X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=ITS%2FAliITSv11GeometrySPD.cxx;h=944b19459207cb4b3339224e9fb4b430f48237af;hb=ff12b981e8b8e9bc7063c1f26373e5264934d329;hp=d34c8479e0c85b9316b67e6a6110f4115d54c993;hpb=543b73707d7262ec8cc1c5a814c29bff480179e0;p=u%2Fmrichter%2FAliRoot.git diff --git a/ITS/AliITSv11GeometrySPD.cxx b/ITS/AliITSv11GeometrySPD.cxx index d34c8479e0c..944b1945920 100644 --- a/ITS/AliITSv11GeometrySPD.cxx +++ b/ITS/AliITSv11GeometrySPD.cxx @@ -1,5 +1,5 @@ /************************************************************************** - * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * + * Copyright(c) 2007-2009, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * @@ -12,670 +12,741 @@ * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ - +// // This class Defines the Geometry for the ITS services and support cones -// outside of the ceneteral volume (except for the Ceneteral support -// cylinders. Other classes define the rest of the ITS. Specificaly the ITS -// The SSD support cone,SSD Support centeral cylinder, SDD support cone, -// The SDD cupport centeral cylinder, the SPD Thermal Sheald, The supports +// outside of the central volume (except for the Central support +// cylinders). Other classes define the rest of the ITS, specifically the +// SSD support cone, the SSD Support central cylinder, the SDD support cone, +// the SDD support central cylinder, the SPD Thermal Shield, The supports // and cable trays on both the RB26 (muon dump) and RB24 sides, and all of -// the cabling from the ladders/stave ends out past the TPC. +// the cabling from the ladders/stave ends out past the TPC. +// +// Here is the calling sequence associated with this file +// SPDSector(TGeoVolume *moth,TGeoManager *mgr) +// -----CarbonFiberSector(TGeoVolume *moth,Double_t &xAAtubeCenter0, +// Double_t &yAAtubeCenter0,TGeoManager *mgr) +// -----2* SPDsectorShape(Int_t n,const Double_t *xc,const Double_t *yc, +// | const Double_t *r,const Double_t *ths, +// | const Double_t *the,Int_t npr,Int_t &m, +// | Double_t **xp,Double_t **yp) +// -----StavesInSector(TGeoVolume *moth,TGeoManager *mgr) +// -----3* CreaeStave(Int_t layer,TArrayD &sizes,Bool_t addClips, +// | TGeoManager *mgr) +// | -----2* CreateHalfStave(Boot_t isRight,Int_t layer, +// | Int_t idxCentral,Int_t idxSide, +// | TArrayD &sizes,Bool_t addClips, +// | TGeoManager *mgr) +// | -----CreateGrondingFoil(Bool_t isRight,TArrayD &sizes, +// | | TGeoManager *mgr) +// | | -----4* CreateGroundingFoilSingle(Int_t type, +// | | TArrayD &sizes, +// | | TGeoManger *mgr) +// | |----CreateLadder(Int_t layer, TArrayD &sizes, +// | | TGeoManager *mgr) +// | |----CreateMCM(Bool_t isRight,TArrayD &sizes, +// | | TGeoManger *mgr) +// | |----CreatePixelBus(Bool_t isRight,TArrayD &sizes, +// | | TGeoManager *mgr) +// | -----CreateClip(TArrayD &sizes,TGeoManager *mgr) +// |----GetSectorMountingPoints(Int_t index,Double_t &x0, +// | Double_t &y0,Double_t &x1, +// | Double_t y1) +// -----3* ParallelPosition(Double_t dist1,Double_t dist2, +// Double_t phi,Double_t &x,Double_t &y) +// +// Obsoleate or presently unused routines are: setAddStave(Bool_t *mask), +// CreatePixelBusAndExtensions(...) which calles CreateExtender(...). /* $Id$ */ + + // General Root includes #include #include #include #include #include +#include + // Root Geometry includes -#include -#include -#include -#include // contaings TGeoTubeSeg -#include -#include -#include #include -#include +#include +#include #include +#include #include +#include // contains TGeoTubeSeg +#include +#include +#include +#include +#include + +// AliRoot includes +#include "AliLog.h" #include "AliMagF.h" #include "AliRun.h" -//#include -//#include -//#include + +// Declaration file #include "AliITSv11GeometrySPD.h" +#include "AliITSv11GeomCableRound.h" -ClassImp(AliITSv11GeometrySPD) +// Constant definistions +const Double_t AliITSv11GeometrySPD::fgkGapLadder = + AliITSv11Geometry::fgkmicron*75.; // 75 microns +const Double_t AliITSv11GeometrySPD::fgkGapHalfStave = + AliITSv11Geometry::fgkmicron*120.; // 120 microns -#define SQ(A) (A)*(A) +using std::endl; +using std::cout; +using std::ios; +ClassImp(AliITSv11GeometrySPD) +//______________________________________________________________________ +AliITSv11GeometrySPD::AliITSv11GeometrySPD(/*Double_t gap*/): +AliITSv11Geometry(),// Default constructor of base class +fAddStave(), // [DEBUG] must be TRUE for all staves which will be + // mounted in the sector (used to check overlaps) +fSPDsectorX0(0), // X of first edge of sector plane for stave +fSPDsectorY0(0), // Y of first edge of sector plane for stave +fSPDsectorX1(0), // X of second edge of sector plane for stave +fSPDsectorY1(0), // Y of second edge of sector plane for stave +fTubeEndSector() // coordinate of cooling tube ends +{ + // + // Default constructor. + // This does not initialize anything and is provided just for + // completeness. It is recommended to use the other one. + // The alignment gap is specified as argument (default = 0.0075 cm). + // Inputs: + // none. + // Outputs: + // none. + // Return: + // A default constructed AliITSv11GeometrySPD class. + // + Int_t i = 0,j=0,k=0; + for (i = 0; i < 6; i++) fAddStave[i] = kTRUE; + for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){ + this->fTubeEndSector[k][0][i][j] = 0.0; + this->fTubeEndSector[k][1][i][j] = 0.0; + } // end for i,j +} //______________________________________________________________________ -Int_t AliITSv11GeometrySPD::CreateSPDCenteralMaterials(Int_t &medOffset, - Int_t &matOffset){ - // Define the specific materials used for the ITS SPD centeral - // detectors. Note, These are the same old names. By the ALICE - // naming convension, these should start out at ITS SPD .... - // This data has been taken from AliITSvPPRasymmFMD::CreateMaterials(). - // Intputs: - // Int_t &medOffset The starting number of the list of media - // Int_t &matOffset The starting number of the list of Materials +AliITSv11GeometrySPD::AliITSv11GeometrySPD(Int_t debug/*, Double_t gap*/): +AliITSv11Geometry(debug),// Default constructor of base class +fAddStave(), // [DEBUG] must be TRUE for all staves which will be + // mounted in the sector (used to check overlaps) +fSPDsectorX0(0), // X of first edge of sector plane for stave +fSPDsectorY0(0), // Y of first edge of sector plane for stave +fSPDsectorX1(0), // X of second edge of sector plane for stave +fSPDsectorY1(0), // Y of second edge of sector plane for stave +fTubeEndSector() // coordinate of cooling tube ends +{ + // + // Constructor with debug setting argument + // This is the constructor which is recommended to be used. + // It sets a debug level, and initializes the name of the object. + // The alignment gap is specified as argument (default = 0.0075 cm). + // Inputs: + // Int_t debug Debug level, 0= no debug output. // Outputs: - // Int_t &medOffset The ending number of the list of media - // Int_t &matOffset The ending number of the list of Materials + // none. // Return: - // the last material number used +1 (the next avaiable material number). - //Begin_Html - /* - -

The SPD Sector definition. - -

The SPD all sector end view with thermal sheald. - -

SPD side view cross section with condes and thermal shealds. -

Cross section A-A -

Cross section B-B -

Cross section C-C -

Cross section D-D -

Cross section F-F -

Cross section G-G - */ - //End_Html - const Double_t ktmaxfd = 0.1*fgkDegree; // Degree - const Double_t kstemax = 1.0*fgkcm; // cm - const Double_t kdeemax = 0.1; // Fraction of particle's energy 0Field()->Integ()); - Double_t fieldm = (gAlice->Field()->Max()); - params[1] = (Double_t) ifield; - params[2] = fieldm; - params[3] = ktmaxfdSi; - params[4] = kstemaxSi; - params[5] = kdeemaxSi; - params[6] = kepsilSi; - params[7] = kstminSi; - - mat = new TGeoMaterial("SI",28.086,14.0,2.33*fgkgcm3, - TGeoMaterial::kMatStateSolid,25.0*fgkCelsius, - 0.0*fgkPascal); - mat->SetIndex(matindex); - med = new TGeoMedium("SI",medindex++,mat,params); - //med = new TGeoMedium("SI",medindex++,matindex++,0,ifield, - // fieldm,ktmaxfdSi,kstemaxSi,kdeemaxSi,kepsilSi,kstminSi); - // - mat = new TGeoMaterial("SPD SI CHIP",28.086,14.0,2.33*fgkgcm3, - TGeoMaterial::kMatStateSolid,25.0*fgkCelsius, - 0.0*fgkPascal); - mat->SetIndex(matindex); - med = new TGeoMedium("SPD SI CHIP",medindex++,mat,params); - //med = new TGeoMedium("SPD SI CHIP",medindex++,matindex++,0,ifield, - // fieldm,ktmaxfdSi,kstemaxSi,kdeemaxSi,kepsilSi,kstminSi); - // - mat = new TGeoMaterial("SPD SI BUS",28.086,14.0,2.33*fgkgcm3, - TGeoMaterial::kMatStateSolid,25.0*fgkCelsius, - 0.0*fgkPascal); - mat->SetIndex(matindex); - med = new TGeoMedium("SPD SI BUS",medindex++,mat,params); - //med = new TGeoMedium("SPD SI BUS",medindex++,matindex++,0,ifield, - // fieldm,ktmaxfdSi,kstemaxSi,kdeemaxSi,kepsilSi,kstminSi); - // - mix = new TGeoMixture("C (M55J)",4,1.9866*fgkgcm3);// Carbon fiber by fractional weight "C (M55J)" - mix->SetIndex(matindex); - mix->DefineElement(0,12.0107,6.0,0.908508078); // Carbon by fractional weight - mix->DefineElement(1,14.0067,7.0,0.010387573); // Nitrogen by fractional weight - mix->DefineElement(2,15.9994,8.0,0.055957585); // Oxigen by fractional weight - mix->DefineElement(3,1.00794,1.0,0.025146765); // Hydrogen by fractional weight - mix->SetPressure(0.0*fgkPascal); - mix->SetTemperature(25.0*fgkCelsius); - mix->SetState(TGeoMaterial::kMatStateSolid); - params[3] = ktmaxfd; - params[4] = kstemax; - params[5] = kdeemax; - params[6] = kepsil; - params[7] = kstmin; - med = new TGeoMedium("ITSspdCarbonFiber",medindex++,mix,params); - //med = new TGeoMedium("ITSspdCarbonFiber",medindex++,matindex++,0,ifield, - // fieldm,ktmaxfd,kstemax,kdeemax,kepsil,kstmin); - // - mix = new TGeoMixture("Air",4,1.20479E-3*fgkgcm3);// Carbon fiber by fractional weight - mix->SetIndex(matindex); - mix->DefineElement(0,12.0107,6.0,0.000124); // Carbon by fractional weight - mix->DefineElement(1,14.0067,7.0,0.755267); // Nitrogen by fractional weight - mix->DefineElement(2,15.9994,8.0,0.231781); // Oxigen by fractional weight - mix->DefineElement(3,39.948,18.0,0.012827); // Argon by fractional weight - mix->SetPressure(101325.0*fgkPascal); // 1 atmosphere - mix->SetTemperature(25.0*fgkCelsius); - mix->SetState(TGeoMaterial::kMatStateGas); - params[3] = ktmaxfdAir; - params[4] = kstemaxAir; - params[5] = kdeemaxAir; - params[6] = kepsilAir; - params[7] = kstminAir; - med = new TGeoMedium("ITSspdAir",medindex++,mix,params); - //med = new TGeoMedium("ITSspdAir",medindex++,matindex++,0,ifield, - // fieldm,ktmaxfdAir,kstemaxAir,kdeemaxAir,kepsilAir,kstminAir); - // - mix = new TGeoMixture("INOX",9,8.03*fgkgcm3);// Carbon fiber by fractional weight - mix->SetIndex(matindex); - mix->DefineElement(0,12.0107, 6.0,0.0003); // Carbon by fractional weight - mix->DefineElement(1,54.9380,25.0,0.02); // Iron by fractional weight - mix->DefineElement(2,28.0855,14.0,0.01); // Sodium by fractional weight - mix->DefineElement(3,30.9738,15.0,0.00045); // by fractional weight - mix->DefineElement(4,32.066 ,16.0,0.0003); // by fractional weight - mix->DefineElement(5,58.6928,28.0,0.12); // Nickel by fractional weight - mix->DefineElement(6,55.9961,24.0,0.17); // by fractional weight - mix->DefineElement(7,95.84 ,42.0,0.025); // by fractional weight - mix->DefineElement(8,55.845 ,26.0,0.654); // by fractional weight - mix->SetPressure(0.0*fgkPascal); // - mix->SetTemperature(25.0*fgkCelsius); - mix->SetState(TGeoMaterial::kMatStateSolid); - params[3] = ktmaxfdAir; - params[4] = kstemaxAir; - params[5] = kdeemaxAir; - params[6] = kepsilAir; - params[7] = kstminAir; - med = new TGeoMedium("ITSspdStainlessSteel",medindex++,mix,params); - //med = new TGeoMedium("ITSspdStainlessSteel",medindex++,matindex++,0,ifield, - // fieldm,ktmaxfdAir,kstemaxAir,kdeemaxAir,kepsilAir,kstminAir); - // - mix = new TGeoMixture("Freon",2,1.63*fgkgcm3);// Carbon fiber by fractional weight - mix->SetIndex(matindex); - mix->DefineElement(0,12.0107,6.0,4); // Carbon by fractional weight - mix->DefineElement(1,18.9984032,9.0,10); // Florine by fractional weight - mix->SetPressure(101325.0*fgkPascal); // 1 atmosphere - mix->SetTemperature(25.0*fgkCelsius); - mix->SetState(TGeoMaterial::kMatStateLiquid); - params[3] = ktmaxfdAir; - params[4] = kstemaxAir; - params[5] = kdeemaxAir; - params[6] = kepsilAir; - params[7] = kstminAir; - med = new TGeoMedium("ITSspdCoolingFluid",medindex++,mix,params); - //med = new TGeoMedium("ITSspdCoolingFluid",medindex++,matindex++,0,ifield, - // fieldm,ktmaxfdAir,kstemaxAir,kdeemaxAir,kepsilAir,kstminAir); - // - medOffset = medindex; - matOffset = matindex; - return matOffset; + // A default constructed AliITSv11GeometrySPD class. + // + Int_t i = 0,j=0,k=0; + + for (i = 0; i < 6; i++) fAddStave[i] = kTRUE; + for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){ + this->fTubeEndSector[k][0][i][j] = 0.0; + this->fTubeEndSector[k][1][i][j] = 0.0; + } // end for i,j } //______________________________________________________________________ -void AliITSv11GeometrySPD::InitSPDCenteral(Int_t offset,TVirtualMC *vmc){ - // Do any SPD Centeral detector related initilizations, setting - // transport cuts for example. - // Some GEANT3 Physics switches - // "MULTS" - // Multiple scattering. The variable IMULS controls this process. For - // more information see [PHYS320 or 325 or 328]. - // 0 - No multiple scattering. - // 1 - Multiple scattering according to Molière theory. Default setting. - // 2 - Same as 1. Kept for backward compatibility. - // 3 - Pure Gaussian scattering according to the Rossi formula. - // "DRAY" - // delta ray production. The variable IDRAY controls this process. See [PHYS430] - // 0 - No delta rays production. - // 1 - delta rays production with generation of . Default setting. - // 2 - delta rays production without generation of . - // "LOSS" - // Continuous energy loss. The variable ILOSS controls this process. - // 0 - No continuous energy loss, IDRAY is set to 0. - // 1 - Continuous energy loss with generation of delta rays above - // DCUTE (common/GCUTS/) and restricted Landau fluctuations below DCUTE. - // 2 - Continuous energy loss without generation of delta rays and full - // Landau-Vavilov-Gauss fluctuations. In this case the variable IDRAY - // is forced to 0 to avoid double counting of fluctuations. Default setting. - // 3 - Same as 1, kept for backward compatibility. - // 4 - Energy loss without fluctuation. The value obtained from the tables is - // used directly. - // Intputs: - // Int_t offset The material/medium index offset. - // TVirturalMC *vmc The pointer to the virtual Monte Carlo default gMC. +AliITSv11GeometrySPD::AliITSv11GeometrySPD(const AliITSv11GeometrySPD &s): +AliITSv11Geometry(s),// Base Class Copy constructor +fAddStave(), // [DEBUG] must be TRUE for all staves which will be + // mounted in the sector (used to check overlaps) +fSPDsectorX0(s.fSPDsectorX0), // X of first edge of sector plane for stave +fSPDsectorY0(s.fSPDsectorY0), // Y of first edge of sector plane for stave +fSPDsectorX1(s.fSPDsectorX1), // X of second edge of sector plane for stave +fSPDsectorY1(s.fSPDsectorY1) // Y of second edge of sector plane for stave +{ + // + // Copy Constructor + // Inputs: + // AliITSv11GeometrySPD &s source class // Outputs: // none. // Return: + // A copy of a AliITSv11GeometrySPD class. + // + Int_t i=0,j=0,k=0; + + for (i = 0; i < 6; i++) this->fAddStave[i] = s.fAddStave[i]; + for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){ + this->fTubeEndSector[k][0][i][j] = s.fTubeEndSector[k][0][i][j]; + this->fTubeEndSector[k][1][i][j] = s.fTubeEndSector[k][1][i][j]; + } // end for i,j +} +//______________________________________________________________________ +AliITSv11GeometrySPD& AliITSv11GeometrySPD::operator=(const + AliITSv11GeometrySPD &s) +{ + // + // = operator + // Inputs: + // AliITSv11GeometrySPD &s source class + // Outputs: // none. - Int_t i,n=4; - - for(i=0;iGstpar(i+offset,"CUTGAM",30.0*fgkKeV); - vmc->Gstpar(i+offset,"CUTELE",30.0*fgkKeV); - vmc->Gstpar(i+offset,"CUTNEU",30.0*fgkKeV); - vmc->Gstpar(i+offset,"CUTHAD",30.0*fgkKeV); - vmc->Gstpar(i+offset,"CUTMUO",30.0*fgkKeV); - vmc->Gstpar(i+offset,"BCUTE",30.0*fgkKeV); - vmc->Gstpar(i+offset,"BCUTM",30.0*fgkKeV); - vmc->Gstpar(i+offset,"DCUTE",30.0*fgkKeV); - vmc->Gstpar(i+offset,"DCUTM",30.0*fgkKeV); - //vmc->Gstpar(i+offset,"PPCUTM",); - //vmc->Gstpar(i+offset,"PAIR",); - //vmc->Gstpar(i+offset,"COMPT",); - //vmc->Gstpar(i+offset,"PHOT",); - //vmc->Gstpar(i+offset,"PFIS",); - vmc->Gstpar(i+offset,"DRAY",1); - //vmc->Gstpar(i+offset,"ANNI",); - //vmc->Gstpar(i+offset,"BREM",); - //vmc->Gstpar(i+offset,"HADR",); - //vmc->Gstpar(i+offset,"MUNU",); - //vmc->Gstpar(i+offset,"DCAY",); - vmc->Gstpar(i+offset,"LOSS",1); - //vmc->Gstpar(i+offset,"MULS",); - //vmc->Gstpar(i+offset,"GHCOR1",); - //vmc->Gstpar(i+offset,"BIRK1",); - //vmc->Gstpar(i+offset,"BRIK2",); - //vmc->Gstpar(i+offset,"BRIK3",); - //vmc->Gstpar(i+offset,"LABS",); - //vmc->Gstpar(i+offset,"SYNC",); - //vmc->Gstpar(i+offset,"STRA",); - } // end for i + // Return: + // A copy of a AliITSv11GeometrySPD class. + // + Int_t i=0,j=0,k=0; + + if(this==&s) return *this; + for (i = 0; i < 6; i++) this->fAddStave[i] = s.fAddStave[i]; + this->fSPDsectorX0=s.fSPDsectorX0; + this->fSPDsectorY0=s.fSPDsectorY0; + this->fSPDsectorX1=s.fSPDsectorX1; + this->fSPDsectorY1=s.fSPDsectorY1; + for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){ + this->fTubeEndSector[k][0][i][j] = s.fTubeEndSector[k][0][i][j]; + this->fTubeEndSector[k][1][i][j] = s.fTubeEndSector[k][1][i][j]; + } // end for i,j + return *this; +} +//______________________________________________________________________ +TGeoMedium* AliITSv11GeometrySPD::GetMedium(const char* mediumName, + const TGeoManager *mgr) const +{ + // + // This function is used to recovery any medium + // used to build the geometry volumes. + // If the required medium does not exists, + // a NULL pointer is returned, and an error message is written. + // + Char_t itsMediumName[30]; + + snprintf(itsMediumName, 30, "ITS_%s", mediumName); + TGeoMedium* medium = mgr->GetMedium(itsMediumName); + if (!medium) AliError(Form("Medium <%s> not found", mediumName)); + + return medium; } + //______________________________________________________________________ -void AliITSv11GeometrySPD::SPDSector(TGeoVolume *moth,TGeoManager *mgr){ - // Position of the Carbon Fiber Assembly based on distance - // of closest point of SPD stave to beam pipe figures - // all-sections-modules.ps of 7.22mm at section A-A. +void AliITSv11GeometrySPD::SPDSector(TGeoVolume *moth, TGeoManager *mgr) +{ + // + // Creates a single SPD carbon fiber sector and places it + // in a container volume passed as first argument ('moth'). + // Second argument points to the TGeoManager which coordinates + // the overall volume creation. + // The position of the sector is based on distance of + // closest point of SPD stave to beam pipe + // (figures all-sections-modules.ps) of 7.22mm at section A-A. + // + + // Begin_Html + /* + +

The SPD Sector definition. In + HPGL format. + +

The SPD all sector end view with thermal sheald. + +

SPD side view cross section with condes and thermal shealds. +

Cross section A-A. +

Cross updated section A-A. +

Cross section B-B. +

Cross section C-C. +

Cross section D-D. +

Cross section E-E. +

Cross section F-F. +

Cross section G-G. + */ + // End_Html + // Inputs: - // TGeoVolume *moth the mother volume which this - // object/volume is to be placed in. + // TGeoVolume *moth Pointer to mother volume where this object + // is to be placed in + // TGeoManager *mgr Pointer to the TGeoManager used, defaule is + // gGeoManager. // Outputs: - // none. + // none. // Return: - // none. - const Double_t kSPDclossesStaveAA = 7.22*fgkmm; - const Double_t kSectorStartingAngle = -72.0*fgkDegree; - const Double_t kNSectorsTotal = 10.; // number - const Double_t kSectorRelativeAngle = 360./kNSectorsTotal*fgkDegree; - const Double_t kBeamPipeRadius = 0.5*60.0*fgkmm; + // none. + // Updated values for kSPDclossesStaveAA, kBeamPipeRadius, and + // staveThicknessAA are taken from + // http://physics.mps.ohio-state.edu/~nilsen/ITSfigures/Sezione_layerAA.pdf // - Int_t i; - Double_t angle,radiusSector,xAAtubeCenter0,yAAtubeCenter0; - Double_t staveThicknessAA=1.03*fgkmm; // get from stave geometry. - TGeoCombiTrans *secRot=new TGeoCombiTrans(); - TGeoVolume *vCarbonFiberSector; + const Double_t kSPDclossesStaveAA = 7.25* fgkmm; + const Double_t kSectorStartingAngle = -72.0 * fgkDegree; + const Int_t kNSectorsTotal = 10; + const Double_t kSectorRelativeAngle = 36.0 * fgkDegree; // = 360.0 / 10 + const Double_t kBeamPipeRadius = 0.5 * 59.6 * fgkmm; // diam. = 59.6 mm + //const Double_t staveThicknessAA = 0.9 *fgkmm; // nominal thickness + const Double_t staveThicknessAA = 1.02 * fgkmm; // get from stave geometry. + + Int_t i, j, k; + Double_t angle, radiusSector, xAAtubeCenter0, yAAtubeCenter0; + TGeoCombiTrans *secRot = new TGeoCombiTrans(), *comrot; + TGeoVolume *vCarbonFiberSector[10]; TGeoMedium *medSPDcf; - medSPDcf = mgr->GetMedium("ITSspdCarbonFiber"); - vCarbonFiberSector = new TGeoVolumeAssembly("ITSSPDCarbonFiberSectorV"); - vCarbonFiberSector->SetMedium(medSPDcf); - CarbonFiberSector(vCarbonFiberSector,xAAtubeCenter0,yAAtubeCenter0); - vCarbonFiberSector->SetVisibility(kFALSE); // logical volume - // Compute the radial shift out of the sectors. - radiusSector = kBeamPipeRadius+kSPDclossesStaveAA+staveThicknessAA; - radiusSector *= radiusSector; // squaring; - radiusSector -= xAAtubeCenter0*xAAtubeCenter0; - radiusSector = -yAAtubeCenter0+TMath::Sqrt(radiusSector); + // Define an assembly and fill it with the support of + // a single carbon fiber sector and staves in it + medSPDcf = GetMedium("SPD C (M55J)$", mgr); + for(Int_t is=0; is<10; is++) + { + vCarbonFiberSector[is] = new TGeoVolumeAssembly("ITSSPDCarbonFiberSectorV"); + vCarbonFiberSector[is]->SetMedium(medSPDcf); + CarbonFiberSector(vCarbonFiberSector[is], is, xAAtubeCenter0, yAAtubeCenter0, mgr); + } + + // Compute the radial shift out of the sectors + radiusSector = kBeamPipeRadius + kSPDclossesStaveAA + staveThicknessAA; + radiusSector = GetSPDSectorTranslation(fSPDsectorX0.At(1), fSPDsectorY0.At(1), + fSPDsectorX1.At(1), fSPDsectorY1.At(1), radiusSector); + //radiusSector *= radiusSector; // squaring; + //radiusSector -= xAAtubeCenter0 * xAAtubeCenter0; + //radiusSector = -yAAtubeCenter0 + TMath::Sqrt(radiusSector); + + AliDebug(1, Form("SPDSector : radiusSector=%f\n",radiusSector)); + i = 1; + AliDebug(1, Form("i= %d x0=%f y0=%f x1=%f y1=%f\n", i, + fSPDsectorX0.At(i), fSPDsectorY0.At(i), + fSPDsectorX1.At(i),fSPDsectorY1.At(i))); + + // add 10 single sectors, by replicating the virtual sector defined above + // and placing at different angles + Double_t shiftX, shiftY, tub[2][6][3]; + for(i=0;i<2;i++)for(j=0;j<6;j++)for(k=0;k<3;k++) tub[i][j][k] = fTubeEndSector[0][i][j][k]; angle = kSectorStartingAngle; secRot->RotateZ(angle); - for(i=0;i<(Int_t)kNSectorsTotal;i++){ - secRot->SetDx(-radiusSector*TMath::Sin(angle/fgkRadian)); - secRot->SetDy(radiusSector*TMath::Cos(angle/fgkRadian)); - //secRot->RegisterYourself(); - moth->AddNode(vCarbonFiberSector,i+1,new TGeoCombiTrans(*secRot)); - if(GetDebug(5)){ - printf("i=%d angle=%g angle[rad]=%g radiusSector=%g x=%g y=%g \n", - i,angle,angle/fgkRadian,radiusSector, - -radiusSector*TMath::Sin(angle/fgkRadian), - radiusSector*TMath::Cos(angle/fgkRadian)); + TGeoVolumeAssembly *vcenteral = new TGeoVolumeAssembly("ITSSPD"); + moth->AddNode(vcenteral, 1, 0); + for(i = 0; i < kNSectorsTotal; i++) { + shiftX = -radiusSector * TMath::Sin(angle/fgkRadian); + shiftY = radiusSector * TMath::Cos(angle/fgkRadian); + //cout << "ANGLE = " << angle << endl; + shiftX += 0.1094 * TMath::Cos((angle + 196.)/fgkRadian); + shiftY += 0.1094 * TMath::Sin((angle + 196.)/fgkRadian); + //shiftX -= 0.105; + //shiftY -= 0.031; + //shiftX -= 0.11 * TMath::Cos(angle/fgkRadian); // add by Alberto + //shiftY -= 0.11 * TMath::Sin(angle/fgkRadian); // don't ask me where that 0.11 comes from! + secRot->SetDx(shiftX); + secRot->SetDy(shiftY); + comrot = new TGeoCombiTrans(*secRot); + vcenteral->AddNode(vCarbonFiberSector[i],i+1,comrot); + for(j=0;j<2;j++)for(k=0;k<6;k++) // Transform Tube ends for each sector + comrot->LocalToMaster(tub[j][k],fTubeEndSector[i][j][k]); + if(GetDebug(5)) { + AliInfo(Form("i=%d angle=%g angle[rad]=%g radiusSector=%g " + "x=%g y=%g \n",i, angle, angle/fgkRadian, + radiusSector, shiftX, shiftY)); } // end if GetDebug(5) angle += kSectorRelativeAngle; secRot->RotateZ(kSectorRelativeAngle); } // end for i - if(GetDebug(3)){ - moth->PrintNodes(); - } // end if GetDebug(). + if(GetDebug(3)) moth->PrintNodes(); delete secRot; + + CreateCones(moth); + CreateServices(moth); } //______________________________________________________________________ -void AliITSv11GeometrySPD::CarbonFiberSector(TGeoVolume *moth, - Double_t &xAAtubeCenter0, - Double_t &yAAtubeCenter0, - TGeoManager *mgr){ +void AliITSv11GeometrySPD::CarbonFiberSector(TGeoVolume *moth, Int_t sect, + Double_t &xAAtubeCenter0, Double_t &yAAtubeCenter0, TGeoManager *mgr) +{ + // The method has been modified in order to build a support sector + // whose shape is dependent on the sector number; the aim is to get + // as close as possible to the shape inferred from alignment + // and avoid as much as possible overlaps generated by alignment. + // // Define the detail SPD Carbon fiber support Sector geometry. - // Based on the drawings ALICE-Pixel "Construzione Profilo Modulo" - // March 25 2004 and ALICE-SUPPORTO "construzione Profilo Modulo" - // Define Outside radii as negitive, Outside in the sence that the - // center of the arc is outside of the object. - // February 16 2004. + // Based on the drawings: + /* + http:///QA-construzione-profilo-modulo.ps + */ + // - ALICE-Pixel "Costruzione Profilo Modulo" (march 25 2004) + // - ALICE-SUPPORTO "Costruzione Profilo Modulo" + // --- + // Define outside radii as negative, where "outside" means that the + // center of the arc is outside of the object (feb 16 2004). + // --- + // Arguments [the one passed by ref contain output values]: // Inputs: - // TGeoVolume *moth The mother volume to put this object + // TGeoVolume *moth the voulme which will contain this object + // TGeoManager *mgr TGeo builder defauls is gGeoManager // Outputs: - // Double_t &xAAtubeCenter0 The x location of the outer surface - // of the cooling tube center for tube 0. - // This location helps determine where - // this sector is to be located (information - // used for this is the distance the - // center of the #0 detector is from the - // beam pipe. Measurements taken at - // cross section A-A. - // Double_t &yAAtubeCenter0 The y location of the outer surface - // of the cooling tube center for tube 0 - // This location helps determine where - // this sector is to be located (information - // used for this is the distance the - // center of the #0 detector is from the - // beam pipe. Measurements taken at - // cross section A-A. - // TGeoManager *mgr The TGeoManager as needed, default is - // gGeoManager. + // Double_t &xAAtubeCenter0 (by ref) x location of the outer surface + // of the cooling tube center for tube 0. + // Double_t &yAAtubeCenter0 (by ref) y location of the outer surface + // of the cooling tube center for tube 0. // Return: - // none. - TGeoMedium *medSPDcf = 0; // SPD support cone Carbon Fiber materal number. - //TGeoMedium *medSPDfs = 0; // SPD support cone inserto stesalite 4411w. - //TGeoMedium *medSPDfo = 0; // SPD support cone foam, Rohacell 50A. - TGeoMedium *medSPDss = 0; // SPD support cone screw material,Stainless - TGeoMedium *medSPDair = 0; // SPD support cone Air - //TGeoMedium *medSPDal = 0; // SPD support cone SDD mounting bracket Al - TGeoMedium *medSPDcoolfl = 0; // SPD cooling fluid, Freeon - medSPDcf = mgr->GetMedium("ITSspdCarbonFiber"); - //medSPDfs = mgr->GetMedium("ITSspdStaselite4411w"); - //medSPDfo = mgr->GetMedium("ITSspdRohacell50A"); - medSPDss = mgr->GetMedium("ITSspdStainlessSteel"); - medSPDair= mgr->GetMedium("ITSspdAir"); - medSPDcoolfl= mgr->GetMedium("ITSspdCoolingFluid"); - // - const Double_t ksecDz = 0.5*500.0*fgkmm; - const Double_t ksecLen = 30.0*fgkmm; - const Double_t ksecCthick = 0.20*fgkmm; - const Double_t ksecDipLength = 3.2*fgkmm; - const Double_t ksecDipRadii = 0.4*fgkmm; - //const Double_t ksecCoolingTubeExtraDepth = 0.86*fgkmm; - // These positions, ksecX*,ksecY* are the center of curvatures - // for the different point around the SPD sector. The radii, - // inner and outer, are the radous of curvature about the centers - // ksecX* and ksecY*. To draw this SPD sector, first plot all of - // the ksecX and ksecY points and draw circles of the specified - // radius about these points. Connect the circles, such that the - // lines are tangent to the circles, in accordance with the - // radii being "Inside" or "Outside". These lines and the - // corresponding arc's are the surface of this SPD sector. - const Double_t ksecX0 = -10.725*fgkmm; - const Double_t ksecY0 = -14.853*fgkmm; - const Double_t ksecR0 = -0.8*fgkmm; // Outside - const Double_t ksecX1 = -13.187*fgkmm; - const Double_t ksecY1 = -19.964*fgkmm; - const Double_t ksecR1 = +0.6*fgkmm; // Inside - //const Double_t ksecDip0 = 5.9*fgkmm; - // - const Double_t ksecX2 = -3.883*fgkmm; - const Double_t ksecY2 = -17.805*fgkmm; - const Double_t ksecR2 = +0.80*fgkmm; // Inside Guess. - const Double_t ksecX3 = -3.123*fgkmm; - const Double_t ksecY3 = -14.618*fgkmm; - const Double_t ksecR3 = -0.6*fgkmm; // Outside - //const Double_t ksecDip1 = 8.035*fgkmm; - // - const Double_t ksecX4 = +11.280*fgkmm; - const Double_t ksecY4 = -14.473*fgkmm; - const Double_t ksecR4 = +0.8*fgkmm; // Inside - const Double_t ksecX5 = +19.544*fgkmm; - const Double_t ksecY5 = +10.961*fgkmm; - const Double_t ksecR5 = +0.8*fgkmm; // Inside - //const Double_t ksecDip2 = 4.553*fgkmm; - // - const Double_t ksecX6 = +10.830*fgkmm; - const Double_t ksecY6 = +16.858*fgkmm; - const Double_t ksecR6 = +0.6*fgkmm; // Inside - const Double_t ksecX7 = +11.581*fgkmm; - const Double_t ksecY7 = +13.317*fgkmm; - const Double_t ksecR7 = -0.6*fgkmm; // Outside - //const Double_t ksecDip3 = 6.978*fgkmm; - // - const Double_t ksecX8 = -0.733*fgkmm; - const Double_t ksecY8 = +17.486*fgkmm; - const Double_t ksecR8 = +0.6*fgkmm; // Inside - const Double_t ksecX9 = +0.562*fgkmm; - const Double_t ksecY9 = +14.486*fgkmm; - const Double_t ksecR9 = -0.6*fgkmm; // Outside - //const Double_t ksecDip4 = 6.978*fgkmm; - // - const Double_t ksecX10 = -12.252*fgkmm; - const Double_t ksecY10 = +16.298*fgkmm; - const Double_t ksecR10 = +0.6*fgkmm; // Inside - const Double_t ksecX11 = -10.445*fgkmm; - const Double_t ksecY11 = +13.162*fgkmm; - const Double_t ksecR11 = -0.6*fgkmm; // Outside - //const Double_t ksecDip5 = 6.978*fgkmm; - // - const Double_t ksecX12 = -22.276*fgkmm; - const Double_t ksecY12 = +12.948*fgkmm; - const Double_t ksecR12 = +0.85*fgkmm; // Inside - //const Double_t ksecX13 = *fgkmm; - //const Double_t ksecY13 = *fgkmm; - const Double_t ksecR13 = -0.8*fgkmm; // Outside - const Double_t ksecAngleSide13 = 36.0*fgkDegree; + // none. + // --- + // Int the two variables passed by reference values will be stored + // which will then be used to correctly locate this sector. + // The information used for this is the distance between the + // center of the #0 detector and the beam pipe. + // Measurements are taken at cross section A-A. + // + + //TGeoMedium *medSPDfs = 0;//SPD support cone inserto stesalite 4411w + //TGeoMedium *medSPDfo = 0;//SPD support cone foam, Rohacell 50A. + //TGeoMedium *medSPDal = 0;//SPD support cone SDD mounting bracket Al + TGeoMedium *medSPDcf = GetMedium("SPD C (M55J)$", mgr); + TGeoMedium *medSPDss = GetMedium("INOX$", mgr); + TGeoMedium *medSPDcoolfl = GetMedium("Freon$", mgr); //ITSspdCoolingFluid + // + const Double_t ksecDz = 0.5 * 500.0 * fgkmm; + //const Double_t ksecLen = 30.0 * fgkmm; + const Double_t ksecCthick = 0.2 * fgkmm; + const Double_t ksecDipLength = 3.2 * fgkmm; + const Double_t ksecDipRadii = 0.4 * fgkmm; + //const Double_t ksecCoolingTubeExtraDepth = 0.86 * fgkmm; + // + // The following positions ('ksecX#' and 'ksecY#') and radii ('ksecR#') + // are the centers and radii of curvature of all the rounded corners + // between the straight borders of the SPD sector shape. + // To draw this SPD sector, the following steps are followed: + // 1) the (ksecX, ksecY) points are plotted + // and circles of the specified radii are drawn around them. + // 2) each pair of consecutive circles is connected by a line + // tangent to them, in accordance with the radii being "internal" + // or "external" with respect to the closed shape which describes + // the sector itself. + // The resulting connected shape is the section + // of the SPD sector surface in the transverse plane (XY). + // + const Double_t ksecX0 = -10.725 * fgkmm; + const Double_t ksecY0 = -14.853 * fgkmm; + const Double_t ksecR0 = -0.8 * fgkmm; // external + + const Double_t ksecR1 = +0.6 * fgkmm; + const Double_t ksecR2 = +0.6 * fgkmm; + const Double_t ksecR3 = -0.6 * fgkmm; + const Double_t ksecR4 = +0.8 * fgkmm; + const Double_t ksecR5 = +0.8 * fgkmm; + const Double_t ksecR6 = +0.6 * fgkmm; + const Double_t ksecR7 = -0.6 * fgkmm; + const Double_t ksecR8 = +0.6 * fgkmm; + const Double_t ksecR9 = -0.6 * fgkmm; + const Double_t ksecR10 = +0.6 * fgkmm; + const Double_t ksecR11 = -0.6 * fgkmm; + const Double_t ksecR12 = +0.85 * fgkmm; + +// // IDEAL GEOMETRY +// const Double_t ksecX1[10] ={-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187}; +// const Double_t ksecY1[10] ={-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964}; +// const Double_t ksecX2[10] ={-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833}; +// const Double_t ksecY2[10] ={-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805}; +// const Double_t ksecX3[10] ={-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123}; +// const Double_t ksecY3[10] ={-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618}; +// const Double_t ksecX4[10] ={+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280}; +// const Double_t ksecY4[10] ={-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473}; +// const Double_t ksecX5[10] ={+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544}; +// const Double_t ksecY5[10] ={+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961}; +// const Double_t ksecX6[10] ={+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830}; +// const Double_t ksecY6[10] ={+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868}; +// const Double_t ksecX7[10] ={+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581}; +// const Double_t ksecY7[10] ={+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317}; +// const Double_t ksecX8[10] ={-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733}; +// const Double_t ksecY8[10] ={+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486}; +// const Double_t ksecX9[10] ={+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562}; +// const Double_t ksecY9[10] ={+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107}; +// const Double_t ksecX10[10]={-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252}; +// const Double_t ksecY10[10]={+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298}; +// const Double_t ksecX11[10]={-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445}; +// const Double_t ksecY11[10]={+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162}; +// const Double_t ksecX12[10]={-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276}; +// const Double_t ksecY12[10]={+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948}; + + +// MODIFIED GEOMETRY according with partial alignment of Staves relative to Sectors +// last numbers: 2010/06/11 (ML) + + const Double_t ksecX1[10]={-1.305917, -1.322242, -1.300649, -1.298700, -1.290830, -1.274307, -1.276433, -1.286468, -1.274381, -1.314864}; + const Double_t ksecY1[10]={-1.997857, -2.018611, -2.005854, -2.004897, -1.995517, -2.002552, -1.995860, -2.021062, -2.012931, -2.043967}; + const Double_t ksecX2[10]={-0.366115, -0.385562, -0.372689, -0.365682, -0.348432, -0.348442, -0.342468, -0.354071, -0.346900, -0.381275}; + const Double_t ksecY2[10]={-1.801679, -1.808306, -1.759315, -1.778851, -1.811655, -1.747888, -1.773811, -1.792427, -1.764514, -1.820324}; +// const Double_t ksecX1[10]={-1.305917, -1.322242, -1.300649, -1.298700, -1.290830, -1.274307, -1.276433, -1.286468, -1.274381, -1.325864}; +// const Double_t ksecY1[10]={-1.997857, -2.018611, -2.005854, -2.004897, -1.995517, -2.002552, -1.995860, -2.021062, -2.012931, -2.032967}; +// const Double_t ksecX2[10]={-0.366115, -0.385562, -0.372689, -0.365682, -0.348432, -0.348442, -0.342468, -0.354071, -0.346900, -0.392275}; +// const Double_t ksecY2[10]={-1.801679, -1.808306, -1.759315, -1.778851, -1.811655, -1.747888, -1.773811, -1.792427, -1.764514, -1.809324}; + const Double_t ksecX3[10]={-0.314030, -0.315531, -0.347521, -0.337675, -0.300420, -0.378487, -0.330729, -0.330850, -0.362360, -0.321097}; + const Double_t ksecY3[10]={-1.452488, -1.460418, -1.447060, -1.443146, -1.472410, -1.430019, -1.469073, -1.472048, -1.462010, -1.444355}; + const Double_t ksecX4[10]={1.124299, 1.124162, 1.089523, 1.095520, 1.136171, 1.058616, 1.105626, 1.106433, 1.077455, 1.117946}; + const Double_t ksecY4[10]={-1.458714, -1.452649, -1.465297, -1.492717, -1.494665, -1.447732, -1.493369, -1.488126, -1.452925, -1.443447}; + const Double_t ksecX5[10]={1.951621, 1.939284, 1.931830, 1.935235, 1.952206, 1.939082, 1.924822, 1.940114, 1.918160, 1.960017}; + const Double_t ksecY5[10]={1.092731, 1.118870, 1.129765, 1.129422, 1.081511, 1.127387, 1.103960, 1.101784, 1.121428, 1.150110}; + const Double_t ksecX6[10]={1.070070, 1.048297, 1.035920, 1.049049, 1.083621, 1.045882, 1.050399, 1.067823, 1.037967, 1.070850}; + const Double_t ksecY6[10]={1.667590, 1.678571, 1.681383, 1.696892, 1.676520, 1.683470, 1.689988, 1.691111, 1.698432, 1.712770}; + const Double_t ksecX7[10]={1.139398, 1.150471, 1.150074, 1.132807, 1.150192, 1.124064, 1.124335, 1.137723, 1.143056, 1.130568}; + const Double_t ksecY7[10]={1.345588, 1.356062, 1.342468, 1.320467, 1.335807, 1.334477, 1.328622, 1.347184, 1.319861, 1.308420}; + const Double_t ksecX8[10]={-0.096963, -0.098603, -0.095286, -0.099990, -0.075132, -0.121593, -0.108673, -0.104237, -0.092082, -0.104044}; + const Double_t ksecY8[10]={1.751207, 1.731467, 1.726908, 1.734219, 1.766159, 1.718203, 1.741891, 1.739743, 1.728288, 1.718046}; + const Double_t ksecX9[10]={0.047615, 0.087875, 0.034917, 0.071603, 0.026468, 0.091619, 0.051994, 0.059947, 0.079785, 0.043443}; + const Double_t ksecY9[10]={1.414699, 1.403187, 1.399061, 1.403430, 1.435056, 1.384557, 1.397692, 1.420269, 1.391372, 1.398954}; + const Double_t ksecX10[10]={-1.233255, -1.186874, -1.246702, -1.213368, -1.259425, -1.190067, -1.225655, -1.224171, -1.197833, -1.237182}; + const Double_t ksecY10[10]={1.635767, 1.646249, 1.617336, 1.608928, 1.636944, 1.602583, 1.630504, 1.629065, 1.624295, 1.620934}; + const Double_t ksecX11[10]={-1.018270, -1.031317, -0.960524, -1.001155, -1.045437, -0.986867, -1.002685, -1.017369, -1.005614, -0.985385}; + const Double_t ksecY11[10]={1.318108, 1.330683, 1.301572, 1.314410, 1.326680, 1.295226, 1.306372, 1.309414, 1.306542, 1.307086}; + const Double_t ksecX12[10]={-2.199004, -2.214964, -2.139247, -2.180547, -2.224505, -2.165324, -2.175883, -2.193485, -2.183227, -2.161570}; + const Double_t ksecY12[10]={1.317677, 1.303982, 1.317057, 1.324766, 1.339537, 1.312715, 1.359642, 1.343638, 1.330234, 1.340836}; + + + const Double_t ksecR13 = -0.8 * fgkmm; // external + const Double_t ksecAngleSide13 = 36.0 * fgkDegree; // const Int_t ksecNRadii = 20; const Int_t ksecNPointsPerRadii = 4; const Int_t ksecNCoolingTubeDips = 6; - // Since the Rounded parts are aproximated by a regular polygon and - // a cooling tube of the propper diameter must fit, a scaling factor + // + // Since the rounded parts are approximated by a regular polygon + // and a cooling tube of the propper diameter must fit, a scaling factor // increases the size of the polygon for the tube to fit. //const Double_t ksecRCoolScale = 1./TMath::Cos(TMath::Pi()/ - // (Double_t)ksecNPointsPerRadii); - const Double_t ksecZEndLen = 30.00*fgkmm; - //const Double_t ksecZFlangLen= 45.00*fgkmm; - const Double_t ksecTl = 0.860*fgkmm; - const Double_t ksecCthick2 = 0.600*fgkmm; - //const Double_t ksecCthick3 = 1.800*fgkmm; - //const Double_t ksecSidelen = 22.00*fgkmm; - //const Double_t ksecSideD5 = 3.679*fgkmm; - //const Double_t ksecSideD12 = 7.066*fgkmm; - const Double_t ksecRCoolOut = 2.400*fgkmm; - const Double_t ksecRCoolIn = 2.000*fgkmm; - const Double_t ksecDl1 = 5.900*fgkmm; - const Double_t ksecDl2 = 8.035*fgkmm; - const Double_t ksecDl3 = 4.553*fgkmm; - const Double_t ksecDl4 = 6.978*fgkmm; - const Double_t ksecDl5 = 6.978*fgkmm; - const Double_t ksecDl6 = 6.978*fgkmm; - const Double_t ksecCoolTubeThick = 0.04*fgkmm; - const Double_t ksecCoolTubeROuter = 2.6*fgkmm; - const Double_t ksecCoolTubeFlatX = 3.696*fgkmm; - const Double_t ksecCoolTubeFlatY = 0.68*fgkmm; - //const Double_t ksecBeamX0 = 0.0*fgkmm; // guess - //const Double_t ksecBeamY0 = (15.223+40.)*fgkmm; // guess - // - const Int_t ksecNPoints = (ksecNPointsPerRadii+1)*ksecNRadii + 8; - Double_t secX[ksecNRadii] = {ksecX0,ksecX1,-1000.0,ksecX2 ,ksecX3 ,-1000.0, - ksecX4,ksecX5,-1000.0,ksecX6 ,ksecX7 ,-1000.0, - ksecX8,ksecX9,-1000.0,ksecX10,ksecX11,-1000.0, - ksecX12,-1000.0}; - Double_t secY[ksecNRadii] = {ksecY0,ksecY1,-1000.0,ksecY2 ,ksecY3 ,-1000.0, - ksecY4,ksecY5,-1000.0,ksecY6 ,ksecY7 ,-1000.0, - ksecY8,ksecY9,-1000.0,ksecY10,ksecY11,-1000.0, - ksecY12,-1000.0}; - Double_t secR[ksecNRadii] ={ksecR0 ,ksecR1 ,-.5*ksecDipLength-ksecDipRadii, - ksecR2 ,ksecR3 ,-.5*ksecDipLength-ksecDipRadii, - ksecR4 ,ksecR5 ,-.5*ksecDipLength-ksecDipRadii, - ksecR6 ,ksecR7 ,-.5*ksecDipLength-ksecDipRadii, - ksecR8 ,ksecR9 ,-.5*ksecDipLength-ksecDipRadii, - ksecR10,ksecR11,-.5*ksecDipLength-ksecDipRadii, - ksecR12,ksecR13};/* - Double_t secDip[ksecNRadii]={0.0,0.0,ksecDip0,0.0,0.0,ksecDip1, - 0.0,0.0,ksecDip2,0.0,0.0,ksecDip3, - 0.0,0.0,ksecDip4,0.0,0.0,ksecDip5, - 0.0,0.0};*/ + // (Double_t)ksecNPointsPerRadii); + const Double_t ksecZEndLen = 30.000 * fgkmm; + //const Double_t ksecZFlangLen = 45.000 * fgkmm; + const Double_t ksecTl = 0.860 * fgkmm; + const Double_t ksecCthick2 = 0.600 * fgkmm; + //const Double_t ksecCthick3 = 1.80 * fgkmm; + //const Double_t ksecSidelen = 22.0 * fgkmm; + //const Double_t ksecSideD5 = 3.679 * fgkmm; + //const Double_t ksecSideD12 = 7.066 * fgkmm; + const Double_t ksecRCoolOut = 2.400 * fgkmm; + const Double_t ksecRCoolIn = 2.000 * fgkmm; + const Double_t ksecDl1 = 5.900 * fgkmm; + const Double_t ksecDl2 = 8.035 * fgkmm; + const Double_t ksecDl3 = 4.553 * fgkmm; + const Double_t ksecDl4 = 6.978 * fgkmm; + const Double_t ksecDl5 = 6.978 * fgkmm; + const Double_t ksecDl6 = 6.978 * fgkmm; + const Double_t ksecCoolTubeThick = 0.04 * fgkmm; + const Double_t ksecCoolTubeROuter = 2.6 * fgkmm; + const Double_t ksecCoolTubeFlatX = 3.696 * fgkmm; + const Double_t ksecCoolTubeFlatY = 0.68 * fgkmm; + //const Double_t ksecBeamX0 = 0.0 * fgkmm; // guess + //const Double_t ksecBeamY0 = (15.223 + 40.) * fgkmm; // guess + // + // redefine some of the points already defined above + // in the format of arrays (???) + const Int_t ksecNPoints = (ksecNPointsPerRadii + 1) * ksecNRadii + 8; + Double_t secX[ksecNRadii] = { + ksecX0, ksecX1[sect], -1000.0, + ksecX2[sect], ksecX3[sect], -1000.0, + ksecX4[sect], ksecX5[sect], -1000.0, + ksecX6[sect], ksecX7[sect], -1000.0, + ksecX8[sect], ksecX9[sect], -1000.0, + ksecX10[sect], ksecX11[sect], -1000.0, + ksecX12[sect], -1000.0 + }; + Double_t secY[ksecNRadii] = { + ksecY0, ksecY1[sect], -1000.0, + ksecY2[sect], ksecY3[sect], -1000.0, + ksecY4[sect], ksecY5[sect], -1000.0, + ksecY6[sect], ksecY7[sect], -1000.0, + ksecY8[sect], ksecY9[sect], -1000.0, + ksecY10[sect], ksecY11[sect], -1000.0, + ksecY12[sect], -1000.0 + }; + Double_t secR[ksecNRadii] = { + ksecR0, ksecR1, -.5 * ksecDipLength - ksecDipRadii, + ksecR2, ksecR3, -.5 * ksecDipLength - ksecDipRadii, + ksecR4, ksecR5, -.5 * ksecDipLength - ksecDipRadii, + ksecR6, ksecR7, -.5 * ksecDipLength - ksecDipRadii, + ksecR8, ksecR9, -.5 * ksecDipLength - ksecDipRadii, + ksecR10, ksecR11, -.5 * ksecDipLength - ksecDipRadii, + ksecR12, ksecR13 + }; + Double_t secX2[ksecNRadii]; Double_t secY2[ksecNRadii]; Double_t secR2[ksecNRadii] = { - ksecR0,ksecR1,ksecRCoolOut,ksecR2,ksecR3,ksecRCoolOut,ksecR4,ksecR5, - ksecRCoolOut,ksecR6,ksecR7,ksecRCoolOut,ksecR8,ksecR9,ksecRCoolOut, - ksecR10,ksecR11,ksecRCoolOut,ksecR12,ksecR13}; - Double_t secDip2[ksecNCoolingTubeDips]={ksecDl1,ksecDl2,ksecDl3, - ksecDl4,ksecDl5,ksecDl6}; + ksecR0, ksecR1, ksecRCoolOut, + ksecR2, ksecR3, ksecRCoolOut, + ksecR4, ksecR5, ksecRCoolOut, + ksecR6, ksecR7, ksecRCoolOut, + ksecR8, ksecR9, ksecRCoolOut, + ksecR10, ksecR11, ksecRCoolOut, + ksecR12, ksecR13 + }; + Double_t secDip2[ksecNCoolingTubeDips] = { + ksecDl1, ksecDl2, ksecDl3, + ksecDl4, ksecDl5, ksecDl6 + }; Double_t secX3[ksecNRadii]; Double_t secY3[ksecNRadii]; - const Int_t ksecDipIndex[ksecNCoolingTubeDips] = {2,5,8,11,14,17}; + const Int_t ksecDipIndex[ksecNCoolingTubeDips] = {2, 5, 8, 11, 14, 17}; Double_t secAngleStart[ksecNRadii]; Double_t secAngleEnd[ksecNRadii]; + for(Int_t i = 0; i < ksecNRadii; i++)secAngleEnd[i] = 0.; Double_t secAngleStart2[ksecNRadii]; Double_t secAngleEnd2[ksecNRadii]; - Double_t secAngleTurbo[ksecNCoolingTubeDips] = {0.0,0.0,0.0,0.0,0.0,0.0}; + Double_t secAngleTurbo[ksecNCoolingTubeDips] = {0., 0., 0., 0., 0., 0.0}; //Double_t secAngleStart3[ksecNRadii]; //Double_t secAngleEnd3[ksecNRadii]; - Double_t xpp[ksecNPoints],ypp[ksecNPoints]; - Double_t xpp2[ksecNPoints],ypp2[ksecNPoints]; - Double_t *xp[ksecNRadii],*xp2[ksecNRadii]; - Double_t *yp[ksecNRadii],*yp2[ksecNRadii]; - TGeoXtru *sA0,*sA1,*sB0,*sB1; - TGeoEltu *sTA0,*sTA1; - TGeoTube *sTB0,*sTB1,*sM0; + Double_t xpp[ksecNPoints], ypp[ksecNPoints]; + Double_t xpp2[ksecNPoints], ypp2[ksecNPoints]; + Double_t *xp[ksecNRadii], *xp2[ksecNRadii]; + Double_t *yp[ksecNRadii], *yp2[ksecNRadii]; + TGeoXtru *sA0, *sA1, *sB0, *sB1; + TGeoCompositeShape *sA2, *sB2; + TGeoBBox *sB3; + TGeoEltu *sTA0, *sTA1; + TGeoTube *sTB0, *sTB1; //,*sM0; TGeoRotation *rot; TGeoTranslation *trans; TGeoCombiTrans *rotrans; - Double_t t,t0,t1,a,b,x0,y0,x1,y1; - Int_t i,j,k,m; + Double_t t, t0, t1, a, b, x0, y0,z0, x1, y1; + Int_t i, j, k, m; Bool_t tst; - if(moth==0){ - Error("CarbonFiberSector","moth=%p",moth); - return; - } // end if moth==0 - //SetDebug(3); - for(i=0;i0.0&&secR[j]>0.0)if(secAngleStart[i]>secAngleEnd[i]) - secAngleEnd[i] += 360.0; - secAngleStart2[i] = secAngleStart[i]; - secAngleEnd2[i] = secAngleEnd[i]; + // + // find starting and ending angles for all but cooling tube sections + secAngleStart[0] = 0.5 * ksecAngleSide13; + for(i = 0; i < ksecNRadii - 2; i++) { + tst = kFALSE; + for(j=0;j 0.0 && secR[j] > 0.0) { + if(secAngleStart[i] > secAngleEnd[i]) secAngleEnd[i] += 360.0; + } // end if(secR[i]>0.0 && secR[j]>0.0) + secAngleStart2[i] = secAngleStart[i]; + secAngleEnd2[i] = secAngleEnd[i]; } // end for i - secAngleEnd[ksecNRadii-2] = secAngleStart[ksecNRadii-2] + - (secAngleEnd[ksecNRadii-5]- - secAngleStart[ksecNRadii-5]); - if(secAngleEnd[ksecNRadii-2]<0.0) secAngleEnd[ksecNRadii-2] += 360.0; - secAngleStart[ksecNRadii-1] = secAngleEnd[ksecNRadii-2] - 180.0; - secAngleEnd[ksecNRadii-1] = secAngleStart[0]; + secAngleEnd[ksecNRadii-2] = secAngleStart[ksecNRadii-2] + + (secAngleEnd[ksecNRadii-5] - secAngleStart[ksecNRadii-5]); + if (secAngleEnd[ksecNRadii-2] < 0.0) secAngleEnd[ksecNRadii-2] += 360.0; + secAngleStart[ksecNRadii-1] = secAngleEnd[ksecNRadii-2] - 180.0; + secAngleEnd[ksecNRadii-1] = secAngleStart[0]; secAngleStart2[ksecNRadii-2] = secAngleStart[ksecNRadii-2]; secAngleEnd2[ksecNRadii-2] = secAngleEnd[ksecNRadii-2]; secAngleStart2[ksecNRadii-1] = secAngleStart[ksecNRadii-1]; secAngleEnd2[ksecNRadii-1] = secAngleEnd[ksecNRadii-1]; - // Find location of circle last rounded corner. + // + // find location of circle last rounded corner. i = 0; - j = ksecNRadii-2; + j = ksecNRadii - 2; t0 = TanD(secAngleStart[i]-90.); t1 = TanD(secAngleEnd[j]-90.); t = secY[i] - secY[j]; - // Note, secR[i=0] <0; secR[j=18]>0; and secR[j+1=19] <0 - t += (-secR[i]+secR[j+1])*SinD(secAngleStart[i]); - t -= (secR[j]-secR[j+1])*SinD(secAngleEnd[j]); - t += t1*secX[j] - t0*secX[i]; - t += t1*(secR[j]-secR[j+1])*CosD(secAngleEnd[j]); - t -= t0*(-secR[i]+secR[j+1])*CosD(secAngleStart[i]); - secX[ksecNRadii-1] = t/(t1-t0); - secY[ksecNRadii-1] = TanD(90.+0.5*ksecAngleSide13)* - (secX[ksecNRadii-1]-secX[0]) + secY[0]; + // NOTE: secR[i=0] < 0; secR[j=18] > 0; and secR[j+1=19] < 0 + t += (-secR[i]+secR[j+1]) * SinD(secAngleStart[i]); + t -= (secR[j]-secR[j+1]) * SinD(secAngleEnd[j]); + t += t1 * secX[j] - t0*secX[i]; + t += t1 * (secR[j] - secR[j+1]) * CosD(secAngleEnd[j]); + t -= t0 * (-secR[i]+secR[j+1]) * CosD(secAngleStart[i]); + secX[ksecNRadii-1] = t / (t1-t0); + secY[ksecNRadii-1] = TanD(90.0+0.5*ksecAngleSide13)* + (secX[ksecNRadii-1]-secX[0])+secY[0]; secX2[ksecNRadii-1] = secX[ksecNRadii-1]; secY2[ksecNRadii-1] = secY[ksecNRadii-1]; secX3[ksecNRadii-1] = secX[ksecNRadii-1]; secY3[ksecNRadii-1] = secY[ksecNRadii-1]; + // find location of cooling tube centers - for(i=0;iSurface for locating - // this sector around the beam pipe. This needs to be - // double checked, but I need my notes for that, Bjorn Nilsen - xAAtubeCenter0 = x0+(x1-x0)*t*0.5; - yAAtubeCenter0 = y0+(y1-y0)*t*0.5; - } // end if i==0 - if(a+b*(a-x0)/(b-y0)>0.0){ - secX[j] = a + TMath::Abs(y1-y0)*2.0*ksecDipRadii/t0; - secY[j] = b - TMath::Sign(2.0*ksecDipRadii,y1-y0)*(x1-x0)/t0; - secX2[j] = a + TMath::Abs(y1-y0)*ksecTl/t0; - secY2[j] = b - TMath::Sign(ksecTl,y1-y0)*(x1-x0)/t0; - secX3[j] = a + TMath::Abs(y1-y0)*(2.0*ksecDipRadii- - 0.5*ksecCoolTubeFlatY)/t0; - secY3[j] = b - TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY, - y1-y0)*(x1-x0)/t0; - }else{ - secX[j] = a - TMath::Abs(y1-y0)*2.0*ksecDipRadii/t0; - secY[j] = b + TMath::Sign(2.0*ksecDipRadii,y1-y0)*(x1-x0)/t0; - secX2[j] = a - TMath::Abs(y1-y0)*ksecTl/t0; - secY2[j] = b + TMath::Sign(ksecTl,y1-y0)*(x1-x0)/t0; - secX3[j] = a - TMath::Abs(y1-y0)*(2.0*ksecDipRadii- - 0.5*ksecCoolTubeFlatY)/t0; - secY3[j] = b + TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY, - y1-y0)*(x1-x0)/t0; - } // end if - // Set up Start and End angles to correspond to start/end of dips. - t1 = (secDip2[i]-TMath::Abs(secR[j]))/t0; - secAngleStart[j] = TMath::RadToDeg()*TMath::ATan2( - y0+(y1-y0)*t1-secY[j],x0+(x1-x0)*t1-secX[j]); - if(secAngleStart[j]<0.0) secAngleStart[j] += 360.0; + for(i = 0; i < ksecNCoolingTubeDips; i++) { + j = ksecDipIndex[i]; + x0 = secX[j-1] + TMath::Abs(secR[j-1]) * CosD(secAngleEnd[j-1]); + y0 = secY[j-1] + TMath::Abs(secR[j-1]) * SinD(secAngleEnd[j-1]); + x1 = secX[j+1] + TMath::Abs(secR[j+1]) * CosD(secAngleStart[j+1]); + y1 = secY[j+1] + TMath::Abs(secR[j+1]) * SinD(secAngleStart[j+1]); + t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1)); + t = secDip2[i] / t0; + a = x0+(x1-x0) * t; + b = y0+(y1-y0) * t; + if(i == 0) { + // get location of tube center->Surface for locating + // this sector around the beam pipe. + // This needs to be double checked, but I need my notes for that. + // (Bjorn Nilsen) + xAAtubeCenter0 = x0 + (x1 - x0) * t * 0.5; + yAAtubeCenter0 = y0 + (y1 - y0) * t * 0.5; + }// end if i==0 + if(a + b*(a - x0) / (b - y0) > 0.0) { + secX[j] = a + TMath::Abs(y1-y0) * 2.0 * ksecDipRadii/t0; + secY[j] = b - TMath::Sign(2.0*ksecDipRadii,y1-y0) * (x1-x0)/t0; + secX2[j] = a + TMath::Abs(y1-y0) * ksecTl/t0; + secY2[j] = b - TMath::Sign(ksecTl,y1-y0) * (x1-x0) / t0; + secX3[j] = a + TMath::Abs(y1-y0) * + (2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY)/t0; + secY3[j] = b - TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY, + y1-y0)*(x1-x0)/t0; + } else { + secX[j] = a - TMath::Abs(y1-y0)*2.0*ksecDipRadii/t0; + secY[j] = b + TMath::Sign(2.0*ksecDipRadii,y1-y0)*(x1-x0)/t0; + secX2[j] = a - TMath::Abs(y1-y0)*ksecTl/t0; + secY2[j] = b + TMath::Sign(ksecTl,y1-y0)*(x1-x0)/t0; + secX3[j] = a - TMath::Abs(y1-y0)*(2.0*ksecDipRadii-0.5* + ksecCoolTubeFlatY)/t0; + secY3[j] = b + TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY, + y1-y0)*(x1-x0)/t0; + } // end if(a+b*(a-x0)/(b-y0)>0.0) + + // Set up Start and End angles to correspond to start/end of dips. + t1 = (secDip2[i]-TMath::Abs(secR[j])) / t0; + secAngleStart[j] =TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j], + x0+(x1-x0)*t1-secX[j]); + if (secAngleStart[j]<0.0) secAngleStart[j] += 360.0; secAngleStart2[j] = secAngleStart[j]; t1 = (secDip2[i]+TMath::Abs(secR[j]))/t0; - secAngleEnd[j] = TMath::RadToDeg()*TMath::ATan2( - y0+(y1-y0)*t1-secY[j],x0+(x1-x0)*t1-secX[j]); - if(secAngleEnd[j]<0.0) secAngleEnd[j] += 360.0; - secAngleEnd2[j] = secAngleEnd[j]; - if(secAngleEnd[j]>secAngleStart[j]) secAngleEnd[j] -= 360.0; + secAngleEnd[j] = TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j], + x0+(x1-x0)*t1-secX[j]); + if (secAngleEnd[j]<0.0) secAngleEnd[j] += 360.0; + secAngleEnd2[j] = secAngleEnd[j]; + if (secAngleEnd[j]>secAngleStart[j]) secAngleEnd[j] -= 360.0; secR[j] = TMath::Sqrt(secR[j]*secR[j]+4.0*ksecDipRadii*ksecDipRadii); } // end for i - // Spcial cases + + // Special cases secAngleStart2[8] -= 360.; secAngleStart2[11] -= 360.; - // - SPDsectorShape(ksecNRadii,secX,secY,secR,secAngleStart,secAngleEnd, - ksecNPointsPerRadii,m,xp,yp); + + SPDsectorShape(ksecNRadii, secX, secY, secR, secAngleStart, secAngleEnd, + ksecNPointsPerRadii, m, xp, yp); + // Fix up dips to be square. - for(i=0;iSetName("ITS SPD Carbon fiber support Sector A0"); - sA0->DefinePolygon(m,xpp,ypp); - sA0->DefineSection(0,-ksecDz); - sA0->DefineSection(1,ksecDz); - // + sA0->SetName("SectorA0"); + sA0->DefinePolygon(m, xpp, ypp); + sA0->DefineSection(0, -ksecDz); + sA0->DefineSection(1, ksecDz); + + // store the edges of each XY segment which defines + // one of the plane zones where staves will have to be placed + fSPDsectorX0.Set(ksecNCoolingTubeDips); + fSPDsectorY0.Set(ksecNCoolingTubeDips); + fSPDsectorX1.Set(ksecNCoolingTubeDips); + fSPDsectorY1.Set(ksecNCoolingTubeDips); + Int_t ixy0, ixy1; + for(i = 0; i < ksecNCoolingTubeDips; i++) { + // Find index in xpp[] and ypp[] corresponding to where the + // SPD ladders are to be attached. Order them according to + // the ALICE numbering schema. Using array of indexes (+-1 for + // cooling tubes. For any "bend/dip/edge, there are + // ksecNPointsPerRadii+1 points involved. + if(i == 0) j = 1; + else if (i == 1) j = 0; + else j = i; + ixy0 = (ksecDipIndex[j]-1)*(ksecNPointsPerRadii+1)+ + (ksecNPointsPerRadii); + ixy1 = (ksecDipIndex[j]+1) * (ksecNPointsPerRadii+1); + fSPDsectorX0[i] = sA0->GetX(ixy0); + fSPDsectorY0[i] = sA0->GetY(ixy0); + fSPDsectorX1[i] = sA0->GetX(ixy1); + fSPDsectorY1[i] = sA0->GetY(ixy1); + } // end for i + //printf("SectorA#%d ",0); - InsidePoint(xpp[m-1],ypp[m-1],xpp[0],ypp[0],xpp[1],ypp[1], - ksecCthick,xpp2[0],ypp2[0]); - for(i=1;iSetName("ITS SPD Carbon fiber support Sector Air A1"); - sA1->DefinePolygon(m,xpp2,ypp2); - sA1->DefineSection(0,-ksecDz); - sA1->DefineSection(1,ksecDz); + sA1->SetName("SectorA1"); + sA1->DefinePolygon(m, xpp2, ypp2); + sA1->DefineSection(0, -ksecDz-ksecCthick2); + sA1->DefineSection(1, ksecDz+ksecCthick2); + + sA2 = new TGeoCompositeShape("ITS SPD Carbon fiber support Sector A0", + "SectorA0-SectorA1"); // // Error in TGeoEltu. Semi-axis X must be < Semi-axis Y (?). - sTA0 = new TGeoEltu("ITS SPD Cooling Tube TA0", - 0.5* ksecCoolTubeFlatY, 0.5* ksecCoolTubeFlatX,ksecDz); + sTA0 = new TGeoEltu("ITS SPD Cooling Tube TA0", 0.5 * ksecCoolTubeFlatY, + 0.5 * ksecCoolTubeFlatX, ksecDz); sTA1 = new TGeoEltu("ITS SPD Cooling Tube coolant TA1", - sTA0->GetA()-ksecCoolTubeThick, + sTA0->GetA() - ksecCoolTubeThick, sTA0->GetB()-ksecCoolTubeThick,ksecDz); - // SPDsectorShape(ksecNRadii,secX2,secY2,secR2,secAngleStart2,secAngleEnd2, - ksecNPointsPerRadii,m,xp,yp); - // + ksecNPointsPerRadii, m, xp, yp); sB0 = new TGeoXtru(2); - sB0->SetName("ITS SPD Carbon fiber support Sector End B0"); - sB0->DefinePolygon(m,xpp,ypp); - sB0->DefineSection(0,ksecDz); - sB0->DefineSection(1,ksecDz+ksecZEndLen); - // + sB0->SetName("EndB0"); + sB0->DefinePolygon(m, xpp, ypp); + sB0->DefineSection(0, ksecDz); + sB0->DefineSection(1, ksecDz + ksecZEndLen); + //printf("SectorB#%d ",0); + // Points around the most sharpened tips have to be avoided - M.S. 24 feb 09 + const Int_t nSpecialPoints = 5; + const Int_t kSpecialPoints[nSpecialPoints] = {7, 17, 47, 62, 77}; + Int_t i2 = 0; InsidePoint(xpp[m-1],ypp[m-1],xpp[0],ypp[0],xpp[1],ypp[1], - ksecCthick2,xpp2[0],ypp2[0]); - for(i=1;iSetName("ITS SPD Carbon fiber support Sector Air End B1"); - sB1->DefinePolygon(m,xpp2,ypp2); - sB1->DefineSection(0,ksecDz); - sB1->DefineSection(1,ksecDz+ksecLen); - sTB0 = new TGeoTube("ITS SPD Cooling Tube End TB0",0.0, - 0.5*ksecCoolTubeROuter,0.5*ksecLen); - sTB1 = new TGeoTube("ITS SPD Cooling Tube End coolant TB0",0.0, - sTB0->GetRmax()-ksecCoolTubeThick,0.5*ksecLen); - // - //sM0 = new TGeoTube("ITS SPD Sensitive Virutual Volume M0",0.0,8.0, - // sA0->GetZ(1)+sB0->GetZ(1)); + sB1->SetName("EndB1"); + sB1->DefinePolygon(i2+1, xpp2, ypp2); + sB1->DefineSection(0,sB0->GetZ(0)-ksecCthick2); + sB1->DefineSection(1,sB0->GetZ(1)+ksecCthick2); + + sB2 = new TGeoCompositeShape("ITS SPD Carbon fiber support Sector End B0", + "EndB0-EndB1"); + // SPD sector mount blocks + const Double_t kMountBlock[3] = {0.5*(1.8-0.2)*fgkmm,0.5*22.0*fgkmm, + 0.5*45.0*fgkmm}; + sB3 = new TGeoBBox((Double_t*)kMountBlock); + // SPD sector mount block screws and nuts (M.S. - 27 oct 2012) + const Double_t kMountBlockM3ScrewR = 0.5*3.0*fgkmm; // Metric screw + const Double_t kMountBlockHead1R = 0.5*8.0*fgkmm; + const Double_t kMountBlockHead1H = 1.0*fgkmm; + const Double_t kMountBlockHead2R = 0.5*6.0*fgkmm; + const Double_t kMountBlockHead2H = 2.7*fgkmm; + const Double_t kMountBlockM3NutR = 1.8*kMountBlockM3ScrewR; // Metric nut + const Double_t kMountBlockM3NutH = kMountBlockM3NutR; // Metric nut + TGeoTube *sM3 = new TGeoTube(0, kMountBlockM3ScrewR, sB3->GetDX()); + TGeoTube *sD1 = new TGeoTube(0, kMountBlockHead1R,kMountBlockHead1H/2); + TGeoTube *sD2 = new TGeoTube(0, kMountBlockHead2R,kMountBlockHead2H/2); + TGeoPgon *sN3 = new TGeoPgon(0, 360, 6, 2); + sN3->DefineSection(0,-kMountBlockM3NutH/2, 0, kMountBlockM3NutR); + sN3->DefineSection(1, kMountBlockM3NutH/2, 0, kMountBlockM3NutR); + // SPD sector cooling tubes + sTB0 = new TGeoTube("ITS SPD Cooling Tube End TB0", 0.0, + 0.5*ksecCoolTubeROuter,0.5*(sB0->GetZ(1)-sB0->GetZ(0))); + sTB1 = new TGeoTube("ITS SPD Cooling Tube End coolant TB0", 0.0, + sTB0->GetRmax() - ksecCoolTubeThick,sTB0->GetDz()); // - if(GetDebug(3)){ - if(medSPDcf) medSPDcf->Dump(); - else printf("medSPDcf=0\n"); - if(medSPDss) medSPDss->Dump(); - else printf("medSPDss=0\n"); - if(medSPDair) medSPDair->Dump(); - else printf("medSPDAir=0\n"); - if(medSPDcoolfl) medSPDcoolfl->Dump(); - else printf("medSPDcoolfl=0\n"); - //sM0->InspectShape(); + if(GetDebug(3)) { + if(medSPDcf) medSPDcf->Dump(); else AliInfo("medSPDcf = 0"); + if(medSPDss) medSPDss->Dump(); else AliInfo("medSPDss = 0"); + if(medSPDcoolfl) medSPDcoolfl->Dump();else AliInfo("medSPDcoolfl = 0"); sA0->InspectShape(); sA1->InspectShape(); sB0->InspectShape(); sB1->InspectShape(); - } // end if GetDebug - // - TGeoVolume *vA0,*vA1,*vTA0,*vTA1,*vB0,*vB1,*vTB0,*vTB1; - TGeoVolumeAssembly *vM0; - vM0 = new TGeoVolumeAssembly("ITSSPDSensitiveVirtualvolumeM0"); - //vM0 = new TGeoVolume("ITSSPDSensitiveVirtualvolumeM0",sM0,medSPDair); - //vM0->SetVisibility(kTRUE); - //vM0->SetLineColor(7); // light Blue - //vM0->SetLineWidth(1); - //vM0->SetFillColor(vM0->GetLineColor()); - //vM0->SetFillStyle(4090); // 90% transparent - vA0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorA0",sA0,medSPDcf); + sB2->InspectShape(); + } // end if(GetDebug(3)) + + // create the assembly of the support and place staves on it + TGeoVolumeAssembly *vM0 = new TGeoVolumeAssembly( + "ITSSPDSensitiveVirtualvolumeM0"); + StavesInSector(vM0); + // create other volumes with some graphical settings + TGeoVolume *vA0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorA0", + sA2, medSPDcf); vA0->SetVisibility(kTRUE); vA0->SetLineColor(4); // Blue vA0->SetLineWidth(1); vA0->SetFillColor(vA0->GetLineColor()); vA0->SetFillStyle(4010); // 10% transparent - vA1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorAirA1",sA1,medSPDair); - vA1->SetVisibility(kTRUE); - vA1->SetLineColor(7); // light Blue - vA1->SetLineWidth(1); - vA1->SetFillColor(vA1->GetLineColor()); - vA1->SetFillStyle(4090); // 90% transparent - vTA0 = new TGeoVolume("ITSSPDCoolingTubeTA0",sTA0,medSPDss); + TGeoVolume *vTA0 = new TGeoVolume("ITSSPDCoolingTubeTA0", sTA0, medSPDss); vTA0->SetVisibility(kTRUE); - vTA0->SetLineColor(1); // Black + vTA0->SetLineColor(15); // gray vTA0->SetLineWidth(1); vTA0->SetFillColor(vTA0->GetLineColor()); vTA0->SetFillStyle(4000); // 0% transparent - vTA1 = new TGeoVolume("ITSSPDCoolingTubeFluidTA1",sTA1,medSPDcoolfl); + TGeoVolume *vTA1 = new TGeoVolume("ITSSPDCoolingTubeFluidTA1", + sTA1, medSPDcoolfl); vTA1->SetVisibility(kTRUE); vTA1->SetLineColor(6); // Purple vTA1->SetLineWidth(1); vTA1->SetFillColor(vTA1->GetLineColor()); vTA1->SetFillStyle(4000); // 0% transparent - vB0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndB0",sB0,medSPDcf); + TGeoVolume *vB0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndB0", + sB2, medSPDcf); vB0->SetVisibility(kTRUE); - vB0->SetLineColor(4); // Blue + vB0->SetLineColor(1); // Black vB0->SetLineWidth(1); vB0->SetFillColor(vB0->GetLineColor()); - vB0->SetFillStyle(4010); // 10% transparent - vB1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndAirB1", - sB1,medSPDair); - vB1->SetVisibility(kTRUE); - vB1->SetLineColor(7); // light Blue - vB1->SetLineWidth(1); - vB1->SetFillColor(vB1->GetLineColor()); - vB1->SetFillStyle(4090); // 90% transparent - vTB0 = new TGeoVolume("ITSSPDCoolingTubeEndTB0",sTB0,medSPDss); + vB0->SetFillStyle(4000); // 0% transparent + TGeoVolume *vB3 = new TGeoVolume( + "ITSSPDCarbonFiberSupportSectorMountBlockB3",sB3, medSPDcf); + vB3->SetVisibility(kTRUE); + vB3->SetLineColor(26); // Brown shade + vB3->SetLineWidth(1); + vB3->SetFillColor(vB3->GetLineColor()); + vB3->SetFillStyle(4000); // 0% transparent + TGeoVolume *vM3 = new TGeoVolume( + "ITSSPDCarbonFiberSupportSectorMountBlockScrewM3",sM3, medSPDss); + vM3->SetVisibility(kTRUE); + vM3->SetLineColor(kGray); // Gray + vM3->SetLineWidth(1); + vM3->SetFillColor(vM3->GetLineColor()); + vM3->SetFillStyle(4000); // 0% transparent + TGeoVolume *vD1 = new TGeoVolume( + "ITSSPDCarbonFiberSupportSectorMountBlockScrewHead1",sD1, medSPDss); + vD1->SetVisibility(kTRUE); + vD1->SetLineColor(kGray); // Gray + vD1->SetLineWidth(1); + vD1->SetFillColor(vD1->GetLineColor()); + vD1->SetFillStyle(4000); // 0% transparent + TGeoVolume *vD2 = new TGeoVolume( + "ITSSPDCarbonFiberSupportSectorMountBlockScrewHead2",sD2, medSPDss); + vD2->SetVisibility(kTRUE); + vD2->SetLineColor(kGray); // Gray + vD2->SetLineWidth(1); + vD2->SetFillColor(vD2->GetLineColor()); + vD2->SetFillStyle(4000); // 0% transparent + TGeoVolume *vN3 = new TGeoVolume( + "ITSSPDCarbonFiberSupportSectorMountBlockScrewNut",sN3, medSPDss); + vN3->SetVisibility(kTRUE); + vN3->SetLineColor(kGray); // Gray + vN3->SetLineWidth(1); + vN3->SetFillColor(vN3->GetLineColor()); + vN3->SetFillStyle(4000); // 0% transparent + TGeoVolume *vTB0 = new TGeoVolume("ITSSPDCoolingTubeEndTB0",sTB0,medSPDss); vTB0->SetVisibility(kTRUE); - vTB0->SetLineColor(1); // Black + vTB0->SetLineColor(15); // gray vTB0->SetLineWidth(1); vTB0->SetFillColor(vTB0->GetLineColor()); vTB0->SetFillStyle(4000); // 0% transparent - vTB1 = new TGeoVolume("ITSSPDCoolingTubeEndFluidTB1",sTB1,medSPDcoolfl); + TGeoVolume *vTB1 = new TGeoVolume("ITSSPDCoolingTubeEndFluidTB1",sTB1, + medSPDcoolfl); vTB1->SetVisibility(kTRUE); - vTB1->SetLineColor(6); // Purple + vTB1->SetLineColor(7); // light blue vTB1->SetLineWidth(1); vTB1->SetFillColor(vTB1->GetLineColor()); - vTB1->SetFillStyle(4000); // 0% transparent - // + vTB1->SetFillStyle(4050); // 0% transparent + + // add volumes to mother container passed as argument of this method moth->AddNode(vM0,1,0); // Add virtual volume to mother - vA0->AddNode(vA1,1,0); // Put air inside carbon fiber. - vB0->AddNode(vB1,1,0); // Put air inside carbon fiber. - vTA0->AddNode(vTA1,1,0); // Put air inside carbon fiber. - vTB0->AddNode(vTB1,1,0); // Put air inside carbon fiber. - for(i=0;iAddNode(vTA1,1,0); // Put cooling liquid indide tube middel. + vTB0->AddNode(vTB1,1,0); // Put cooling liquid inside tube end. + Double_t tubeEndLocal[3]={0.0,0.0,sTA0->GetDz()}; + for(i = 0; i < ksecNCoolingTubeDips; i++) { x0 = secX3[ksecDipIndex[i]]; y0 = secY3[ksecDipIndex[i]]; - t = 90.0-secAngleTurbo[i]; - trans = new TGeoTranslation("",x0,y0,0.5*(sB1->GetZ(0)+sB1->GetZ(1))); - vB1->AddNode(vTB0,i+1,trans); - rot = new TGeoRotation("",0.0,0.0,t); - rotrans = new TGeoCombiTrans("",x0,y0,0.0,rot); - vM0->AddNode(vTA0,i+1,rotrans); - //delete rot; // rot owned by AliITSv11GeometerySPD::CarbonFiberSector + t = 90.0 - secAngleTurbo[i]; + z0 = 0.5*(sB1->GetZ(0)+sB1->GetZ(1)); + trans = new TGeoTranslation("",x0,y0,z0); + vM0->AddNode(vTB0, i+1, trans); + // Find location of tube ends for later use. + trans->LocalToMaster(tubeEndLocal,fTubeEndSector[0][0][i]); + trans = new TGeoTranslation("",x0,y0,-z0); + vM0->AddNode(vTB0, i+1+ksecNCoolingTubeDips, trans); + rot = new TGeoRotation("", 0.0, 0.0, t); + rotrans = new TGeoCombiTrans("", x0, y0, 0.0, rot); + vM0->AddNode(vTA0, i+1, rotrans); } // end for i - vM0->AddNode(vA0,1,0); - vM0->AddNode(vB0,1,0); + vM0->AddNode(vA0, 1, 0); + vM0->AddNode(vB0, 1, 0); // Reflection. - vM0->AddNode(vB0,2,new TGeoRotation("",90.,0.,90.,90.,180.,0.)); + rot = new TGeoRotation("", 90., 0., 90., 90., 180., 0.); + vM0->AddNode(vB0,2,rot); + // Find location of tube ends for later use. + for(i=0;iLocalToMaster( + fTubeEndSector[0][0][i],fTubeEndSector[0][1][i]); + // Put screws inside the mounting block + const Double_t kMountingBlockScrew1ZPos = 0.7 *fgkcm; + const Double_t kMountingBlockScrew2ZPos = 2.01*fgkcm; + const Double_t kMountingBlockScrew34Pos = 0.51*fgkcm; + vB3->AddNode(vM3, 1, new TGeoCombiTrans(0, 0, + (sB3->GetDZ()-kMountingBlockScrew1ZPos), + new TGeoRotation("",90,90,90))); + vB3->AddNode(vM3, 2, new TGeoCombiTrans(0, 0, + (sB3->GetDZ()-kMountingBlockScrew2ZPos), + new TGeoRotation("",90,90,90))); + vB3->AddNode(vM3, 3, new TGeoCombiTrans(0,-kMountingBlockScrew34Pos, + -(sB3->GetDZ()-kMountingBlockScrew34Pos), + new TGeoRotation("",90,90,90))); + vB3->AddNode(vM3, 4, new TGeoCombiTrans(0, kMountingBlockScrew34Pos, + -(sB3->GetDZ()-kMountingBlockScrew34Pos), + new TGeoRotation("",90,90,90))); + // left side + t = -TMath::RadToDeg()*TMath::ATan2( + sB0->GetX(0)-sB0->GetX(sB0->GetNvert()-1), + sB0->GetY(0)-sB0->GetY(sB0->GetNvert()-1)); + rot = new TGeoRotation("",t,0.0,0.0);// z axis rotation + x0 = 0.5*(sB0->GetX(0)+sB0->GetX(sB0->GetNvert()-1))+ + sB3->GetDX()*TMath::Cos(t*TMath::DegToRad()); + y0 = 0.5*(sB0->GetY(0)+sB0->GetY(sB0->GetNvert()-1))+ + sB3->GetDX()*TMath::Sin(t*TMath::DegToRad()); + z0 = sB0->GetZ(0)+sB3->GetDZ(); + rotrans = new TGeoCombiTrans("",x0,y0,z0,rot); + vM0->AddNode(vB3,1,rotrans); // Put Mounting bracket on sector + // the screw heads and nuts + Double_t h = sM3->GetDz() + sD1->GetDz(); + Double_t zt = sB3->GetDZ()-kMountingBlockScrew1ZPos; + vM0->AddNode(vD1, 1, new TGeoCombiTrans(x0+h*CosD(180+t), y0+h*SinD(180+t), + z0+zt, + new TGeoRotation("",90+t,90,90))); + h = sM3->GetDz() + sD2->GetDz() + ksecCthick2 + 0.06; + zt = sB3->GetDZ()-kMountingBlockScrew2ZPos; + vM0->AddNode(vD2, 1, new TGeoCombiTrans(x0+h*CosD(180+t), y0+h*SinD(180+t), + z0+zt, + new TGeoRotation("",90+t,90,90))); + Double_t loc[3],mas[3]; + loc[0]=0; + loc[1]=-kMountingBlockScrew34Pos; + loc[2]=-(sB3->GetDZ()-kMountingBlockScrew34Pos); + rotrans->LocalToMaster(loc,mas); + vM0->AddNode(vD2, 2, new TGeoCombiTrans(mas[0]+h*CosD(180+t), + mas[1]+h*SinD(180+t), + mas[2], + new TGeoRotation("",90+t,90,90))); + loc[1]=kMountingBlockScrew34Pos; + rotrans->LocalToMaster(loc,mas); + vM0->AddNode(vD2, 3, new TGeoCombiTrans(mas[0]+h*CosD(180+t), + mas[1]+h*SinD(180+t), + mas[2], + new TGeoRotation("",90+t,90,90))); + + rot = new TGeoRotation("",t,180.0,0.0);// z & x axis rotation + rotrans = new TGeoCombiTrans("",x0,y0,-z0,rot); + vM0->AddNode(vB3,2,rotrans); // Put Mounting bracket on sector + h = sM3->GetDz() + sN3->GetZ(1); + zt = sB3->GetDZ()-kMountingBlockScrew1ZPos; + vM0->AddNode(vN3, 1, new TGeoCombiTrans(x0+h*CosD(180+t), y0+h*SinD(180+t), + -z0-zt, + new TGeoRotation("",90+t,90,90))); + h += ksecCthick2 + 0.06; + zt = sB3->GetDZ()-kMountingBlockScrew2ZPos; + vM0->AddNode(vN3, 2, new TGeoCombiTrans(x0+h*CosD(180+t), y0+h*SinD(180+t), + -z0-zt, + new TGeoRotation("",90+t,90,90))); + loc[1]=-kMountingBlockScrew34Pos; + rotrans->LocalToMaster(loc,mas); + vM0->AddNode(vN3, 3, new TGeoCombiTrans(mas[0]+h*CosD(180+t), + mas[1]+h*SinD(180+t), + mas[2], + new TGeoRotation("",90+t,90,90))); + loc[1]=kMountingBlockScrew34Pos; + rotrans->LocalToMaster(loc,mas); + vM0->AddNode(vN3, 4, new TGeoCombiTrans(mas[0]+h*CosD(180+t), + mas[1]+h*SinD(180+t), + mas[2], + new TGeoRotation("",90+t,90,90))); + + t *= -1.0; + rot = new TGeoRotation("",t,0.0,0.0); // z axis rotation + x0 = -0.5*(sB0->GetX(0)+sB0->GetX(sB0->GetNvert()-1))-3.5* + sB3->GetDX()*TMath::Cos(t*TMath::DegToRad()); + y0 = 0.5*(sB0->GetY(0)+sB0->GetY(sB0->GetNvert()-1))-3.5* + sB3->GetDX()*TMath::Sin(t*TMath::DegToRad()); + rotrans = new TGeoCombiTrans("",1.01*x0,y0,z0,rot); + vM0->AddNode(vB3,3,rotrans); // Put Mounting bracket on sector + h = sM3->GetDz() + sN3->GetZ(1); + zt = sB3->GetDZ()-kMountingBlockScrew1ZPos; + vM0->AddNode(vN3, 5, new TGeoCombiTrans(x0-h*CosD(180-t), y0+h*SinD(180-t), + z0+zt, + new TGeoRotation("",90+t,90,90))); + h += ksecCthick2 + 0.02; + zt = sB3->GetDZ()-kMountingBlockScrew2ZPos; + vM0->AddNode(vN3, 6, new TGeoCombiTrans(x0-h*CosD(180-t), y0+h*SinD(180-t), + z0+zt, + new TGeoRotation("",90+t,90,90))); + loc[1]=-kMountingBlockScrew34Pos; + rotrans->LocalToMaster(loc,mas); + vM0->AddNode(vN3, 7, new TGeoCombiTrans(mas[0]-h*CosD(180-t), + mas[1]+h*SinD(180-t), + mas[2], + new TGeoRotation("",90+t,90,90))); + loc[1]=kMountingBlockScrew34Pos; + rotrans->LocalToMaster(loc,mas); + vM0->AddNode(vN3, 8, new TGeoCombiTrans(mas[0]-h*CosD(180-t), + mas[1]+h*SinD(180-t), + mas[2], + new TGeoRotation("",90+t,90,90))); + + rot = new TGeoRotation("",t,180.0,0.0); // z & x axis rotation + rotrans = new TGeoCombiTrans("",1.01*x0,y0,-z0,rot); + vM0->AddNode(vB3,4,rotrans); // Put Mounting bracket on sector + h = sM3->GetDz() + sD1->GetDz(); + zt = sB3->GetDZ()-kMountingBlockScrew1ZPos; + vM0->AddNode(vD1, 2, new TGeoCombiTrans(x0-h*CosD(180-t), y0+h*SinD(180-t), + -z0-zt, + new TGeoRotation("",90+t,90,90))); + h = sM3->GetDz() + sD2->GetDz() + ksecCthick2 + 0.02; + zt = sB3->GetDZ()-kMountingBlockScrew2ZPos; + vM0->AddNode(vD2, 4, new TGeoCombiTrans(x0-h*CosD(180-t), y0+h*SinD(180-t), + -z0-zt, + new TGeoRotation("",90+t,90,90))); + loc[1]=-kMountingBlockScrew34Pos; + rotrans->LocalToMaster(loc,mas); + vM0->AddNode(vD2, 5, new TGeoCombiTrans(mas[0]-h*CosD(180-t), + mas[1]+h*SinD(180-t), + mas[2], + new TGeoRotation("",90+t,90,90))); + loc[1]=kMountingBlockScrew34Pos; + rotrans->LocalToMaster(loc,mas); + vM0->AddNode(vD2, 6, new TGeoCombiTrans(mas[0]-h*CosD(180-t), + mas[1]+h*SinD(180-t), + mas[2], + new TGeoRotation("",90+t,90,90))); + if(GetDebug(3)){ vM0->PrintNodes(); vA0->PrintNodes(); - vA1->PrintNodes(); vB0->PrintNodes(); - vB1->PrintNodes(); + vB3->PrintNodes(); vTA0->PrintNodes(); vTA1->PrintNodes(); vTB0->PrintNodes(); vTB1->PrintNodes(); - } // end if GetDebug + } // end if(GetDebug(3)) +} +//______________________________________________________________________ +Bool_t AliITSv11GeometrySPD::CFHolePoints(Double_t s,Double_t r1, + Double_t r2,Double_t l,Double_t &x,Double_t &y) const +{ + // + // Step along arck a distancs ds and compute boundry of + // two holes (radius r1 and r2) a distance l apart (along + // x-axis). + // Inputs: + // Double_t s fractional Distance along arcs [0-1] + // where 0-> alpha=beta=0, 1-> alpha=90 degrees. + // Double_t r1 radius at center circle + // Double_t r2 radius of displaced circle + // Double_t l Distance displaced circle is displaces (x-axis) + // Output: + // Double_t x x coordinate along double circle. + // Double_t y y coordinate along double circle. + // Return: + // logical, kFALSE if an error + // + Double_t alpha,beta; + Double_t ac,bc,scb,sca,t,alphac,betac; // at intersection of two circles + + x=y=0.0; + ac = r1*r1-l*l-r2*r2; + bc = 2.*l*r2; + if(bc==0.0) {printf("bc=0 l=%e r2=%e\n",l,r2);return kFALSE;} + betac = TMath::ACos(ac/bc); + alphac = TMath::Sqrt((bc-ac)*(bc+ac))/(2.*l*r1); + scb = r2*betac; + sca = r1*alphac; + t = r1*0.5*TMath::Pi() - sca + scb; + if(s<= scb/t){ + beta = s*t/r2; + x = r2*TMath::Cos(beta) + l; + y = r2*TMath::Sin(beta); + //printf("betac=%e scb=%e t=%e s=%e beta=%e x=%e y=%e\n", + // betac,scb,t,s,beta,x,y); + return kTRUE; + }else{ + beta = (s*t-scb+sca)/(r1*0.5*TMath::Pi()); + alpha = beta*0.5*TMath::Pi(); + x = r1*TMath::Cos(alpha); + y = r1*TMath::Sin(alpha); + //printf("alphac=%e sca=%e t=%e s=%e beta=%e alpha=%e x=%e y=%e\n", + // alphac,sca,t,s,beta,alpha,x,y); + return kTRUE; + } // end if + return kFALSE; +} +//______________________________________________________________________ +Bool_t AliITSv11GeometrySPD::GetSectorMountingPoints(Int_t index,Double_t &x0, + Double_t &y0, Double_t &x1, Double_t &y1) const +{ + // + // Returns the edges of the straight borders in the SPD sector shape, + // which are used to mount staves on them. + // Coordinate system is that of the carbon fiber sector volume. + // --- + // Index numbering is as follows: + // /5 + // /\/4 + // 1\ \/3 + // 0|___\/2 + // --- + // Arguments [the ones passed by reference contain output values]: + // Int_t index --> location index according to above scheme [0-5] + // Double_t &x0 --> (by ref) x0 location or the ladder sector [cm] + // Double_t &y0 --> (by ref) y0 location of the ladder sector [cm] + // Double_t &x1 --> (by ref) x1 location or the ladder sector [cm] + // Double_t &y1 --> (by ref) y1 location of the ladder sector [cm] + // TGeoManager *mgr --> The TGeo builder + // --- + // The location is described by a line going from (x0, y0) to (x1, y1) + // --- + // Returns kTRUE if no problems encountered. + // Returns kFALSE if a problem was encountered (e.g.: shape not found). // + Int_t isize = fSPDsectorX0.GetSize(); + + x0 = x1 = y0 = y1 = 0.0; + if(index < 0 || index > isize) { + AliError(Form("index = %d: allowed 0 --> %d", index, isize)); + return kFALSE; + } // end if(index<0||index>isize) + x0 = fSPDsectorX0[index]; + x1 = fSPDsectorX1[index]; + y0 = fSPDsectorY0[index]; + y1 = fSPDsectorY1[index]; + return kTRUE; } -//---------------------------------------------------------------------- +//______________________________________________________________________ void AliITSv11GeometrySPD::SPDsectorShape(Int_t n,const Double_t *xc, -const Double_t *yc,const Double_t *r,const Double_t *ths,const Double_t *the, - Int_t npr,Int_t &m,Double_t **xp,Double_t **yp){ + const Double_t *yc, const Double_t *r, + const Double_t *ths, const Double_t *the, + Int_t npr, Int_t &m, Double_t **xp, Double_t **yp) const +{ + // // Code to compute the points that make up the shape of the SPD // Carbon fiber support sections // Inputs: - // Int_t n Size of arrays xc,yc, and r. - // Double_t *xc Array of x values for radii centers. - // Double_t *yc Array of y values for radii centers. - // Double_t *r Array of signed radii values. - // Double_t *ths Array of starting angles [degrees]. - // Double_t *the Array of ending angles [degrees]. - // Int_t npr The number of lines segments to aproximate the arc. - // Outputs: - // Int_t m The number of enetries in the arrays *xp[npr+1] - // and *yp[npr+1]. - // Double_t **xp Array of x coordinate values of the line segments - // which make up the SPD support sector shape. - // Double_t **yp Array of y coordinate values of the line segments - // which make up the SPD support sector shape. - // Return: - // none. - Int_t i,k; - Double_t t,t0,t1; - - m = n*(npr+1); - if(GetDebug(2)){ - cout <<" X \t Y \t R \t S \t E"<< m <MakeBox("ITSSPDchip",medSPDSiChip, + 0.5*chipWidth,0.5*chipThickness,0.5*chipLength); + // the sensor as well + TGeoVolume *volSens = mgr->MakeBox(GetSenstiveVolumeName(layer),medSi, + 0.5*sensWidth,0.5*sensThickness,0.5*sensLength); + // the guard ring shape is the subtraction of two boxes with the + // same center. + TGeoBBox *shIn = new TGeoBBox(0.5*sensWidth,sensThickness,0.5*sensLength); + TGeoBBox *shOut = new TGeoBBox(0.5*sensWidth+guardRingWidth, + 0.5*sensThickness,0.5*sensLength+guardRingWidth); + shIn->SetName("ITSSPDinnerBox"); + shOut->SetName("ITSSPDouterBox"); + TGeoCompositeShape *shBorder = new TGeoCompositeShape( + "ITSSPDgaurdRingBorder",Form("%s-%s",shOut->GetName(),shIn->GetName())); + TGeoVolume *volBorder = new TGeoVolume("ITSSPDgaurdRing",shBorder,medSi); + // bump bonds for one whole column + TGeoVolume *volBB = mgr->MakeBox("ITSSPDbb",medBumpBond,0.5*bbWidth, + 0.5*bbThickness,0.5*bbLength); + // set colors of all objects for visualization + volSens->SetLineColor(kYellow + 1); + volChip->SetLineColor(kGreen); + volBorder->SetLineColor(kYellow + 3); + volBB->SetLineColor(kGray); + + // ** MOVEMENTS ** + // sensor is translated along thickness (X) and width (Y) + Double_t ySens = 0.5 * (thickness - sensThickness); + Double_t zSens = 0.0; + // we want that the x of the ladder is the same as the one of + // its sensitive volume + TGeoTranslation *trSens = new TGeoTranslation(0.0, ySens, zSens); + // bump bonds are translated along all axes: + // keep same Y used for sensors, but change the Z + TGeoTranslation *trBB[160]; + Double_t x = 0.0; + Double_t y = 0.5 * (thickness - bbThickness) - sensThickness; + Double_t z = -0.5 * sensLength + guardRingWidth + fgkmm*0.425 - bbPos; + Int_t i; + for (i = 0; i < 160; i++) { + trBB[i] = new TGeoTranslation(x, y, z); + switch(i) { + case 31:case 63:case 95:case 127: + z += fgkmm * 0.625 + fgkmm * 0.2; + break; + default: + z += fgkmm * 0.425; + } // end switch + } // end for i + // the chips are translated along the length (Z) and thickness (X) + TGeoTranslation *trChip[5] = {0, 0, 0, 0, 0}; + x = -xSens; + y = 0.5 * (chipThickness - thickness); + z = 0.0; + for (i = 0; i < 5; i++) { + z = -0.5*length + guardRingWidth + + (Double_t)i*chipSpacing + ((Double_t)(i) + 0.5)*chipLength; + trChip[i] = new TGeoTranslation(x, y, z); + } // end ofr i + + // add nodes to container + container->AddNode(volSens, 1, trSens); + container->AddNode(volBorder, 1, trSens); + for (i = 0; i < 160; i++) container->AddNode(volBB,i+1,trBB[i]); + for (i = 0; i < 5; i++) container->AddNode(volChip,i+3,trChip[i]); + // return the container + return container; } + //______________________________________________________________________ -void AliITSv11GeometrySPD::HalfStave(TGeoVolume *moth,Double_t &thicknessAA, - TGeoManager *mgr){ - // Define the detail SPD Half Stave geometry. - // Inputs: - // TGeoVolume *moth The mother volume to place this object. - // Int_t &thicknessAA Thickness of stave at section A-A - // TGeoManager *mgr TGeoManager default gGeoManager - // Outputs: - // none. - // Return: - // none. +TGeoVolume* AliITSv11GeometrySPD::CreateClip(TArrayD &sizes,Bool_t isDummy, + TGeoManager *mgr) const +{ + // + // Creates the carbon fiber clips which are added to the central ladders. + // They have a complicated shape which is approximated by a TGeoXtru + // Implementation of a single clip over an half-stave. + // It has a complicated shape which is approximated to a section like this: + // + // 6 + // /\ . + // 7 //\\ 5 + // / 1\\___________________4 + // 0 \___________________ + // 2 3 + // with a finite thickness for all the shape + // Its local reference frame is such that point A corresponds to origin. + // - thicknessAA = 1.03*fgkmm; // Default value - if(moth==0){ - Error("HalfStave","moth=%p mgr=%p",moth,mgr); - return; - } // end if moth==0 + // MODIFIED geometry + Double_t sposty = fgkmm * -0.5; // lower internal side to avoid overlaps with modified geometry + + Double_t fullLength = fgkmm * 12.6; // = x4 - x0 + Double_t flatLength = fgkmm * 5.4; // = x4 - x3 + Double_t inclLongLength = fgkmm * 5.0; // = 5-6 + Double_t inclShortLength = fgkmm * 2.0; // = 6-7 + Double_t fullHeight = fgkmm * 2.8; // = y6 - y3 + Double_t thickness = fgkmm * 0.18; // thickness + Double_t totalLength = fgkmm * 52.0; // total length in Z + Double_t holeSize = fgkmm * 5.0; // dimension of cubic + // hole inserted for pt1000 + Double_t angle1 = 27.0; // supplementary of angle DCB + Double_t angle2; // angle DCB + Double_t angle3; // angle of GH with vertical + + angle2 = 0.5 * (180.0 - angle1); + angle3 = 90.0 - TMath::ACos(fullLength - flatLength - + inclLongLength*TMath::Cos(angle1)) * + TMath::RadToDeg(); + angle1 *= TMath::DegToRad(); + angle2 *= TMath::DegToRad(); + angle3 *= TMath::DegToRad(); + + Double_t x[8], y[8]; + + x[0] = 0.0; + x[1] = x[0] + fullLength - flatLength - inclLongLength*TMath::Cos(angle1); + x[2] = x[0] + fullLength - flatLength; + x[3] = x[0] + fullLength; + x[4] = x[3]; + x[5] = x[4] - flatLength + thickness * TMath::Cos(angle2); + x[6] = x[1]; + x[7] = x[0]; + + y[0] = 0.0; + y[1] = y[0] + inclShortLength * TMath::Cos(angle3); + y[2] = y[1] - inclLongLength * TMath::Sin(angle1); + y[3] = y[2]; + y[4] = y[3] + thickness; + y[5] = y[4]; + y[6] = y[1] + thickness; + y[7] = y[0] + thickness; + + y[0] += sposty; + y[7] += sposty; + + sizes.Set(7); + sizes[0] = totalLength; + sizes[1] = fullHeight; + sizes[2] = y[2]; + sizes[3] = y[6]; + sizes[4] = x[0]; + sizes[5] = x[3]; + sizes[6] = x[2]; + + if(isDummy){// use this argument when on ewant just the + // positions without create any volume + return NULL; + } // end if isDummy + + TGeoXtru *shClip = new TGeoXtru(2); + shClip->SetName("ITSSPDshclip"); + shClip->DefinePolygon(8, x, y); + shClip->DefineSection(0, -0.5*totalLength, 0., 0., 1.0); + shClip->DefineSection(1, 0.5*totalLength, 0., 0., 1.0); + + TGeoBBox *shHole = new TGeoBBox("ITSSPDSHClipHole",0.5*holeSize, + 0.5*holeSize,0.5*holeSize); + TGeoTranslation *tr1 = new TGeoTranslation("ITSSPDTRClipHole1",x[2],0.0, + fgkmm*14.); + TGeoTranslation *tr2 = new TGeoTranslation("ITSSPDTRClipHole2",x[2],0.0, + 0.0); + TGeoTranslation *tr3 = new TGeoTranslation("ITSSPDTRClipHole3",x[2],0.0, + -fgkmm*14.); + tr1->RegisterYourself(); + tr2->RegisterYourself(); + tr3->RegisterYourself(); + + //TString strExpr("ITSSPDshclip-("); + TString strExpr(shClip->GetName()); + strExpr.Append("-("); + strExpr.Append(Form("%s:%s+", shHole->GetName(), tr1->GetName())); + strExpr.Append(Form("%s:%s+", shHole->GetName(), tr2->GetName())); + strExpr.Append(Form("%s:%s)", shHole->GetName(), tr3->GetName())); + TGeoCompositeShape *shClipHole = new TGeoCompositeShape( + "ITSSPDSHClipHoles",strExpr.Data()); + + TGeoMedium *mat = GetMedium("SPD C (M55J)$", mgr); + TGeoVolume *vClip = new TGeoVolume("ITSSPDclip", shClipHole, mat); + vClip->SetLineColor(kGray + 2); + return vClip; } -//---------------------------------------------------------------------- -void AliITSv11GeometrySPD::CreateFigure0(const Char_t *filepath, - const Char_t *type, - TGeoManager *mgr){ - // Creates Figure 0 for the documentation of this class. In this - // specific case, it creates the X,Y cross section of the SPD suport - // section, center and ends. The output is written to a standard - // file name to the path specificed. - // Inputs: - // const Char_t *filepath Path where the figure is to be drawn - // const Char_t *type The type of file, default is gif. - // TGeoManager *mgr The TGeoManager default gGeoManager - // Output: - // none. - // Return: - // none. - TGeoXtru *sA0,*sA1,*sB0,*sB1; - //TPolyMarker *pmA,*pmB; - TPolyLine plA0,plA1,plB0,plB1; - TCanvas *canvas; - TLatex txt; - Double_t x=0.0,y=0.0; - Int_t i,kNRadii=6; - - if(strcmp(filepath,"")){ - Error("CreateFigure0","filepath=%s type=%s",filepath,type); - } // end if + +//______________________________________________________________________ +TGeoVolume* AliITSv11GeometrySPD::CreatePatchPanel(TArrayD &sizes, + TGeoManager *mgr) const +{ + // + // Creates the patch panel approximated with a "L"-shaped TGeoXtru + // with a finite thickness for all the shape + // Its local reference frame is such that point A corresponds to origin. + // + Double_t hLength = fgkmm * 50.0; // horizontal length + Double_t vLength = fgkmm * 50.0; // vertical length + Double_t angle = 88.3; // angle between hor and vert + Double_t thickness = fgkmm * 4.0; // thickness + Double_t width = fgkmm * 100.0; // width looking from cone + + Double_t x[7], y[7]; + + y[0] = 0.0; + y[1] = y[0] + hLength; + y[2] = y[1]; + y[3] = y[0] + thickness; + y[4] = y[3] + vLength * TMath::Cos(angle*TMath::DegToRad()); + y[5] = y[4] - thickness / TMath::Sin(angle*TMath::DegToRad()); + y[6] = y[0]; + + x[0] = 0.0; + x[1] = x[0]; + x[2] = x[1] + thickness; + x[3] = x[2]; + x[4] = x[3] + vLength * TMath::Sin(angle*TMath::DegToRad()); + x[5] = x[4]; + x[6] = x[0] + thickness; + + sizes.Set(3); + sizes[0] = hLength; + sizes[1] = vLength; + sizes[2] = thickness; + + TGeoXtru *shPatch = new TGeoXtru(2); + shPatch->SetName("ITSSPDpatchShape1"); + shPatch->DefinePolygon(7, x, y); + shPatch->DefineSection(0, -0.5*width, 0., 0., 1.0); + shPatch->DefineSection(1, 0.5*width, 0., 0., 1.0); + + /* + Double_t subThickness = 10.0 * fgkmm; + Double_t subWidth = 55.0 * fgkmm; + new TGeoBBox("ITSSPDpatchShape2", 0.5*subThickness, 60.0 * fgkmm, 0.5*subWidth); + TGeoRotation *rotSub = new TGeoRotation(*gGeoIdentity); + rotSub->SetName("shPatchSubRot"); + rotSub->RotateZ(50.0); + rotSub->RegisterYourself(); + TGeoCombiTrans *trSub = new TGeoCombiTrans(0.26*hLength, 0.26*vLength, 0.0, rotSub); + trSub->SetName("shPatchSubTr"); + trSub->RegisterYourself(); + + TGeoCompositeShape *shPatchFinal = new TGeoCompositeShape("ITSSPDpatchShape1-(ITSSPDpatchShape2:shPatchSubTr)"); + */ + + TGeoMedium *mat = GetMedium("AL$", mgr); + //TGeoVolume *vPatch = new TGeoVolume("ITSSPDpatchPanel", shPatchFinal, mat); + TGeoVolume *vPatch = new TGeoVolume("ITSSPDpatchPanel", shPatch, mat); + vPatch->SetLineColor(kAzure); + + return vPatch; +} + +//___________________________________________________________________ +TGeoCompositeShape* AliITSv11GeometrySPD::CreateGroundingFoilShape + (Int_t itype,Double_t &length,Double_t &width, + Double_t thickness,TArrayD &sizes) +{ // - sA0 = (TGeoXtru*) mgr->GetVolume( - "ITSSPDCarbonFiberSupportSectorA0_1")->GetShape(); - sA1 = (TGeoXtru*) mgr->GetVolume( - "ITSSPDCarbonFiberSupportSectorAirA1_1")->GetShape(); - sB0 = (TGeoXtru*) mgr->GetVolume( - "ITSSPDCarbonFiberSupportSectorEndB0_1")->GetShape(); - sB1 = (TGeoXtru*) mgr->GetVolume( - "ITSSPDCarbonFiberSupportSectorEndAirB1_1")->GetShape(); - //pmA = new TPolyMarker(); - //pmA.SetMarkerStyle(2); // + - //pmA.SetMarkerColor(7); // light blue - //pmB = new TPolyMarker(); - //pmB.SetMarkerStyle(5); // X - //pmB.SetMarkerColor(6); // purple - plA0.SetPolyLine(sA0->GetNvert()); - plA0.SetLineColor(1); // black - plA0.SetLineStyle(1); - plA1.SetPolyLine(sA1->GetNvert()); - plA1.SetLineColor(2); // red - plA1.SetLineStyle(1); - plB0.SetPolyLine(sB0->GetNvert()); - plB0.SetLineColor(3); // Green - plB0.SetLineStyle(2); - plB1.SetPolyLine(sB1->GetNvert()); - plB1.SetLineColor(4); // Blue - plB1.SetLineStyle(2); - //for(i=0;iGetNvert();i++) plA0.SetPoint(i,sA0->GetX(i),sA0->GetY(i)); - for(i=0;iGetNvert();i++) plA1.SetPoint(i,sA1->GetX(i),sA1->GetY(i)); - for(i=0;iGetNvert();i++) plB0.SetPoint(i,sB0->GetX(i),sB0->GetY(i)); - for(i=0;iGetNvert();i++) plB1.SetPoint(i,sB1->GetX(i),sB1->GetY(i)); - canvas = new TCanvas("AliITSv11GeometrySPDFig0","",1000,1000); - canvas->Range(-3.,-3.,3.,3.); - txt.SetTextSize(0.05); - txt.SetTextAlign(33); - txt.SetTextColor(1); - txt.DrawLatex(2.9,2.9,"Section A-A outer Carbon Fiber surface"); - txt.SetTextColor(2); - txt.DrawLatex(2.9,2.5,"Section A-A Inner Carbon Fiber surface"); - txt.SetTextColor(3); - txt.DrawLatex(2.9,2.1,"Section E-E outer Carbon Fiber surface"); - txt.SetTextColor(4); - txt.DrawLatex(2.9,1.7,"Section E-E Inner Carbon Fiber surface"); - plA0.Draw(); - plA1.Draw(); - plB0.Draw(); - plB1.Draw(); - //pmA.Draw(); - //pmB.Draw(); - // - x = 1.0; - y = -2.5; - Char_t chr[3]; - for(i=0;i11-->0) + // and is also subtracted from the main shape + // --- + // The argument ("type") is used to choose between all these + // possibilities: + // - type = 0 --> kapton layer + // - type = 1 --> aluminum layer + // - type = 2 --> glue layer between support and GF + // - type = 3 --> glue layer between GF and ladders + // Returns: a TGeoCompositeShape which will then be used to shape + // several volumes. Since TGeoXtru is used, the local reference + // frame of this object has X horizontal and Y vertical w.r to + // the shape drawn above, and Z axis going perpendicularly to the screen. + // This is not the correct reference for the half stave, for which + // the "long" dimension is Z and the "short" is X, while Y goes in + // the direction of thickness. This will imply some rotations when + // using the volumes created with this shape. + + // suffix to differentiate names + Char_t type[10]; + + // size of the virtual box containing exactly this volume + length = fgkmm * 243.18; + width = fgkmm * 15.95; + if (itype == 1) { + length -= fgkmm * 0.4; + width -= fgkmm * 0.4; + } // end if itype==1 + switch (itype) { + case 0: + snprintf(type,10,"Kap"); + break; + case 1: + snprintf(type,10, "Alu"); + break; + case 2: + snprintf(type,10,"Glue1"); + break; + case 3: + snprintf(type,10,"Glue2"); + break; + } + // we divide the shape in several slices along the horizontal + // direction (local X) here we define define the length of all + // sectors (from leftmost to rightmost) + Int_t i; + Double_t sliceLength[] = { 140.71, 2.48, 26.78, 4.00, + 10.00, 24.40, 10.00, 24.81 }; + for (i = 0; i < 8; i++) sliceLength[i] *= fgkmm; + if (itype == 1) { + sliceLength[0] -= fgkmm * 0.2; + sliceLength[4] -= fgkmm * 0.2; + sliceLength[5] += fgkmm * 0.4; + sliceLength[6] -= fgkmm * 0.4; + } // end if itype ==1 + + // as shown in the drawing, we have four different widths + // (along local Y) in this shape: + Double_t widthMax = fgkmm * 15.95; + Double_t widthMed1 = fgkmm * 15.00; + Double_t widthMed2 = fgkmm * 11.00; + Double_t widthMin = fgkmm * 4.40; + if (itype == 1) { + widthMax -= fgkmm * 0.4; + widthMed1 -= fgkmm * 0.4; + widthMed2 -= fgkmm * 0.4; + widthMin -= fgkmm * 0.4; + } // end if itype==1 + + // create the main shape + TGeoBBox *shGroundFull = 0; + shGroundFull = new TGeoBBox(Form("ITSSPDSHgFoil%sFull", type), + 0.5*length,0.5*width, 0.5*thickness); + + if(GetDebug(5)) shGroundFull->Print(); // Avoid Coverity warning + + // create the polygonal shape to be subtracted to give the correct + // shape to the borders its vertices are defined in sugh a way that + // this polygonal will be placed in the correct place considered + // that the origin of the local reference frame is in the center + // of the main box: we fix the starting point at the lower-left + // edge of the shape (point 12), and add all points in order, + // following a clockwise rotation + + Double_t x[13], y[13]; + x[ 0] = -0.5 * length + sliceLength[0]; + y[ 0] = -0.5 * widthMax; + + x[ 1] = x[0] + sliceLength[1]; + y[ 1] = y[0] + (widthMax - widthMed1); + + x[ 2] = x[1] + sliceLength[2]; + y[ 2] = y[1]; + + x[ 3] = x[2] + sliceLength[3]; + y[ 3] = y[2] + (widthMed1 - widthMed2); + + x[ 4] = x[3] + sliceLength[4]; + y[ 4] = y[3]; + + x[ 5] = x[4]; + y[ 5] = y[4] + (widthMed2 - widthMin); + + x[ 6] = x[5] + sliceLength[5]; + y[ 6] = y[5]; + + x[ 7] = x[6]; + y[ 7] = y[4]; + + x[ 8] = x[7] + sliceLength[6]; + y[ 8] = y[7]; + + x[ 9] = x[8]; + y[ 9] = y[6]; + + x[10] = x[9] + sliceLength[7] + 0.5; + y[10] = y[9]; + + x[11] = x[10]; + y[11] = y[0] - 0.5; + + x[12] = x[0]; + y[12] = y[11]; + + // create the shape + TGeoXtru *shGroundXtru = new TGeoXtru(2); + shGroundXtru->SetName(Form("ITSSPDSHgFoil%sXtru", type)); + shGroundXtru->DefinePolygon(13, x, y); + shGroundXtru->DefineSection(0, -thickness, 0., 0., 1.0); + shGroundXtru->DefineSection(1, thickness, 0., 0., 1.0); + + // define a string which will express the algebric operations among volumes + // and add the subtraction of this shape from the main one + TString strComposite(Form("ITSSPDSHgFoil%sFull-(%s+", type, + shGroundXtru->GetName())); + + // define the holes according to size information coming from drawings: + Double_t holeLength = fgkmm * 10.00; + Double_t holeWidth = fgkmm * 7.50; + Double_t holeSepX0 = fgkmm * 7.05; // separation between center + // of first hole and left border + Double_t holeSepXC = fgkmm * 14.00; // separation between the centers + // of two consecutive holes + Double_t holeSepX1 = fgkmm * 15.42; // separation between centers of + // 5th and 6th hole + Double_t holeSepX2 = fgkmm * 22.00; // separation between centers of + // 10th and 11th hole + if (itype == 1) { + holeSepX0 -= fgkmm * 0.2; + holeLength += fgkmm * 0.4; + holeWidth += fgkmm * 0.4; + } // end if itype==1 + sizes.Set(7); + sizes[0] = holeLength; + sizes[1] = holeWidth; + sizes[2] = holeSepX0; + sizes[3] = holeSepXC; + sizes[4] = holeSepX1; + sizes[5] = holeSepX2; + sizes[6] = fgkmm * 4.40; + + // X position of hole center (will change for each hole) + Double_t holeX = -0.5*length; + // Y position of center of all holes (= 4.4 mm from upper border) + Double_t holeY = 0.5*(width - holeWidth) - widthMin; + + // create a shape for the holes (common) + new TGeoBBox(Form("ITSSPD%sGfoilHole", type),0.5*holeLength, + 0.5*holeWidth, thickness); + + // insert the holes in the XTRU shape: + // starting from the first value of X, they are simply + // shifted along this axis + char name[200]; + TGeoTranslation *transHole[11]; + for (i = 0; i < 11; i++) { + // set the position of the hole, depending on index + if (i == 0) { + holeX += holeSepX0; + }else if (i < 5) { + holeX += holeSepXC; + }else if (i == 5) { + holeX += holeSepX1; + }else if (i < 10) { + holeX += holeSepXC; + }else { + holeX += holeSepX2; + } // end if else if's + //cout << i << " --> X = " << holeX << endl; + snprintf(name,200,"ITSSPDTRgFoil%sHole%d", type, i); + transHole[i] = new TGeoTranslation(name, holeX, holeY, 0.0); + transHole[i]->RegisterYourself(); + strComposite.Append(Form("ITSSPD%sGfoilHole:%s", type, name)); + if (i < 10) strComposite.Append("+"); else strComposite.Append(")"); } // end for i - txt.DrawLatex(x,y,"x_{c} mm"); - txt.DrawLatex(x+0.5,y,"y_{c} mm"); - txt.DrawLatex(x+1.0,y,"R mm"); - txt.DrawLatex(x+1.5,y,"#theta_{start}^{#circle}"); - txt.DrawLatex(x+2.0,y,"#theta_{end}^{#circle}"); - txt.DrawLatex(x+2.5,y,"Section"); + + // create composite shape + TGeoCompositeShape *shGround = new TGeoCompositeShape( + Form("ITSSPDSHgFoil%s", type), strComposite.Data()); + + return shGround; +} +//______________________________________________________________________ +TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateGroundingFoil(Bool_t isRight, + TArrayD &sizes, TGeoManager *mgr) +{ // + // Create a volume containing all parts of the grounding foil a + // for a half-stave. + // It consists of 4 layers with the same shape but different thickness: + // 1) a layer of glue + // 2) the aluminum layer + // 3) the kapton layer + // 4) another layer of glue + // --- + // Arguments: + // 1: a boolean value to know if it is the grounding foir for + // the right or left side + // 2: a TArrayD which will contain the dimension of the container box: + // - size[0] = length along Z (the beam line direction) + // - size[1] = the 'width' of the stave, which defines, together + // with Z, the plane of the carbon fiber support + // - size[2] = 'thickness' (= the direction along which all + // stave components are superimposed) + // 3: the TGeoManager + // --- + // The return value is a TGeoBBox volume containing all grounding + // foil components. + // to avoid strange behaviour of the geometry manager, + // create a suffix to be used in the names of all shapes + // + char suf[5]; + if (isRight) strncpy(suf, "R", 5); else strncpy(suf, "L", 5); + // this volume will be created in order to ease its placement in + // the half-stave; then, it is added here the small distance of + // the "central" edge of each volume from the Z=0 plane in the stave + // reference (which coincides with ALICE one) + Double_t dist = fgkmm * 0.71; + + // define materials + TGeoMedium *medKap = GetMedium("SPD KAPTON(POLYCH2)$", mgr); + TGeoMedium *medAlu = GetMedium("AL$", mgr); + TGeoMedium *medGlue = GetMedium("EPOXY$", mgr); //??? GLUE_GF_SUPPORT + + // compute the volume shapes (thicknesses change from one to the other) + Double_t kpLength, kpWidth, alLength, alWidth; + TArrayD kpSize, alSize, glSize; + Double_t kpThickness = fgkmm * 0.04; + Double_t alThickness = fgkmm * 0.01; +//cout << "AL THICKNESS" << alThickness << endl; + //Double_t g0Thickness = fgkmm * 0.1175 - fgkGapHalfStave; + //Double_t g1Thickness = fgkmm * 0.1175 - fgkGapLadder; + Double_t g0Thickness = fgkmm * 0.1275 - fgkGapHalfStave; + Double_t g1Thickness = fgkmm * 0.1275 - fgkGapLadder; + TGeoCompositeShape *kpShape = CreateGroundingFoilShape(0,kpLength,kpWidth, + kpThickness, kpSize); + TGeoCompositeShape *alShape = CreateGroundingFoilShape(1,alLength,alWidth, + alThickness, alSize); + TGeoCompositeShape *g0Shape = CreateGroundingFoilShape(2,kpLength,kpWidth, + g0Thickness, glSize); + TGeoCompositeShape *g1Shape = CreateGroundingFoilShape(3,kpLength,kpWidth, + g1Thickness, glSize); + // create the component volumes and register their sizes in the + // passed arrays for readability reasons, some reference variables + // explicit the meaning of the array slots + TGeoVolume *kpVol = new TGeoVolume(Form("ITSSPDgFoilKap%s",suf), + kpShape, medKap); + TGeoVolume *alVol = new TGeoVolume(Form("ITSSPDgFoilAlu%s",suf), + alShape, medAlu); + TGeoVolume *g0Vol = new TGeoVolume(Form("ITSSPDgFoilGlue%s",suf), + g0Shape, medGlue); + TGeoVolume *g1Vol = new TGeoVolume(Form("ITSSPDgFoilGlue%s",suf), + g1Shape, medGlue); + // set colors for the volumes + kpVol->SetLineColor(kRed); + alVol->SetLineColor(kGray); + g0Vol->SetLineColor(kYellow); + g1Vol->SetLineColor(kYellow); + // create references for the final size object + if (sizes.GetSize() != 3) sizes.Set(3); + Double_t &fullThickness = sizes[0]; + Double_t &fullLength = sizes[1]; + Double_t &fullWidth = sizes[2]; + // kapton leads the larger dimensions of the foil + // (including the cited small distance from Z=0 stave reference plane) + // the thickness is the sum of the ones of all components + fullLength = kpLength + dist; + fullWidth = kpWidth; + fullThickness = kpThickness + alThickness + g0Thickness + g1Thickness; + // create the container +// TGeoMedium *air = GetMedium("AIR$", mgr); + TGeoVolumeAssembly *container = new TGeoVolumeAssembly(Form("ITSSPDgFOIL-%s",suf)); +// TGeoVolume *container = mgr->MakeBox(Form("ITSSPDgFOIL-%s",suf), +// air, 0.5*fullThickness, 0.5*fullWidth, 0.5*fullLength); + // create the common correction rotation (which depends of what side + // we are building) + TGeoRotation *rotCorr = new TGeoRotation(*gGeoIdentity); + if (isRight) rotCorr->RotateY(90.0); + else rotCorr->RotateY(-90.0); + // compute the translations, which are in the length and + // thickness directions + Double_t x, y, z, shift = 0.0; + if (isRight) shift = dist; + // glue (bottom) + x = -0.5*(fullThickness - g0Thickness); + z = 0.5*(fullLength - kpLength) - shift; + TGeoCombiTrans *glTrans0 = new TGeoCombiTrans(x, 0.0, z, rotCorr); + // kapton + x += 0.5*(g0Thickness + kpThickness); + TGeoCombiTrans *kpTrans = new TGeoCombiTrans(x, 0.0, z, rotCorr); + // aluminum + x += 0.5*(kpThickness + alThickness); + z = 0.5*(fullLength - alLength) - shift - 0.5*(kpLength - alLength); + TGeoCombiTrans *alTrans = new TGeoCombiTrans(x, 0.0, z, rotCorr); + // glue (top) + x += 0.5*(alThickness + g1Thickness); + z = 0.5*(fullLength - kpLength) - shift; + TGeoCombiTrans *glTrans1 = new TGeoCombiTrans(x, 0.0, z, rotCorr); + + //cout << fgkGapHalfStave << endl; + //cout << g0Thickness << endl; + //cout << kpThickness << endl; + //cout << alThickness << endl; + //cout << g1Thickness << endl; + + // add to container + container->SetLineColor(kMagenta-10); + container->AddNode(kpVol, 1, kpTrans); + container->AddNode(alVol, 1, alTrans); + container->AddNode(g0Vol, 1, glTrans0); + container->AddNode(g1Vol, 2, glTrans1); + // to add the grease we remember the sizes of the holes, stored as + // additional parameters in the kapton layer size: + // - sizes[3] = hole length + // - sizes[4] = hole width + // - sizes[5] = position of first hole center + // - sizes[6] = standard separation between holes + // - sizes[7] = separation between 5th and 6th hole + // - sizes[8] = separation between 10th and 11th hole + // - sizes[9] = separation between the upper hole border and + // the foil border + Double_t holeLength = kpSize[0]; + Double_t holeWidth = kpSize[1]; + Double_t holeFirstZ = kpSize[2]; + Double_t holeSepZ = kpSize[3]; + Double_t holeSep5th6th = kpSize[4]; + Double_t holeSep10th11th = kpSize[5]; + Double_t holeSepY = kpSize[6]; + // volume (common) + // Grease has not been defined to date. Need much more information + // no this material! + TGeoMedium *grease = GetMedium("SPD KAPTON(POLYCH2)$", mgr); // ??? GREASE + TGeoVolume *hVol = mgr->MakeBox("ITSSPDGrease", grease, + 0.5*fullThickness, 0.5*holeWidth, 0.5*holeLength); + hVol->SetLineColor(kBlue); + // displacement of volumes in the container + Int_t idx = 1; // copy numbers start from 1. + x = 0.0; + y = 0.5*(fullWidth - holeWidth) - holeSepY; + if (isRight) z = holeFirstZ - 0.5*fullLength + dist; + else z = 0.5*fullLength - holeFirstZ - dist; + for (Int_t i = 0; i < 11; i++) { + TGeoTranslation *t = 0; + t = new TGeoTranslation(x, y, -z); + container->AddNode(hVol, idx++, t); + if (i < 4) shift = holeSepZ; + else if (i == 4) shift = holeSep5th6th; + else if (i < 9) shift = holeSepZ; + else shift = holeSep10th11th; + if (isRight) z += shift; + else z -= shift; + } // end for i + return container; } +//___________________________________________________________________ +TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateMCM(Bool_t isRight, + TArrayD &sizes, TGeoManager *mgr) const +{ + // + // Create a TGeoAssembly containing all the components of the MCM. + // The TGeoVolume container is rejected due to the possibility of overlaps + // when placing this object on the carbon fiber sector. + // The assembly contains: + // - the thin part of the MCM (integrated circuit) + // - the MCM chips (specifications from EDMS) + // - the cap which covers the zone where chips are bound to MCM + // --- + // The local reference frame of this assembly is defined in such a way + // that all volumes are contained in a virtual box whose center + // is placed exactly in the middle of the occupied space w.r to all + // directions. This will ease the positioning of this object in the + // half-stave. The sizes of this virtual box are stored in + // the array passed by reference. + // --- + // Arguments: + // - a boolean flag to know if this is the "left" or "right" MCM, when + // looking at the stave from above (i.e. the direction from which + // one sees bus over ladders over grounding foil) and keeping the + // continuous border in the upper part, one sees the thicker part + // on the left or right. + // - an array passed by reference which will contain the size of + // the virtual container. + // - a pointer to the used TGeoManager. + // + + // to distinguish the "left" and "right" objects, a suffix is created + char suf[5]; + if (isRight) strncpy(suf, "R", 5); else strncpy(suf, "L", 5); + + // ** MEDIA ** + TGeoMedium *medBase = GetMedium("SPD KAPTON(POLYCH2)$",mgr);// ??? MCM BASE + TGeoMedium *medChip = GetMedium("SPD SI CHIP$",mgr); + TGeoMedium *medCap = GetMedium("AL$",mgr); + + // The shape of the MCM is divided into 3 sectors with different + // widths (Y) and lengths (X), like in this sketch: + // + // 0 1 2 + // +---------------------+-----------------------------------+ + // | 4 sect 2 | + // | 6 sect 1 /-------------------+ + // | sect 0 /--------------/ 3 + // +--------------------/ 5 + // 8 7 + // + // the inclination of all oblique borders (6-7, 4-5) is always 45 degrees. + // From drawings we can parametrize the dimensions of all these sectors, + // then the shape of this part of the MCM is implemented as a + // TGeoXtru centerd in the virtual XY space. + // The first step is definig the relevant sizes of this shape: + Int_t i, j; + Double_t mcmThickness = fgkmm * 0.35; + Double_t sizeXtot = fgkmm * 105.6; // total distance (0-2) + // resp. 7-8, 5-6 and 3-4 + Double_t sizeXsector[3] = {fgkmm * 28.4, fgkmm * 41.4, fgkmm * 28.8}; + // resp. 0-8, 1-6 and 2-3 + Double_t sizeYsector[3] = {fgkmm * 15.0, fgkmm * 11.0, fgkmm * 8.0}; + Double_t sizeSep01 = fgkmm * 4.0; // x(6)-x(7) + Double_t sizeSep12 = fgkmm * 3.0; // x(4)-x(5) + + // define sizes of chips (last is the thickest) + Double_t chipLength[5] = { 4.00, 6.15, 3.85, 5.60, 18.00 }; + Double_t chipWidth[5] = { 3.00, 4.10, 3.85, 5.60, 5.45 }; + Double_t chipThickness[5] = { 0.60, 0.30, 0.30, 1.00, 1.20 }; + TString name[5]; + name[0] = "ITSSPDanalog"; + name[1] = "ITSSPDpilot"; + name[2] = "ITSSPDgol"; + name[3] = "ITSSPDrx40"; + name[4] = "ITSSPDoptical"; + Color_t color[5] = { kCyan, kGreen, kYellow, kBlue, kOrange }; + + // define the sizes of the cover + Double_t capThickness = fgkmm * 0.3; + Double_t capHeight = fgkmm * 1.7; + + // compute the total size of the virtual container box + sizes.Set(3); + Double_t &thickness = sizes[0]; + Double_t &length = sizes[1]; + Double_t &width = sizes[2]; + length = sizeXtot; + width = sizeYsector[0]; + thickness = mcmThickness + capHeight; + + // define all the relevant vertices of the polygon + // which defines the transverse shape of the MCM. + // These values are used to several purposes, and + // for each one, some points must be excluded + Double_t xRef[9], yRef[9]; + xRef[0] = -0.5*sizeXtot; + yRef[0] = 0.5*sizeYsector[0]; + xRef[1] = xRef[0] + sizeXsector[0] + sizeSep01; + yRef[1] = yRef[0]; + xRef[2] = -xRef[0]; + yRef[2] = yRef[0]; + xRef[3] = xRef[2]; + yRef[3] = yRef[2] - sizeYsector[2]; + xRef[4] = xRef[3] - sizeXsector[2]; + yRef[4] = yRef[3]; + xRef[5] = xRef[4] - sizeSep12; + yRef[5] = yRef[4] - sizeSep12; + xRef[6] = xRef[5] - sizeXsector[1]; + yRef[6] = yRef[5]; + xRef[7] = xRef[6] - sizeSep01; + yRef[7] = yRef[6] - sizeSep01; + xRef[8] = xRef[0]; + yRef[8] = -yRef[0]; + + // the above points are defined for the "right" MCM (if ve view the + // stave from above) in order to change to the "left" one, we must + // change the sign to all X values: + if (isRight) for (i = 0; i < 9; i++) xRef[i] = -xRef[i]; + + // the shape of the MCM and glue layer are done excluding point 1, + // which is not necessary and cause the geometry builder to get confused + j = 0; + Double_t xBase[8], yBase[8]; + for (i = 0; i < 9; i++) { + if (i == 1) continue; + xBase[j] = xRef[i]; + yBase[j] = yRef[i]; + j++; + } // end for i + + // the MCM cover is superimposed over the zones 1 and 2 only + Double_t xCap[6], yCap[6]; + j = 0; + for (i = 1; i <= 6; i++) { + xCap[j] = xRef[i]; + yCap[j] = yRef[i]; + j++; + } // end for i + + // define positions of chips, + // which must be added to the bottom-left corner of MCM + // and divided by 1E4; + Double_t chipX[5], chipY[5]; + if (isRight) { + chipX[0] = 666320.; + chipX[1] = 508320.; + chipX[2] = 381320.; + chipX[3] = 295320.; + chipX[4] = 150320.; + chipY[0] = 23750.; + chipY[1] = 27750.; + chipY[2] = 20750.; + chipY[3] = 42750.; + chipY[4] = 39750.; + } else { + chipX[0] = 389730.; + chipX[1] = 548630.; + chipX[2] = 674930.; + chipX[3] = 761430.; + chipX[4] = 905430.; + chipY[0] = 96250.; + chipY[1] = 91950.; + chipY[2] = 99250.; + chipY[3] = 107250.; + chipY[4] = 109750.; + } // end if isRight + for (i = 0; i < 5; i++) { + chipX[i] *= 0.00001; + chipY[i] *= 0.00001; + if (isRight) { + chipX[i] += xRef[3]; + chipY[i] += yRef[3]; + } else { + chipX[i] += xRef[8]; + chipY[i] += yRef[8]; + } // end for isRight + chipLength[i] *= fgkmm; + chipWidth[i] *= fgkmm; + chipThickness[i] *= fgkmm; + } // end for i + + // create shapes for MCM + Double_t z1, z2; + TGeoXtru *shBase = new TGeoXtru(2); + z1 = -0.5*thickness; + z2 = z1 + mcmThickness; + shBase->DefinePolygon(8, xBase, yBase); + shBase->DefineSection(0, z1, 0., 0., 1.0); + shBase->DefineSection(1, z2, 0., 0., 1.0); + + // create volumes of MCM + TGeoVolume *volBase = new TGeoVolume("ITSSPDbase", shBase, medBase); + volBase->SetLineColor(kRed); + + // to create the border of the MCM cover, it is required the + // subtraction of two shapes the outer is created using the + // reference points defined here + TGeoXtru *shCapOut = new TGeoXtru(2); + shCapOut->SetName(Form("ITSSPDshCAPOUT%s", suf)); + z1 = z2; + z2 = z1 + capHeight - capThickness; + shCapOut->DefinePolygon(6, xCap, yCap); + shCapOut->DefineSection(0, z1, 0., 0., 1.0); + shCapOut->DefineSection(1, z2, 0., 0., 1.0); + // the inner is built similarly but subtracting the thickness + Double_t angle, cs; + Double_t xin[6], yin[6]; + if (!isRight) { + angle = 45.0; + cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) ); + xin[0] = xCap[0] + capThickness; + yin[0] = yCap[0] - capThickness; + xin[1] = xCap[1] - capThickness; + yin[1] = yin[0]; + xin[2] = xin[1]; + yin[2] = yCap[2] + capThickness; + xin[3] = xCap[3] - capThickness*cs; + yin[3] = yin[2]; + xin[4] = xin[3] - sizeSep12; + yin[4] = yCap[4] + capThickness; + xin[5] = xin[0]; + yin[5] = yin[4]; + } else { + angle = 45.0; + cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) ); + xin[0] = xCap[0] - capThickness; + yin[0] = yCap[0] - capThickness; + xin[1] = xCap[1] + capThickness; + yin[1] = yin[0]; + xin[2] = xin[1]; + yin[2] = yCap[2] + capThickness; + xin[3] = xCap[3] - capThickness*cs; + yin[3] = yin[2]; + xin[4] = xin[3] + sizeSep12; + yin[4] = yCap[4] + capThickness; + xin[5] = xin[0]; + yin[5] = yin[4]; + } // end if !isRight + TGeoXtru *shCapIn = new TGeoXtru(2); + shCapIn->SetName(Form("ITSSPDshCAPIN%s", suf)); + shCapIn->DefinePolygon(6, xin, yin); + shCapIn->DefineSection(0, z1 - 0.01, 0., 0., 1.0); + shCapIn->DefineSection(1, z2 + 0.01, 0., 0., 1.0); + // compose shapes + TGeoCompositeShape *shCapBorder = new TGeoCompositeShape( + Form("ITSSPDshBORDER%s", suf), + Form("%s-%s", shCapOut->GetName(), + shCapIn->GetName())); + // create volume + TGeoVolume *volCapBorder = new TGeoVolume("ITSSPDcapBoarder", + shCapBorder,medCap); + volCapBorder->SetLineColor(kGreen); + // finally, we create the top of the cover, which has the same + // shape of outer border and a thickness equal of the one othe + // cover border one + TGeoXtru *shCapTop = new TGeoXtru(2); + z1 = z2; + z2 = z1 + capThickness; + shCapTop->DefinePolygon(6, xCap, yCap); + shCapTop->DefineSection(0, z1, 0., 0., 1.0); + shCapTop->DefineSection(1, z2, 0., 0., 1.0); + TGeoVolume *volCapTop = new TGeoVolume("ITSSPDcapTop", shCapTop, medCap); + volCapTop->SetLineColor(kBlue); + + // create container assembly with right suffix + TGeoVolumeAssembly *mcmAssembly = new TGeoVolumeAssembly( + Form("ITSSPDmcm%s", suf)); + + // add mcm layer + mcmAssembly->AddNode(volBase, 1, gGeoIdentity); + // add chips + for (i = 0; i < 5; i++) { + TGeoVolume *box = gGeoManager->MakeBox(name[i],medChip, + 0.5*chipLength[i], 0.5*chipWidth[i], 0.5*chipThickness[i]); + TGeoTranslation *tr = new TGeoTranslation(chipX[i],chipY[i], + 0.5*(-thickness + chipThickness[i]) + mcmThickness); + box->SetLineColor(color[i]); + mcmAssembly->AddNode(box, 1, tr); + } // end for i + // add cap border + mcmAssembly->AddNode(volCapBorder, 1, gGeoIdentity); + // add cap top + mcmAssembly->AddNode(volCapTop, 1, gGeoIdentity); + + return mcmAssembly; +} + +//______________________________________________________________________ +TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBus +(Bool_t isRight, Int_t ilayer, TArrayD &sizes, TGeoManager *mgr) const +{ + // + // The pixel bus is implemented as a TGeoBBox with some objects on it, + // which could affect the particle energy loss. + // --- + // In order to avoid confusion, the bus is directly displaced + // according to the axis orientations which are used in the final stave: + // X --> thickness direction + // Y --> width direction + // Z --> length direction + // + + // ** CRITICAL CHECK ****************************************************** + // layer number can be ONLY 1 or 2 + if (ilayer != 1 && ilayer != 2) AliFatal("Layer number MUST be 1 or 2"); + + // ** MEDIA ** + //PIXEL BUS + TGeoMedium *medBus = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr); + TGeoMedium *medPt1000 = GetMedium("CERAMICS$",mgr); // ??? PT1000 + // Capacity + TGeoMedium *medCap = GetMedium("SDD X7R capacitors$",mgr); + // ??? Resistance + //TGeoMedium *medRes = GetMedium("SDD X7R capacitors$",mgr); + TGeoMedium *medRes = GetMedium("ALUMINUM$",mgr); + //TGeoMedium *medExt = GetMedium("SDDKAPTON (POLYCH2)$", mgr); + TGeoMedium *medExt = GetMedium("SPD-MIX CU KAPTON$", mgr); + // ** SIZES & POSITIONS ** + Double_t busLength = 170.501 * fgkmm; // length of plane part + Double_t busWidth = 13.800 * fgkmm; // width + Double_t busThickness = 0.280 * fgkmm; // thickness + Double_t pt1000Length = fgkmm * 1.50; + Double_t pt1000Width = fgkmm * 3.10; + Double_t pt1000Thickness = fgkmm * 0.60; + Double_t pt1000Y, pt1000Z[10];// position of the pt1000's along the bus + Double_t capLength = fgkmm * 2.55; + Double_t capWidth = fgkmm * 1.50; + Double_t capThickness = fgkmm * 1.35; + Double_t capY[2], capZ[2]; + + Double_t resLength = fgkmm * 2.20; + Double_t resWidth = fgkmm * 0.80; + Double_t resThickness = fgkmm * 0.35; + Double_t resY[2], resZ[2]; + + Double_t extThickness = fgkmm * 0.25; + Double_t ext1Length = fgkmm * (26.7 - 10.0); + Double_t ext2Length = fgkmm * 284.0 - ext1Length + extThickness; + Double_t ext2LengthL2 = fgkmm * 130.0; + Double_t ext4Length = fgkmm * 40.0; + Double_t ext4Twist = 66.54; //deg + Double_t extWidth = fgkmm * 11.0; + Double_t extHeight = fgkmm * 2.5; + + // position of pt1000, resistors and capacitors depends on the + // bus if it's left or right one + if (!isRight) { + pt1000Y = 64400.; + pt1000Z[0] = 66160.; + pt1000Z[1] = 206200.; + pt1000Z[2] = 346200.; + pt1000Z[3] = 486200.; + pt1000Z[4] = 626200.; + pt1000Z[5] = 776200.; + pt1000Z[6] = 916200.; + pt1000Z[7] = 1056200.; + pt1000Z[8] = 1196200.; + pt1000Z[9] = 1336200.; + resZ[0] = 1397500.; + resY[0] = 26900.; + resZ[1] = 682500.; + resY[1] = 27800.; + capZ[0] = 1395700.; + capY[0] = 45700.; + capZ[1] = 692600.; + capY[1] = 45400.; + } else { + pt1000Y = 66100.; + pt1000Z[0] = 319700.; + pt1000Z[1] = 459700.; + pt1000Z[2] = 599700.; + pt1000Z[3] = 739700.; + pt1000Z[4] = 879700.; + pt1000Z[5] = 1029700.; + pt1000Z[6] = 1169700.; + pt1000Z[7] = 1309700.; + pt1000Z[8] = 1449700.; + pt1000Z[9] = 1589700.; + capY[0] = 44500.; + capZ[0] = 266700.; + capY[1] = 44300.; + capZ[1] = 974700.; + resZ[0] = 266500.; + resY[0] = 29200.; + resZ[1] = 974600.; + resY[1] = 29900.; + } // end if isRight + Int_t i; + pt1000Y *= 1E-4 * fgkmm; + for (i = 0; i < 10; i++) { + pt1000Z[i] *= 1E-4 * fgkmm; + if (i < 2) { + capZ[i] *= 1E-4 * fgkmm; + capY[i] *= 1E-4 * fgkmm; + resZ[i] *= 1E-4 * fgkmm; + resY[i] *= 1E-4 * fgkmm; + } // end if iM2 + } // end for i + + Double_t &fullLength = sizes[1]; + Double_t &fullWidth = sizes[2]; + Double_t &fullThickness = sizes[0]; + fullLength = busLength; + fullWidth = busWidth; + // add the thickness of the thickest component on bus (capacity) + fullThickness = busThickness + capThickness; + + // ** VOLUMES ** + TGeoVolumeAssembly *container = new TGeoVolumeAssembly("ITSSPDpixelBus"); + TGeoVolume *bus = mgr->MakeBox("ITSSPDbus", medBus, 0.5*busThickness, + 0.5*busWidth, 0.5*busLength); + TGeoVolume *pt1000 = mgr->MakeBox("ITSSPDpt1000",medPt1000, + 0.5*pt1000Thickness,0.5*pt1000Width, 0.5*pt1000Length); + TGeoVolume *res = mgr->MakeBox("ITSSPDresistor", medRes, 0.5*resThickness, + 0.5*resWidth, 0.5*resLength); + TGeoVolume *cap = mgr->MakeBox("ITSSPDcapacitor", medCap, 0.5*capThickness, + 0.5*capWidth, 0.5*capLength); + + char extname[12]; + snprintf(extname,12,"Extender1l%d",ilayer); + TGeoVolume *ext1 = mgr->MakeBox(extname, medExt, 0.5*extThickness, 0.5*extWidth, 0.5*ext1Length); + snprintf(extname,12,"Extender2l%d",ilayer); + TGeoVolume *ext2 = mgr->MakeBox(extname, medExt, 0.5*extHeight - 2.*extThickness, 0.5*extWidth, 0.5*extThickness); + TGeoVolume *ext3=0; + snprintf(extname,12,"Extender3l%d",ilayer); + TGeoVolume *ext4=0; + snprintf(extname,12,"Extender3l%d",ilayer); + if (ilayer==1) { + Double_t halflen=(0.5*ext2Length + extThickness); + Double_t xprof[6],yprof[6]; + Double_t alpha=24; + xprof[0] = -halflen; + yprof[0] = -0.5*extThickness; + xprof[1] = halflen/2; + yprof[1] = yprof[0]; + xprof[2] = xprof[1] + 0.5*halflen*CosD(alpha); + yprof[2] = yprof[1] + 0.5*halflen*SinD(alpha); + xprof[3] = xprof[2] - extThickness*SinD(alpha); + yprof[3] = yprof[2] + extThickness*CosD(alpha); + InsidePoint(xprof[0], yprof[0], xprof[1], yprof[1], xprof[2], yprof[2], + extThickness, xprof[4], yprof[4]); + xprof[5] = xprof[0]; + yprof[5] = 0.5*extThickness; + TGeoXtru *ext3sh = new TGeoXtru(2); + ext3sh->DefinePolygon(6, xprof, yprof); + ext3sh->DefineSection(0, -0.5*(extWidth-0.8*fgkmm)); + ext3sh->DefineSection(1, 0.5*(extWidth-0.8*fgkmm)); + ext3 = new TGeoVolume(extname, ext3sh, medExt); + } else { + ext3 = mgr->MakeBox(extname, medExt, 0.5*extThickness, 0.5*(extWidth-0.8*fgkmm), 0.5*ext2LengthL2 + extThickness); // Hardcode fix of a small overlap + ext4= mgr->MakeGtra("Extender4l2", medExt, 0.5*ext4Length, 0, 0, ext4Twist, 0.5*(extWidth-0.8*fgkmm), 0.5*extThickness, 0.5*extThickness, 0, 0.5*(extWidth-0.8*fgkmm), 0.5*extThickness, 0.5*extThickness, 0); + ext4->SetLineColor(kGray); + } + bus->SetLineColor(kYellow + 2); + pt1000->SetLineColor(kGreen + 3); + res->SetLineColor(kRed + 1); + cap->SetLineColor(kBlue - 7); + ext1->SetLineColor(kGray); + ext2->SetLineColor(kGray); + ext3->SetLineColor(kGray); + + // ** MOVEMENTS AND POSITIONEMENT ** + // bus + TGeoTranslation *trBus = new TGeoTranslation(0.5 * (busThickness - + fullThickness), 0.0, 0.0); + container->AddNode(bus, 1, trBus); + Double_t zRef, yRef, x, y, z; + if (isRight) { + zRef = -0.5*fullLength; + yRef = -0.5*fullWidth; + } else { + zRef = -0.5*fullLength; + yRef = -0.5*fullWidth; + } // end if isRight + // pt1000 + x = 0.5*(pt1000Thickness - fullThickness) + busThickness; + for (i = 0; i < 10; i++) { + y = yRef + pt1000Y; + z = zRef + pt1000Z[i]; + TGeoTranslation *tr = new TGeoTranslation(x, y, z); + container->AddNode(pt1000, i+1, tr); + } // end for i + // capacitors + x = 0.5*(capThickness - fullThickness) + busThickness; + for (i = 0; i < 2; i++) { + y = yRef + capY[i]; + z = zRef + capZ[i]; + TGeoTranslation *tr = new TGeoTranslation(x, y, z); + container->AddNode(cap, i+1, tr); + } // end for i + // resistors + x = 0.5*(resThickness - fullThickness) + busThickness; + for (i = 0; i < 2; i++) { + y = yRef + resY[i]; + z = zRef + resZ[i]; + TGeoTranslation *tr = new TGeoTranslation(x, y, z); + container->AddNode(res, i+1, tr); + } // end for i + + // extender + if (ilayer == 2) { + if (isRight) { + y = 0.5 * (fullWidth - extWidth) - 0.1; + z = 0.5 * (-fullLength + fgkmm * 10.0); + } + else { + y = 0.5 * (fullWidth - extWidth) - 0.1; + z = 0.5 * ( fullLength - fgkmm * 10.0); + } + } + else { + if (isRight) { + y = -0.5 * (fullWidth - extWidth); + z = 0.5 * (-fullLength + fgkmm * 10.0); + } + else { + y = -0.5 * (fullWidth - extWidth); + z = 0.5 * ( fullLength - fgkmm * 10.0); + } + } + x = 0.5 * (extThickness - fullThickness) + busThickness; + //y = 0.5 * (fullWidth - extWidth); + TGeoTranslation *trExt1 = new TGeoTranslation(x, y, z); + if (isRight) { + z -= 0.5 * (ext1Length - extThickness); + } + else { + z += 0.5 * (ext1Length - extThickness); + } + x += 0.5*(extHeight - 3.*extThickness); + TGeoTranslation *trExt2 = new TGeoTranslation(x, y, z); + if (isRight) { + if (ilayer==1) + z -= 0.5 * (ext2Length - extThickness) + 2.5*extThickness; + else + z -= 0.5 * (ext2LengthL2 - extThickness) + 2.5*extThickness; + } + else { + if (ilayer==1) + z += 0.5 * (ext2Length - extThickness) + 2.5*extThickness; + else + z += 0.5 * (ext2LengthL2 - extThickness) + 2.5*extThickness; + } + x += 0.5*(extHeight - extThickness) - 2.*extThickness; + TGeoCombiTrans *trExt3=0; + if (ilayer==1) { + if (isRight) + trExt3 = new TGeoCombiTrans(x, y, z, new TGeoRotation("",0.,-90.,90.)); + else + trExt3 = new TGeoCombiTrans(x, y, z, new TGeoRotation("",0., 90.,90.)); + } else + trExt3 = new TGeoCombiTrans(x, y, z, 0); + container->AddNode(ext1, 0, trExt1); + container->AddNode(ext2, 0, trExt2); + container->AddNode(ext3, 0, trExt3); + if (ilayer==2) { + TGeoCombiTrans *trExt4=0; + if (isRight) { + z -= ( ((TGeoBBox*)ext3->GetShape())->GetDZ() + ((TGeoGtra*)ext4->GetShape())->GetDZ() ); + trExt4 = new TGeoCombiTrans(x, y, z, new TGeoRotation("", ext4Twist/2,0,0)); + } else { + z += ( ((TGeoBBox*)ext3->GetShape())->GetDZ() + ((TGeoGtra*)ext4->GetShape())->GetDZ() ); + trExt4 = new TGeoCombiTrans(x, y, z, new TGeoRotation("",-ext4Twist/2,0,0)); + } + container->AddNode(ext4, 0, trExt4); + } + sizes[3] = yRef + pt1000Y; + sizes[4] = zRef + pt1000Z[2]; + sizes[5] = zRef + pt1000Z[7]; + + return container; +} + +//______________________________________________________________________ +TList* AliITSv11GeometrySPD::CreateConeModule(Bool_t sideC, const Double_t angrot, + TGeoManager *mgr) const +{ + // + // Creates all services modules and places them in a TList + // angrot is the rotation angle (passed as an argument to avoid + // defining the same quantity in two different places) + // + // Created: ?? ??? 2008 A. Pulvirenti + // Updated: 03 May 2010 M. Sitta + // Updated: 20 Jun 2010 A. Pulvirenti Optical patch panels + // Updated: 22 Jun 2010 M. Sitta Fiber cables + // Updated: 04 Jul 2010 M. Sitta Water cooling + // Updated: 08 Jul 2010 A. Pulvirenti Air cooling on Side C + // + + TGeoMedium *medInox = GetMedium("INOX$",mgr); + //TGeoMedium *medExt = GetMedium("SDDKAPTON (POLYCH2)$", mgr); + TGeoMedium *medExtB = GetMedium("SPD-BUS CU KAPTON$", mgr); + TGeoMedium *medExtM = GetMedium("SPD-MCM CU KAPTON$", mgr); + TGeoMedium *medPlate = GetMedium("SPD C (M55J)$", mgr); + TGeoMedium *medFreon = GetMedium("Freon$", mgr); + TGeoMedium *medGas = GetMedium("GASEOUS FREON$", mgr); + TGeoMedium *medFibs = GetMedium("SDD OPTICFIB$",mgr); + TGeoMedium *medCopper= GetMedium("COPPER$",mgr); + TGeoMedium *medPVC = GetMedium("PVC$",mgr); + + Double_t extThickness = fgkmm * 0.25; + Double_t ext1Length = fgkmm * (26.7 - 10.0); +// Double_t ext2Length = fgkmm * (285.0 - ext1Length + extThickness); + Double_t ext2Length = fgkmm * 285.0 - ext1Length + extThickness; + + const Double_t kCableThickness = 1.5 *fgkmm; + Double_t cableL0 = 10.0 * fgkmm; + Double_t cableL1 = 340.0 * fgkmm - extThickness - ext1Length - ext2Length; + Double_t cableL2 = 300.0 * fgkmm; + //Double_t cableL3 = 570.0 * fgkmm; + Double_t cableL3 = 57.0 * fgkmm; + Double_t cableW1 = 11.0 * fgkmm; + Double_t cableW2 = 30.0 * fgkmm; + Double_t cableW3 = 50.0 * fgkmm; + + const Double_t kMCMLength = cableL0 + cableL1 + cableL2 + cableL3; + const Double_t kMCMWidth = cableW1; + const Double_t kMCMThickness = 1.2 *fgkmm; + + const Double_t kPlateLength = 200.0 *fgkmm; + const Double_t kPlateWidth = 50.0 *fgkmm; + const Double_t kPlateThickness = 5.0 *fgkmm; + + const Double_t kConeTubeRmin = 2.0 *fgkmm; + const Double_t kConeTubeRmax = 3.0 *fgkmm; + + const Double_t kHorizTubeLen = 150.0 *fgkmm; + const Double_t kYtoHalfStave = 9.5 *fgkmm; + + const Double_t kWaterCoolRMax = 2.6 *fgkmm; + const Double_t kWaterCoolThick = 0.04 *fgkmm; + const Double_t kWaterCoolLen = 250.0 *fgkmm; + const Double_t kWCPlateThick = 0.5 *fgkmm; + const Double_t kWCPlateWide = 33.0 *fgkmm; + const Double_t kWCPlateLen = 230.0 *fgkmm; + const Double_t kWCFittingRext1 = 2.4 *fgkmm; + const Double_t kWCFittingRext2 = 3.7 *fgkmm; + const Double_t kWCFittingRint1 = 1.9 *fgkmm; + const Double_t kWCFittingRint2 = kWaterCoolRMax; + const Double_t kWCFittingLen1 = 7.0 *fgkmm; + const Double_t kWCFittingLen2 = 8.0 *fgkmm; + + const Double_t kCollWidth = 40.0 *fgkmm; + const Double_t kCollLength = 60.0 *fgkmm; + const Double_t kCollThickness = 10.0 *fgkmm; + const Double_t kCollTubeThick = 1.0 *fgkmm; + const Double_t kCollTubeRadius = 7.0 *fgkmm; + const Double_t kCollTubeLength = 205.0 *fgkmm; + + const Double_t kOptFibDiamet = 4.5 *fgkmm; + + Double_t x[12], y[12]; + Double_t xloc, yloc, zloc; + + Int_t kPurple = 6; // Purple (Root does not define it) + + TGeoVolumeAssembly* container[5]; + if (sideC) + container[0] = new TGeoVolumeAssembly("ITSSPDConeModuleC"); + else + container[0] = new TGeoVolumeAssembly("ITSSPDConeModuleA"); + container[1] = new TGeoVolumeAssembly("ITSSPDCoolingModuleSideA"); + container[2] = new TGeoVolumeAssembly("ITSSPDCoolingModuleSideC"); + container[3] = new TGeoVolumeAssembly("ITSSPDPatchPanelModule"); + container[4] = new TGeoVolumeAssembly("ITSSPDWaterCooling"); + + // The extender on the cone as a Xtru + x[0] = -cableL0; + y[0] = 0.0 + 0.5 * cableW1; + + x[1] = x[0] + cableL0 + cableL1 - 0.5*(cableW2 - cableW1); + y[1] = y[0]; + + x[2] = x[0] + cableL0 + cableL1; + y[2] = y[1] + 0.5*(cableW2 - cableW1); + + x[3] = x[2] + cableL2; + y[3] = y[2]; + + x[4] = x[3] + 0.5*(cableW3 - cableW2); + y[4] = y[3] + 0.5*(cableW3 - cableW2); + + x[5] = x[4] + cableL3 - 0.5*(cableW3 - cableW2); + y[5] = y[4]; + + for (Int_t i = 6; i < 12; i++) { + x[i] = x[11 - i]; + y[i] = -y[11 - i]; + } + + TGeoXtru *shCable = new TGeoXtru(2); + shCable->DefinePolygon(12, x, y); + shCable->DefineSection(0, 0.0); + shCable->DefineSection(1, kCableThickness); + + TGeoVolume *volCable = new TGeoVolume("ITSSPDExtender", shCable, medExtB); + volCable->SetLineColor(kGreen); + + // The MCM extender on the cone as a Xtru + TGeoBBox *shMCMExt = new TGeoBBox(0.5*kMCMLength, + 0.5*kMCMWidth, + 0.5*kMCMThickness); + + TGeoVolume *volMCMExt = new TGeoVolume("ITSSPDExtenderMCM", + shMCMExt, medExtM); + volMCMExt->SetLineColor(kGreen+3); + + // The support plate on the cone as a composite shape + Double_t thickness = kCableThickness + kMCMThickness; + TGeoBBox *shOut = new TGeoBBox("ITSSPD_shape_plateout", + 0.5*kPlateLength, + 0.5*kPlateWidth, + 0.5*kPlateThickness); + TGeoBBox *shIn = new TGeoBBox("ITSSPD_shape_platein" , + 0.5*kPlateLength, + 0.5*cableW2, + 0.5*thickness); + Char_t string[255]; + snprintf(string, 255, "%s-%s", shOut->GetName(), shIn->GetName()); + TGeoCompositeShape *shPlate = new TGeoCompositeShape("ITSSPDPlate_shape", + string); + + TGeoVolume *volPlate = new TGeoVolume("ITSSPDPlate", + shPlate, medPlate); + volPlate->SetLineColor(kRed); + + // The air cooling tubes + TGeoBBox *shCollBox = new TGeoBBox("ITSSPD_shape_collector_box", 0.5*kCollLength, 0.5*kCollWidth, 0.5*kCollThickness); + TGeoTube *shCollTube = new TGeoTube("ITSSPD_shape_collector_tube",kCollTubeRadius - kCollTubeThick, kCollTubeRadius, 0.5*kCollTubeLength); + TGeoVolume *volCollBox = new TGeoVolume("ITSSPDCollectorBox", shCollBox, medPVC); + TGeoVolume *volCollTube = new TGeoVolume("ITSSPDCollectorTube", shCollTube, medPVC); + volCollBox->SetLineColor(kAzure); + volCollTube->SetLineColor(kAzure); + + // The cooling tube on the cone as a Ctub + Double_t tubeLength = shCable->GetX(5) - shCable->GetX(0) + kYtoHalfStave -0.85; + TGeoCtub *shTube = new TGeoCtub(0, kConeTubeRmax, 0.5*tubeLength, 0, 360, + 0, SinD(angrot/2), -CosD(angrot/2), + 0, 0, 1); + + TGeoVolume *volTubeA = new TGeoVolume("ITSSPDCoolingTubeOnConeA", + shTube, medInox); + volTubeA->SetLineColor(kGray); + + TGeoVolume *volTubeC = new TGeoVolume("ITSSPDCoolingTubeOnConeC", + shTube, medInox); + volTubeC->SetLineColor(kGray); + + // The freon in the cooling tubes on the cone as a Ctub + TGeoCtub *shFreon = new TGeoCtub(0, kConeTubeRmin, 0.5*tubeLength, 0, 360, + 0, SinD(angrot/2), -CosD(angrot/2), + 0, 0, 1); + + TGeoVolume *volFreon = new TGeoVolume("ITSSPDCoolingFreonOnCone", + shFreon, medFreon); + volFreon->SetLineColor(kPurple); + + TGeoVolume *volGasFr = new TGeoVolume("ITSSPDCoolingFreonGasOnCone", + shFreon, medGas); + volGasFr->SetLineColor(kPurple); + + // The cooling tube inside the cylinder as a Ctub + TGeoCtub *shCylTub = new TGeoCtub(0, kConeTubeRmax, + 0.5*kHorizTubeLen, 0, 360, + 0, 0, -1, + 0, SinD(angrot/2), CosD(angrot/2)); + + TGeoVolume *volCylTubA = new TGeoVolume("ITSSPDCoolingTubeOnCylA", + shCylTub, medInox); + volCylTubA->SetLineColor(kGray); + + TGeoVolume *volCylTubC = new TGeoVolume("ITSSPDCoolingTubeOnCylC", + shCylTub, medInox); + volCylTubC->SetLineColor(kGray); + + // The freon in the cooling tubes in the cylinder as a Ctub + TGeoCtub *shCylFr = new TGeoCtub(0, kConeTubeRmin, + 0.5*kHorizTubeLen, 0, 360, + 0, 0, -1, + 0, SinD(angrot/2), CosD(angrot/2)); + + TGeoVolume *volCylFr = new TGeoVolume("ITSSPDCoolingFreonOnCyl", + shCylFr, medFreon); + volCylFr->SetLineColor(kPurple); + + TGeoVolume *volCylGasFr = new TGeoVolume("ITSSPDCoolingFreonGasOnCyl", + shCylFr, medGas); + volCylGasFr->SetLineColor(kPurple); + + // The optical fibers bundle on the cone as a Tube + Double_t optLength = shCable->GetX(5) - shCable->GetX(0) + kYtoHalfStave -0.85; + TGeoTube *shOptFibs = new TGeoTube(0., 0.5*kOptFibDiamet, 0.5*optLength); + + TGeoVolume *volOptFibs = new TGeoVolume("ITSSPDOpticalFibersOnCone", + shOptFibs, medFibs); + volOptFibs->SetLineColor(kOrange); + + // The optical patch panels + TArrayD psizes; + TGeoVolume *volPatch = CreatePatchPanel(psizes, mgr); + + // The water cooling tube as a Tube + TGeoTube *shWatCool = new TGeoTube(kWaterCoolRMax-kWaterCoolThick, + kWaterCoolRMax, kWaterCoolLen/2); + + TGeoVolume *volWatCool = new TGeoVolume("ITSSPDWaterCoolingOnCone", + shWatCool, medInox); + volWatCool->SetLineColor(kGray); + + // The support plate for the water tubes: a Tubs and a BBox + TGeoTubeSeg *shWCPltT = new TGeoTubeSeg(kWaterCoolRMax, + kWaterCoolRMax+kWCPlateThick, + kWCPlateLen/2, 180., 360.); + + Double_t plateBoxWide = (kWCPlateWide - 2*kWaterCoolRMax)/2; + TGeoBBox *shWCPltB = new TGeoBBox(plateBoxWide/2, + kWCPlateThick/2, + kWCPlateLen/2); + + TGeoVolume *volWCPltT = new TGeoVolume("ITSSPDWaterCoolingTubsPlate", + shWCPltT, medPlate); + volWCPltT->SetLineColor(kRed); + + TGeoVolume *volWCPltB = new TGeoVolume("ITSSPDWaterCoolingBoxPlate", + shWCPltB, medPlate); + volWCPltB->SetLineColor(kRed); + + // The fitting for the water cooling tube: a Pcon + TGeoPcon *shFitt = new TGeoPcon(0., 360., 4); + shFitt->Z(0) = -kWCFittingLen1; + shFitt->Rmin(0) = kWCFittingRint1; + shFitt->Rmax(0) = kWCFittingRext1; + + shFitt->Z(1) = 0; + shFitt->Rmin(1) = kWCFittingRint1; + shFitt->Rmax(1) = kWCFittingRext1; + + shFitt->Z(2) = 0; + shFitt->Rmin(2) = kWCFittingRint2; + shFitt->Rmax(2) = kWCFittingRext2; + + shFitt->Z(3) = kWCFittingLen2; + shFitt->Rmin(3) = kWCFittingRint2; + shFitt->Rmax(3) = kWCFittingRext2; + + TGeoVolume *volFitt = new TGeoVolume("ITSSPDWaterCoolingFitting", + shFitt, medCopper); + volFitt->SetLineColor(kOrange); + + // Now place everything in the containers + volTubeA->AddNode(volGasFr, 1, 0); + volTubeC->AddNode(volFreon, 1, 0); + + volCylTubA->AddNode(volCylGasFr, 1, 0); + volCylTubC->AddNode(volCylFr , 1, 0); + + container[0]->AddNode(volCable, 1, 0); + + xloc = shMCMExt->GetDX() - cableL0; + zloc = shMCMExt->GetDZ(); + container[0]->AddNode(volMCMExt, 1, + new TGeoTranslation( xloc, 0.,-zloc)); + + xloc = shMCMExt->GetDX(); + zloc = shCable->GetZ(1)/2 - shMCMExt->GetDZ(); + container[0]->AddNode(volPlate, 1, + new TGeoTranslation( xloc, 0., zloc)); + + TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity); + rot2->SetName("rotPatch"); + rot2->RotateX(90.0); + rot2->RotateY(163.0); + //rot2->RotateZ(132.5); + + // add collectors only on side C + if (sideC) + { + TGeoTranslation *trCollBox = new TGeoTranslation(xloc - 0.5*kPlateLength + 0.5*kCollLength, 0.0, +0.5*(kPlateThickness+1.1*kCollThickness)); + TGeoRotation *rotCollTube = new TGeoRotation(*gGeoIdentity); + rotCollTube->RotateY(90.0); + TGeoCombiTrans *trCollTube = new TGeoCombiTrans(xloc + 0.5*kCollTubeLength - (0.5*kPlateLength - kCollLength), 0.0, +0.5*(kPlateThickness+2.0*kCollTubeRadius+kCollTubeThick), rotCollTube); + container[0]->AddNode(volCollBox, 1, trCollBox); + container[0]->AddNode(volCollTube, 1, trCollTube); + } + + Double_t dxPatch = 2.75; + Double_t dzPatch = 2.8; + TGeoCombiTrans *tr2 = new TGeoCombiTrans(1.7*ext2Length - dxPatch, 0.0, dzPatch, rot2); + container[3]->AddNode(volPatch, 0, tr2); + + xloc = shTube->GetRmax(); + yloc = shTube->GetRmax(); + zloc = shTube->GetDz() - shTube->GetRmax() - kYtoHalfStave; + container[1]->AddNode(volTubeA, 1, + new TGeoTranslation(-xloc, -yloc, zloc)); + container[2]->AddNode(volTubeC, 1, + new TGeoTranslation(-xloc, -yloc, zloc)); + + xloc = shTube->GetRmax(); + yloc = (shCylTub->GetDz())*SinD(angrot) - shTube->GetRmax(); + zloc = (shCylTub->GetDz())*CosD(angrot) + shTube->GetRmax() +kYtoHalfStave; + container[1]->AddNode(volCylTubA, 1, + new TGeoCombiTrans(-xloc, yloc,-zloc, + new TGeoRotation("",0.,angrot,0.))); + container[2]->AddNode(volCylTubC, 1, + new TGeoCombiTrans(-xloc, yloc,-zloc, + new TGeoRotation("",0.,angrot,0.))); + + xloc = shOptFibs->GetRmax() + 2*shTube->GetRmax(); + yloc = 1.6*shOptFibs->GetRmax(); + zloc = shOptFibs->GetDZ() - shTube->GetRmax() - kYtoHalfStave; + container[1]->AddNode(volOptFibs, 1, + new TGeoTranslation(-xloc, -yloc, zloc)); + container[2]->AddNode(volOptFibs, 1, + new TGeoTranslation(-xloc, -yloc, zloc)); + + yloc = shWatCool->GetRmax(); + zloc = (2*shTube->GetDz() - shTube->GetRmax() - kYtoHalfStave)/2; + container[4]->AddNode(volWatCool, 1, + new TGeoTranslation(0, -yloc, zloc)); + + container[4]->AddNode(volWCPltT, 1, + new TGeoTranslation(0, -yloc, zloc)); + + yloc -= shWCPltB->GetDY(); + xloc = shWatCool->GetRmax() + shWCPltB->GetDX(); + container[4]->AddNode(volWCPltB, 1, + new TGeoTranslation( xloc, -yloc, zloc)); + container[4]->AddNode(volWCPltB, 2, + new TGeoTranslation(-xloc, -yloc, zloc)); + + yloc = shWatCool->GetRmax(); + zloc -= shWatCool->GetDz(); + container[4]->AddNode(volFitt, 1, + new TGeoTranslation(0, -yloc, zloc)); + + // Finally create the list of assemblies and return it to the caller + TList* conemodulelist = new TList(); + conemodulelist->Add(container[0]); + conemodulelist->Add(container[1]); + conemodulelist->Add(container[2]); + conemodulelist->Add(container[3]); + conemodulelist->Add(container[4]); + + return conemodulelist; +} + +//______________________________________________________________________ +void AliITSv11GeometrySPD::CreateCones(TGeoVolume *moth) const +{ + // + // Places all services modules in the mother reference system + // + // Created: ?? ??? 2008 Alberto Pulvirenti + // Updated: 03 May 2010 Mario Sitta + // Updated: 04 Jul 2010 Mario Sitta Water cooling + // + + const Int_t kNumberOfModules = 10; + + const Double_t kInnerRadius = 80.775*fgkmm; + const Double_t kZTrans = 451.800*fgkmm; + const Double_t kAlphaRot = 46.500*fgkDegree; + const Double_t kAlphaSpaceCool = 9.200*fgkDegree; + + TList* modulelistA = CreateConeModule(kFALSE, 90-kAlphaRot); + TList* modulelistC = CreateConeModule(kTRUE , 90-kAlphaRot); + TList* &modulelist = modulelistC; + TGeoVolumeAssembly* module, *moduleA, *moduleC; + + Double_t xloc, yloc, zloc; + + //Double_t angle[10] = {18., 54., 90., 126., 162., -18., -54., -90., -126., -162.}; + // anglem for cone modules (cables and cooling tubes) + // anglep for pathc panels + Double_t anglem[10] = {18., 54., 90., 126., 162., 198., 234., 270., 306., 342.}; + Double_t anglep[10] = {18., 62., 90., 115., 162., 198., 242., 270., 295., 342.}; +// Double_t angle1m[10] = {23., 53., 90., 127., 157., 203.0, 233.0, 270.0, 307.0, 337.0}; +// Double_t angle2m[10] = {18., 53., 90., 126., 162., 198.0, 233.0, 270.0, 309.0, 342.0}; +// Double_t angle1c[10] = {23., 53., 90., 124., 157., 203.0, 233.0, 270.0, 304.0, 337.0}; +// Double_t angle2c[10] = {18., 44., 90., 126., 162., 198.0, 223.0, 270.0, 309.0, 342.0}; + + // First add the cables + moduleA = (TGeoVolumeAssembly*)modulelistA->At(0); + moduleC = (TGeoVolumeAssembly*)modulelistC->At(0); + for (Int_t i = 0; i < kNumberOfModules; i++) { + TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity); + rot1->RotateY(-kAlphaRot); + rot1->RotateZ(anglem[i]); + xloc = kInnerRadius*CosD(anglem[i]); + yloc = kInnerRadius*SinD(anglem[i]); + zloc = kZTrans; + moth->AddNode(moduleA, 2*i+2, + new TGeoCombiTrans( xloc, yloc, zloc, rot1)); + + TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity); + rot2->RotateY(180.-kAlphaRot); + rot2->RotateZ(anglem[i]); + xloc = kInnerRadius*CosD(anglem[i]); + yloc = kInnerRadius*SinD(anglem[i]); + zloc = kZTrans; + moth->AddNode(moduleC, 2*i+1, + new TGeoCombiTrans(-xloc,-yloc,-zloc, rot2)); + } + + // Then the cooling tubes on Side A + module = (TGeoVolumeAssembly*)modulelist->At(1); + Double_t anglec; + for (Int_t i = 0; i < kNumberOfModules; i++) { + anglec = anglem[i] + kAlphaSpaceCool; + TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity); + rot1->RotateX(-90.0+kAlphaRot-0.04); // 0.04 fixes small overlap + rot1->RotateZ(-90.0+anglec); + xloc = kInnerRadius*CosD(anglec); + yloc = kInnerRadius*SinD(anglec); + zloc = kZTrans+0.162; // 0.162 fixes small overlap + moth->AddNode(module, 2*i+2, + new TGeoCombiTrans( xloc, yloc, zloc, rot1)); + } + + // And the cooling tubes on Side C + module = (TGeoVolumeAssembly*)modulelist->At(2); + for (Int_t i = 0; i < kNumberOfModules; i++) { + anglec = anglem[i] - kAlphaSpaceCool; + TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity); + rot2->RotateX(-90.0+kAlphaRot-0.04); // 0.04 fixes small overlap + rot2->RotateY(180.); + rot2->RotateZ(90.0+anglec); + xloc = kInnerRadius*CosD(anglec); + yloc = kInnerRadius*SinD(anglec); + zloc = kZTrans+0.162; // 0.162 fixes small overlap + moth->AddNode(module, 2*i+1, + new TGeoCombiTrans(-xloc,-yloc,-zloc, rot2)); + } + + // Then the water cooling tubes + module = (TGeoVolumeAssembly*)modulelist->At(4); + for (Int_t i = 1; i < kNumberOfModules; i++) { // i = 1,2,...,9 + if (i != 5) { // There is no tube in this position + anglec = (anglem[i-1]+anglem[i])/2; + TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity); + rot1->RotateX(-90.0+kAlphaRot); + rot1->RotateZ(-90.0+anglec); + xloc = kInnerRadius*CosD(anglec); + yloc = kInnerRadius*SinD(anglec); + zloc = kZTrans; + moth->AddNode(module, 2*i+2, + new TGeoCombiTrans( xloc, yloc, zloc, rot1)); + + TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity); + rot2->RotateX(-90.0+kAlphaRot); + rot2->RotateY(180.); + rot2->RotateZ(90.0+anglec); + xloc = kInnerRadius*CosD(anglec); + yloc = kInnerRadius*SinD(anglec); + zloc = kZTrans; + moth->AddNode(module, 2*i+1, + new TGeoCombiTrans(-xloc,-yloc,-zloc, rot2)); + } + } + + // Finally the optical patch panels + module = (TGeoVolumeAssembly*)modulelist->At(3); + for (Int_t i = 0; i < kNumberOfModules; i++) { + TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity); + rot1->RotateY(-kAlphaRot); + rot1->RotateZ(anglep[i]); + xloc = kInnerRadius*CosD(anglep[i]); + yloc = kInnerRadius*SinD(anglep[i]); + zloc = kZTrans; + moth->AddNode(module, 2*i+2, + new TGeoCombiTrans( xloc, yloc, zloc, rot1)); + + TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity); + rot2->RotateY(180.-kAlphaRot); + rot2->RotateZ(anglep[i]); + xloc = kInnerRadius*CosD(anglep[i]); + yloc = kInnerRadius*SinD(anglep[i]); + zloc = kZTrans; + moth->AddNode(module, 2*i+1, + new TGeoCombiTrans(-xloc,-yloc,-zloc, rot2)); + } + +} + + +//______________________________________________________________________ +void AliITSv11GeometrySPD::CreateServices(TGeoVolume *moth) const +{ + // + // New method to implement SPD services + // + // Created: 25 Jul 2012 Mario Sitta + // Updated: 15 Nov 2012 Mario Sitta + // + // Data provided by C.Gargiulo from CAD + + // Cooling manifolds + const Double_t kCoolManifWidth = fgkmm * 22.0; + const Double_t kCoolManifLength = fgkmm * 50.0; + const Double_t kCoolManifThick = fgkmm * 7.0; + const Double_t kCoolManifFitR1out = fgkmm * 4.0; + const Double_t kCoolManifFitH1 = fgkmm * 2.5; + const Double_t kCoolManifFitR2out = fgkmm * 4.0; + const Double_t kCoolManifFitR2in = fgkmm * 3.2; + const Double_t kCoolManifFitH2 = fgkmm * 7.0; + const Double_t kCoolManifFitZPos = fgkmm * 2.0; // TO BE CHECKED! + const Double_t kCoolManifCollR1 = fgkmm * 3.0; + const Double_t kCoolManifCollH1 = fgkmm * 2.5; + const Double_t kCoolManifCollR2 = fgkmm * 1.5; + const Double_t kCoolManifCollH2 = fgkmm * 5.0; + const Double_t kCoolManifCollXPos = fgkmm * 5.0; + const Double_t kCoolManifCollDZ = fgkmm * 13.0; + const Double_t kCoolManifCollZ0 = fgkmm * 9.0; + + const Double_t kCoolManifRPosCAD = fgkmm * 76.2; + const Double_t kCoolManifZPos = fgkcm * 33.97;// 34.0 - 0.03 toll. + // Manifold supports + const Double_t kManifSuppWidth = fgkmm * 24.0; // TO BE CHECKED! + const Double_t kManifSuppLen1 = fgkmm * 17.9; + const Double_t kManifSuppLen2 = fgkmm * 54.2; + const Double_t kManifSuppLen3 = fgkmm * 7.9; + const Double_t kManifSuppThick = fgkmm * 1.5; + const Double_t kSuppScrewXPos = fgkmm * 4.0; + const Double_t kSuppScrewZPos = fgkmm * 3.0; + const Double_t kRThermalShield = fgkcm * 9.9255; // MUST match with GeometrySupport + // Sector supports + const Double_t kSectSuppWidth = fgkmm * 15.0; + const Double_t kSectSuppLen1 = fgkmm * 16.9; // TO BE CHECKED! + const Double_t kSectSuppLen2 = fgkmm * 35.1; // TO BE CHECKED! + const Double_t kSectSuppThick = fgkmm * 1.5; + const Double_t kSectSuppDepth = fgkmm * 17.78; // MUST match with GeometrySupport + const Double_t kSectScrewZPos = fgkmm * 5.1; // TO BE CHECKED! + + const Double_t kSectSuppZPos = fgkcm * 26.5; + // Sector clips + const Double_t kSectClipLength = fgkmm * 30.0; + const Double_t kSectClipWidth = fgkmm * 28.53; + const Double_t kSectClipThick1 = fgkmm * 2.0; + const Double_t kSectClipThick2 = fgkmm * 0.715; + const Double_t kSectClipInStave = fgkmm * 11.0; // Tuned + const Double_t kSectClipAngle = 29.0; // Degree. Tuned + // M3 screws + const Double_t kScrewM3Diam = fgkmm * 3.0; + const Double_t kScrewM3HeadThick = fgkmm * 2.0; + const Double_t kScrewM3HeadRmin = fgkmm * 1.5; + const Double_t kScrewM3HeadRmax = fgkmm * 2.5; + const Double_t kScrewM3OutManifH = fgkmm * 1.5; + // Central set pin (in sector support) + const Double_t kSetPinDiam = fgkmm * 6.0; + const Double_t kSetPinHeadDiam = fgkmm * 8.0; + const Double_t kSetPinHeadRmin = fgkmm * 1.5; + const Double_t kSetPinHeadThick = fgkmm * 1.5; + const Double_t kSetPinOutClipH = fgkmm * 1.0; + + // Local variables + Double_t xprof[12], yprof[12]; + Double_t radius, theta; + Double_t xpos, ypos, zpos; + Double_t tmp; + + + // The cooling manifold: an Assembly + TGeoVolumeAssembly *coolmanifA = new TGeoVolumeAssembly("ITSSPDCoolManifSideA"); + TGeoVolumeAssembly *coolmanifC = new TGeoVolumeAssembly("ITSSPDCoolManifSideC"); + + // The various parts of the manifold + TGeoBBox *manifblksh = new TGeoBBox(kCoolManifWidth/2, + kCoolManifThick/2, + kCoolManifLength/2); + + TGeoBBox *manifinscubesh = new TGeoBBox(kCoolManifFitR2out, + kCoolManifFitR2out, + kCoolManifFitR2out); + + TGeoTube *manifinscyl1sh = new TGeoTube(0, // TO BE CHECKED! + kCoolManifFitR1out, + kCoolManifFitH1/2); + + TGeoTube *manifinscyl2sh = new TGeoTube(kCoolManifFitR2in, + kCoolManifFitR2out, + kCoolManifFitH2/2); + + TGeoTube *manifcollcyl1sh = new TGeoTube(0, + kCoolManifCollR1, + kCoolManifCollH1/2); + + TGeoTube *manifcollcyl2sh = new TGeoTube(0, + kCoolManifCollR2, + kCoolManifCollH2/2); + + // The cooling manifold supports + const Double_t kCoolManifRPos = kCoolManifRPosCAD + + (manifinscubesh->GetDY() + + 2*manifinscyl1sh->GetDz() + + manifblksh->GetDY() ); + + const Double_t kManifSuppDepth = kRThermalShield - + (kCoolManifRPos + manifblksh->GetDY()); + + TGeoXtru *suppmanifsh = new TGeoXtru(2); + + xprof[ 0] = kManifSuppLen2/2 + kManifSuppThick; + yprof[ 0] = 0; + xprof[ 1] = xprof[0]; + yprof[ 1] = kManifSuppDepth; + xprof[ 2] = kManifSuppLen2/2 + kManifSuppLen3; + yprof[ 2] = yprof[1]; + xprof[ 3] = xprof[2]; + yprof[ 3] = yprof[2] + kManifSuppThick; + xprof[ 4] = kManifSuppLen2/2; + yprof[ 4] = yprof[3]; + xprof[ 5] = xprof[4]; + yprof[ 5] = kManifSuppThick; + xprof[ 6] = -xprof[5]; + yprof[ 6] = yprof[5]; + xprof[ 7] = -xprof[4]; + yprof[ 7] = yprof[4]; + xprof[ 8] = -(kManifSuppLen2/2 + kManifSuppLen1); + yprof[ 8] = yprof[3]; + xprof[ 9] = xprof[8]; + yprof[ 9] = yprof[2]; + xprof[10] = -xprof[1]; + yprof[10] = yprof[1]; + xprof[11] = -xprof[0]; + yprof[11] = yprof[0]; + + suppmanifsh->DefinePolygon(12,xprof,yprof); + suppmanifsh->DefineSection(0,-kManifSuppWidth/2); + suppmanifsh->DefineSection(1, kManifSuppWidth/2); + + // The screw head and body + TGeoTube *suppscrewbodysh = new TGeoTube(0, kScrewM3Diam/2, + kManifSuppThick/2); + + TGeoPcon *suppscrewheadsh = new TGeoPcon(0, 360, 4); + suppscrewheadsh->DefineSection(0,-kScrewM3HeadThick/2,0, kScrewM3HeadRmax); + suppscrewheadsh->DefineSection(1, 0, 0, kScrewM3HeadRmax); + suppscrewheadsh->DefineSection(2, 0, kScrewM3HeadRmin, kScrewM3HeadRmax); + suppscrewheadsh->DefineSection(3, kScrewM3HeadThick/2, + kScrewM3HeadRmin, kScrewM3HeadRmax); + + TGeoTube *clipscrewbodysh = new TGeoTube(0, kScrewM3Diam/2, + kSectClipThick1/2); + + // The screw segment below the manifold and the sector clip + TGeoTube *screwoutmanifsh = new TGeoTube(0, kScrewM3Diam/2, + kScrewM3OutManifH/2); + + // The sector supports + TGeoXtru *suppsectsh = new TGeoXtru(2); + + xprof[ 0] = kSectSuppLen2/2 + kSectSuppThick; + yprof[ 0] = 0; + xprof[ 1] = xprof[0]; + yprof[ 1] = kSectSuppDepth; + xprof[ 2] = kSectSuppLen2/2 + kSectSuppLen1; + yprof[ 2] = yprof[1]; + xprof[ 3] = xprof[2]; + yprof[ 3] = yprof[2] + kSectSuppThick; + xprof[ 4] = kSectSuppLen2/2; + yprof[ 4] = yprof[3]; + xprof[ 5] = xprof[4]; + yprof[ 5] = kSectSuppThick; + xprof[ 6] = -xprof[5]; + yprof[ 6] = yprof[5]; + xprof[ 7] = -xprof[4]; + yprof[ 7] = yprof[4]; + xprof[ 8] = -xprof[3]; + yprof[ 8] = yprof[3]; + xprof[ 9] = -xprof[2]; + yprof[ 9] = yprof[2]; + xprof[10] = -xprof[1]; + yprof[10] = yprof[1]; + xprof[11] = -xprof[0]; + yprof[11] = yprof[0]; + + suppsectsh->DefinePolygon(12,xprof,yprof); + suppsectsh->DefineSection(0,-kSectSuppWidth/2); + suppsectsh->DefineSection(1, kSectSuppWidth/2); + + // The sector clips + TGeoXtru *sectclipsh = new TGeoXtru(2); + + xprof[ 0] = kSectClipWidth/2; + yprof[ 0] = 0; + xprof[ 1] = -kSectClipWidth/2; + yprof[ 1] = yprof[0]; + xprof[ 2] = xprof[1]; + yprof[ 2] = -kSectClipThick1; + xprof[ 3] = kSectClipWidth/2 - kSectClipThick2; + yprof[ 3] = yprof[2]; + xprof[ 4] = xprof[3] + kSectClipInStave*SinD(kSectClipAngle); + yprof[ 4] = -kSectClipInStave*CosD(kSectClipAngle); + xprof[ 5] = xprof[4] + kSectClipThick2*CosD(kSectClipAngle); + yprof[ 5] = yprof[4] + kSectClipThick2*SinD(kSectClipAngle); + + sectclipsh->DefinePolygon(6,xprof,yprof); + sectclipsh->DefineSection(0,-kSectClipLength/2); + sectclipsh->DefineSection(1, kSectClipLength/2); + + // The central set pin head and body + TGeoTube *setpinbodysh = new TGeoTube(0, kSetPinDiam/2, + kSectSuppThick/2); + + TGeoTube *setpinheadsh = new TGeoTube(kSetPinHeadRmin, kSetPinHeadDiam/2, + kSetPinHeadThick/2); + + TGeoTube *pinclipbodysh = new TGeoTube(0, kSetPinDiam/2, + kSectClipThick1/2); + + // The set pin segment below the sector clip + TGeoTube *setpinoutclipsh = new TGeoTube(0, kSetPinDiam/2, + kSetPinOutClipH/2); + + + // We have the shapes: now create the real volumes + TGeoMedium *medInox = GetMedium("INOX$"); + TGeoMedium *medCu = GetMedium("COPPER$"); + TGeoMedium *medSPDcf = GetMedium("SPD shield$"); + + TGeoVolume *manifblk = new TGeoVolume("ITSSPDBlkManif", + manifblksh,medInox); + manifblk->SetLineColor(kGreen+2); + + TGeoVolume *manifinscube = new TGeoVolume("ITSSPDInsCubeManif", + manifinscubesh,medCu); + manifinscube->SetLineColor(kYellow); + + TGeoVolume *manifinscyl1 = new TGeoVolume("ITSSPDInsCyl1Manif", + manifinscyl1sh,medCu); + manifinscyl1->SetLineColor(kYellow); + + TGeoVolume *manifinscyl2 = new TGeoVolume("ITSSPDInsCyl2Manif", + manifinscyl2sh,medCu); + manifinscyl2->SetLineColor(kYellow); + + TGeoVolume *manifcollcyl1 = new TGeoVolume("ITSSPDCollCyl1Manif", + manifcollcyl1sh,medCu); + manifcollcyl1->SetLineColor(kYellow); + + TGeoVolume *manifcollcyl2 = new TGeoVolume("ITSSPDCollCyl2Manif", + manifcollcyl2sh,medCu); + manifcollcyl2->SetLineColor(kYellow); + + TGeoVolume *suppmanif = new TGeoVolume("ITSSPDCoolManifSupp", + suppmanifsh,medSPDcf); + suppmanif->SetLineColor(7); + + TGeoVolume *suppscrewbody = new TGeoVolume("ITSSPDSuppScrewBody", + suppscrewbodysh,medInox); + suppscrewbody->SetLineColor(kGray); + + xpos = kCoolManifLength/2 - kSuppScrewZPos; + ypos = suppscrewbodysh->GetDz(); + zpos = kCoolManifWidth/2 - kSuppScrewXPos; + suppmanif->AddNode(suppscrewbody, 1, new TGeoCombiTrans( xpos, ypos, zpos, + new TGeoRotation("",0,90,0))); + suppmanif->AddNode(suppscrewbody, 2, new TGeoCombiTrans( xpos, ypos,-zpos, + new TGeoRotation("",0,90,0))); + suppmanif->AddNode(suppscrewbody, 3, new TGeoCombiTrans(-xpos, ypos, zpos, + new TGeoRotation("",0,90,0))); + suppmanif->AddNode(suppscrewbody, 4, new TGeoCombiTrans(-xpos, ypos,-zpos, + new TGeoRotation("",0,90,0))); + + TGeoVolume *suppscrewhead = new TGeoVolume("ITSSPDSuppScrewHead", + suppscrewheadsh,medInox); + suppscrewhead->SetLineColor(kGray); + + TGeoVolume *screwoutmanif = new TGeoVolume("ITSSPDSuppScrewOutManif", + screwoutmanifsh,medInox); + screwoutmanif->SetLineColor(kGray); + + TGeoVolume *suppsect = new TGeoVolume("ITSSPDCoolSectorSupp", + suppsectsh,medSPDcf); + suppsect->SetLineColor(7); + + xpos = kSectSuppLen2/2 - kSectScrewZPos; + ypos = suppscrewbodysh->GetDz(); + suppsect->AddNode(suppscrewbody, 1, new TGeoCombiTrans( xpos, ypos, 0, + new TGeoRotation("",0,90,0))); + suppsect->AddNode(suppscrewbody, 2, new TGeoCombiTrans(-xpos, ypos, 0, + new TGeoRotation("",0,90,0))); + + TGeoVolume *setpinbody = new TGeoVolume("ITSSPDSetPinBody", + setpinbodysh,medInox); + setpinbody->SetLineColor(kGray); + + ypos = setpinbodysh->GetDz(); + suppsect->AddNode(setpinbody, 1, new TGeoCombiTrans( 0, ypos, 0, + new TGeoRotation("",0,90,0))); + + TGeoVolume *setpinhead = new TGeoVolume("ITSSPDSetPinHead", + setpinheadsh,medInox); + setpinhead->SetLineColor(kGray); + + TGeoVolume *sectclip = new TGeoVolume("ITSSPDCoolSectorClip", + sectclipsh,medSPDcf); + sectclip->SetLineColor(7); + + TGeoVolume *clipscrewbody = new TGeoVolume("ITSSPDClipScrewBody", + clipscrewbodysh,medInox); + clipscrewbody->SetLineColor(kGray); + + ypos = -clipscrewbodysh->GetDz(); + zpos = kSectSuppLen2/2 - kSectScrewZPos; + sectclip->AddNode(clipscrewbody, 1, new TGeoCombiTrans( 0, ypos, zpos, + new TGeoRotation("",0,90,0))); + sectclip->AddNode(clipscrewbody, 2, new TGeoCombiTrans( 0, ypos,-zpos, + new TGeoRotation("",0,90,0))); + + TGeoVolume *pinclipbody = new TGeoVolume("ITSSPDClipPinBody", + pinclipbodysh,medInox); + pinclipbody->SetLineColor(kGray); + + ypos = -pinclipbodysh->GetDz(); + sectclip->AddNode(pinclipbody, 1, new TGeoCombiTrans( 0, ypos, 0, + new TGeoRotation("",0,90,0))); + + TGeoVolume *setpinoutclip = new TGeoVolume("ITSSPDSetPinOutClip", + setpinoutclipsh,medInox); + setpinoutclip->SetLineColor(kGray); + + + // Add all volumes in the assemblies + coolmanifA->AddNode(manifblk,1,0); + coolmanifC->AddNode(manifblk,1,0); + + ypos = manifblksh->GetDY() + manifinscyl1sh->GetDz(); + zpos = manifblksh->GetDZ() - manifinscyl1sh->GetRmax() - kCoolManifFitZPos; + coolmanifA->AddNode(manifinscyl1, 1, new TGeoCombiTrans(0, -ypos, zpos, + new TGeoRotation("",0,90,0))); + coolmanifC->AddNode(manifinscyl1, 1, new TGeoCombiTrans(0, -ypos, zpos, + new TGeoRotation("",0,90,0))); + + ypos += (manifinscyl1sh->GetDz() + manifinscubesh->GetDY()); + coolmanifA->AddNode(manifinscube, 1, new TGeoTranslation(0, -ypos, zpos)); + coolmanifC->AddNode(manifinscube, 1, new TGeoTranslation(0, -ypos, zpos)); + + zpos += (manifinscubesh->GetDZ() + manifinscyl2sh->GetDz()); + coolmanifA->AddNode(manifinscyl2, 1, new TGeoTranslation(0, -ypos, zpos)); + coolmanifC->AddNode(manifinscyl2, 1, new TGeoTranslation(0, -ypos, zpos)); + + ypos = manifblksh->GetDY(); + coolmanifA->AddNode(suppmanif, 1, new TGeoCombiTrans(0, ypos, 0, + new TGeoRotation("",-90,90,90))); + coolmanifC->AddNode(suppmanif, 1, new TGeoCombiTrans(0, ypos, 0, + new TGeoRotation("",-90,90,90))); + + ypos += (kManifSuppThick + kScrewM3HeadThick/2); + xpos = kCoolManifWidth/2 - kSuppScrewXPos; + zpos = kCoolManifLength/2 - kSuppScrewZPos; + coolmanifA->AddNode(suppscrewhead, 1, new TGeoCombiTrans( xpos, ypos, zpos, + new TGeoRotation("",0,-90,0))); + coolmanifC->AddNode(suppscrewhead, 1, new TGeoCombiTrans( xpos, ypos, zpos, + new TGeoRotation("",0,-90,0))); + coolmanifA->AddNode(suppscrewhead, 2, new TGeoCombiTrans( xpos, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + coolmanifC->AddNode(suppscrewhead, 2, new TGeoCombiTrans( xpos, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + coolmanifA->AddNode(suppscrewhead, 3, new TGeoCombiTrans(-xpos, ypos, zpos, + new TGeoRotation("",0,-90,0))); + coolmanifC->AddNode(suppscrewhead, 3, new TGeoCombiTrans(-xpos, ypos, zpos, + new TGeoRotation("",0,-90,0))); + coolmanifA->AddNode(suppscrewhead, 4, new TGeoCombiTrans(-xpos, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + coolmanifC->AddNode(suppscrewhead, 4, new TGeoCombiTrans(-xpos, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + + ypos = manifblksh->GetDY() + screwoutmanifsh->GetDz(); + coolmanifA->AddNode(screwoutmanif, 1, new TGeoCombiTrans( xpos,-ypos, zpos, + new TGeoRotation("",0,-90,0))); + coolmanifC->AddNode(screwoutmanif, 1, new TGeoCombiTrans( xpos,-ypos, zpos, + new TGeoRotation("",0,-90,0))); + coolmanifA->AddNode(screwoutmanif, 2, new TGeoCombiTrans( xpos,-ypos,-zpos, + new TGeoRotation("",0,-90,0))); + coolmanifC->AddNode(screwoutmanif, 2, new TGeoCombiTrans( xpos,-ypos,-zpos, + new TGeoRotation("",0,-90,0))); + coolmanifA->AddNode(screwoutmanif, 3, new TGeoCombiTrans(-xpos,-ypos, zpos, + new TGeoRotation("",0,-90,0))); + coolmanifC->AddNode(screwoutmanif, 3, new TGeoCombiTrans(-xpos,-ypos, zpos, + new TGeoRotation("",0,-90,0))); + coolmanifA->AddNode(screwoutmanif, 4, new TGeoCombiTrans(-xpos,-ypos,-zpos, + new TGeoRotation("",0,-90,0))); + coolmanifC->AddNode(screwoutmanif, 4, new TGeoCombiTrans(-xpos,-ypos,-zpos, + new TGeoRotation("",0,-90,0))); + + ypos = manifblksh->GetDY() + suppmanifsh->GetY(1) - suppsectsh->GetY(1); + zpos = manifblksh->GetDZ() + (kCoolManifZPos - kSectSuppZPos); + coolmanifA->AddNode(suppsect, 1, new TGeoCombiTrans(0, ypos,-zpos, + new TGeoRotation("",-90,90,90))); + coolmanifC->AddNode(suppsect, 1, new TGeoCombiTrans(0, ypos,-zpos, + new TGeoRotation("",-90,90,90))); + + tmp = ypos; // Save it to avoid recomputing + + ypos += (kSectSuppThick + kScrewM3HeadThick/2); + zpos += (kSectSuppLen2/2 - kSectScrewZPos); + coolmanifA->AddNode(suppscrewhead, 5, new TGeoCombiTrans( 0, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + coolmanifC->AddNode(suppscrewhead, 5, new TGeoCombiTrans( 0, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + zpos -= 2*(kSectSuppLen2/2 - kSectScrewZPos); + coolmanifA->AddNode(suppscrewhead, 6, new TGeoCombiTrans( 0, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + coolmanifC->AddNode(suppscrewhead, 6, new TGeoCombiTrans( 0, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + + ypos = tmp + kSectSuppThick + kSetPinHeadThick/2; + zpos += (kSectSuppLen2/2 - kSectScrewZPos); + coolmanifA->AddNode(setpinhead, 1, new TGeoCombiTrans( 0, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + coolmanifC->AddNode(setpinhead, 1, new TGeoCombiTrans( 0, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + + ypos = tmp - 8.e-5; // Avoid microscopic overlap + tmp = ypos; + coolmanifA->AddNode(sectclip, 1, new TGeoTranslation( 0, ypos,-zpos)); + coolmanifC->AddNode(sectclip, 1, new TGeoCombiTrans ( 0, ypos,-zpos, + new TGeoRotation("",-90,180,90))); + + ypos -= (kSectClipThick1 + setpinoutclipsh->GetDz()); + coolmanifA->AddNode(setpinoutclip, 1, new TGeoCombiTrans( 0, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + coolmanifC->AddNode(setpinoutclip, 1, new TGeoCombiTrans( 0, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + + ypos = tmp - (kSectClipThick1 + screwoutmanifsh->GetDz()); + zpos += (kSectSuppLen2/2 - kSectScrewZPos); + coolmanifA->AddNode(screwoutmanif, 5, new TGeoCombiTrans( 0, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + coolmanifC->AddNode(screwoutmanif, 5, new TGeoCombiTrans( 0, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + zpos -= 2*(kSectSuppLen2/2 - kSectScrewZPos); + coolmanifA->AddNode(screwoutmanif, 6, new TGeoCombiTrans( 0, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + coolmanifC->AddNode(screwoutmanif, 6, new TGeoCombiTrans( 0, ypos,-zpos, + new TGeoRotation("",0,-90,0))); + + xpos = manifblksh->GetDX() - kCoolManifCollXPos; + ypos = manifblksh->GetDY() + manifcollcyl1sh->GetDz(); + zpos =-manifblksh->GetDZ() + kCoolManifCollZ0; + for (Int_t i=0; i<3; i++) { + coolmanifA->AddNode(manifcollcyl1, 2*i+1, + new TGeoCombiTrans( xpos, -ypos, zpos, + new TGeoRotation("",0,90,0))); + coolmanifA->AddNode(manifcollcyl1, 2*i+2, + new TGeoCombiTrans(-xpos, -ypos, zpos, + new TGeoRotation("",0,90,0))); + coolmanifC->AddNode(manifcollcyl1, 2*i+1, + new TGeoCombiTrans( xpos, -ypos, zpos, + new TGeoRotation("",0,90,0))); + coolmanifC->AddNode(manifcollcyl1, 2*i+2, + new TGeoCombiTrans(-xpos, -ypos, zpos, + new TGeoRotation("",0,90,0))); + Double_t y = ypos + manifcollcyl1sh->GetDz() + manifcollcyl2sh->GetDz(); + coolmanifA->AddNode(manifcollcyl2, 2*i+1, + new TGeoCombiTrans( xpos, -y, zpos, + new TGeoRotation("",0,90,0))); + coolmanifA->AddNode(manifcollcyl2, 2*i+2, + new TGeoCombiTrans(-xpos, -y, zpos, + new TGeoRotation("",0,90,0))); + coolmanifC->AddNode(manifcollcyl2, 2*i+1, + new TGeoCombiTrans( xpos, -y, zpos, + new TGeoRotation("",0,90,0))); + coolmanifC->AddNode(manifcollcyl2, 2*i+2, + new TGeoCombiTrans(-xpos, -y, zpos, + new TGeoRotation("",0,90,0))); + + zpos += kCoolManifCollDZ; + } + + // Now add the cooling tubes to the assembly + CreateCoolingTubes(coolmanifA, kFALSE); + CreateCoolingTubes(coolmanifC, kTRUE); + + + // Finally put everything in the mother volume + radius = kCoolManifRPos + 1.e-5; // Avoid microscopic overlap + zpos = kCoolManifZPos + manifblksh->GetDZ(); + for (Int_t i=0; i<10; i++) { + theta = 36.*i; + moth->AddNode(coolmanifA, i+1, new TGeoCombiTrans(radius*SinD(theta), + radius*CosD(theta), + zpos, + new TGeoRotation("",-theta,0,0))); + moth->AddNode(coolmanifC, i+1, new TGeoCombiTrans(radius*SinD(theta), + radius*CosD(theta), + -zpos, + new TGeoRotation("",90-theta,180,-90))); + } + + +} + + +//______________________________________________________________________ +void AliITSv11GeometrySPD::CreateCoolingTubes(TGeoVolume *moth, Bool_t sideC) const +{ + // + // Private method to implement SPD cooling tubes + // going from the manifolds to the staves + // Since their form is quite complicate (especially on Side C + // where capillaries are located) a separate method is used + // If sideC is true, the cooling tubes on Side C are created + // along with the cooling loops (aka "capillaries"), otherwise + // the (simpler) tubes on Side A get created. + // + // In all variables: L = Left (X > 0) R = Right (X < 0) + // + // Created: 10 Nov 2012 Mario Sitta + // + // Data provided by C.Gargiulo from CAD + + // Cooling manifolds - THESE VALUES *MUST* MATCH WITH CALLING METHOD! + const Double_t kCoolManifWidth = fgkmm * 22.0; + const Double_t kCoolManifLength = fgkmm * 50.0; + const Double_t kCoolManifThick = fgkmm * 7.0; + const Double_t kCoolManifCollH1 = fgkmm * 2.5; + const Double_t kCoolManifCollH2 = fgkmm * 5.0; + // Cooling pipes + const Double_t kCoolPipeSideARin = fgkmm * 1.5; + const Double_t kCoolPipeSideARout = fgkmm * 1.8; + const Double_t kCoolPipeSideCRin = fgkmm * 0.5; + const Double_t kCoolPipeSideCRout = fgkmm * 0.85; + const Double_t kCoolPipeHeight = fgkmm * 1.923; + const Double_t kCoolPipeCRadiusL[3] = {11.0, 14.0, 31.34};// TO BE CHECKED! + const Double_t kCoolPipeCRadiusR[3] = {12.0, 14.0, 35.54};// TO BE CHECKED! + const Double_t kCoolPipeARadiusL12[2] = {14.0, 30.0}; + const Double_t kCoolPipeARadiusR12[2] = {14.0, 30.0}; + const Double_t kCoolPipeARadiusL34[2] = {22.0, 30.0}; + const Double_t kCoolPipeARadiusR34[2] = {22.0, 30.0}; + const Double_t kCoolPipeARadiusL[3]= {14.0, 14.0, 31.34}; // TO BE CHECKED! + const Double_t kCoolPipeARadiusR[3]= {14.0, 14.0, 35.54}; // TO BE CHECKED! + const Double_t kCoolPipeZSPD = fgkcm * 8.47; + // Cooling pipes position - THESE VALUES *MUST* MATCH WITH CALLING METHOD! + const Double_t kCoolManifCollXPos = fgkmm * 5.0; + const Double_t kCoolManifCollDZ = fgkmm * 13.0; + const Double_t kCoolManifCollZ0 = fgkmm * 9.0; + + Int_t kPurple = 6; // Purple (Root does not define it) + + // Local variables + Double_t xpos, ypos, zpos; + Char_t pipename[11]; + + // + TGeoMedium *medPhynox = GetMedium("PHYNOX$"); + TGeoMedium *medFreon = GetMedium("Freon$"); + TGeoMedium *medGasFr = GetMedium("GASEOUS FREON$"); + + // The cooling tubes are created as CableRound volumes + // because it's easier to compose them piece by piece + AliITSv11GeomCableRound *coolpipe[6]; + + if (sideC) + for (Int_t i = 0; i<6; i++) { + snprintf(pipename,11,"coolPipeC%d",i+1); + coolpipe[i] = new AliITSv11GeomCableRound(pipename,kCoolPipeSideCRout); + coolpipe[i]->SetNLayers(2); + coolpipe[i]->SetLayer(0, kCoolPipeSideCRin, medFreon, kPurple); + coolpipe[i]->SetLayer(1,(kCoolPipeSideCRout-kCoolPipeSideCRin), + medPhynox, kYellow); + } + else + for (Int_t i = 0; i<6; i++) { + snprintf(pipename,11,"coolPipeA%d",i+1); + coolpipe[i] = new AliITSv11GeomCableRound(pipename,kCoolPipeSideARout); + coolpipe[i]->SetNLayers(2); + coolpipe[i]->SetLayer(0, kCoolPipeSideARin, medGasFr, kPurple); + coolpipe[i]->SetLayer(1,(kCoolPipeSideARout-kCoolPipeSideARin), + medPhynox, kYellow); + } + + // Now place them in the mother assembly + xpos = kCoolManifWidth/2 - kCoolManifCollXPos; + ypos = kCoolManifThick/2 + kCoolManifCollH1 + kCoolManifCollH2; + zpos =-kCoolManifLength/2 + kCoolManifCollZ0; + + if (sideC) { // On Side C tubes are simpler and can be created in a loop + + for (Int_t i=0; i<3; i++) { + + Double_t coordL[3] = { xpos,-ypos,zpos}; + Double_t coordR[3] = {-xpos,-ypos,zpos}; + Double_t vect[3] = {0, 1, 0}; + coolpipe[2*i]->AddCheckPoint(moth, 0, coordL, vect); + coolpipe[2*i+1]->AddCheckPoint(moth, 0, coordR, vect); + coordL[1] -= kCoolPipeHeight; + coordR[1] = coordL[1]; + coolpipe[2*i]->AddCheckPoint(moth, 1, coordL, vect); + coolpipe[2*i+1]->AddCheckPoint(moth, 1, coordR, vect); + coordL[1] -= kCoolPipeCRadiusL[i]*fgkmm; + coordL[2] -= kCoolPipeCRadiusL[i]*fgkmm; + coordR[1] -= kCoolPipeCRadiusR[i]*fgkmm; + coordR[2] -= kCoolPipeCRadiusR[i]*fgkmm; + vect[1] = 0; + vect[2] = -1; + coolpipe[2*i]->AddCheckPoint(moth, 2, coordL, vect); + coolpipe[2*i+1]->AddCheckPoint(moth, 2, coordR, vect); + coordL[2] = -kCoolPipeZSPD; + coordR[2] = -kCoolPipeZSPD; + coolpipe[2*i]->AddCheckPoint(moth, 3, coordL, vect); + coolpipe[2*i+1]->AddCheckPoint(moth, 3, coordR, vect); + + zpos += kCoolManifCollDZ; + } + + for (Int_t i=0; i<6; i++) { + coolpipe[i]->SetInitialNode(moth); + + coolpipe[i]->CreateAndInsertTubeSegment(1); + coolpipe[i]->CreateAndInsertTorusSegment(2,180); + coolpipe[i]->CreateAndInsertTubeSegment(3); + } + + } else { // On Side A tubes are all different so are created one by one + + Double_t coordL[3] = { xpos,-ypos,zpos}; + Double_t coordR[3] = {-xpos,-ypos,zpos}; + Double_t vect[3] = {0, 1, 0}; + coolpipe[0]->AddCheckPoint(moth, 0, coordL, vect); + coolpipe[1]->AddCheckPoint(moth, 0, coordR, vect); + coordL[1] -= kCoolPipeHeight; + coordR[1] = coordL[1]; + coolpipe[0]->AddCheckPoint(moth, 1, coordL, vect); + coolpipe[1]->AddCheckPoint(moth, 1, coordR, vect); + coordL[1] -= SinD(45) *kCoolPipeARadiusL12[0]*fgkmm; + coordL[2] -= (1+CosD(45))*kCoolPipeARadiusL12[0]*fgkmm; + coordR[1] -= SinD(45) *kCoolPipeARadiusR12[0]*fgkmm; + coordR[2] -= (1+CosD(45))*kCoolPipeARadiusR12[0]*fgkmm; + vect[1] = TMath::Sqrt(2); + vect[2] = -vect[1]; + coolpipe[0]->AddCheckPoint(moth, 2, coordL, vect); + coolpipe[1]->AddCheckPoint(moth, 2, coordR, vect); + coordL[1] += (1-CosD(45))*kCoolPipeARadiusL12[1]*fgkmm; + coordL[2] -= SinD(45) *kCoolPipeARadiusL12[1]*fgkmm; + coordR[1] += (1-CosD(45))*kCoolPipeARadiusR12[1]*fgkmm; + coordR[2] -= SinD(45) *kCoolPipeARadiusR12[1]*fgkmm; + vect[1] = 0; + vect[2] = -1; + coolpipe[0]->AddCheckPoint(moth, 3, coordL, vect); + coolpipe[1]->AddCheckPoint(moth, 3, coordR, vect); + coordL[2] = -kCoolPipeZSPD; + coordR[2] = -kCoolPipeZSPD; + coolpipe[0]->AddCheckPoint(moth, 4, coordL, vect); + coolpipe[1]->AddCheckPoint(moth, 4, coordR, vect); + + coolpipe[0]->SetInitialNode(moth); + coolpipe[0]->CreateAndInsertTubeSegment(1); + coolpipe[0]->CreateAndInsertTorusSegment(2,180); + coolpipe[0]->CreateAndInsertTorusSegment(3,180); + coolpipe[0]->CreateAndInsertTubeSegment(4); + + coolpipe[1]->SetInitialNode(moth); + coolpipe[1]->CreateAndInsertTubeSegment(1); + coolpipe[1]->CreateAndInsertTorusSegment(2,180); + coolpipe[1]->CreateAndInsertTorusSegment(3,180); + coolpipe[1]->CreateAndInsertTubeSegment(4); + + zpos += kCoolManifCollDZ; + + coordL[0] = xpos; coordL[1] = -ypos; coordL[2] = zpos; + coordR[0] =-xpos; coordR[1] = -ypos; coordR[2] = zpos; + vect[0] = 0; vect[1] = 1; vect[2] = 0; + + coolpipe[2]->AddCheckPoint(moth, 0, coordL, vect); + coolpipe[3]->AddCheckPoint(moth, 0, coordR, vect); + coordL[1] -= kCoolPipeHeight; + coordR[1] = coordL[1]; + coolpipe[2]->AddCheckPoint(moth, 1, coordL, vect); + coolpipe[3]->AddCheckPoint(moth, 1, coordR, vect); + coordL[1] -= SinD(45) *kCoolPipeARadiusL34[0]*fgkmm; + coordL[2] -= (1+CosD(45))*kCoolPipeARadiusL34[0]*fgkmm; + coordR[1] -= SinD(45) *kCoolPipeARadiusR34[0]*fgkmm; + coordR[2] -= (1+CosD(45))*kCoolPipeARadiusR34[0]*fgkmm; + vect[1] = TMath::Sqrt(2); + vect[2] = -vect[1]; + coolpipe[2]->AddCheckPoint(moth, 2, coordL, vect); + coolpipe[3]->AddCheckPoint(moth, 2, coordR, vect); + coordL[1] += (1-CosD(45))*kCoolPipeARadiusL34[1]*fgkmm; + coordL[2] -= SinD(45) *kCoolPipeARadiusL34[1]*fgkmm; + coordR[1] += (1-CosD(45))*kCoolPipeARadiusR34[1]*fgkmm; + coordR[2] -= SinD(45) *kCoolPipeARadiusR34[1]*fgkmm; + vect[1] = 0; + vect[2] = -1; + coolpipe[2]->AddCheckPoint(moth, 3, coordL, vect); + coolpipe[3]->AddCheckPoint(moth, 3, coordR, vect); + coordL[2] = -kCoolPipeZSPD; + coordR[2] = -kCoolPipeZSPD; + coolpipe[2]->AddCheckPoint(moth, 4, coordL, vect); + coolpipe[3]->AddCheckPoint(moth, 4, coordR, vect); + + coolpipe[2]->SetInitialNode(moth); + coolpipe[2]->CreateAndInsertTubeSegment(1); + coolpipe[2]->CreateAndInsertTorusSegment(2,180); + coolpipe[2]->CreateAndInsertTorusSegment(3,180); + coolpipe[2]->CreateAndInsertTubeSegment(4); + + coolpipe[3]->SetInitialNode(moth); + coolpipe[3]->CreateAndInsertTubeSegment(1); + coolpipe[3]->CreateAndInsertTorusSegment(2,180); + coolpipe[3]->CreateAndInsertTorusSegment(3,180); + coolpipe[3]->CreateAndInsertTubeSegment(4); + + zpos += kCoolManifCollDZ; + + coordL[0] = xpos; coordL[1] = -ypos; coordL[2] = zpos; + coordR[0] =-xpos; coordR[1] = -ypos; coordR[2] = zpos; + vect[0] = 0; vect[1] = 1; vect[2] = 0; + + coolpipe[4]->AddCheckPoint(moth, 0, coordL, vect); + coolpipe[5]->AddCheckPoint(moth, 0, coordR, vect); + coordL[1] -= kCoolPipeHeight; + coordR[1] = coordL[1]; + coolpipe[4]->AddCheckPoint(moth, 1, coordL, vect); + coolpipe[5]->AddCheckPoint(moth, 1, coordR, vect); + coordL[1] -= kCoolPipeARadiusL[2]*fgkmm; + coordL[2] -= kCoolPipeARadiusL[2]*fgkmm; + coordR[1] -= kCoolPipeARadiusR[2]*fgkmm; + coordR[2] -= kCoolPipeARadiusR[2]*fgkmm; + vect[1] = 0; + vect[2] = -1; + coolpipe[4]->AddCheckPoint(moth, 2, coordL, vect); + coolpipe[5]->AddCheckPoint(moth, 2, coordR, vect); + coordL[2] = -kCoolPipeZSPD; + coordR[2] = -kCoolPipeZSPD; + coolpipe[4]->AddCheckPoint(moth, 3, coordL, vect); + coolpipe[5]->AddCheckPoint(moth, 3, coordR, vect); + + coolpipe[4]->SetInitialNode(moth); + coolpipe[4]->CreateAndInsertTubeSegment(1); + coolpipe[4]->CreateAndInsertTorusSegment(2,180); + coolpipe[4]->CreateAndInsertTubeSegment(3); + + coolpipe[5]->SetInitialNode(moth); + coolpipe[5]->CreateAndInsertTubeSegment(1); + coolpipe[5]->CreateAndInsertTorusSegment(2,180); + coolpipe[5]->CreateAndInsertTubeSegment(3); + + } // if (sideC) + + if(GetDebug(3)) + for (Int_t i=0; i<6; i++) + coolpipe[i]->PrintCheckPoints(); + +} + + +//______________________________________________________________________ +TGeoVolume* AliITSv11GeometrySPD::CreateExtender( + const Double_t *extenderParams, const TGeoMedium *extenderMedium, + TArrayD& sizes) const +{ + // + // ------------------ CREATE AN EXTENDER ------------------------ + // + // This function creates the following picture (in plane xOy) + // Should be useful for the definition of the pixel bus and MCM extenders + // The origin corresponds to point 0 on the picture, at half-width + // in Z direction + // + // Y 7 6 5 + // ^ +---+---------------------+ + // | / | + // | / | + // 0------> X / +---------------------+ + // / / 3 4 + // / / + // 9 8 / / + // +-----------+ / + // | / + // | / + // ---> +-----------+---+ + // | 0 1 2 + // | + // origin (0,0,0) + // + // + // Takes 6 parameters in the following order : + // |--> par 0 : inner length [0-1] / [9-8] + // |--> par 1 : thickness ( = [0-9] / [4-5]) + // |--> par 2 : angle of the slope + // |--> par 3 : total height in local Y direction + // |--> par 4 : outer length [3-4] / [6-5] + // |--> par 5 : width in local Z direction + // + Double_t slopeDeltaX = (extenderParams[3] - extenderParams[1] + * TMath::Cos(extenderParams[2])) / + TMath::Tan(extenderParams[2]); + Double_t extenderXtruX[10] = { + 0 , + extenderParams[0] , + extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2]) , + extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+ + slopeDeltaX , + extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+ + slopeDeltaX + extenderParams[4], + extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+ + slopeDeltaX + extenderParams[4], + extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+ + slopeDeltaX , + extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+ + slopeDeltaX - extenderParams[1] * TMath::Sin(extenderParams[2]) , + extenderParams[0] , + 0 + }; + Double_t extenderXtruY[10] = { + 0 , + 0 , + extenderParams[1] * (1-TMath::Cos(extenderParams[2])) , + extenderParams[3] - extenderParams[1] , + extenderParams[3] - extenderParams[1] , + extenderParams[3] , + extenderParams[3] , + extenderParams[3]-extenderParams[1]*(1-TMath::Cos(extenderParams[2])) , + extenderParams[1] , + extenderParams[1] + }; + + if (sizes.GetSize() != 3) sizes.Set(3); + Double_t &thickness = sizes[0]; + Double_t &length = sizes[1]; + Double_t &width = sizes[2]; + + thickness = extenderParams[3]; + width = extenderParams[5]; + length = extenderParams[0]+extenderParams[1]* + TMath::Sin(extenderParams[2])+slopeDeltaX+extenderParams[4]; + + // creation of the volume + TGeoXtru *extenderXtru = new TGeoXtru(2); + TGeoVolume *extenderXtruVol = new TGeoVolume("ITSSPDextender",extenderXtru, + extenderMedium); + extenderXtru->DefinePolygon(10,extenderXtruX,extenderXtruY); + extenderXtru->DefineSection(0,-0.5*extenderParams[4]); + extenderXtru->DefineSection(1, 0.5*extenderParams[4]); + return extenderXtruVol; +} + +//______________________________________________________________________ +TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateHalfStave(Bool_t isRight, +Int_t layer,Int_t idxCentral,Int_t idxSide,TArrayD &sizes,TGeoManager *mgr) +{ + // + // Implementation of an half-stave, which depends on the side where + // we are on the stave. The convention for "left" and "right" is the + // same as for the MCM. The return value is a TGeoAssembly which is + // structured in such a way that the origin of its local reference + // frame coincides with the origin of the whole stave. + // The TArrayD passed by reference will contain details of the shape: + // - sizes[0] = thickness + // - sizes[1] = length + // - sizes[2] = width + // - sizes[3] = common 'x' position for eventual clips + // - sizes[4] = common 'y' position for eventual clips + // - sizes[5] = 'z' position of first clip + // - sizes[6] = 'z' position of second clip + // + + // ** CHECK ** + + // idxCentral and idxSide must be different + if (idxCentral == idxSide) { + AliInfo("Ladders must be inserted in half-stave with " + "different indexes."); + idxSide = idxCentral + 1; + AliInfo(Form("Central ladder will be inserted with index %d", + idxCentral)); + AliInfo(Form("Side ladder will be inserted with index %d",idxSide)); + } // end if + + // define the separations along Z direction between the objects + Double_t sepLadderLadder = fgkmm * 0.2; // sep. btw the 2 ladders + Double_t sepLadderCenter = fgkmm * 0.4; // sep. btw the "central" ladder + // and the Z=0 plane in stave ref. + Double_t sepLadderMCM = fgkmm * 0.3; // sep. btw the "external" ladder + // and MCM + Double_t sepBusCenter = fgkmm * 0.3; // sep. btw the bus central edge + // and the Z=0 plane in stave ref. + + // ** VOLUMES ** + + // grounding foil + TArrayD grndSize(3); + // This one line repalces the 3 bellow, BNS. + TGeoVolume *grndVol = CreateGroundingFoil(isRight, grndSize, mgr); + Double_t &grndThickness = grndSize[0]; + Double_t &grndLength = grndSize[1]; + + // ladder + TArrayD ladderSize(3); + TGeoVolume *ladder = CreateLadder(layer, ladderSize, mgr); + Double_t ladderThickness = ladderSize[0]; + Double_t ladderLength = ladderSize[1]; + Double_t ladderWidth = ladderSize[2]; + + // MCM + TArrayD mcmSize(3); + TGeoVolumeAssembly *mcm = CreateMCM(!isRight,mcmSize,mgr); + Double_t mcmThickness = mcmSize[0]; + Double_t mcmLength = mcmSize[1]; + Double_t mcmWidth = mcmSize[2]; + + // bus + TArrayD busSize(6); + TGeoVolumeAssembly *bus = CreatePixelBus(isRight, layer, busSize, mgr); + Double_t busThickness = busSize[0]; + Double_t busLength = busSize[1]; + Double_t busWidth = busSize[2]; + + // glue between ladders and pixel bus + TGeoMedium *medLadGlue = GetMedium("EPOXY$", mgr); + Double_t ladGlueThickness = fgkmm * 0.1175 - fgkGapLadder; + TGeoVolume *ladderGlue = mgr->MakeBox("ITSSPDladderGlue",medLadGlue, + 0.5*ladGlueThickness, 0.5*busWidth, 0.5*busLength); + ladderGlue->SetLineColor(kYellow + 5); + + // create references for the whole object, as usual + sizes.Set(7); + Double_t &fullThickness = sizes[0]; + Double_t &fullLength = sizes[1]; + Double_t &fullWidth = sizes[2]; + + // compute the full size of the container + fullLength = sepLadderCenter+2.0*ladderLength+sepLadderMCM+ + sepLadderLadder+mcmLength; + fullWidth = ladderWidth; + fullThickness = grndThickness + fgkGapLadder + mcmThickness + busThickness; + //cout << "HSTAVE FULL THICKNESS = " << fullThickness << endl; + + // ** MOVEMENTS ** + + // grounding foil (shifted only along thickness) + Double_t xGrnd = -0.5*fullThickness + 0.5*grndThickness; + Double_t zGrnd = -0.5*grndLength; + if (!isRight) zGrnd = -zGrnd; + TGeoTranslation *grndTrans = new TGeoTranslation(xGrnd, 0.0, zGrnd); + + // ladders (translations along thickness and length) + // layers must be sorted going from the one at largest Z to the + // one at smallest Z: + // -|Zmax| ------> |Zmax| + // 3 2 1 0 + // then, for layer 1 ladders they must be placed exactly this way, + // and in layer 2 at the opposite. In order to remember the placements, + // we define as "inner" and "outer" ladder respectively the one close + // to barrel center, and the one closer to MCM, respectively. + Double_t xLad, zLadIn, zLadOut; + xLad = xGrnd + 0.5*(grndThickness + ladderThickness) + + 0.01175 - fgkGapLadder; + zLadIn = -sepLadderCenter - 0.5*ladderLength; + zLadOut = zLadIn - sepLadderLadder - ladderLength; + if (!isRight) { + zLadIn = -zLadIn; + zLadOut = -zLadOut; + } // end if !isRight + TGeoRotation *rotLad = new TGeoRotation(*gGeoIdentity); + rotLad->RotateZ(90.0); + rotLad->RotateY(180.0); + Double_t sensWidth = fgkmm * 12.800; + Double_t chipWidth = fgkmm * 15.950; + Double_t guardRingWidth = fgkmm * 0.560; + Double_t ladderShift = 0.5 * (chipWidth - sensWidth - 2.0*guardRingWidth); + TGeoCombiTrans *trLadIn = new TGeoCombiTrans(xLad,ladderShift,zLadIn, + rotLad); + TGeoCombiTrans *trLadOut = new TGeoCombiTrans(xLad,ladderShift,zLadOut, + rotLad); + + // MCM (length and thickness direction, placing at same level as the + // ladder, which implies to recompute the position of center, because + // ladder and MCM have NOT the same thickness) the two copies of the + // MCM are placed at the same distance from the center, on both sides + Double_t xMCM = xGrnd + 0.5*grndThickness + 0.5*mcmThickness + + 0.01175 - fgkGapLadder; + Double_t yMCM = 0.5*(fullWidth - mcmWidth); + Double_t zMCM = zLadOut - 0.5*ladderLength - 0.5*mcmLength - sepLadderMCM; + if (!isRight) zMCM = zLadOut + 0.5*ladderLength + 0.5*mcmLength + + sepLadderMCM; + + // create the correction rotations + TGeoRotation *rotMCM = new TGeoRotation(*gGeoIdentity); + rotMCM->RotateY(90.0); + TGeoCombiTrans *trMCM = new TGeoCombiTrans(xMCM, yMCM, zMCM, rotMCM); + + // glue between ladders and pixel bus + Double_t xLadGlue = xLad + 0.5*ladderThickness + 0.01175 - + fgkGapLadder + 0.5*ladGlueThickness; + + // bus (length and thickness direction) + Double_t xBus = xLadGlue + 0.5*ladGlueThickness + 0.5*busThickness; + Double_t yBus = 0.5*(fullWidth - busWidth) + 0.075; // Hardcode fix of a small overlap + Double_t zBus = -0.5*busLength - sepBusCenter; + if (!isRight) zBus = -zBus; + TGeoTranslation *trBus = new TGeoTranslation(xBus, yBus, zBus); + + TGeoTranslation *trLadGlue = new TGeoTranslation(xLadGlue, 0.0, zBus); + + // create the container + TGeoVolumeAssembly *container = 0; + if (idxCentral+idxSide==5) { + container = new TGeoVolumeAssembly("ITSSPDhalf-Stave1"); + } else { + container = new TGeoVolumeAssembly("ITSSPDhalf-Stave0"); + } // end if + + // add to container all objects + container->AddNode(grndVol, 1, grndTrans); + // ladders are inserted in different order to respect numbering scheme + // which is inverted when going from outer to inner layer + container->AddNode(ladder, idxCentral+1, trLadIn); + container->AddNode(ladder, idxSide+1, trLadOut); + container->AddNode(ladderGlue, 1, trLadGlue); + container->AddNode(mcm, 1, trMCM); + container->AddNode(bus, 1, trBus); + + // since the clips are placed in correspondence of two pt1000s, + // their position is computed here, but they are not added by default + // it will be the StavesInSector method which will decide to add them + // anyway, to recovery some size informations on the clip, it must be + // created + TArrayD clipSize; + // TGeoVolume *clipDummy = CreateClip(clipSize, kTRUE, mgr); + CreateClip(clipSize, kTRUE, mgr); + // define clip movements (width direction) + sizes[3] = xBus + 0.5*busThickness; + sizes[4] = 0.5 * (fullWidth - busWidth) - clipSize[6] - fgkmm*0.26; + sizes[5] = zBus + busSize[4]; + sizes[6] = zBus + busSize[5]; + + return container; +} +//______________________________________________________________________ +TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateStave(Int_t layer, + TArrayD &sizes, TGeoManager *mgr) +{ + // + // This method uses all other ones which create pieces of the stave + // and assemblies everything together, in order to return the whole + // stave implementation, which is returned as a TGeoVolumeAssembly, + // due to the presence of some parts which could generate fake overlaps + // when put on the sector. + // This assembly contains, going from bottom to top in the thickness + // direction: + // - the complete grounding foil, defined by the "CreateGroundingFoil" + // method which already joins some glue and real groudning foil + // layers for the whole stave (left + right); + // - 4 ladders, which are sorted according to the ALICE numbering + // scheme, which depends on the layer we are building this stave for; + // - 2 MCMs (a left and a right one); + // - 2 pixel buses (a left and a right one); + // --- + // Arguments: + // - the layer number, which determines the displacement and naming + // of sensitive volumes + // - a TArrayD passed by reference which will contain the size + // of virtual box containing the stave + // - the TGeoManager + // + + // create the container + TGeoVolumeAssembly *container = new TGeoVolumeAssembly(Form( + "ITSSPDlay%d-Stave",layer)); + // define the indexes of the ladders in order to have the correct order + // keeping in mind that the staves will be inserted as they are on layer + // 2, while they are rotated around their local Y axis when inserted + // on layer 1, so in this case they must be put in the "wrong" order + // to turn out to be right at the end. The convention is: + // -|Zmax| ------> |Zmax| + // 3 2 1 0 + // with respect to the "native" stave reference frame, "left" is in + // the positive Z this leads the definition of these indexes: + Int_t idxCentralL, idxSideL, idxCentralR, idxSideR; + + if (layer == 1) { + idxSideL = 3; + idxCentralL = 2; + idxCentralR = 1; + idxSideR = 0; + } else { + idxSideL = 0; + idxCentralL = 1; + idxCentralR = 2; + idxSideR = 3; + } // end if layer ==1 + + // create the two half-staves + TArrayD sizeL, sizeR; + TGeoVolumeAssembly *hstaveL = CreateHalfStave(kFALSE, layer, idxCentralL, + idxSideL, sizeL,mgr); + TGeoVolumeAssembly *hstaveR = CreateHalfStave(kTRUE, layer, idxCentralR, + idxSideR, sizeR, mgr); + // copy the size to the stave's one + sizes.Set(9); + sizes[0] = sizeL[0]; + sizes[1] = sizeR[1] + sizeL[1]; + sizes[2] = sizeL[2]; + sizes[3] = sizeL[3]; + sizes[4] = sizeL[4]; + sizes[5] = sizeL[5]; + sizes[6] = sizeL[6]; + sizes[7] = sizeR[5]; + sizes[8] = sizeR[6]; + + // add to container all objects + container->AddNode(hstaveL, 1); + container->AddNode(hstaveR, 1); + + return container; +} +//______________________________________________________________________ +void AliITSv11GeometrySPD::SetAddStave(Bool_t *mask) +{ + // + // Define a mask which states qhich staves must be placed. + // It is a string which must contain '0' or '1' depending if + // a stave must be placed or not. + // Each place is referred to one of the staves, so the first + // six characters of the string will be checked. + // + Int_t i; + + for (i = 0; i < 6; i++) fAddStave[i] = mask[i]; +} +//______________________________________________________________________ +void AliITSv11GeometrySPD::StavesInSector(TGeoVolume *moth, TGeoManager *mgr) +{ + // + // Unification of essentially two methods: + // - the one which creates the sector structure + // - the one which returns the complete stave + // --- + // For compatibility, this method requires the same arguments + // asked by "CarbonFiberSector" method, which is recalled here. + // Like this cited method, this one does not return any value, + // but it inserts in the mother volume (argument 'moth') all the stuff + // which composes the complete SPD sector. + // --- + // In the following, the stave numbering order used for arrays is the + // same as defined in the GetSectorMountingPoints(): + // /5 + // /\/4 + // 1\ \/3 + // 0|___\/2 + // --- + // Arguments: see description of "CarbonFiberSector" method. + // + + Double_t shift[6]; // shift from the innermost position in the + // sector placement plane (where the stave + // edge is in the point where the rounded + // corner begins) + + shift[0] = fgkmm * -0.691; + shift[1] = fgkmm * 5.041; + shift[2] = fgkmm * 1.816; + shift[3] = fgkmm * -0.610; + shift[4] = fgkmm * -0.610; + shift[5] = fgkmm * -0.610; + + // corrections after interaction with Andrea and CAD + Double_t corrX[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + Double_t corrY[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + corrX[0] = 0.0046; + corrX[1] = -0.0041; + corrX[2] = corrX[3] = corrX[4] = corrX[5] = -0.0016; + + corrY[0] = -0.0007; + corrY[1] = -0.0009; + corrY[2] = corrY[3] = corrY[4] = corrY[5] = -0.0003; + + corrX[0] += 0.00026; + corrY[0] += -0.00080; + + corrX[1] += 0.00018; + corrY[1] += -0.00086; + + corrX[2] += 0.00020; + corrY[2] += -0.00062; + + corrX[3] += 0.00017; + corrY[3] += -0.00076; + + corrX[4] += 0.00016; + corrY[4] += -0.00096; + + corrX[5] += 0.00018; + corrY[5] += -0.00107; + + // create stave volumes (different for layer 1 and 2) + TArrayD staveSizes1(9), staveSizes2(9), clipSize(5); + Double_t &staveHeight = staveSizes1[2], &staveThickness = staveSizes1[0]; + TGeoVolume *stave1 = CreateStave(1, staveSizes1, mgr); + TGeoVolume *stave2 = CreateStave(2, staveSizes2, mgr); + TGeoVolume *clip = CreateClip(clipSize, kFALSE, mgr); + + Double_t xL, yL; // leftmost edge of mounting point (XY projection) + Double_t xR, yR; // rightmost edge of mounting point (XY projection) + Double_t xM, yM; // middle point of the segment L-R + Double_t dx, dy; // (xL - xR) and (yL - yR) + Double_t widthLR; // width of the segment L-R + Double_t angle; // stave rotation angle in degrees + Double_t diffWidth; // difference between mounting plane width and + // stave width (smaller) + Double_t xPos, yPos; // final translation of the stave + Double_t parMovement; // translation in the LR plane direction + + staveThickness += fgkGapHalfStave; + + // loop on staves + Int_t i, iclip = 1; + for (i = 0; i < 6; i++) { + // in debug mode, if this stave is not required, it is skipped + if (!fAddStave[i]) continue; + // retrieve reference points + GetSectorMountingPoints(i, xL, yL, xR, yR); + xM = 0.5 * (xL + xR); + yM = 0.5 * (yL + yR); + dx = xL - xR; + dy = yL - yR; + angle = TMath::ATan2(dy, dx); + widthLR = TMath::Sqrt(dx*dx + dy*dy); + diffWidth = 0.5*(widthLR - staveHeight); + // first, a movement along this plane must be done + // by an amount equal to the width difference + // and then the fixed shift must also be added + parMovement = diffWidth + shift[i]; + // due to stave thickness, another movement must be done + // in the direction normal to the mounting plane + // which is computed using an internal method, in a reference + // frame where the LR segment has its middle point in the origin + // and axes parallel to the master reference frame + if (i == 0) { + ParallelPosition(-0.5*staveThickness, -parMovement, angle, + xPos, yPos); + } // end if i==0 + if (i == 1) { + ParallelPosition( 0.5*staveThickness, -parMovement, angle, + xPos, yPos); + }else { + ParallelPosition( 0.5*staveThickness, parMovement, angle, + xPos, yPos); + } // end if i==1 + // then we go into the true reference frame + xPos += xM; + yPos += yM; + xPos += corrX[i]; + yPos += corrY[i]; + // using the parameters found here, compute the + // translation and rotation of this stave: + TGeoRotation *rot = new TGeoRotation(*gGeoIdentity); + if (i == 0 || i == 1) rot->RotateX(180.0); + rot->RotateZ(90.0 + angle * TMath::RadToDeg()); + TGeoCombiTrans *trans = new TGeoCombiTrans(xPos, yPos, 0.0, rot); + if (i == 0 || i == 1) { + moth->AddNode(stave1, i+1, trans); + }else { + moth->AddNode(stave2, i - 1, trans); + if (i != 2) { + // except in the case of stave #2, + // clips must be added, and this is done directly on the sector + Int_t j; + //TArrayD clipSize; + TGeoRotation *rotClip = new TGeoRotation(*gGeoIdentity); + rotClip->RotateZ(-90.0); + rotClip->RotateX(180.0); + Double_t x = staveSizes2[3] + fgkGapHalfStave; + Double_t y = staveSizes2[4]; + Double_t z[4] = { staveSizes2[5], staveSizes2[6], + staveSizes2[7], staveSizes2[8] }; + for (j = 0; j < 4; j++) { + TGeoCombiTrans *trClip = new TGeoCombiTrans(x, y, z[j], + rotClip); + *trClip = *trans * *trClip; + moth->AddNode(clip, iclip++, trClip); + } // end for j + } // end if i!=2 + } // end if i==0||i==1 else + } // end for i + + + // Add a box representing the collector for cooling tubes + // MOVED TO CreateServices() - M.S. 25 jul 12 + +} +//______________________________________________________________________ +void AliITSv11GeometrySPD::ParallelPosition(Double_t dist1, Double_t dist2, + Double_t phi, Double_t &x, Double_t &y) const +{ + // + // Performs the following steps: + // 1 - finds a straight line parallel to the one passing through + // the origin and with angle 'phi' with X axis(phi in RADIANS); + // 2 - finds another line parallel to the previous one, with a + // distance 'dist1' from it + // 3 - takes a reference point in the second line in the intersection + // between the normal to both lines passing through the origin + // 4 - finds a point whith has distance 'dist2' from this reference, + // in the second line (point 2) + // ---- + // According to the signs given to dist1 and dist2, the point is + // found in different position w.r. to the origin + // compute the point + // + Double_t cs = TMath::Cos(phi); + Double_t sn = TMath::Sin(phi); + + x = dist2*cs - dist1*sn; + y = dist1*cs + dist2*sn; +} +//______________________________________________________________________ +Double_t AliITSv11GeometrySPD::GetSPDSectorTranslation( + Double_t x0,Double_t y0,Double_t x1,Double_t y1,Double_t r) const +{ + // + // Comutes the radial translation of a sector to give the + // proper distance between SPD detectors and the beam pipe. + // Units in are units out. + // + + //Begin_Html + /* + + Figure showing the geometry used in the computation below. + */ + //End_Html + + // Inputs: + // Double_t x0 Point x0 on Sector surface for the inner + // most detector mounting + // Double_t y0 Point y0 on Sector surface for the innor + // most detector mounting + // Double_t x1 Point x1 on Sector surface for the inner + // most detector mounting + // Double_t y1 Point y1 on Sector surface for the innor + // most detector mounting + // Double_t r The radial distance this mounting surface + // should be from the center of the beam pipe. + // Outputs: + // none. + // Return: + // The distance the SPD sector should be displaced radialy. + // + Double_t a,b,c; + + a = x0-x1; + if(a==0.0) return 0.0; + a = (y0-y1)/a; + b = TMath::Sqrt(1.0+a*a); + c = y0-a*x0-r*b; + return -c; +} + +//______________________________________________________________________ +void AliITSv11GeometrySPD::PrintAscii(ostream *os) const +{ + // + // Print out class data values in Ascii Form to output stream + // Inputs: + // ostream *os Output stream where Ascii data is to be writen + // Outputs: + // none. + // Return: + // none. + // + Int_t i,j,k; +#if defined __GNUC__ +#if __GNUC__ > 2 + ios::fmtflags fmt = cout.flags(); +#else + Int_t fmt; +#endif +#else +#if defined __ICC || defined __ECC || defined __xlC__ + ios::fmtflags fmt; +#else + Int_t fmt; +#endif +#endif + + *os<< fgkGapLadder <<" "<< fgkGapHalfStave<<" "<< 6 <<" "; + for(i=0;i<6;i++) *os<< fAddStave[i] <<" "<flags(fmt); // reset back to old Formating. + return; +} +// +//______________________________________________________________________ +void AliITSv11GeometrySPD::ReadAscii(istream* is) +{ + // + // Read in class data values in Ascii Form to output stream + // Inputs: + // istream *is Input stream where Ascii data is to be read in from + // Outputs: + // none. + // Return: + // none. + // + Int_t i,j,k,n; + Double_t gapLadder,gapHalfStave; + const Int_t kLimits = 100; + *is>>gapLadder>>gapHalfStave>>n; + if(n!=6){ + AliError(Form("fAddStave Array !=6 n=%d",n)); + return; + } // end if + for(i=0;i>fAddStave[i]; + *is>>n; + if(n<0 || n> kLimits){ + AliError("Anomalous value for parameter n"); + return; + } + fSPDsectorX0.Set(n); + fSPDsectorY0.Set(n); + fSPDsectorX1.Set(n); + fSPDsectorY1.Set(n); + for(i=0;i>fSPDsectorX0[i]; + for(i=0;i>fSPDsectorY0[i]; + for(i=0;i>fSPDsectorX1[i]; + for(i=0;i>fSPDsectorY1[i]; + *is>> i>>j>>n; + if(i!=2||j!=6||n!=3){ + Warning("ReadAscii","fTubeEndSector array wrong size [2][6][3]," + "found [%d][%d][%d]",i,j,n); + return; + } // end if + for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++) + *is>>fTubeEndSector[k][0][i][j]; + for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++) + *is>>fTubeEndSector[k][1][i][j]; + return; +} +// +//______________________________________________________________________ +ostream &operator<<(ostream &os,const AliITSv11GeometrySPD &s) +{ + // + // Standard output streaming function + // Inputs: + // ostream &os output steam + // AliITSvPPRasymmFMD &s class to be streamed. + // Output: + // none. + // Return: + // ostream &os The stream pointer + // + s.PrintAscii(&os); + return os; +} +// +//______________________________________________________________________ +istream &operator>>(istream &is,AliITSv11GeometrySPD &s) +{ + // + // Standard inputput streaming function + // Inputs: + // istream &is input steam + // AliITSvPPRasymmFMD &s class to be streamed. + // Output: + // none. + // Return: + // ostream &os The stream pointer + // + s.ReadAscii(&is); + return is; +} +