X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=MUON%2FAliMUONTrackParam.cxx;h=af0500dc42c23f99b2a4223f6f6f007336763131;hb=52a564eeeed3ad431eba15a08cfc0a5f4594e891;hp=f05505a548a08fc87459aa4d9a6f244306812120;hpb=30178c30974cdd6a3b59f09e4d479925642e175b;p=u%2Fmrichter%2FAliRoot.git diff --git a/MUON/AliMUONTrackParam.cxx b/MUON/AliMUONTrackParam.cxx index f05505a548a..af0500dc42c 100644 --- a/MUON/AliMUONTrackParam.cxx +++ b/MUON/AliMUONTrackParam.cxx @@ -15,507 +15,471 @@ /* $Id$ */ -/////////////////////////////////////////////////// -// -// Track parameters -// in -// ALICE -// dimuon -// spectrometer -// -/////////////////////////////////////////////////// +//----------------------------------------------------------------------------- +// Class AliMUONTrackParam +//------------------------- +// Track parameters in ALICE dimuon spectrometer +//----------------------------------------------------------------------------- -#include +#include "AliMUONTrackParam.h" +#include "AliMUONVCluster.h" + +#include "AliLog.h" -#include "AliCallf77.h" -#include "AliMUON.h" -#include "AliMUONTrackParam.h" -#include "AliMUONChamber.h" -#include "AliRun.h" -#include "AliMagF.h" +#include +#include + +using std::setw; +using std::setprecision; +using std::endl; +using std::cout; +/// \cond CLASSIMP ClassImp(AliMUONTrackParam) // Class implementation in ROOT context +/// \endcond - // A few calls in Fortran or from Fortran (extrap.F). - // Needed, instead of calls to Geant subroutines, - // because double precision is necessary for track fit converging with Minuit. - // The "extrap" functions should be translated into C++ ???? -#ifndef WIN32 -# define extrap_onestep_helix extrap_onestep_helix_ -# define extrap_onestep_helix3 extrap_onestep_helix3_ -# define extrap_onestep_rungekutta extrap_onestep_rungekutta_ -# define gufld_double gufld_double_ -#else -# define extrap_onestep_helix EXTRAP_ONESTEP_HELIX -# define extrap_onestep_helix3 EXTRAP_ONESTEP_HELIX3 -# define extrap_onestep_rungekutta EXTRAP_ONESTEP_RUNGEKUTTA -# define gufld_double GUFLD_DOUBLE -#endif - -extern "C" { - void type_of_call extrap_onestep_helix - (Double_t &Charge, Double_t &StepLength, Double_t *VGeant3, Double_t *VGeant3New); - - void type_of_call extrap_onestep_helix3 - (Double_t &Field, Double_t &StepLength, Double_t *VGeant3, Double_t *VGeant3New); - - void type_of_call extrap_onestep_rungekutta - (Double_t &Charge, Double_t &StepLength, Double_t *VGeant3, Double_t *VGeant3New); - - void type_of_call gufld_double(Double_t *Position, Double_t *Field) { - // interface to "gAlice->Field()->Field" for arguments in double precision - Float_t x[3], b[3]; - x[0] = Position[0]; x[1] = Position[1]; x[2] = Position[2]; - gAlice->Field()->Field(x, b); - Field[0] = b[0]; Field[1] = b[1]; Field[2] = b[2]; - } + //_________________________________________________________________________ +AliMUONTrackParam::AliMUONTrackParam() + : TObject(), + fZ(0.), + fParameters(5,1), + fCovariances(0x0), + fPropagator(0x0), + fExtrapParameters(0x0), + fExtrapCovariances(0x0), + fSmoothParameters(0x0), + fSmoothCovariances(0x0), + fClusterPtr(0x0), + fOwnCluster(kFALSE), + fRemovable(kFALSE), + fTrackChi2(0.), + fLocalChi2(0.) +{ + /// Constructor + fParameters.Zero(); } //_________________________________________________________________________ -AliMUONTrackParam::AliMUONTrackParam() - : TObject() +AliMUONTrackParam::AliMUONTrackParam(const AliMUONTrackParam& theMUONTrackParam) + : TObject(theMUONTrackParam), + fZ(theMUONTrackParam.fZ), + fParameters(theMUONTrackParam.fParameters), + fCovariances(0x0), + fPropagator(0x0), + fExtrapParameters(0x0), + fExtrapCovariances(0x0), + fSmoothParameters(0x0), + fSmoothCovariances(0x0), + fClusterPtr(0x0), + fOwnCluster(theMUONTrackParam.fOwnCluster), + fRemovable(theMUONTrackParam.fRemovable), + fTrackChi2(theMUONTrackParam.fTrackChi2), + fLocalChi2(theMUONTrackParam.fLocalChi2) { -// Constructor - - fInverseBendingMomentum = 0; - fBendingSlope = 0; - fNonBendingSlope = 0; - fZ = 0; - fBendingCoor = 0; - fNonBendingCoor = 0; + /// Copy constructor + if (theMUONTrackParam.fCovariances) fCovariances = new TMatrixD(*(theMUONTrackParam.fCovariances)); + if (theMUONTrackParam.fPropagator) fPropagator = new TMatrixD(*(theMUONTrackParam.fPropagator)); + if (theMUONTrackParam.fExtrapParameters) fExtrapParameters = new TMatrixD(*(theMUONTrackParam.fExtrapParameters)); + if (theMUONTrackParam.fExtrapCovariances) fExtrapCovariances = new TMatrixD(*(theMUONTrackParam.fExtrapCovariances)); + if (theMUONTrackParam.fSmoothParameters) fSmoothParameters = new TMatrixD(*(theMUONTrackParam.fSmoothParameters)); + if (theMUONTrackParam.fSmoothCovariances) fSmoothCovariances = new TMatrixD(*(theMUONTrackParam.fSmoothCovariances)); + + if(fOwnCluster) fClusterPtr = static_cast(theMUONTrackParam.fClusterPtr->Clone()); + else fClusterPtr = theMUONTrackParam.fClusterPtr; } //_________________________________________________________________________ -AliMUONTrackParam& -AliMUONTrackParam::operator=(const AliMUONTrackParam& theMUONTrackParam) +AliMUONTrackParam& AliMUONTrackParam::operator=(const AliMUONTrackParam& theMUONTrackParam) { + /// Asignment operator if (this == &theMUONTrackParam) return *this; // base class assignement TObject::operator=(theMUONTrackParam); - fInverseBendingMomentum = theMUONTrackParam.fInverseBendingMomentum; - fBendingSlope = theMUONTrackParam.fBendingSlope; - fNonBendingSlope = theMUONTrackParam.fNonBendingSlope; - fZ = theMUONTrackParam.fZ; - fBendingCoor = theMUONTrackParam.fBendingCoor; - fNonBendingCoor = theMUONTrackParam.fNonBendingCoor; - + fZ = theMUONTrackParam.fZ; + + fParameters = theMUONTrackParam.fParameters; + + if (theMUONTrackParam.fCovariances) { + if (fCovariances) *fCovariances = *(theMUONTrackParam.fCovariances); + else fCovariances = new TMatrixD(*(theMUONTrackParam.fCovariances)); + } else { + delete fCovariances; + fCovariances = 0x0; + } + + if (theMUONTrackParam.fPropagator) { + if (fPropagator) *fPropagator = *(theMUONTrackParam.fPropagator); + else fPropagator = new TMatrixD(*(theMUONTrackParam.fPropagator)); + } else { + delete fPropagator; + fPropagator = 0x0; + } + + if (theMUONTrackParam.fExtrapParameters) { + if (fExtrapParameters) *fExtrapParameters = *(theMUONTrackParam.fExtrapParameters); + else fExtrapParameters = new TMatrixD(*(theMUONTrackParam.fExtrapParameters)); + } else { + delete fExtrapParameters; + fExtrapParameters = 0x0; + } + + if (theMUONTrackParam.fExtrapCovariances) { + if (fExtrapCovariances) *fExtrapCovariances = *(theMUONTrackParam.fExtrapCovariances); + else fExtrapCovariances = new TMatrixD(*(theMUONTrackParam.fExtrapCovariances)); + } else { + delete fExtrapCovariances; + fExtrapCovariances = 0x0; + } + + if (theMUONTrackParam.fSmoothParameters) { + if (fSmoothParameters) *fSmoothParameters = *(theMUONTrackParam.fSmoothParameters); + else fSmoothParameters = new TMatrixD(*(theMUONTrackParam.fSmoothParameters)); + } else { + delete fSmoothParameters; + fSmoothParameters = 0x0; + } + + if (theMUONTrackParam.fSmoothCovariances) { + if (fSmoothCovariances) *fSmoothCovariances = *(theMUONTrackParam.fSmoothCovariances); + else fSmoothCovariances = new TMatrixD(*(theMUONTrackParam.fSmoothCovariances)); + } else { + delete fSmoothCovariances; + fSmoothCovariances = 0x0; + } + + if (fOwnCluster) delete fClusterPtr; + fOwnCluster = theMUONTrackParam.fOwnCluster; + if(fOwnCluster) fClusterPtr = static_cast(theMUONTrackParam.fClusterPtr->Clone()); + else fClusterPtr = theMUONTrackParam.fClusterPtr; + + fRemovable = theMUONTrackParam.fRemovable; + + fTrackChi2 = theMUONTrackParam.fTrackChi2; + fLocalChi2 = theMUONTrackParam.fLocalChi2; + return *this; } - //_________________________________________________________________________ -AliMUONTrackParam::AliMUONTrackParam(const AliMUONTrackParam& theMUONTrackParam) - : TObject(theMUONTrackParam) + + //__________________________________________________________________________ +AliMUONTrackParam::~AliMUONTrackParam() { - fInverseBendingMomentum = theMUONTrackParam.fInverseBendingMomentum; - fBendingSlope = theMUONTrackParam.fBendingSlope; - fNonBendingSlope = theMUONTrackParam.fNonBendingSlope; - fZ = theMUONTrackParam.fZ; - fBendingCoor = theMUONTrackParam.fBendingCoor; - fNonBendingCoor = theMUONTrackParam.fNonBendingCoor; +/// Destructor + DeleteCovariances(); + delete fPropagator; + delete fExtrapParameters; + delete fExtrapCovariances; + delete fSmoothParameters; + delete fSmoothCovariances; + if(fOwnCluster) delete fClusterPtr; } //__________________________________________________________________________ -void AliMUONTrackParam::ExtrapToZ(Double_t Z) +void +AliMUONTrackParam::Clear(Option_t* /*opt*/) { - // Track parameter extrapolation to the plane at "Z". - // On return, the track parameters resulting from the extrapolation - // replace the current track parameters. - if (this->fZ == Z) return; // nothing to be done if same Z - Double_t forwardBackward; // +1 if forward, -1 if backward - if (Z < this->fZ) forwardBackward = 1.0; // spectro. z<0 - else forwardBackward = -1.0; - Double_t vGeant3[7], vGeant3New[7]; // 7 in parameter ???? - Int_t iGeant3, stepNumber; - Int_t maxStepNumber = 5000; // in parameter ???? - // For safety: return kTRUE or kFALSE ???? - // Parameter vector for calling EXTRAP_ONESTEP - SetGeant3Parameters(vGeant3, forwardBackward); - // sign of charge (sign of fInverseBendingMomentum if forward motion) - // must be changed if backward extrapolation - Double_t chargeExtrap = forwardBackward * - TMath::Sign(Double_t(1.0), this->fInverseBendingMomentum); - Double_t stepLength = 6.0; // in parameter ???? - // Extrapolation loop - stepNumber = 0; - while (((-forwardBackward * (vGeant3[2] - Z)) <= 0.0) && // spectro. z<0 - (stepNumber < maxStepNumber)) { - stepNumber++; - // Option for switching between helix and Runge-Kutta ???? - // extrap_onestep_rungekutta(chargeExtrap, stepLength, vGeant3, vGeant3New); - extrap_onestep_helix(chargeExtrap, stepLength, vGeant3, vGeant3New); - if ((-forwardBackward * (vGeant3New[2] - Z)) > 0.0) break; // one is beyond Z spectro. z<0 - // better use TArray ???? - for (iGeant3 = 0; iGeant3 < 7; iGeant3++) - {vGeant3[iGeant3] = vGeant3New[iGeant3];} + /// clear memory + DeleteCovariances(); + delete fPropagator; fPropagator = 0x0; + delete fExtrapParameters; fExtrapParameters = 0x0; + delete fExtrapCovariances; fExtrapCovariances = 0x0; + delete fSmoothParameters; fSmoothParameters = 0x0; + delete fSmoothCovariances; fSmoothCovariances = 0x0; + if(fOwnCluster) { + delete fClusterPtr; fClusterPtr = 0x0; } - // check maxStepNumber ???? - // Interpolation back to exact Z (2nd order) - // should be in function ???? using TArray ???? - Double_t dZ12 = vGeant3New[2] - vGeant3[2]; // 1->2 - Double_t dZ1i = Z - vGeant3[2]; // 1-i - Double_t dZi2 = vGeant3New[2] - Z; // i->2 - Double_t xPrime = (vGeant3New[0] - vGeant3[0]) / dZ12; - Double_t xSecond = - ((vGeant3New[3] / vGeant3New[5]) - (vGeant3[3] / vGeant3[5])) / dZ12; - Double_t yPrime = (vGeant3New[1] - vGeant3[1]) / dZ12; - Double_t ySecond = - ((vGeant3New[4] / vGeant3New[5]) - (vGeant3[4] / vGeant3[5])) / dZ12; - vGeant3[0] = vGeant3[0] + xPrime * dZ1i - 0.5 * xSecond * dZ1i * dZi2; // X - vGeant3[1] = vGeant3[1] + yPrime * dZ1i - 0.5 * ySecond * dZ1i * dZi2; // Y - vGeant3[2] = Z; // Z - Double_t xPrimeI = xPrime - 0.5 * xSecond * (dZi2 - dZ1i); - Double_t yPrimeI = yPrime - 0.5 * ySecond * (dZi2 - dZ1i); - // (PX, PY, PZ)/PTOT assuming forward motion - vGeant3[5] = - 1.0 / TMath::Sqrt(1.0 + xPrimeI * xPrimeI + yPrimeI * yPrimeI); // PZ/PTOT - vGeant3[3] = xPrimeI * vGeant3[5]; // PX/PTOT - vGeant3[4] = yPrimeI * vGeant3[5]; // PY/PTOT - // Track parameters from Geant3 parameters, - // with charge back for forward motion - GetFromGeant3Parameters(vGeant3, chargeExtrap * forwardBackward); } //__________________________________________________________________________ -void AliMUONTrackParam::SetGeant3Parameters(Double_t *VGeant3, Double_t ForwardBackward) +Double_t AliMUONTrackParam::Px() const { - // Set vector of Geant3 parameters pointed to by "VGeant3" - // from track parameters in current AliMUONTrackParam. - // Since AliMUONTrackParam is only geometry, one uses "ForwardBackward" - // to know whether the particle is going forward (+1) or backward (-1). - VGeant3[0] = this->fNonBendingCoor; // X - VGeant3[1] = this->fBendingCoor; // Y - VGeant3[2] = this->fZ; // Z - Double_t pYZ = TMath::Abs(1.0 / this->fInverseBendingMomentum); - Double_t pZ = - pYZ / TMath::Sqrt(1.0 + this->fBendingSlope * this->fBendingSlope); - VGeant3[6] = - TMath::Sqrt(pYZ * pYZ + - pZ * pZ * this->fNonBendingSlope * this->fNonBendingSlope); // PTOT - VGeant3[5] = -ForwardBackward * pZ / VGeant3[6]; // PZ/PTOT spectro. z<0 - VGeant3[3] = this->fNonBendingSlope * VGeant3[5]; // PX/PTOT - VGeant3[4] = this->fBendingSlope * VGeant3[5]; // PY/PTOT + /// return p_x from track parameters + Double_t pZ; + if (TMath::Abs(fParameters(4,0)) > 0) { + Double_t pYZ = (TMath::Abs(fParameters(4,0)) > 0) ? TMath::Abs(1.0 / fParameters(4,0)) : FLT_MAX; + pZ = - pYZ / (TMath::Sqrt(1.0 + fParameters(3,0) * fParameters(3,0))); // spectro. (z<0) + } else { + pZ = - FLT_MAX / TMath::Sqrt(1.0 + fParameters(3,0) * fParameters(3,0) + fParameters(1,0) * fParameters(1,0)); + } + return pZ * fParameters(1,0); } //__________________________________________________________________________ -void AliMUONTrackParam::GetFromGeant3Parameters(Double_t *VGeant3, Double_t Charge) +Double_t AliMUONTrackParam::Py() const { - // Get track parameters in current AliMUONTrackParam - // from Geant3 parameters pointed to by "VGeant3", - // assumed to be calculated for forward motion in Z. - // "InverseBendingMomentum" is signed with "Charge". - this->fNonBendingCoor = VGeant3[0]; // X - this->fBendingCoor = VGeant3[1]; // Y - this->fZ = VGeant3[2]; // Z - Double_t pYZ = VGeant3[6] * TMath::Sqrt(1.0 - VGeant3[3] * VGeant3[3]); - this->fInverseBendingMomentum = Charge / pYZ; - this->fBendingSlope = VGeant3[4] / VGeant3[5]; - this->fNonBendingSlope = VGeant3[3] / VGeant3[5]; + /// return p_y from track parameters + Double_t pZ; + if (TMath::Abs(fParameters(4,0)) > 0) { + Double_t pYZ = (TMath::Abs(fParameters(4,0)) > 0) ? TMath::Abs(1.0 / fParameters(4,0)) : FLT_MAX; + pZ = - pYZ / (TMath::Sqrt(1.0 + fParameters(3,0) * fParameters(3,0))); // spectro. (z<0) + } else { + pZ = - FLT_MAX / TMath::Sqrt(1.0 + fParameters(3,0) * fParameters(3,0) + fParameters(1,0) * fParameters(1,0)); + } + return pZ * fParameters(3,0); } //__________________________________________________________________________ -void AliMUONTrackParam::ExtrapToStation(Int_t Station, AliMUONTrackParam *TrackParam) +Double_t AliMUONTrackParam::Pz() const { - // Track parameters extrapolated from current track parameters ("this") - // to both chambers of the station(0..) "Station" - // are returned in the array (dimension 2) of track parameters - // pointed to by "TrackParam" (index 0 and 1 for first and second chambers). - Double_t extZ[2], z1, z2; - Int_t i1 = -1, i2 = -1; // = -1 to avoid compilation warnings - AliMUON *pMUON = (AliMUON*) gAlice->GetModule("MUON"); // necessary ???? - // range of Station to be checked ???? - z1 = (&(pMUON->Chamber(2 * Station)))->Z(); // Z of first chamber - z2 = (&(pMUON->Chamber(2 * Station + 1)))->Z(); // Z of second chamber - // First and second Z to extrapolate at - if ((z1 > this->fZ) && (z2 > this->fZ)) {i1 = 0; i2 = 1;} - else if ((z1 < this->fZ) && (z2 < this->fZ)) {i1 = 1; i2 = 0;} - else { - cout << "ERROR in AliMUONTrackParam::CreateExtrapSegmentInStation" << endl; - cout << "Starting Z (" << this->fZ << ") in between z1 (" << z1 << - ") and z2 (" << z2 << ") of station(0..) " << Station << endl; + /// return p_z from track parameters + if (TMath::Abs(fParameters(4,0)) > 0) { + Double_t pYZ = TMath::Abs(1.0 / fParameters(4,0)); + return - pYZ / (TMath::Sqrt(1.0 + fParameters(3,0) * fParameters(3,0))); // spectro. (z<0) + } else return - FLT_MAX / TMath::Sqrt(1.0 + fParameters(3,0) * fParameters(3,0) + fParameters(1,0) * fParameters(1,0)); +} + + //__________________________________________________________________________ +Double_t AliMUONTrackParam::P() const +{ + /// return p from track parameters + if (TMath::Abs(fParameters(4,0)) > 0) { + Double_t pYZ = TMath::Abs(1.0 / fParameters(4,0)); + Double_t pZ = - pYZ / (TMath::Sqrt(1.0 + fParameters(3,0) * fParameters(3,0))); // spectro. (z<0) + return - pZ * TMath::Sqrt(1.0 + fParameters(3,0) * fParameters(3,0) + fParameters(1,0) * fParameters(1,0)); + } else return FLT_MAX; +} + + //__________________________________________________________________________ +const TMatrixD& AliMUONTrackParam::GetCovariances() const +{ + /// Return the covariance matrix (create it before if needed) + if (!fCovariances) { + fCovariances = new TMatrixD(5,5); + fCovariances->Zero(); } - extZ[i1] = z1; - extZ[i2] = z2; - // copy of track parameters - TrackParam[i1] = *this; - // first extrapolation - (&(TrackParam[i1]))->ExtrapToZ(extZ[0]); - TrackParam[i2] = TrackParam[i1]; - // second extrapolation - (&(TrackParam[i2]))->ExtrapToZ(extZ[1]); - return; + return *fCovariances; } //__________________________________________________________________________ -void AliMUONTrackParam::ExtrapToVertex() +void AliMUONTrackParam::SetCovariances(const TMatrixD& covariances) { - // Extrapolation to the vertex. - // Returns the track parameters resulting from the extrapolation, - // in the current TrackParam. - // Changes parameters according to Branson correction through the absorber - - Double_t zAbsorber = -503.0; // to be coherent with the Geant absorber geometry !!!! - // spectro. (z<0) - // Extrapolates track parameters upstream to the "Z" end of the front absorber - ExtrapToZ(zAbsorber); // !!! - // Makes Branson correction (multiple scattering + energy loss) - BransonCorrection(); - // Makes a simple magnetic field correction through the absorber - FieldCorrection(zAbsorber); + /// Set the covariance matrix + if (fCovariances) *fCovariances = covariances; + else fCovariances = new TMatrixD(covariances); } + //__________________________________________________________________________ +void AliMUONTrackParam::SetCovariances(const Double_t matrix[5][5]) +{ + /// Set the covariance matrix + if (fCovariances) fCovariances->SetMatrixArray(&(matrix[0][0])); + else fCovariances = new TMatrixD(5,5,&(matrix[0][0])); +} -// Keep this version for future developments //__________________________________________________________________________ -// void AliMUONTrackParam::BransonCorrection() -// { -// // Branson correction of track parameters -// // the entry parameters have to be calculated at the end of the absorber -// Double_t zEndAbsorber, zBP, xBP, yBP; -// Double_t pYZ, pX, pY, pZ, pTotal, xEndAbsorber, yEndAbsorber, radiusEndAbsorber2, pT, theta; -// Int_t sign; -// // Would it be possible to calculate all that from Geant configuration ???? -// // and to get the Branson parameters from a function in ABSO module ???? -// // with an eventual contribution from other detectors like START ???? -// // Radiation lengths outer part theta > 3 degres -// static Double_t x01[9] = { 18.8, // C (cm) -// 10.397, // Concrete (cm) -// 0.56, // Plomb (cm) -// 47.26, // Polyethylene (cm) -// 0.56, // Plomb (cm) -// 47.26, // Polyethylene (cm) -// 0.56, // Plomb (cm) -// 47.26, // Polyethylene (cm) -// 0.56 }; // Plomb (cm) -// // inner part theta < 3 degres -// static Double_t x02[3] = { 18.8, // C (cm) -// 10.397, // Concrete (cm) -// 0.35 }; // W (cm) -// // z positions of the materials inside the absober outer part theta > 3 degres -// static Double_t z1[10] = { 90, 315, 467, 472, 477, 482, 487, 492, 497, 502 }; -// // inner part theta < 3 degres -// static Double_t z2[4] = { 90, 315, 467, 503 }; -// static Bool_t first = kTRUE; -// static Double_t zBP1, zBP2, rLimit; -// // Calculates z positions of the Branson's planes: zBP1 for outer part and zBP2 for inner part (only at the first call) -// if (first) { -// first = kFALSE; -// Double_t aNBP = 0.0; -// Double_t aDBP = 0.0; -// Int_t iBound; - -// for (iBound = 0; iBound < 9; iBound++) { -// aNBP = aNBP + -// (z1[iBound+1] * z1[iBound+1] * z1[iBound+1] - -// z1[iBound] * z1[iBound] * z1[iBound] ) / x01[iBound]; -// aDBP = aDBP + -// (z1[iBound+1] * z1[iBound+1] - z1[iBound] * z1[iBound] ) / x01[iBound]; -// } -// zBP1 = (2.0 * aNBP) / (3.0 * aDBP); -// aNBP = 0.0; -// aDBP = 0.0; -// for (iBound = 0; iBound < 3; iBound++) { -// aNBP = aNBP + -// (z2[iBound+1] * z2[iBound+1] * z2[iBound+1] - -// z2[iBound] * z2[iBound ] * z2[iBound] ) / x02[iBound]; -// aDBP = aDBP + -// (z2[iBound+1] * z2[iBound+1] - z2[iBound] * z2[iBound]) / x02[iBound]; -// } -// zBP2 = (2.0 * aNBP) / (3.0 * aDBP); -// rLimit = z2[3] * TMath::Tan(3.0 * (TMath::Pi()) / 180.); -// } - -// pYZ = TMath::Abs(1.0 / fInverseBendingMomentum); -// sign = 1; -// if (fInverseBendingMomentum < 0) sign = -1; -// pZ = pYZ / (TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope)); -// pX = pZ * fNonBendingSlope; -// pY = pZ * fBendingSlope; -// pTotal = TMath::Sqrt(pYZ *pYZ + pX * pX); -// xEndAbsorber = fNonBendingCoor; -// yEndAbsorber = fBendingCoor; -// radiusEndAbsorber2 = xEndAbsorber * xEndAbsorber + yEndAbsorber * yEndAbsorber; - -// if (radiusEndAbsorber2 > rLimit*rLimit) { -// zEndAbsorber = z1[9]; -// zBP = zBP1; -// } else { -// zEndAbsorber = z2[3]; -// zBP = zBP2; -// } - -// xBP = xEndAbsorber - (pX / pZ) * (zEndAbsorber - zBP); -// yBP = yEndAbsorber - (pY / pZ) * (zEndAbsorber - zBP); - -// // new parameters after Branson and energy loss corrections -// pZ = pTotal * zBP / TMath::Sqrt(xBP * xBP + yBP * yBP + zBP * zBP); -// pX = pZ * xBP / zBP; -// pY = pZ * yBP / zBP; -// fBendingSlope = pY / pZ; -// fNonBendingSlope = pX / pZ; - -// pT = TMath::Sqrt(pX * pX + pY * pY); -// theta = TMath::ATan2(pT, pZ); -// pTotal = -// TotalMomentumEnergyLoss(rLimit, pTotal, theta, xEndAbsorber, yEndAbsorber); - -// fInverseBendingMomentum = (sign / pTotal) * -// TMath::Sqrt(1.0 + -// fBendingSlope * fBendingSlope + -// fNonBendingSlope * fNonBendingSlope) / -// TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope); - -// // vertex position at (0,0,0) -// // should be taken from vertex measurement ??? -// fBendingCoor = 0.0; -// fNonBendingCoor = 0; -// fZ= 0; -// } - -void AliMUONTrackParam::BransonCorrection() +void AliMUONTrackParam::SetVariances(const Double_t matrix[5][5]) { - // Branson correction of track parameters - // the entry parameters have to be calculated at the end of the absorber - // simplified version: the z positions of Branson's planes are no longer calculated - // but are given as inputs. One can use the macros MUONTestAbso.C and DrawTestAbso.C - // to test this correction. - // Would it be possible to calculate all that from Geant configuration ???? - // and to get the Branson parameters from a function in ABSO module ???? - // with an eventual contribution from other detectors like START ???? - Double_t zBP, xBP, yBP; - Double_t pYZ, pX, pY, pZ, pTotal, xEndAbsorber, yEndAbsorber, radiusEndAbsorber2, pT, theta; - Int_t sign; - static Bool_t first = kTRUE; - static Double_t zBP1, zBP2, rLimit, thetaLimit, zEndAbsorber; - // zBP1 for outer part and zBP2 for inner part (only at the first call) - if (first) { - first = kFALSE; - - zEndAbsorber = -503; // spectro (z<0) - thetaLimit = 3.0 * (TMath::Pi()) / 180.; - rLimit = TMath::Abs(zEndAbsorber) * TMath::Tan(thetaLimit); - zBP1 = -450; // values close to those calculated with EvalAbso.C - zBP2 = -480; + /// Set the diagonal terms of the covariance matrix (variances) + if (!fCovariances) fCovariances = new TMatrixD(5,5); + fCovariances->Zero(); + for (Int_t i=0; i<5; i++) (*fCovariances)(i,i) = matrix[i][i]; +} + + //__________________________________________________________________________ +void AliMUONTrackParam::DeleteCovariances() +{ + /// Delete the covariance matrix + delete fCovariances; + fCovariances = 0x0; +} + + //__________________________________________________________________________ +const TMatrixD& AliMUONTrackParam::GetPropagator() const +{ + /// Return the propagator (create it before if needed) + if (!fPropagator) { + fPropagator = new TMatrixD(5,5); + fPropagator->UnitMatrix(); } + return *fPropagator; +} - pYZ = TMath::Abs(1.0 / fInverseBendingMomentum); - sign = 1; - if (fInverseBendingMomentum < 0) sign = -1; - pZ = -pYZ / (TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope)); // spectro (z<0) - pX = pZ * fNonBendingSlope; - pY = pZ * fBendingSlope; - pTotal = TMath::Sqrt(pYZ *pYZ + pX * pX); - xEndAbsorber = fNonBendingCoor; - yEndAbsorber = fBendingCoor; - radiusEndAbsorber2 = xEndAbsorber * xEndAbsorber + yEndAbsorber * yEndAbsorber; - - if (radiusEndAbsorber2 > rLimit*rLimit) { - zBP = zBP1; - } else { - zBP = zBP2; + //__________________________________________________________________________ +void AliMUONTrackParam::ResetPropagator() +{ + /// Reset the propagator + if (fPropagator) fPropagator->UnitMatrix(); +} + + //__________________________________________________________________________ +void AliMUONTrackParam::UpdatePropagator(const TMatrixD& propagator) +{ + /// Update the propagator + if (fPropagator) *fPropagator = TMatrixD(propagator,TMatrixD::kMult,*fPropagator); + else fPropagator = new TMatrixD(propagator); +} + + //__________________________________________________________________________ +const TMatrixD& AliMUONTrackParam::GetExtrapParameters() const +{ + /// Return extrapolated parameters (create it before if needed) + if (!fExtrapParameters) { + fExtrapParameters = new TMatrixD(5,1); + fExtrapParameters->Zero(); + } + return *fExtrapParameters; } - xBP = xEndAbsorber - (pX / pZ) * (zEndAbsorber - zBP); - yBP = yEndAbsorber - (pY / pZ) * (zEndAbsorber - zBP); + //__________________________________________________________________________ +void AliMUONTrackParam::SetExtrapParameters(const TMatrixD& extrapParameters) +{ + /// Set extrapolated parameters + if (fExtrapParameters) *fExtrapParameters = extrapParameters; + else fExtrapParameters = new TMatrixD(extrapParameters); +} - // new parameters after Branson and energy loss corrections -// Float_t zSmear = zBP - gRandom->Gaus(0.,2.); // !!! possible smearing of Z vertex position - Float_t zSmear = zBP; - - pZ = pTotal * zSmear / TMath::Sqrt(xBP * xBP + yBP * yBP + zSmear * zSmear); - pX = pZ * xBP / zSmear; - pY = pZ * yBP / zSmear; - fBendingSlope = pY / pZ; - fNonBendingSlope = pX / pZ; + //__________________________________________________________________________ +const TMatrixD& AliMUONTrackParam::GetExtrapCovariances() const +{ + /// Return the extrapolated covariance matrix (create it before if needed) + if (!fExtrapCovariances) { + fExtrapCovariances = new TMatrixD(5,5); + fExtrapCovariances->Zero(); + } + return *fExtrapCovariances; + } - - pT = TMath::Sqrt(pX * pX + pY * pY); - theta = TMath::ATan2(pT, TMath::Abs(pZ)); - pTotal = TotalMomentumEnergyLoss(thetaLimit, pTotal, theta); - - fInverseBendingMomentum = (sign / pTotal) * - TMath::Sqrt(1.0 + - fBendingSlope * fBendingSlope + - fNonBendingSlope * fNonBendingSlope) / - TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope); - - // vertex position at (0,0,0) - // should be taken from vertex measurement ??? - fBendingCoor = 0.0; - fNonBendingCoor = 0; - fZ= 0; + //__________________________________________________________________________ +void AliMUONTrackParam::SetExtrapCovariances(const TMatrixD& extrapCovariances) +{ + /// Set the extrapolated covariance matrix + if (fExtrapCovariances) *fExtrapCovariances = extrapCovariances; + else fExtrapCovariances = new TMatrixD(extrapCovariances); } //__________________________________________________________________________ -Double_t AliMUONTrackParam::TotalMomentumEnergyLoss(Double_t thetaLimit, Double_t pTotal, Double_t theta) +const TMatrixD& AliMUONTrackParam::GetSmoothParameters() const { - // Returns the total momentum corrected from energy loss in the front absorber - // One can use the macros MUONTestAbso.C and DrawTestAbso.C - // to test this correction. - // Momentum energy loss behaviour evaluated with the simulation of single muons (april 2002) - Double_t deltaP, pTotalCorrected; - - // Parametrization to be redone according to change of absorber material ???? - // See remark in function BransonCorrection !!!! - // The name is not so good, and there are many arguments !!!! - if (theta < thetaLimit ) { - if (pTotal < 20) { - deltaP = 2.5938 + 0.0570 * pTotal - 0.001151 * pTotal * pTotal; - } else { - deltaP = 3.0714 + 0.011767 *pTotal; - } - } else { - if (pTotal < 20) { - deltaP = 2.1207 + 0.05478 * pTotal - 0.00145079 * pTotal * pTotal; - } else { - deltaP = 2.6069 + 0.0051705 * pTotal; - } + /// Return the smoothed parameters (create it before if needed) + if (!fSmoothParameters) { + fSmoothParameters = new TMatrixD(5,1); + fSmoothParameters->Zero(); } - pTotalCorrected = pTotal + deltaP / TMath::Cos(theta); - return pTotalCorrected; + return *fSmoothParameters; + } + + //__________________________________________________________________________ +void AliMUONTrackParam::SetSmoothParameters(const TMatrixD& smoothParameters) +{ + /// Set the smoothed parameters + if (fSmoothParameters) *fSmoothParameters = smoothParameters; + else fSmoothParameters = new TMatrixD(smoothParameters); } //__________________________________________________________________________ -void AliMUONTrackParam::FieldCorrection(Double_t Z) +const TMatrixD& AliMUONTrackParam::GetSmoothCovariances() const { - // - // Correction of the effect of the magnetic field in the absorber - // Assume a constant field along Z axis. - - Float_t b[3],x[3]; - Double_t bZ; - Double_t pYZ,pX,pY,pZ,pT; - Double_t pXNew,pYNew; - Double_t c; - - pYZ = TMath::Abs(1.0 / fInverseBendingMomentum); - c = TMath::Sign(1.0,fInverseBendingMomentum); // particle charge - - pZ = -pYZ / (TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope)); // spectro. (z<0) - pX = pZ * fNonBendingSlope; - pY = pZ * fBendingSlope; - pT = TMath::Sqrt(pX*pX+pY*pY); - - if (TMath::Abs(pZ) <= 0) return; - x[2] = Z/2; - x[0] = x[2]*fNonBendingSlope; - x[1] = x[2]*fBendingSlope; - - // Take magn. field value at position x. - gAlice->Field()->Field(x, b); - bZ = b[2]; - - // Transverse momentum rotation - // Parameterized with the study of DeltaPhi = phiReco - phiGen as a function of pZ. - Double_t phiShift = c*0.436*0.0003*bZ*Z/pZ; - // Rotate momentum around Z axis. - pXNew = pX*TMath::Cos(phiShift) - pY*TMath::Sin(phiShift); - pYNew = pX*TMath::Sin(phiShift) + pY*TMath::Cos(phiShift); - - fBendingSlope = pYNew / pZ; - fNonBendingSlope = pXNew / pZ; + /// Return the smoothed covariance matrix (create it before if needed) + if (!fSmoothCovariances) { + fSmoothCovariances = new TMatrixD(5,5); + fSmoothCovariances->Zero(); + } + return *fSmoothCovariances; + } + + //__________________________________________________________________________ +void AliMUONTrackParam::SetSmoothCovariances(const TMatrixD& smoothCovariances) +{ + /// Set the smoothed covariance matrix + if (fSmoothCovariances) *fSmoothCovariances = smoothCovariances; + else fSmoothCovariances = new TMatrixD(smoothCovariances); +} + +//__________________________________________________________________________ +void AliMUONTrackParam::SetClusterPtr(AliMUONVCluster* cluster, Bool_t owner) +{ + /// set pointeur to associated cluster + if (fOwnCluster) delete fClusterPtr; + fClusterPtr = cluster; + fOwnCluster = owner; +} + + //__________________________________________________________________________ +Int_t AliMUONTrackParam::Compare(const TObject* trackParam) const +{ + /// "Compare" function to sort with decreasing Z (spectro. muon Z <0). + /// Returns 1 (0, -1) if the current Z + /// is smaller than (equal to, larger than) Z of trackParam + if (fZ < ((AliMUONTrackParam*)trackParam)->GetZ()) return(1); + else if (fZ == ((AliMUONTrackParam*)trackParam)->GetZ()) return(0); + else return(-1); +} + + //__________________________________________________________________________ +Bool_t AliMUONTrackParam::CompatibleTrackParam(const AliMUONTrackParam &trackParam, Double_t sigma2Cut, Double_t &chi2) const +{ + /// Return kTRUE if the two set of track parameters are compatible within sigma2Cut + /// Set chi2 to the compatible chi2 value + /// Note that parameter covariances must exist for at least one set of parameters + /// Note also that if parameters are not given at the same Z, results will be meaningless + + // reset chi2 value + chi2 = 0.; + + // ckeck covariance matrices + if (!fCovariances && !trackParam.fCovariances) { + AliError("Covariance matrix must exist for at least one set of parameters"); + return kFALSE; + } + + Double_t maxChi2 = 5. * sigma2Cut * sigma2Cut; // 5 degrees of freedom - fInverseBendingMomentum = c / TMath::Sqrt(pYNew*pYNew+pZ*pZ); + // check Z parameters + if (fZ != trackParam.fZ) + AliWarning(Form("Parameters are given at different Z position (%e : %e): results are meaningless", fZ, trackParam.fZ)); + + // compute the parameter residuals + TMatrixD deltaParam(fParameters, TMatrixD::kMinus, trackParam.fParameters); + + // build the error matrix + TMatrixD weight(5,5); + if (fCovariances) weight += *fCovariances; + if (trackParam.fCovariances) weight += *(trackParam.fCovariances); + + // invert the error matrix to get the parameter weights if possible + if (weight.Determinant() == 0) { + AliError("Cannot compute the compatibility chi2"); + return kFALSE; + } + weight.Invert(); + + // compute the compatibility chi2 + TMatrixD tmp(deltaParam, TMatrixD::kTransposeMult, weight); + TMatrixD mChi2(tmp, TMatrixD::kMult, deltaParam); + + // set chi2 value + chi2 = mChi2(0,0); + + // check compatibility + if (chi2 > maxChi2) return kFALSE; + + return kTRUE; +} + + //__________________________________________________________________________ +void AliMUONTrackParam::Print(Option_t* opt) const +{ + /// Printing TrackParam information + /// "full" option for printing all the information about the TrackParam + TString sopt(opt); + sopt.ToUpper(); + if ( sopt.Contains("FULL") ) { + cout << " Bending P=" << setw(5) << setprecision(3) << 1./fParameters(4,0) << + ", NonBendSlope=" << setw(5) << setprecision(3) << fParameters(1,0)*180./TMath::Pi() << + ", BendSlope=" << setw(5) << setprecision(3) << fParameters(3,0)*180./TMath::Pi() << + ", (x,y,z)_IP=(" << setw(5) << setprecision(3) << fParameters(0,0) << + "," << setw(5) << setprecision(3) << fParameters(2,0) << + "," << setw(5) << setprecision(3) << fZ << + ") cm, (px,py,pz)=(" << setw(5) << setprecision(3) << Px() << + "," << setw(5) << setprecision(3) << Py() << + "," << setw(5) << setprecision(3) << Pz() << ") GeV/c" + "," << "local chi2=" << GetLocalChi2() << endl; + } + else { + cout << "" << endl; + } + }