X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=MUON%2FAliMUONTrackParam.cxx;h=b11809ed58b3d02035b5d629d03f2f339663d4da;hb=86344f32445f746f5093ecf2a6fd968b69f7b04d;hp=f0019f7313a33102234e82de3c3ca220094e587f;hpb=8c343c7cbf9e28c9c102c12caf82e39281c605b4;p=u%2Fmrichter%2FAliRoot.git diff --git a/MUON/AliMUONTrackParam.cxx b/MUON/AliMUONTrackParam.cxx index f0019f7313a..b11809ed58b 100644 --- a/MUON/AliMUONTrackParam.cxx +++ b/MUON/AliMUONTrackParam.cxx @@ -25,499 +25,324 @@ // /////////////////////////////////////////////////// -#include - -#include "AliCallf77.h" -#include "AliMUON.h" -#include "AliMUONTrackParam.h" -#include "AliMUONChamber.h" -#include "AliRun.h" -#include "AliMagF.h" -#include "AliLog.h" - -ClassImp(AliMUONTrackParam) // Class implementation in ROOT context +#include "AliMUONTrackParam.h" +#include "AliMUONHitForRec.h" - // A few calls in Fortran or from Fortran (extrap.F). - // Needed, instead of calls to Geant subroutines, - // because double precision is necessary for track fit converging with Minuit. - // The "extrap" functions should be translated into C++ ???? -#ifndef WIN32 -# define extrap_onestep_helix extrap_onestep_helix_ -# define extrap_onestep_helix3 extrap_onestep_helix3_ -# define extrap_onestep_rungekutta extrap_onestep_rungekutta_ -# define gufld_double gufld_double_ -#else -# define extrap_onestep_helix EXTRAP_ONESTEP_HELIX -# define extrap_onestep_helix3 EXTRAP_ONESTEP_HELIX3 -# define extrap_onestep_rungekutta EXTRAP_ONESTEP_RUNGEKUTTA -# define gufld_double GUFLD_DOUBLE -#endif +#include "AliESDMuonTrack.h" +#include "AliLog.h" -extern "C" { - void type_of_call extrap_onestep_helix - (Double_t &Charge, Double_t &StepLength, Double_t *VGeant3, Double_t *VGeant3New); - - void type_of_call extrap_onestep_helix3 - (Double_t &Field, Double_t &StepLength, Double_t *VGeant3, Double_t *VGeant3New); - - void type_of_call extrap_onestep_rungekutta - (Double_t &Charge, Double_t &StepLength, Double_t *VGeant3, Double_t *VGeant3New); +#include +#include +#include - void type_of_call gufld_double(Double_t *Position, Double_t *Field) { - // interface to "gAlice->Field()->Field" for arguments in double precision - Float_t x[3], b[3]; - x[0] = Position[0]; x[1] = Position[1]; x[2] = Position[2]; - gAlice->Field()->Field(x, b); - Field[0] = b[0]; Field[1] = b[1]; Field[2] = b[2]; - } -} +/// \cond CLASSIMP +ClassImp(AliMUONTrackParam) // Class implementation in ROOT context +/// \endcond //_________________________________________________________________________ AliMUONTrackParam::AliMUONTrackParam() - : TObject() + : TObject(), + fNonBendingCoor(0.), + fNonBendingSlope(0.), + fBendingCoor(0.), + fBendingSlope(0.), + fInverseBendingMomentum(0.), + fZ(0.), + fCovariances(0x0), + fHitForRecPtr(0x0) { -// Constructor + /// Constructor +} - fInverseBendingMomentum = 0; - fBendingSlope = 0; - fNonBendingSlope = 0; - fZ = 0; - fBendingCoor = 0; - fNonBendingCoor = 0; + //_________________________________________________________________________ +AliMUONTrackParam::AliMUONTrackParam(const AliMUONTrackParam& theMUONTrackParam) + : TObject(theMUONTrackParam), + fNonBendingCoor(theMUONTrackParam.fNonBendingCoor), + fNonBendingSlope(theMUONTrackParam.fNonBendingSlope), + fBendingCoor(theMUONTrackParam.fBendingCoor), + fBendingSlope(theMUONTrackParam.fBendingSlope), + fInverseBendingMomentum(theMUONTrackParam.fInverseBendingMomentum), + fZ(theMUONTrackParam.fZ), + fCovariances(0x0), + fHitForRecPtr(theMUONTrackParam.fHitForRecPtr) +{ + /// Copy constructor + if (theMUONTrackParam.fCovariances) fCovariances = new TMatrixD(*(theMUONTrackParam.fCovariances)); } //_________________________________________________________________________ -AliMUONTrackParam& -AliMUONTrackParam::operator=(const AliMUONTrackParam& theMUONTrackParam) +AliMUONTrackParam& AliMUONTrackParam::operator=(const AliMUONTrackParam& theMUONTrackParam) { + /// Asignment operator if (this == &theMUONTrackParam) return *this; // base class assignement TObject::operator=(theMUONTrackParam); - fInverseBendingMomentum = theMUONTrackParam.fInverseBendingMomentum; - fBendingSlope = theMUONTrackParam.fBendingSlope; - fNonBendingSlope = theMUONTrackParam.fNonBendingSlope; - fZ = theMUONTrackParam.fZ; - fBendingCoor = theMUONTrackParam.fBendingCoor; - fNonBendingCoor = theMUONTrackParam.fNonBendingCoor; - + fNonBendingCoor = theMUONTrackParam.fNonBendingCoor; + fNonBendingSlope = theMUONTrackParam.fNonBendingSlope; + fBendingCoor = theMUONTrackParam.fBendingCoor; + fBendingSlope = theMUONTrackParam.fBendingSlope; + fInverseBendingMomentum = theMUONTrackParam.fInverseBendingMomentum; + fZ = theMUONTrackParam.fZ; + + if (theMUONTrackParam.fCovariances) { + if (fCovariances) *fCovariances = *(theMUONTrackParam.fCovariances); + else fCovariances = new TMatrixD(*(theMUONTrackParam.fCovariances)); + } else if (fCovariances) { + delete fCovariances; + fCovariances = 0x0; + } + return *this; } - //_________________________________________________________________________ -AliMUONTrackParam::AliMUONTrackParam(const AliMUONTrackParam& theMUONTrackParam) - : TObject(theMUONTrackParam) + + //__________________________________________________________________________ +AliMUONTrackParam::~AliMUONTrackParam() { - fInverseBendingMomentum = theMUONTrackParam.fInverseBendingMomentum; - fBendingSlope = theMUONTrackParam.fBendingSlope; - fNonBendingSlope = theMUONTrackParam.fNonBendingSlope; - fZ = theMUONTrackParam.fZ; - fBendingCoor = theMUONTrackParam.fBendingCoor; - fNonBendingCoor = theMUONTrackParam.fNonBendingCoor; +/// Destructor + DeleteCovariances(); } //__________________________________________________________________________ -void AliMUONTrackParam::ExtrapToZ(Double_t Z) +void AliMUONTrackParam::SetTrackParam(AliMUONTrackParam& theMUONTrackParam) { - // Track parameter extrapolation to the plane at "Z". - // On return, the track parameters resulting from the extrapolation - // replace the current track parameters. - if (this->fZ == Z) return; // nothing to be done if same Z - Double_t forwardBackward; // +1 if forward, -1 if backward - if (Z < this->fZ) forwardBackward = 1.0; // spectro. z<0 - else forwardBackward = -1.0; - Double_t vGeant3[7], vGeant3New[7]; // 7 in parameter ???? - Int_t iGeant3, stepNumber; - Int_t maxStepNumber = 5000; // in parameter ???? - // For safety: return kTRUE or kFALSE ???? - // Parameter vector for calling EXTRAP_ONESTEP - SetGeant3Parameters(vGeant3, forwardBackward); - // sign of charge (sign of fInverseBendingMomentum if forward motion) - // must be changed if backward extrapolation - Double_t chargeExtrap = forwardBackward * - TMath::Sign(Double_t(1.0), this->fInverseBendingMomentum); - Double_t stepLength = 6.0; // in parameter ???? - // Extrapolation loop - stepNumber = 0; - while (((-forwardBackward * (vGeant3[2] - Z)) <= 0.0) && // spectro. z<0 - (stepNumber < maxStepNumber)) { - stepNumber++; - // Option for switching between helix and Runge-Kutta ???? - // extrap_onestep_rungekutta(chargeExtrap, stepLength, vGeant3, vGeant3New); - extrap_onestep_helix(chargeExtrap, stepLength, vGeant3, vGeant3New); - if ((-forwardBackward * (vGeant3New[2] - Z)) > 0.0) break; // one is beyond Z spectro. z<0 - // better use TArray ???? - for (iGeant3 = 0; iGeant3 < 7; iGeant3++) - {vGeant3[iGeant3] = vGeant3New[iGeant3];} - } - // check maxStepNumber ???? - // Interpolation back to exact Z (2nd order) - // should be in function ???? using TArray ???? - Double_t dZ12 = vGeant3New[2] - vGeant3[2]; // 1->2 - Double_t dZ1i = Z - vGeant3[2]; // 1-i - Double_t dZi2 = vGeant3New[2] - Z; // i->2 - Double_t xPrime = (vGeant3New[0] - vGeant3[0]) / dZ12; - Double_t xSecond = - ((vGeant3New[3] / vGeant3New[5]) - (vGeant3[3] / vGeant3[5])) / dZ12; - Double_t yPrime = (vGeant3New[1] - vGeant3[1]) / dZ12; - Double_t ySecond = - ((vGeant3New[4] / vGeant3New[5]) - (vGeant3[4] / vGeant3[5])) / dZ12; - vGeant3[0] = vGeant3[0] + xPrime * dZ1i - 0.5 * xSecond * dZ1i * dZi2; // X - vGeant3[1] = vGeant3[1] + yPrime * dZ1i - 0.5 * ySecond * dZ1i * dZi2; // Y - vGeant3[2] = Z; // Z - Double_t xPrimeI = xPrime - 0.5 * xSecond * (dZi2 - dZ1i); - Double_t yPrimeI = yPrime - 0.5 * ySecond * (dZi2 - dZ1i); - // (PX, PY, PZ)/PTOT assuming forward motion - vGeant3[5] = - 1.0 / TMath::Sqrt(1.0 + xPrimeI * xPrimeI + yPrimeI * yPrimeI); // PZ/PTOT - vGeant3[3] = xPrimeI * vGeant3[5]; // PX/PTOT - vGeant3[4] = yPrimeI * vGeant3[5]; // PY/PTOT - // Track parameters from Geant3 parameters, - // with charge back for forward motion - GetFromGeant3Parameters(vGeant3, chargeExtrap * forwardBackward); + /// Set track parameters from "TrackParam" leaving pointer to fHitForRecPtr and parameter covariances unchanged + fNonBendingCoor = theMUONTrackParam.fNonBendingCoor; + fNonBendingSlope = theMUONTrackParam.fNonBendingSlope; + fBendingCoor = theMUONTrackParam.fBendingCoor; + fBendingSlope = theMUONTrackParam.fBendingSlope; + fInverseBendingMomentum = theMUONTrackParam.fInverseBendingMomentum; + fZ = theMUONTrackParam.fZ; } //__________________________________________________________________________ -void AliMUONTrackParam::SetGeant3Parameters(Double_t *VGeant3, Double_t ForwardBackward) +AliMUONHitForRec* AliMUONTrackParam::GetHitForRecPtr(void) const { - // Set vector of Geant3 parameters pointed to by "VGeant3" - // from track parameters in current AliMUONTrackParam. - // Since AliMUONTrackParam is only geometry, one uses "ForwardBackward" - // to know whether the particle is going forward (+1) or backward (-1). - VGeant3[0] = this->fNonBendingCoor; // X - VGeant3[1] = this->fBendingCoor; // Y - VGeant3[2] = this->fZ; // Z - Double_t pYZ = TMath::Abs(1.0 / this->fInverseBendingMomentum); - Double_t pZ = - pYZ / TMath::Sqrt(1.0 + this->fBendingSlope * this->fBendingSlope); - VGeant3[6] = - TMath::Sqrt(pYZ * pYZ + - pZ * pZ * this->fNonBendingSlope * this->fNonBendingSlope); // PTOT - VGeant3[5] = -ForwardBackward * pZ / VGeant3[6]; // PZ/PTOT spectro. z<0 - VGeant3[3] = this->fNonBendingSlope * VGeant3[5]; // PX/PTOT - VGeant3[4] = this->fBendingSlope * VGeant3[5]; // PY/PTOT +/// return pointer to HitForRec attached to the current TrackParam +/// this method should not be called when fHitForRecPtr == NULL + if (!fHitForRecPtr) AliWarning("fHitForRecPtr == NULL"); + return fHitForRecPtr; } - //__________________________________________________________________________ -void AliMUONTrackParam::GetFromGeant3Parameters(Double_t *VGeant3, Double_t Charge) + //_________________________________________________________________________ +void AliMUONTrackParam::GetParamFrom(const AliESDMuonTrack& esdMuonTrack) { - // Get track parameters in current AliMUONTrackParam - // from Geant3 parameters pointed to by "VGeant3", - // assumed to be calculated for forward motion in Z. - // "InverseBendingMomentum" is signed with "Charge". - this->fNonBendingCoor = VGeant3[0]; // X - this->fBendingCoor = VGeant3[1]; // Y - this->fZ = VGeant3[2]; // Z - Double_t pYZ = VGeant3[6] * TMath::Sqrt(1.0 - VGeant3[3] * VGeant3[3]); - this->fInverseBendingMomentum = Charge / pYZ; - this->fBendingSlope = VGeant3[4] / VGeant3[5]; - this->fNonBendingSlope = VGeant3[3] / VGeant3[5]; + /// assigned value form ESD track. + fInverseBendingMomentum = esdMuonTrack.GetInverseBendingMomentum(); + fBendingSlope = TMath::Tan(esdMuonTrack.GetThetaY()); + fNonBendingSlope = TMath::Tan(esdMuonTrack.GetThetaX()); + fZ = esdMuonTrack.GetZ(); + fBendingCoor = esdMuonTrack.GetBendingCoor(); + fNonBendingCoor = esdMuonTrack.GetNonBendingCoor(); } - //__________________________________________________________________________ -void AliMUONTrackParam::ExtrapToStation(Int_t Station, AliMUONTrackParam *TrackParam) + //_________________________________________________________________________ +void AliMUONTrackParam::SetParamFor(AliESDMuonTrack& esdMuonTrack) { - // Track parameters extrapolated from current track parameters ("this") - // to both chambers of the station(0..) "Station" - // are returned in the array (dimension 2) of track parameters - // pointed to by "TrackParam" (index 0 and 1 for first and second chambers). - Double_t extZ[2], z1, z2; - Int_t i1 = -1, i2 = -1; // = -1 to avoid compilation warnings - AliMUON *pMUON = (AliMUON*) gAlice->GetModule("MUON"); // necessary ???? - // range of Station to be checked ???? - z1 = (&(pMUON->Chamber(2 * Station)))->Z(); // Z of first chamber - z2 = (&(pMUON->Chamber(2 * Station + 1)))->Z(); // Z of second chamber - // First and second Z to extrapolate at - if ((z1 > this->fZ) && (z2 > this->fZ)) {i1 = 0; i2 = 1;} - else if ((z1 < this->fZ) && (z2 < this->fZ)) {i1 = 1; i2 = 0;} - else { - AliError(Form("Starting Z (%f) in between z1 (%f) and z2 (%f) of station(0..)%d",this->fZ,z1,z2,Station)); -// cout << "ERROR in AliMUONTrackParam::CreateExtrapSegmentInStation" << endl; -// cout << "Starting Z (" << this->fZ << ") in between z1 (" << z1 << -// ") and z2 (" << z2 << ") of station(0..) " << Station << endl; - } - extZ[i1] = z1; - extZ[i2] = z2; - // copy of track parameters - TrackParam[i1] = *this; - // first extrapolation - (&(TrackParam[i1]))->ExtrapToZ(extZ[0]); - TrackParam[i2] = TrackParam[i1]; - // second extrapolation - (&(TrackParam[i2]))->ExtrapToZ(extZ[1]); - return; + /// assigned value form ESD track. + esdMuonTrack.SetInverseBendingMomentum(fInverseBendingMomentum); + esdMuonTrack.SetThetaX(TMath::ATan(fNonBendingSlope)); + esdMuonTrack.SetThetaY(TMath::ATan(fBendingSlope)); + esdMuonTrack.SetZ(fZ); + esdMuonTrack.SetBendingCoor(fBendingCoor); + esdMuonTrack.SetNonBendingCoor(fNonBendingCoor); } - //__________________________________________________________________________ -void AliMUONTrackParam::ExtrapToVertex() + //_________________________________________________________________________ +void AliMUONTrackParam::GetParamFromUncorrected(const AliESDMuonTrack& esdMuonTrack) { - // Extrapolation to the vertex. - // Returns the track parameters resulting from the extrapolation, - // in the current TrackParam. - // Changes parameters according to Branson correction through the absorber - - Double_t zAbsorber = -503.0; // to be coherent with the Geant absorber geometry !!!! - // spectro. (z<0) - // Extrapolates track parameters upstream to the "Z" end of the front absorber - ExtrapToZ(zAbsorber); // !!! - // Makes Branson correction (multiple scattering + energy loss) - BransonCorrection(); - // Makes a simple magnetic field correction through the absorber - FieldCorrection(zAbsorber); + /// assigned value form ESD track. + fInverseBendingMomentum = esdMuonTrack.GetInverseBendingMomentumUncorrected(); + fBendingSlope = TMath::Tan(esdMuonTrack.GetThetaYUncorrected()); + fNonBendingSlope = TMath::Tan(esdMuonTrack.GetThetaXUncorrected()); + fZ = esdMuonTrack.GetZUncorrected(); + fBendingCoor = esdMuonTrack.GetBendingCoorUncorrected(); + fNonBendingCoor = esdMuonTrack.GetNonBendingCoorUncorrected(); } + //_________________________________________________________________________ +void AliMUONTrackParam::SetParamForUncorrected(AliESDMuonTrack& esdMuonTrack) +{ + /// assigned value form ESD track. + esdMuonTrack.SetInverseBendingMomentumUncorrected(fInverseBendingMomentum); + esdMuonTrack.SetThetaXUncorrected(TMath::ATan(fNonBendingSlope)); + esdMuonTrack.SetThetaYUncorrected(TMath::ATan(fBendingSlope)); + esdMuonTrack.SetZUncorrected(fZ); + esdMuonTrack.SetBendingCoorUncorrected(fBendingCoor); + esdMuonTrack.SetNonBendingCoorUncorrected(fNonBendingCoor); +} -// Keep this version for future developments //__________________________________________________________________________ -// void AliMUONTrackParam::BransonCorrection() -// { -// // Branson correction of track parameters -// // the entry parameters have to be calculated at the end of the absorber -// Double_t zEndAbsorber, zBP, xBP, yBP; -// Double_t pYZ, pX, pY, pZ, pTotal, xEndAbsorber, yEndAbsorber, radiusEndAbsorber2, pT, theta; -// Int_t sign; -// // Would it be possible to calculate all that from Geant configuration ???? -// // and to get the Branson parameters from a function in ABSO module ???? -// // with an eventual contribution from other detectors like START ???? -// // Radiation lengths outer part theta > 3 degres -// static Double_t x01[9] = { 18.8, // C (cm) -// 10.397, // Concrete (cm) -// 0.56, // Plomb (cm) -// 47.26, // Polyethylene (cm) -// 0.56, // Plomb (cm) -// 47.26, // Polyethylene (cm) -// 0.56, // Plomb (cm) -// 47.26, // Polyethylene (cm) -// 0.56 }; // Plomb (cm) -// // inner part theta < 3 degres -// static Double_t x02[3] = { 18.8, // C (cm) -// 10.397, // Concrete (cm) -// 0.35 }; // W (cm) -// // z positions of the materials inside the absober outer part theta > 3 degres -// static Double_t z1[10] = { 90, 315, 467, 472, 477, 482, 487, 492, 497, 502 }; -// // inner part theta < 3 degres -// static Double_t z2[4] = { 90, 315, 467, 503 }; -// static Bool_t first = kTRUE; -// static Double_t zBP1, zBP2, rLimit; -// // Calculates z positions of the Branson's planes: zBP1 for outer part and zBP2 for inner part (only at the first call) -// if (first) { -// first = kFALSE; -// Double_t aNBP = 0.0; -// Double_t aDBP = 0.0; -// Int_t iBound; - -// for (iBound = 0; iBound < 9; iBound++) { -// aNBP = aNBP + -// (z1[iBound+1] * z1[iBound+1] * z1[iBound+1] - -// z1[iBound] * z1[iBound] * z1[iBound] ) / x01[iBound]; -// aDBP = aDBP + -// (z1[iBound+1] * z1[iBound+1] - z1[iBound] * z1[iBound] ) / x01[iBound]; -// } -// zBP1 = (2.0 * aNBP) / (3.0 * aDBP); -// aNBP = 0.0; -// aDBP = 0.0; -// for (iBound = 0; iBound < 3; iBound++) { -// aNBP = aNBP + -// (z2[iBound+1] * z2[iBound+1] * z2[iBound+1] - -// z2[iBound] * z2[iBound ] * z2[iBound] ) / x02[iBound]; -// aDBP = aDBP + -// (z2[iBound+1] * z2[iBound+1] - z2[iBound] * z2[iBound]) / x02[iBound]; -// } -// zBP2 = (2.0 * aNBP) / (3.0 * aDBP); -// rLimit = z2[3] * TMath::Tan(3.0 * (TMath::Pi()) / 180.); -// } - -// pYZ = TMath::Abs(1.0 / fInverseBendingMomentum); -// sign = 1; -// if (fInverseBendingMomentum < 0) sign = -1; -// pZ = pYZ / (TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope)); -// pX = pZ * fNonBendingSlope; -// pY = pZ * fBendingSlope; -// pTotal = TMath::Sqrt(pYZ *pYZ + pX * pX); -// xEndAbsorber = fNonBendingCoor; -// yEndAbsorber = fBendingCoor; -// radiusEndAbsorber2 = xEndAbsorber * xEndAbsorber + yEndAbsorber * yEndAbsorber; +Double_t AliMUONTrackParam::Px() const +{ + /// return p_x from track parameters + Double_t pYZ, pZ, pX; + pYZ = 0; + if ( TMath::Abs(fInverseBendingMomentum) > 0 ) + pYZ = TMath::Abs(1.0 / fInverseBendingMomentum); + pZ = -pYZ / (TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope)); // spectro. (z<0) + pX = pZ * fNonBendingSlope; + return pX; +} -// if (radiusEndAbsorber2 > rLimit*rLimit) { -// zEndAbsorber = z1[9]; -// zBP = zBP1; -// } else { -// zEndAbsorber = z2[3]; -// zBP = zBP2; -// } + //__________________________________________________________________________ +Double_t AliMUONTrackParam::Py() const +{ + /// return p_y from track parameters + Double_t pYZ, pZ, pY; + pYZ = 0; + if ( TMath::Abs(fInverseBendingMomentum) > 0 ) + pYZ = TMath::Abs(1.0 / fInverseBendingMomentum); + pZ = -pYZ / (TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope)); // spectro. (z<0) + pY = pZ * fBendingSlope; + return pY; +} -// xBP = xEndAbsorber - (pX / pZ) * (zEndAbsorber - zBP); -// yBP = yEndAbsorber - (pY / pZ) * (zEndAbsorber - zBP); + //__________________________________________________________________________ +Double_t AliMUONTrackParam::Pz() const +{ + /// return p_z from track parameters + Double_t pYZ, pZ; + pYZ = 0; + if ( TMath::Abs(fInverseBendingMomentum) > 0 ) + pYZ = TMath::Abs(1.0 / fInverseBendingMomentum); + pZ = -pYZ / (TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope)); // spectro. (z<0) + return pZ; +} -// // new parameters after Branson and energy loss corrections -// pZ = pTotal * zBP / TMath::Sqrt(xBP * xBP + yBP * yBP + zBP * zBP); -// pX = pZ * xBP / zBP; -// pY = pZ * yBP / zBP; -// fBendingSlope = pY / pZ; -// fNonBendingSlope = pX / pZ; + //__________________________________________________________________________ +Double_t AliMUONTrackParam::P() const +{ + /// return p from track parameters + Double_t pYZ, pZ, p; + pYZ = 0; + if ( TMath::Abs(fInverseBendingMomentum) > 0 ) + pYZ = TMath::Abs(1.0 / fInverseBendingMomentum); + pZ = -pYZ / (TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope)); // spectro. (z<0) + p = TMath::Abs(pZ) * + TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope + fNonBendingSlope * fNonBendingSlope); + return p; -// pT = TMath::Sqrt(pX * pX + pY * pY); -// theta = TMath::ATan2(pT, pZ); -// pTotal = -// TotalMomentumEnergyLoss(rLimit, pTotal, theta, xEndAbsorber, yEndAbsorber); - -// fInverseBendingMomentum = (sign / pTotal) * -// TMath::Sqrt(1.0 + -// fBendingSlope * fBendingSlope + -// fNonBendingSlope * fNonBendingSlope) / -// TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope); - -// // vertex position at (0,0,0) -// // should be taken from vertex measurement ??? -// fBendingCoor = 0.0; -// fNonBendingCoor = 0; -// fZ= 0; -// } +} -void AliMUONTrackParam::BransonCorrection() + //__________________________________________________________________________ +TMatrixD* AliMUONTrackParam::GetCovariances() { - // Branson correction of track parameters - // the entry parameters have to be calculated at the end of the absorber - // simplified version: the z positions of Branson's planes are no longer calculated - // but are given as inputs. One can use the macros MUONTestAbso.C and DrawTestAbso.C - // to test this correction. - // Would it be possible to calculate all that from Geant configuration ???? - // and to get the Branson parameters from a function in ABSO module ???? - // with an eventual contribution from other detectors like START ???? - Double_t zBP, xBP, yBP; - Double_t pYZ, pX, pY, pZ, pTotal, xEndAbsorber, yEndAbsorber, radiusEndAbsorber2, pT, theta; - Int_t sign; - static Bool_t first = kTRUE; - static Double_t zBP1, zBP2, rLimit, thetaLimit, zEndAbsorber; - // zBP1 for outer part and zBP2 for inner part (only at the first call) - if (first) { - first = kFALSE; - - zEndAbsorber = -503; // spectro (z<0) - thetaLimit = 3.0 * (TMath::Pi()) / 180.; - rLimit = TMath::Abs(zEndAbsorber) * TMath::Tan(thetaLimit); - zBP1 = -450; // values close to those calculated with EvalAbso.C - zBP2 = -480; + /// Return the covariance matrix (create it before if needed) + if (!fCovariances) { + fCovariances = new TMatrixD(5,5); + (*fCovariances) = 0; } - - pYZ = TMath::Abs(1.0 / fInverseBendingMomentum); - sign = 1; - if (fInverseBendingMomentum < 0) sign = -1; - pZ = -pYZ / (TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope)); // spectro (z<0) - pX = pZ * fNonBendingSlope; - pY = pZ * fBendingSlope; - pTotal = TMath::Sqrt(pYZ *pYZ + pX * pX); - xEndAbsorber = fNonBendingCoor; - yEndAbsorber = fBendingCoor; - radiusEndAbsorber2 = xEndAbsorber * xEndAbsorber + yEndAbsorber * yEndAbsorber; - - if (radiusEndAbsorber2 > rLimit*rLimit) { - zBP = zBP1; - } else { - zBP = zBP2; + return fCovariances; } - xBP = xEndAbsorber - (pX / pZ) * (zEndAbsorber - zBP); - yBP = yEndAbsorber - (pY / pZ) * (zEndAbsorber - zBP); - - // new parameters after Branson and energy loss corrections -// Float_t zSmear = zBP - gRandom->Gaus(0.,2.); // !!! possible smearing of Z vertex position - Float_t zSmear = zBP; - - pZ = pTotal * zSmear / TMath::Sqrt(xBP * xBP + yBP * yBP + zSmear * zSmear); - pX = pZ * xBP / zSmear; - pY = pZ * yBP / zSmear; - fBendingSlope = pY / pZ; - fNonBendingSlope = pX / pZ; - - - pT = TMath::Sqrt(pX * pX + pY * pY); - theta = TMath::ATan2(pT, TMath::Abs(pZ)); - pTotal = TotalMomentumEnergyLoss(thetaLimit, pTotal, theta); + //__________________________________________________________________________ +void AliMUONTrackParam::SetCovariances(TMatrixD* covariances) +{ + /// Set the covariance matrix + if (covariances == fCovariances) return; // nothing to be done + if (fCovariances) *fCovariances = *covariances; + else fCovariances = new TMatrixD(*covariances); +} - fInverseBendingMomentum = (sign / pTotal) * - TMath::Sqrt(1.0 + - fBendingSlope * fBendingSlope + - fNonBendingSlope * fNonBendingSlope) / - TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope); + //__________________________________________________________________________ +void AliMUONTrackParam::SetCovariances(Double_t matrix[5][5]) +{ + /// Set the covariance matrix + if (fCovariances) fCovariances->SetMatrixArray(&(matrix[0][0])); + else fCovariances = new TMatrixD(5,5,&(matrix[0][0])); +} - // vertex position at (0,0,0) - // should be taken from vertex measurement ??? - fBendingCoor = 0.0; - fNonBendingCoor = 0; - fZ= 0; + //__________________________________________________________________________ +void AliMUONTrackParam::SetVariances(Double_t matrix[5][5]) +{ + /// Set the diagonal terms of the covariance matrix (variances) + if (!fCovariances) fCovariances = new TMatrixD(5,5); + (*fCovariances) = 0; + for (Int_t i=0; i<5; i++) (*fCovariances)(i,i) = matrix[i][i]; } //__________________________________________________________________________ -Double_t AliMUONTrackParam::TotalMomentumEnergyLoss(Double_t thetaLimit, Double_t pTotal, Double_t theta) +void AliMUONTrackParam::DeleteCovariances() { - // Returns the total momentum corrected from energy loss in the front absorber - // One can use the macros MUONTestAbso.C and DrawTestAbso.C - // to test this correction. - // Momentum energy loss behaviour evaluated with the simulation of single muons (april 2002) - Double_t deltaP, pTotalCorrected; + /// Delete the covariance matrix + if (fCovariances) delete fCovariances; + fCovariances = 0x0; +} - // Parametrization to be redone according to change of absorber material ???? - // See remark in function BransonCorrection !!!! - // The name is not so good, and there are many arguments !!!! - if (theta < thetaLimit ) { - if (pTotal < 20) { - deltaP = 2.5938 + 0.0570 * pTotal - 0.001151 * pTotal * pTotal; - } else { - deltaP = 3.0714 + 0.011767 *pTotal; - } - } else { - if (pTotal < 20) { - deltaP = 2.1207 + 0.05478 * pTotal - 0.00145079 * pTotal * pTotal; - } else { - deltaP = 2.6069 + 0.0051705 * pTotal; - } + //__________________________________________________________________________ +void AliMUONTrackParam::EvalCovariances(AliMUONHitForRec* hit2) +{ + /// Evaluate covariances assuming the track is only a straight line + /// between the HitForRec attached to the current TrackParam and hit2. + /// Nothing can be done on fInverseBendingMomentum (-> 50% err). + + // Allocate memory if needed + if (!fCovariances) fCovariances = new TMatrixD(5,5); + + // Reset the covariance matrix + (*fCovariances) = 0; + + if (!fHitForRecPtr) { + AliWarning("fHitForRecPtr == NULL: cannot calculate TrackParam covariances"); + return; } - pTotalCorrected = pTotal + deltaP / TMath::Cos(theta); - return pTotalCorrected; + + Double_t dz = fHitForRecPtr->GetZ() - hit2->GetZ(); + + // Non bending plane + (*fCovariances)(0,0) = fHitForRecPtr->GetNonBendingReso2(); + (*fCovariances)(0,1) = fHitForRecPtr->GetNonBendingReso2() / dz; + (*fCovariances)(1,0) = (*fCovariances)(0,1); + (*fCovariances)(1,1) = ( fHitForRecPtr->GetNonBendingReso2() + hit2->GetNonBendingReso2() ) / dz / dz; + // Bending plane + (*fCovariances)(2,2) = fHitForRecPtr->GetBendingReso2(); + (*fCovariances)(2,3) = fHitForRecPtr->GetBendingReso2() / dz; + (*fCovariances)(3,2) = (*fCovariances)(2,3); + (*fCovariances)(3,3) = ( fHitForRecPtr->GetBendingReso2() + hit2->GetBendingReso2() ) / dz / dz; + // Inverse bending momentum + (*fCovariances)(4,4) = 0.5*fInverseBendingMomentum * 0.5*fInverseBendingMomentum; // error 50% + } //__________________________________________________________________________ -void AliMUONTrackParam::FieldCorrection(Double_t Z) +Int_t AliMUONTrackParam::Compare(const TObject* trackParam) const { - // - // Correction of the effect of the magnetic field in the absorber - // Assume a constant field along Z axis. - - Float_t b[3],x[3]; - Double_t bZ; - Double_t pYZ,pX,pY,pZ,pT; - Double_t pXNew,pYNew; - Double_t c; - - pYZ = TMath::Abs(1.0 / fInverseBendingMomentum); - c = TMath::Sign(1.0,fInverseBendingMomentum); // particle charge - - pZ = -pYZ / (TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope)); // spectro. (z<0) - pX = pZ * fNonBendingSlope; - pY = pZ * fBendingSlope; - pT = TMath::Sqrt(pX*pX+pY*pY); - - if (TMath::Abs(pZ) <= 0) return; - x[2] = Z/2; - x[0] = x[2]*fNonBendingSlope; - x[1] = x[2]*fBendingSlope; + /// "Compare" function to sort with decreasing Z (spectro. muon Z <0). + /// Returns 1 (0, -1) if Z of current TrackHit + /// is smaller than (equal to, larger than) Z of TrackHit + if (fHitForRecPtr) { + if (fHitForRecPtr->GetZ() != fZ) + AliWarning("track parameters are given at a different z position than the one of the corresponding hit"); + } + if (fZ < ((AliMUONTrackParam*)trackParam)->GetZ()) return(1); + else if (fZ == ((AliMUONTrackParam*)trackParam)->GetZ()) return(0); + else return(-1); +} - // Take magn. field value at position x. - gAlice->Field()->Field(x, b); - bZ = b[2]; - - // Transverse momentum rotation - // Parameterized with the study of DeltaPhi = phiReco - phiGen as a function of pZ. - Double_t phiShift = c*0.436*0.0003*bZ*Z/pZ; - // Rotate momentum around Z axis. - pXNew = pX*TMath::Cos(phiShift) - pY*TMath::Sin(phiShift); - pYNew = pX*TMath::Sin(phiShift) + pY*TMath::Cos(phiShift); - - fBendingSlope = pYNew / pZ; - fNonBendingSlope = pXNew / pZ; - - fInverseBendingMomentum = c / TMath::Sqrt(pYNew*pYNew+pZ*pZ); +//_____________________________________________- +void AliMUONTrackParam::Print(Option_t* opt) const +{ + /// Printing TrackParam information + /// "full" option for printing all the information about the TrackParam + TString sopt(opt); + sopt.ToUpper(); + if ( sopt.Contains("FULL") ) { + cout << " Bending P=" << setw(5) << setprecision(3) << 1./GetInverseBendingMomentum() << + ", NonBendSlope=" << setw(5) << setprecision(3) << GetNonBendingSlope()*180./TMath::Pi() << + ", BendSlope=" << setw(5) << setprecision(3) << GetBendingSlope()*180./TMath::Pi() << + ", (x,y,z)_IP=(" << setw(5) << setprecision(3) << GetNonBendingCoor() << + "," << setw(5) << setprecision(3) << GetBendingCoor() << + "," << setw(5) << setprecision(3) << GetZ() << + ") cm, (px,py,pz)=(" << setw(5) << setprecision(3) << Px() << + "," << setw(5) << setprecision(3) << Py() << + "," << setw(5) << setprecision(3) << Pz() << ") GeV/c" << endl; + } + else { + cout << "" << endl; + } + }