5 + // pbExtenderEndPointX, //6 + // kPbExtenderWidthY}; //7 + + // Double_t mcmExtenderValues[6] = {mcmExtenderXtru3L, //0 + // mcmExtenderThickness, //1 + // extenderSlope, //2 + // deltaMcmMcmExtender, //3 + // mcmExtenderEndPointX, //4 + // mcmExtenderWidthY}; //5 + // TGeoVolumeAssembly *pixelBus=new TGeoVolumeAssembly("ITSSPDpixelBus"); + // CreatePixelBus(pixelBus,pixelBusValues,medPixelBus); + // TGeoVolumeAssembly *pbExtender = new TGeoVolumeAssembly( + // "ITSSPDpixelBusExtender"); + // CreatePixelBusExtender(pbExtender,pbExtenderValues,medPBExtender); + // TGeoVolumeAssembly *mcmExtender = new TGeoVolumeAssembly( + // "ITSSPDmcmExtender"); + // CreateMCMExtender(mcmExtender,mcmExtenderValues,medMCMExtender); + //-------------- DEFINITION OF GEOMETRICAL TRANSFORMATIONS -------- + // TGeoRotation * commonRot = new TGeoRotation("commonRot",0,90,0); + // commonRot->MultiplyBy(new TGeoRotation("rot",-90,0,0)); + // TGeoTranslation * pixelBusTrans = new TGeoTranslation( + // pixelBusThickness/2. - deltaXOrigin + 0.52*fgkmm , + // -pixelBusWidthY/2. + deltaYOrigin , + // -groundingWidthX/2. + deltaZOrigin); + // TGeoRotation *pixelBusRot = new TGeoRotation(*commonRot); + // TGeoTranslation *pbExtenderTrans =new TGeoTranslation(*pixelBusTrans); + // TGeoRotation *pbExtenderRot = new TGeoRotation(*pixelBusRot); + // pbExtenderTrans->SetDz(*(pbExtenderTrans->GetTranslation()+2) - + // pixelBusWidthX/2. - 2*pixelBusThickness* + // TMath::Sin(pixelBusContactPhi)); + // if (!zpos) { + // pbExtenderTrans->SetDy(*(pbExtenderTrans->GetTranslation()+1) - + // (pixelBusWidthY - kPbExtenderWidthY)/2.); + // } else { + // pbExtenderTrans->SetDy(*(pbExtenderTrans->GetTranslation()+1) + + // (pixelBusWidthY - kPbExtenderWidthY)/2.); + // } + // pbExtenderTrans->SetDx(*(pbExtenderTrans->GetTranslation()) + + // pixelBusThickness/2 + 2*pixelBusThickness* + // TMath::Sin(pixelBusContactPhi)* + // TMath::Tan(pixelBusContactPhi)); + // TGeoTranslation * mcmExtenderTrans = new TGeoTranslation(0.12*fgkmm + + // mcmThickness - deltaXOrigin, + // pbExtenderTrans->GetTranslation()[1], + // -4.82); + // TGeoRotation * mcmExtenderRot = new TGeoRotation(*pbExtenderRot); + // // add pt1000 components + // Double_t pt1000Z = fgkmm * 64400. * 1E-4; + // //Double_t pt1000X[10] = {319700., 459700., 599700., 739700., + // 879700., 1029700., 1169700., 1309700., + // 1449700., 1589700.}; + // Double_t pt1000X[10] ={66160., 206200., 346200., 486200., 626200., + // 776200., 916200., 1056200., 1196200., 1336200.}; + // Double_t pt1000size[3] = {fgkmm*1.5, fgkmm*0.6, fgkmm*3.1}; + // Int_t i; + // for (i = 0; i < 10; i++) { + // pt1000X[i] *= fgkmm * 1E-4; + // } + // TGeoVolume *pt1000 = mgr->MakeBox("ITSSPDpt1000",0,0.5*pt1000size[0], + // 0.5*pt1000size[1], 0.5*pt1000size[2]); + // pt1000->SetLineColor(kGray); + // Double_t refThickness = - pixelBusThickness; + // for (i = 0; i < 10; i++) { + // TGeoTranslation *tr = new TGeoTranslation(pt1000X[i]- + // 0.5*pixelBusWidthX, 0.002+0.5*(-3.*refThickness+pt1000size[3]), + // pt1000Z -0.5*pixelBusWidthY); + // pixelBus->AddNode(pt1000, i+1, tr); + // } + + //CREATE FINAL VOLUME ASSEMBLY AND ROTATE IT + TGeoVolumeAssembly *assembly = new TGeoVolumeAssembly("ITSSPDextenders"); + // assembly->AddNode((TGeoVolume*)pixelBus,1, + // new TGeoCombiTrans(*pixelBusTrans,*pixelBusRot)); + // assembly->AddNode((TGeoVolume*)pbExtender,1, + // new TGeoCombiTrans(*pbExtenderTrans,*pbExtenderRot)); + // assembly->AddNode((TGeoVolume*)mcmExtender,1, + // new TGeoCombiTrans(*mcmExtenderTrans,*mcmExtenderRot)); + // assembly->AddNode(mcmExtender,1,new TGeoIdentity()); + assembly->AddNode(pbExtender,1); + assembly->AddNode(mcmExtender,1); + // assembly->SetTransparency(50); + + return assembly; +} +//______________________________________________________________________ +TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateHalfStave(Bool_t isRight, +Int_t layer,Int_t idxCentral,Int_t idxSide,TArrayD &sizes,TGeoManager *mgr) +{ + // + // Implementation of an half-stave, which depends on the side where + // we are on the stave. The convention for "left" and "right" is the + // same as for the MCM. The return value is a TGeoAssembly which is + // structured in such a way that the origin of its local reference + // frame coincides with the origin of the whole stave. + // The TArrayD passed by reference will contain details of the shape: + // - sizes[0] = thickness + // - sizes[1] = length + // - sizes[2] = width + // - sizes[3] = common 'x' position for eventual clips + // - sizes[4] = common 'y' position for eventual clips + // - sizes[5] = 'z' position of first clip + // - sizes[6] = 'z' position of second clip + // + + // ** CHECK ** + + // idxCentral and idxSide must be different + if (idxCentral == idxSide) { + AliInfo("Ladders must be inserted in half-stave with " + "different indexes."); + idxSide = idxCentral + 1; + AliInfo(Form("Central ladder will be inserted with index %d", + idxCentral)); + AliInfo(Form("Side ladder will be inserted with index %d",idxSide)); + } // end if + + // define the separations along Z direction between the objects + Double_t sepLadderLadder = fgkmm * 0.2; // sep. btw the 2 ladders + Double_t sepLadderCenter = fgkmm * 0.4; // sep. btw the "central" ladder + // and the Z=0 plane in stave ref. + Double_t sepLadderMCM = fgkmm * 0.3; // sep. btw the "external" ladder + // and MCM + Double_t sepBusCenter = fgkmm * 0.3; // sep. btw the bus central edge + // and the Z=0 plane in stave ref. + + // ** VOLUMES ** + + // grounding foil + TArrayD grndSize(3); + // This one line repalces the 3 bellow, BNS. + TGeoVolume *grndVol = CreateGroundingFoil(isRight, grndSize, mgr); + Double_t &grndThickness = grndSize[0]; + Double_t &grndLength = grndSize[1]; + + // ladder + TArrayD ladderSize(3); + TGeoVolume *ladder = CreateLadder(layer, ladderSize, mgr); + Double_t ladderThickness = ladderSize[0]; + Double_t ladderLength = ladderSize[1]; + Double_t ladderWidth = ladderSize[2]; + + // MCM + TArrayD mcmSize(3); + TGeoVolumeAssembly *mcm = CreateMCM(!isRight,mcmSize,mgr); + Double_t mcmThickness = mcmSize[0]; + Double_t mcmLength = mcmSize[1]; + Double_t mcmWidth = mcmSize[2]; + + // bus + TArrayD busSize(6); + TGeoVolumeAssembly *bus = CreatePixelBus(isRight, layer, busSize, mgr); + Double_t busThickness = busSize[0]; + Double_t busLength = busSize[1]; + Double_t busWidth = busSize[2]; + + // glue between ladders and pixel bus + TGeoMedium *medLadGlue = GetMedium("EPOXY$", mgr); + Double_t ladGlueThickness = fgkmm * 0.1175 - fgkGapLadder; + TGeoVolume *ladderGlue = mgr->MakeBox("ITSSPDladderGlue",medLadGlue, + 0.5*ladGlueThickness, 0.5*busWidth, 0.5*busLength); + ladderGlue->SetLineColor(kYellow + 5); + + // create references for the whole object, as usual + sizes.Set(7); + Double_t &fullThickness = sizes[0]; + Double_t &fullLength = sizes[1]; + Double_t &fullWidth = sizes[2]; + + // compute the full size of the container + fullLength = sepLadderCenter+2.0*ladderLength+sepLadderMCM+ + sepLadderLadder+mcmLength; + fullWidth = ladderWidth; + fullThickness = grndThickness + fgkGapLadder + mcmThickness + busThickness; + //cout << "HSTAVE FULL THICKNESS = " << fullThickness << endl; + + // ** MOVEMENTS ** + + // grounding foil (shifted only along thickness) + Double_t xGrnd = -0.5*fullThickness + 0.5*grndThickness; + Double_t zGrnd = -0.5*grndLength; + if (!isRight) zGrnd = -zGrnd; + TGeoTranslation *grndTrans = new TGeoTranslation(xGrnd, 0.0, zGrnd); + + // ladders (translations along thickness and length) + // layers must be sorted going from the one at largest Z to the + // one at smallest Z: + // -|Zmax| ------> |Zmax| + // 3 2 1 0 + // then, for layer 1 ladders they must be placed exactly this way, + // and in layer 2 at the opposite. In order to remember the placements, + // we define as "inner" and "outer" ladder respectively the one close + // to barrel center, and the one closer to MCM, respectively. + Double_t xLad, zLadIn, zLadOut; + xLad = xGrnd + 0.5*(grndThickness + ladderThickness) + + 0.01175 - fgkGapLadder; + zLadIn = -sepLadderCenter - 0.5*ladderLength; + zLadOut = zLadIn - sepLadderLadder - ladderLength; + if (!isRight) { + zLadIn = -zLadIn; + zLadOut = -zLadOut; + } // end if !isRight + TGeoRotation *rotLad = new TGeoRotation(*gGeoIdentity); + rotLad->RotateZ(90.0); + rotLad->RotateY(180.0); + Double_t sensWidth = fgkmm * 12.800; + Double_t chipWidth = fgkmm * 15.950; + Double_t guardRingWidth = fgkmm * 0.560; + Double_t ladderShift = 0.5 * (chipWidth - sensWidth - 2.0*guardRingWidth); + TGeoCombiTrans *trLadIn = new TGeoCombiTrans(xLad,ladderShift,zLadIn, + rotLad); + TGeoCombiTrans *trLadOut = new TGeoCombiTrans(xLad,ladderShift,zLadOut, + rotLad); + + // MCM (length and thickness direction, placing at same level as the + // ladder, which implies to recompute the position of center, because + // ladder and MCM have NOT the same thickness) the two copies of the + // MCM are placed at the same distance from the center, on both sides + Double_t xMCM = xGrnd + 0.5*grndThickness + 0.5*mcmThickness + + 0.01175 - fgkGapLadder; + Double_t yMCM = 0.5*(fullWidth - mcmWidth); + Double_t zMCM = zLadOut - 0.5*ladderLength - 0.5*mcmLength - sepLadderMCM; + if (!isRight) zMCM = zLadOut + 0.5*ladderLength + 0.5*mcmLength + + sepLadderMCM; + + // create the correction rotations + TGeoRotation *rotMCM = new TGeoRotation(*gGeoIdentity); + rotMCM->RotateY(90.0); + TGeoCombiTrans *trMCM = new TGeoCombiTrans(xMCM, yMCM, zMCM, rotMCM); + + // glue between ladders and pixel bus + Double_t xLadGlue = xLad + 0.5*ladderThickness + 0.01175 - + fgkGapLadder + 0.5*ladGlueThickness; + + // bus (length and thickness direction) + Double_t xBus = xLadGlue + 0.5*ladGlueThickness + 0.5*busThickness; + Double_t yBus = 0.5*(fullWidth - busWidth) + 0.075; // Hardcode fix of a small overlap + Double_t zBus = -0.5*busLength - sepBusCenter; + if (!isRight) zBus = -zBus; + TGeoTranslation *trBus = new TGeoTranslation(xBus, yBus, zBus); + + TGeoTranslation *trLadGlue = new TGeoTranslation(xLadGlue, 0.0, zBus); + + // create the container + TGeoVolumeAssembly *container = 0; + if (idxCentral+idxSide==5) { + container = new TGeoVolumeAssembly("ITSSPDhalf-Stave1"); + } else { + container = new TGeoVolumeAssembly("ITSSPDhalf-Stave0"); + } // end if + + // add to container all objects + container->AddNode(grndVol, 1, grndTrans); + // ladders are inserted in different order to respect numbering scheme + // which is inverted when going from outer to inner layer + container->AddNode(ladder, idxCentral+1, trLadIn); + container->AddNode(ladder, idxSide+1, trLadOut); + container->AddNode(ladderGlue, 1, trLadGlue); + container->AddNode(mcm, 1, trMCM); + container->AddNode(bus, 1, trBus); + + // since the clips are placed in correspondence of two pt1000s, + // their position is computed here, but they are not added by default + // it will be the StavesInSector method which will decide to add them + // anyway, to recovery some size informations on the clip, it must be + // created + TArrayD clipSize; + // TGeoVolume *clipDummy = CreateClip(clipSize, kTRUE, mgr); + CreateClip(clipSize, kTRUE, mgr); + // define clip movements (width direction) + sizes[3] = xBus + 0.5*busThickness; + sizes[4] = 0.5 * (fullWidth - busWidth) - clipSize[6] - fgkmm*0.48; + sizes[5] = zBus + busSize[4]; + sizes[6] = zBus + busSize[5]; + + return container; +} +//______________________________________________________________________ +TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateStave(Int_t layer, + TArrayD &sizes, TGeoManager *mgr) +{ + // + // This method uses all other ones which create pieces of the stave + // and assemblies everything together, in order to return the whole + // stave implementation, which is returned as a TGeoVolumeAssembly, + // due to the presence of some parts which could generate fake overlaps + // when put on the sector. + // This assembly contains, going from bottom to top in the thickness + // direction: + // - the complete grounding foil, defined by the "CreateGroundingFoil" + // method which already joins some glue and real groudning foil + // layers for the whole stave (left + right); + // - 4 ladders, which are sorted according to the ALICE numbering + // scheme, which depends on the layer we are building this stave for; + // - 2 MCMs (a left and a right one); + // - 2 pixel buses (a left and a right one); + // --- + // Arguments: + // - the layer number, which determines the displacement and naming + // of sensitive volumes + // - a TArrayD passed by reference which will contain the size + // of virtual box containing the stave + // - the TGeoManager + // + + // create the container + TGeoVolumeAssembly *container = new TGeoVolumeAssembly(Form( + "ITSSPDlay%d-Stave",layer)); + // define the indexes of the ladders in order to have the correct order + // keeping in mind that the staves will be inserted as they are on layer + // 2, while they are rotated around their local Y axis when inserted + // on layer 1, so in this case they must be put in the "wrong" order + // to turn out to be right at the end. The convention is: + // -|Zmax| ------> |Zmax| + // 3 2 1 0 + // with respect to the "native" stave reference frame, "left" is in + // the positive Z this leads the definition of these indexes: + Int_t idxCentralL, idxSideL, idxCentralR, idxSideR; + + if (layer == 1) { + idxSideL = 3; + idxCentralL = 2; + idxCentralR = 1; + idxSideR = 0; + } else { + idxSideL = 0; + idxCentralL = 1; + idxCentralR = 2; + idxSideR = 3; + } // end if layer ==1 + + // create the two half-staves + TArrayD sizeL, sizeR; + TGeoVolumeAssembly *hstaveL = CreateHalfStave(kFALSE, layer, idxCentralL, + idxSideL, sizeL,mgr); + TGeoVolumeAssembly *hstaveR = CreateHalfStave(kTRUE, layer, idxCentralR, + idxSideR, sizeR, mgr); + // copy the size to the stave's one + sizes.Set(9); + sizes[0] = sizeL[0]; + sizes[1] = sizeR[1] + sizeL[1]; + sizes[2] = sizeL[2]; + sizes[3] = sizeL[3]; + sizes[4] = sizeL[4]; + sizes[5] = sizeL[5]; + sizes[6] = sizeL[6]; + sizes[7] = sizeR[5]; + sizes[8] = sizeR[6]; + + // add to container all objects + container->AddNode(hstaveL, 1); + container->AddNode(hstaveR, 1); + + return container; +} +//______________________________________________________________________ +void AliITSv11GeometrySPD::SetAddStave(Bool_t *mask) +{ + // + // Define a mask which states qhich staves must be placed. + // It is a string which must contain '0' or '1' depending if + // a stave must be placed or not. + // Each place is referred to one of the staves, so the first + // six characters of the string will be checked. + // + Int_t i; + + for (i = 0; i < 6; i++) fAddStave[i] = mask[i]; +} +//______________________________________________________________________ +void AliITSv11GeometrySPD::StavesInSector(TGeoVolume *moth, TGeoManager *mgr) +{ + // + // Unification of essentially two methods: + // - the one which creates the sector structure + // - the one which returns the complete stave + // --- + // For compatibility, this method requires the same arguments + // asked by "CarbonFiberSector" method, which is recalled here. + // Like this cited method, this one does not return any value, + // but it inserts in the mother volume (argument 'moth') all the stuff + // which composes the complete SPD sector. + // --- + // In the following, the stave numbering order used for arrays is the + // same as defined in the GetSectorMountingPoints(): + // /5 + // /\/4 + // 1\ \/3 + // 0|___\/2 + // --- + // Arguments: see description of "CarbonFiberSector" method. + // + + Double_t shift[6]; // shift from the innermost position in the + // sector placement plane (where the stave + // edge is in the point where the rounded + // corner begins) + + shift[0] = fgkmm * -0.691; + shift[1] = fgkmm * 5.041; + shift[2] = fgkmm * 1.816; + shift[3] = fgkmm * -0.610; + shift[4] = fgkmm * -0.610; + shift[5] = fgkmm * -0.610; + + // corrections after interaction with Andrea and CAD + Double_t corrX[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + Double_t corrY[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + corrX[0] = 0.0046; + corrX[1] = -0.0041; + corrX[2] = corrX[3] = corrX[4] = corrX[5] = -0.0016; + + corrY[0] = -0.0007; + corrY[1] = -0.0009; + corrY[2] = corrY[3] = corrY[4] = corrY[5] = -0.0003; + + corrX[0] += 0.00026; + corrY[0] += -0.00080; + + corrX[1] += 0.00018; + corrY[1] += -0.00086; + + corrX[2] += 0.00020; + corrY[2] += -0.00062; + + corrX[3] += 0.00017; + corrY[3] += -0.00076; + + corrX[4] += 0.00016; + corrY[4] += -0.00096; + + corrX[5] += 0.00018; + corrY[5] += -0.00107; + + // create stave volumes (different for layer 1 and 2) + TArrayD staveSizes1(9), staveSizes2(9), clipSize(5); + Double_t &staveHeight = staveSizes1[2], &staveThickness = staveSizes1[0]; + TGeoVolume *stave1 = CreateStave(1, staveSizes1, mgr); + TGeoVolume *stave2 = CreateStave(2, staveSizes2, mgr); + TGeoVolume *clip = CreateClip(clipSize, kFALSE, mgr); + + Double_t xL, yL; // leftmost edge of mounting point (XY projection) + Double_t xR, yR; // rightmost edge of mounting point (XY projection) + Double_t xM, yM; // middle point of the segment L-R + Double_t dx, dy; // (xL - xR) and (yL - yR) + Double_t widthLR; // width of the segment L-R + Double_t angle; // stave rotation angle in degrees + Double_t diffWidth; // difference between mounting plane width and + // stave width (smaller) + Double_t xPos, yPos; // final translation of the stave + Double_t parMovement; // translation in the LR plane direction + + staveThickness += fgkGapHalfStave; + + // loop on staves + Int_t i, iclip = 1; + for (i = 0; i < 6; i++) { + // in debug mode, if this stave is not required, it is skipped + if (!fAddStave[i]) continue; + // retrieve reference points + GetSectorMountingPoints(i, xL, yL, xR, yR); + xM = 0.5 * (xL + xR); + yM = 0.5 * (yL + yR); + dx = xL - xR; + dy = yL - yR; + angle = TMath::ATan2(dy, dx); + widthLR = TMath::Sqrt(dx*dx + dy*dy); + diffWidth = 0.5*(widthLR - staveHeight); + // first, a movement along this plane must be done + // by an amount equal to the width difference + // and then the fixed shift must also be added + parMovement = diffWidth + shift[i]; + // due to stave thickness, another movement must be done + // in the direction normal to the mounting plane + // which is computed using an internal method, in a reference + // frame where the LR segment has its middle point in the origin + // and axes parallel to the master reference frame + if (i == 0) { + ParallelPosition(-0.5*staveThickness, -parMovement, angle, + xPos, yPos); + } // end if i==0 + if (i == 1) { + ParallelPosition( 0.5*staveThickness, -parMovement, angle, + xPos, yPos); + }else { + ParallelPosition( 0.5*staveThickness, parMovement, angle, + xPos, yPos); + } // end if i==1 + // then we go into the true reference frame + xPos += xM; + yPos += yM; + xPos += corrX[i]; + yPos += corrY[i]; + // using the parameters found here, compute the + // translation and rotation of this stave: + TGeoRotation *rot = new TGeoRotation(*gGeoIdentity); + if (i == 0 || i == 1) rot->RotateX(180.0); + rot->RotateZ(90.0 + angle * TMath::RadToDeg()); + TGeoCombiTrans *trans = new TGeoCombiTrans(xPos, yPos, 0.0, rot); + if (i == 0 || i == 1) { + moth->AddNode(stave1, i+1, trans); + }else { + moth->AddNode(stave2, i - 1, trans); + if (i != 2) { + // except in the case of stave #2, + // clips must be added, and this is done directly on the sector + Int_t j; + //TArrayD clipSize; + TGeoRotation *rotClip = new TGeoRotation(*gGeoIdentity); + rotClip->RotateZ(-90.0); + rotClip->RotateX(180.0); + Double_t x = staveSizes2[3] + fgkGapHalfStave; + Double_t y = staveSizes2[4]; + Double_t z[4] = { staveSizes2[5], staveSizes2[6], + staveSizes2[7], staveSizes2[8] }; + for (j = 0; j < 4; j++) { + TGeoCombiTrans *trClip = new TGeoCombiTrans(x, y, z[j], + rotClip); + *trClip = *trans * *trClip; + moth->AddNode(clip, iclip++, trClip); + } // end for j + } // end if i!=2 + } // end if i==0||i==1 else + } // end for i +} +//______________________________________________________________________ +void AliITSv11GeometrySPD::ParallelPosition(Double_t dist1, Double_t dist2, + Double_t phi, Double_t &x, Double_t &y) const +{ + // + // Performs the following steps: + // 1 - finds a straight line parallel to the one passing through + // the origin and with angle 'phi' with X axis(phi in RADIANS); + // 2 - finds another line parallel to the previous one, with a + // distance 'dist1' from it + // 3 - takes a reference point in the second line in the intersection + // between the normal to both lines passing through the origin + // 4 - finds a point whith has distance 'dist2' from this reference, + // in the second line (point 2) + // ---- + // According to the signs given to dist1 and dist2, the point is + // found in different position w.r. to the origin + // compute the point + // + Double_t cs = TMath::Cos(phi); + Double_t sn = TMath::Sin(phi); + + x = dist2*cs - dist1*sn; + y = dist1*cs + dist2*sn; } //______________________________________________________________________ -void AliITSv11GeometrySPD::HalfStave(TGeoVolume *moth,Double_t &thicknessAA, - TGeoManager *mgr){ - // Define the detail SPD Half Stave geometry. +Double_t AliITSv11GeometrySPD::GetSPDSectorTranslation( + Double_t x0,Double_t y0,Double_t x1,Double_t y1,Double_t r) const +{ + // + // Comutes the radial translation of a sector to give the + // proper distance between SPD detectors and the beam pipe. + // Units in are units out. + // + + //Begin_Html + /* + + Figure showing the geometry used in the computation below. + */ + //End_Html + // Inputs: - // TGeoVolume *moth The mother volume to place this object. - // Int_t &thicknessAA Thickness of stave at section A-A - // TGeoManager *mgr TGeoManager default gGeoManager + // Double_t x0 Point x0 on Sector surface for the inner + // most detector mounting + // Double_t y0 Point y0 on Sector surface for the innor + // most detector mounting + // Double_t x1 Point x1 on Sector surface for the inner + // most detector mounting + // Double_t y1 Point y1 on Sector surface for the innor + // most detector mounting + // Double_t r The radial distance this mounting surface + // should be from the center of the beam pipe. // Outputs: - // none. + // none. // Return: - // none. + // The distance the SPD sector should be displaced radialy. + // + Double_t a,b,c; - thicknessAA = 1.03*fgkmm; // Default value - if(moth==0){ - Error("HalfStave","moth=%p mgr=%p",moth,mgr); - return; - } // end if moth==0 + a = x0-x1; + if(a==0.0) return 0.0; + a = (y0-y1)/a; + b = TMath::Sqrt(1.0+a*a); + c = y0-a*x0-r*b; + return -c; } -//---------------------------------------------------------------------- +//______________________________________________________________________ void AliITSv11GeometrySPD::CreateFigure0(const Char_t *filepath, const Char_t *type, - TGeoManager *mgr){ + TGeoManager *mgr) const +{ + // // Creates Figure 0 for the documentation of this class. In this // specific case, it creates the X,Y cross section of the SPD suport // section, center and ends. The output is written to a standard @@ -983,6 +3894,7 @@ void AliITSv11GeometrySPD::CreateFigure0(const Char_t *filepath, // none. // Return: // none. + // TGeoXtru *sA0,*sA1,*sB0,*sB1; //TPolyMarker *pmA,*pmB; TPolyLine plA0,plA1,plB0,plB1; @@ -995,14 +3907,14 @@ void AliITSv11GeometrySPD::CreateFigure0(const Char_t *filepath, Error("CreateFigure0","filepath=%s type=%s",filepath,type); } // end if // - sA0 = (TGeoXtru*) mgr->GetVolume( - "ITSSPDCarbonFiberSupportSectorA0_1")->GetShape(); - sA1 = (TGeoXtru*) mgr->GetVolume( - "ITSSPDCarbonFiberSupportSectorAirA1_1")->GetShape(); - sB0 = (TGeoXtru*) mgr->GetVolume( - "ITSSPDCarbonFiberSupportSectorEndB0_1")->GetShape(); - sB1 = (TGeoXtru*) mgr->GetVolume( - "ITSSPDCarbonFiberSupportSectorEndAirB1_1")->GetShape(); + sA0 = (TGeoXtru*) mgr->GetVolume("ITSSPDCarbonFiberSupportSectorA0_1")-> + GetShape(); + sA1 = (TGeoXtru*) mgr->GetVolume("ITSSPDCarbonFiberSupportSectorAirA1_1")-> + GetShape(); + sB0 = (TGeoXtru*) mgr->GetVolume("ITSSPDCarbonFiberSupportSectorEndB0_1")-> + GetShape(); + sB1 = (TGeoXtru*) mgr->GetVolume("ITSSPDCarbonFiberSupportSectorEndAirB1_1" + )->GetShape(); //pmA = new TPolyMarker(); //pmA.SetMarkerStyle(2); // + //pmA.SetMarkerColor(7); // light blue @@ -1067,3 +3979,208 @@ void AliITSv11GeometrySPD::CreateFigure0(const Char_t *filepath, txt.DrawLatex(x+2.5,y,"Section"); // } +//______________________________________________________________________ +void AliITSv11GeometrySPD::PrintAscii(ostream *os) const +{ + // + // Print out class data values in Ascii Form to output stream + // Inputs: + // ostream *os Output stream where Ascii data is to be writen + // Outputs: + // none. + // Return: + // none. + // + Int_t i,j,k; +#if defined __GNUC__ +#if __GNUC__ > 2 + ios::fmtflags fmt = cout.flags(); +#else + Int_t fmt; +#endif +#else +#if defined __ICC || defined __ECC || defined __xlC__ + ios::fmtflags fmt; +#else + Int_t fmt; +#endif +#endif + + *os<< fgkGapLadder <<" "<< fgkGapHalfStave<<" "<< 6 <<" "; + for(i=0;i<6;i++) *os<< fAddStave[i] <<" "<flags(fmt); // reset back to old Formating. + return; +} +// +//______________________________________________________________________ +void AliITSv11GeometrySPD::ReadAscii(istream* is) +{ + // + // Read in class data values in Ascii Form to output stream + // Inputs: + // istream *is Input stream where Ascii data is to be read in from + // Outputs: + // none. + // Return: + // none. + // + Int_t i,j,k,n; + Double_t gapLadder,GapHalfStave; + + *is>>gapLadder>>GapHalfStave>>n; + if(n!=6){ + Warning("ReadAscii","fAddStave Array !=6 n=%d",n); + return; + } // end if + for(i=0;i>fAddStave[i]; + *is>>n; + fSPDsectorX0.Set(n); + fSPDsectorY0.Set(n); + fSPDsectorX1.Set(n); + fSPDsectorY1.Set(n); + for(i=0;i>fSPDsectorX0[i]; + for(i=0;i>fSPDsectorY0[i]; + for(i=0;i>fSPDsectorX1[i]; + for(i=0;i>fSPDsectorY1[i]; + *is>> i>>j>>n; + if(i!=2||j!=6||n!=3){ + Warning("ReadAscii","fTubeEndSector array wrong size [2][6][3]," + "found [%d][%d][%d]",i,j,n); + return; + } // end if + for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++) + *is>>fTubeEndSector[k][0][i][j]; + for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++) + *is>>fTubeEndSector[k][1][i][j]; + return; +} +// +//______________________________________________________________________ +ostream &operator<<(ostream &os,const AliITSv11GeometrySPD &s) +{ + // + // Standard output streaming function + // Inputs: + // ostream &os output steam + // AliITSvPPRasymmFMD &s class to be streamed. + // Output: + // none. + // Return: + // ostream &os The stream pointer + // + s.PrintAscii(&os); + return os; +} +// +//______________________________________________________________________ +istream &operator>>(istream &is,AliITSv11GeometrySPD &s) +{ + // + // Standard inputput streaming function + // Inputs: + // istream &is input steam + // AliITSvPPRasymmFMD &s class to be streamed. + // Output: + // none. + // Return: + // ostream &os The stream pointer + // + s.ReadAscii(&is); + return is; +} +// +//______________________________________________________________________ +Bool_t AliITSv11GeometrySPD::Make2DCrossSections(TPolyLine &a0,TPolyLine &a1, + TPolyLine &b0,TPolyLine &b1,TPolyMarker &p)const +{ + // + // Fill the objects with the points representing + // a0 the outer carbon fiber SPD sector shape Cross Section A + // a1 the inner carbon fiber SPD sector shape Cross Section A + // b0 the outer carbon fiber SPD sector shape Cross Section B + // b1 the inner carbon fiber SPD sector shape Cross Section B + // + // Inputs: + // TPolyLine &a0 The outer carbon fiber SPD sector shape + // TPolyLine &a1 The Inner carbon fiber SPD sector shape + // TPolyLine &b0 The outer carbon fiber SPD sector shape + // TPolyLine &b1 The Inner carbon fiber SPD sector shape + // TPolyMarker &p The points where the ladders are to be placed + // Outputs: + // TPolyLine &a0 The shape filled with the points + // TPolyLine &a1 The shape filled with the points + // TPolyLine &b0 The shape filled with the points + // TPolyLine &b1 The shape filled with the points + // TPolyMarker &p The filled array of points + // Return: + // An error flag. + // + Int_t n0,n1,i; + Double_t x,y; + TGeoVolume *a0V,*a1V,*b0V,*b1V; + TGeoXtru *a0S,*a1S,*b0S,*b1S; + TGeoManager *mgr = gGeoManager; + + a0V = mgr->GetVolume("ITS SPD Carbon fiber support Sector A0"); + a0S = dynamic_cast(a0V->GetShape()); + n0 = a0S->GetNvert(); + a0.SetPolyLine(n0+1); + //for(i=0;iGetX(i); + y = a0S->GetY(i); + //printf("%d %g %g\n",i,x,y); + a0.SetPoint(i,x,y); + if(i==0) a0.SetPoint(n0,x,y); + } // end for i + a1V = mgr->GetVolume("ITSSPDCarbonFiberSupportSectorAirA1"); + a1S = dynamic_cast(a1V->GetShape()); + n1 = a1S->GetNvert(); + a1.SetPolyLine(n1+1); + for(i=0;iGetX(i); + y = a1S->GetY(i); + a1.SetPoint(i,x,y); + if(i==0) a1.SetPoint(n1,x,y); + } // end for i + // Cross Section B + b0V = mgr->GetVolume("ITSSPDCarbonFiberSupportSectorEndB0"); + b0S = dynamic_cast(b0V->GetShape()); + n0 = b0S->GetNvert(); + b0.SetPolyLine(n0+1); + for(i=0;iGetX(i); + y = b0S->GetY(i); + b0.SetPoint(i,x,y); + if(i==0) b0.SetPoint(n0,x,y); + } // end for i + b1V = mgr->GetVolume("ITSSPDCarbonFiberSupportSectorEndAirB1"); + b1S = dynamic_cast(b1V->GetShape()); + n1 = b1S->GetNvert(); + b1.SetPolyLine(n1+1); + for(i=0;iGetX(i); + y = b1S->GetY(i); + b1.SetPoint(i,x,y); + if(i==0) b1.SetPoint(n1,x,y); + } // end for i + // + Double_t x0,y0,x1,y1; + p.SetPolyMarker(2*fSPDsectorX0.GetSize()); + for(i=0;i