X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=MUON%2FAliMUONv1.cxx;h=d25249e171405fa90f5cc8d0ea6be370f8fad68e;hb=644edbedbfa94ec740954c2dfc6be4eb9b055d24;hp=a5881f184cd502d0cee3e6811961ac6b4627fdfa;hpb=4b1670dcf59a6bdc98e9805e1049c85143099084;p=u%2Fmrichter%2FAliRoot.git diff --git a/MUON/AliMUONv1.cxx b/MUON/AliMUONv1.cxx index a5881f184cd..d25249e1714 100644 --- a/MUON/AliMUONv1.cxx +++ b/MUON/AliMUONv1.cxx @@ -13,2203 +13,469 @@ * provided "as is" without express or implied warranty. * **************************************************************************/ -/* -$Log$ -Revision 1.29 2001/06/21 14:54:37 morsch -Put volumes of station 3 into DIPO if present. (A. de Falco) +/* $Id$ */ -Revision 1.28 2001/05/16 14:57:17 alibrary -New files for folders and Stack +//----------------------------------------------------------------------------- +// Class AliMUONv1 +// -------------------- +// AliDetector class for MUON subsystem which implements +// functions for simulation +//----------------------------------------------------------------------------- -Revision 1.27 2001/04/06 11:24:43 morsch -Dependency on implementations of AliSegmentation and AliMUONResponse moved to AliMUONFactory class. -Static method Build() builds the MUON system out of chambers, segmentation and response. - -Revision 1.26 2001/03/17 10:07:20 morsch -Correct inconsistent variable name / method name / comments. - -Revision 1.25 2001/03/16 15:32:06 morsch -Corrections of overlap with beam shield and dipole (A. de Falco) - -Revision 1.24 2001/03/14 17:22:15 pcrochet -Geometry of the trigger chambers : a vertical gap of has been introduced around x=0 according fig.3.27 of the TDR (P.Dupieux) - -Revision 1.23 2001/01/18 15:23:49 egangler -Bug correction in StepManager : -Now the systematic offset with angle is cured - -Revision 1.22 2001/01/17 21:01:21 hristov -Unused variable removed - -Revision 1.21 2000/12/20 13:00:22 egangler - -Added charge correlation between cathods. -In Config_slat.C, use - MUON->Chamber(chamber-1).SetChargeCorrel(0.11); to set the RMS of - q1/q2 to 11 % (number from Alberto) - This is stored in AliMUONChamber fChargeCorrel member. - At generation time, when a tracks enters the volume, - AliMUONv1::StepManager calls - AliMUONChamber::ChargeCorrelationInit() to set the current value of - fCurrentCorrel which is then used at Disintegration level to scale - appropriately the PadHit charges. - -Revision 1.20 2000/12/04 17:48:23 gosset -Modifications for stations 1 et 2 mainly: -* station 1 with 4 mm gas gap and smaller cathode segmentation... -* stations 1 and 2 with "grey" frame crosses -* mean noise at 1.5 ADC channel -* Ar-CO2 gas (80%+20%) - -Revision 1.19 2000/12/02 17:15:46 morsch -Correction of dead zones in inner regions of stations 3-5 -Correction of length of slats 3 and 9 of station 4. - -Revision 1.17 2000/11/24 12:57:10 morsch -New version of geometry for stations 3-5 "Slats" (A. de Falco) - - sensitive region at station 3 inner radius - - improved volume tree structure - -Revision 1.16 2000/11/08 13:01:40 morsch -Chamber half-planes of stations 3-5 at different z-positions. - -Revision 1.15 2000/11/06 11:39:02 morsch -Bug in StepManager() corrected. - -Revision 1.14 2000/11/06 09:16:50 morsch -Avoid overlap of slat volumes. - -Revision 1.13 2000/10/26 07:33:44 morsch -Correct x-position of slats in station 5. - -Revision 1.12 2000/10/25 19:55:35 morsch -Switches for each station individually for debug and lego. - -Revision 1.11 2000/10/22 16:44:01 morsch -Update of slat geometry for stations 3,4,5 (A. deFalco) - -Revision 1.10 2000/10/12 16:07:04 gosset -StepManager: -* SigGenCond only called for tracking chambers, - hence no more division by 0, - and may use last ALIROOT/dummies.C with exception handling; -* "10" replaced by "AliMUONConstants::NTrackingCh()". - -Revision 1.9 2000/10/06 15:37:22 morsch -Problems with variable redefinition in for-loop solved. -Variable names starting with u-case letters changed to l-case. - -Revision 1.8 2000/10/06 09:06:31 morsch -Include Slat chambers (stations 3-5) into geometry (A. de Falco) - -Revision 1.7 2000/10/02 21:28:09 fca -Removal of useless dependecies via forward declarations - -Revision 1.6 2000/10/02 17:20:45 egangler -Cleaning of the code (continued ) : --> coding conventions --> void Streamers --> some useless includes removed or replaced by "class" statement - -Revision 1.5 2000/06/28 15:16:35 morsch -(1) Client code adapted to new method signatures in AliMUONSegmentation (see comments there) -to allow development of slat-muon chamber simulation and reconstruction code in the MUON -framework. The changes should have no side effects (mostly dummy arguments). -(2) Hit disintegration uses 3-dim hit coordinates to allow simulation -of chambers with overlapping modules (MakePadHits, Disintegration). - -Revision 1.4 2000/06/26 14:02:38 morsch -Add class AliMUONConstants with MUON specific constants using static memeber data and access methods. - -Revision 1.3 2000/06/22 14:10:05 morsch -HP scope problems corrected (PH) - -Revision 1.2 2000/06/15 07:58:49 morsch -Code from MUON-dev joined - -Revision 1.1.2.14 2000/06/14 14:37:25 morsch -Initialization of TriggerCircuit added (PC) - -Revision 1.1.2.13 2000/06/09 21:55:47 morsch -Most coding rule violations corrected. - -Revision 1.1.2.12 2000/05/05 11:34:29 morsch -Log inside comments. - -Revision 1.1.2.11 2000/05/05 10:06:48 morsch -Coding Rule violations regarding trigger section corrected (CP) -Log messages included. -*/ +#include "AliMUONv1.h" +#include "AliMUONConstants.h" +#include "AliMUONResponseFactory.h" +#include "AliMUONHit.h" +#include "AliMUONGeometryBuilder.h" +#include "AliMUONGeometry.h" +#include "AliMUONGeometryTransformer.h" +#include "AliMUONGeometryModule.h" +#include "AliMUONStringIntMap.h" +#include "AliMUONGeometryDetElement.h" -///////////////////////////////////////////////////////// -// Manager and hits classes for set:MUON version 0 // -///////////////////////////////////////////////////////// +#include "AliMpCDB.h" +#include "AliMpDEManager.h" -#include -#include -#include -#include -#include - -#include "AliMUONv1.h" +#include "AliConst.h" +#include "AliMagF.h" #include "AliRun.h" #include "AliMC.h" -#include "AliMagF.h" -#include "AliCallf77.h" -#include "AliConst.h" -#include "AliMUONChamber.h" -#include "AliMUONHit.h" -#include "AliMUONPadHit.h" -#include "AliMUONConstants.h" -#include "AliMUONTriggerCircuit.h" -#include "AliMUONFactory.h" +#include "AliTrackReference.h" +#include "AliLog.h" + +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include "AliMUONVHitStore.h" + +using std::endl; +using std::cout; +using std::setw; +/// \cond CLASSIMP ClassImp(AliMUONv1) +/// \endcond //___________________________________________ -AliMUONv1::AliMUONv1() -{ -// Constructor -} - -//___________________________________________ -AliMUONv1::AliMUONv1(const char *name, const char *title) - : AliMUON(name,title) +AliMUONv1::AliMUONv1() + : AliMUON(), + fAngleEffect(kTRUE), + fMagEffect(kTRUE), + fStepMaxInActiveGas(0.6), + fStepSum(0x0), + fDestepSum(0x0), + fTrackMomentum(), + fTrackPosition(), + fElossRatio(0x0), + fAngleEffect10(0x0), + fAngleEffectNorma(0x0), + fMagAngleEffectNorma(0x0) { -// Constructor -// this->SetDebug(2); - AliMUONFactory::Build(this, title); -} +/// Default constructor + + AliDebug(1,Form("default (empty) ctor this=%p",this)); +} //___________________________________________ -void AliMUONv1::CreateGeometry() +AliMUONv1::AliMUONv1(const char *name, const char* title) +: AliMUON(name, title), + fAngleEffect(kTRUE), + fMagEffect(kTRUE), + fStepMaxInActiveGas(0.6), + fStepSum(0x0), + fDestepSum(0x0), + fTrackMomentum(), + fTrackPosition(), + fElossRatio(0x0), + fAngleEffect10(0x0), + fAngleEffectNorma(0x0), + fMagAngleEffectNorma(0x0) { -// -// Note: all chambers have the same structure, which could be -// easily parameterised. This was intentionally not done in order -// to give a starting point for the implementation of the actual -// design of each station. - Int_t *idtmed = fIdtmed->GetArray()-1099; - -// Distance between Stations -// - Float_t bpar[3]; - Float_t tpar[3]; -// Float_t pgpar[10]; - Float_t zpos1, zpos2, zfpos; - // Outer excess and inner recess for mother volume radius - // with respect to ROuter and RInner - Float_t dframep=.001; // Value for station 3 should be 6 ... - // Width (RdPhi) of the frame crosses for stations 1 and 2 (cm) -// Float_t dframep1=.001; - Float_t dframep1 = 11.0; -// Bool_t frameCrosses=kFALSE; - Bool_t frameCrosses=kTRUE; - -// Float_t dframez=0.9; - // Half of the total thickness of frame crosses (including DAlu) - // for each chamber in stations 1 and 2: - // 3% of X0 of composite material, - // but taken as Aluminium here, with same thickness in number of X0 - Float_t dframez = 3. * 8.9 / 100; -// Float_t dr; - Float_t dstation; - -// -// Rotation matrices in the x-y plane - Int_t idrotm[1199]; -// phi= 0 deg - AliMatrix(idrotm[1100], 90., 0., 90., 90., 0., 0.); -// phi= 90 deg - AliMatrix(idrotm[1101], 90., 90., 90., 180., 0., 0.); -// phi= 180 deg - AliMatrix(idrotm[1102], 90., 180., 90., 270., 0., 0.); -// phi= 270 deg - AliMatrix(idrotm[1103], 90., 270., 90., 0., 0., 0.); -// - Float_t phi=2*TMath::Pi()/12/2; - -// -// pointer to the current chamber -// pointer to the current chamber - Int_t idAlu1=idtmed[1103]; // medium 4 - Int_t idAlu2=idtmed[1104]; // medium 5 -// Int_t idAlu1=idtmed[1100]; -// Int_t idAlu2=idtmed[1100]; - Int_t idAir=idtmed[1100]; // medium 1 -// Int_t idGas=idtmed[1105]; // medium 6 = Ar-isoC4H10 gas - Int_t idGas=idtmed[1108]; // medium 9 = Ar-CO2 gas (80%+20%) - - - AliMUONChamber *iChamber, *iChamber1, *iChamber2; - Int_t stations[5] = {1, 1, 1, 1, 1}; - - if (stations[0]) { - -//******************************************************************** -// Station 1 ** -//******************************************************************** -// CONCENTRIC - // indices 1 and 2 for first and second chambers in the station - // iChamber (first chamber) kept for other quanties than Z, - // assumed to be the same in both chambers - iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[0]; - iChamber2 =(AliMUONChamber*) (*fChambers)[1]; - zpos1=iChamber1->Z(); - zpos2=iChamber2->Z(); - dstation = zpos2 - zpos1; - // DGas decreased from standard one (0.5) - iChamber->SetDGas(0.4); iChamber2->SetDGas(0.4); - // DAlu increased from standard one (3% of X0), - // because more electronics with smaller pads - iChamber->SetDAlu(3.5 * 8.9 / 100.); iChamber2->SetDAlu(3.5 * 8.9 / 100.); - zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; - -// -// Mother volume - tpar[0] = iChamber->RInner()-dframep; - tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); - tpar[2] = dstation/5; - - gMC->Gsvolu("C01M", "TUBE", idAir, tpar, 3); - gMC->Gsvolu("C02M", "TUBE", idAir, tpar, 3); - gMC->Gspos("C01M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); - gMC->Gspos("C02M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); -// // Aluminium frames -// // Outer frames -// pgpar[0] = 360/12/2; -// pgpar[1] = 360.; -// pgpar[2] = 12.; -// pgpar[3] = 2; -// pgpar[4] = -dframez/2; -// pgpar[5] = iChamber->ROuter(); -// pgpar[6] = pgpar[5]+dframep1; -// pgpar[7] = +dframez/2; -// pgpar[8] = pgpar[5]; -// pgpar[9] = pgpar[6]; -// gMC->Gsvolu("C01O", "PGON", idAlu1, pgpar, 10); -// gMC->Gsvolu("C02O", "PGON", idAlu1, pgpar, 10); -// gMC->Gspos("C01O",1,"C01M", 0.,0.,-zfpos, 0,"ONLY"); -// gMC->Gspos("C01O",2,"C01M", 0.,0.,+zfpos, 0,"ONLY"); -// gMC->Gspos("C02O",1,"C02M", 0.,0.,-zfpos, 0,"ONLY"); -// gMC->Gspos("C02O",2,"C02M", 0.,0.,+zfpos, 0,"ONLY"); -// // -// // Inner frame -// tpar[0]= iChamber->RInner()-dframep1; -// tpar[1]= iChamber->RInner(); -// tpar[2]= dframez/2; -// gMC->Gsvolu("C01I", "TUBE", idAlu1, tpar, 3); -// gMC->Gsvolu("C02I", "TUBE", idAlu1, tpar, 3); - -// gMC->Gspos("C01I",1,"C01M", 0.,0.,-zfpos, 0,"ONLY"); -// gMC->Gspos("C01I",2,"C01M", 0.,0.,+zfpos, 0,"ONLY"); -// gMC->Gspos("C02I",1,"C02M", 0.,0.,-zfpos, 0,"ONLY"); -// gMC->Gspos("C02I",2,"C02M", 0.,0.,+zfpos, 0,"ONLY"); -// -// Frame Crosses - if (frameCrosses) { - // outside gas - // security for inside mother volume - bpar[0] = (iChamber->ROuter() - iChamber->RInner()) - * TMath::Cos(TMath::ASin(dframep1 / - (iChamber->ROuter() - iChamber->RInner()))) - / 2.0; - bpar[1] = dframep1/2; - // total thickness will be (4 * bpar[2]) for each chamber, - // which has to be equal to (2 * dframez) - DAlu - bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0; - gMC->Gsvolu("C01B", "BOX", idAlu1, bpar, 3); - gMC->Gsvolu("C02B", "BOX", idAlu1, bpar, 3); - - gMC->Gspos("C01B",1,"C01M", +iChamber->RInner()+bpar[0] , 0,-zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C01B",2,"C01M", -iChamber->RInner()-bpar[0] , 0,-zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C01B",3,"C01M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, - idrotm[1101],"ONLY"); - gMC->Gspos("C01B",4,"C01M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, - idrotm[1101],"ONLY"); - gMC->Gspos("C01B",5,"C01M", +iChamber->RInner()+bpar[0] , 0,+zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C01B",6,"C01M", -iChamber->RInner()-bpar[0] , 0,+zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C01B",7,"C01M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, - idrotm[1101],"ONLY"); - gMC->Gspos("C01B",8,"C01M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, - idrotm[1101],"ONLY"); - - gMC->Gspos("C02B",1,"C02M", +iChamber->RInner()+bpar[0] , 0,-zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C02B",2,"C02M", -iChamber->RInner()-bpar[0] , 0,-zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C02B",3,"C02M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, - idrotm[1101],"ONLY"); - gMC->Gspos("C02B",4,"C02M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, - idrotm[1101],"ONLY"); - gMC->Gspos("C02B",5,"C02M", +iChamber->RInner()+bpar[0] , 0,+zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C02B",6,"C02M", -iChamber->RInner()-bpar[0] , 0,+zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C02B",7,"C02M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, - idrotm[1101],"ONLY"); - gMC->Gspos("C02B",8,"C02M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, - idrotm[1101],"ONLY"); - } -// -// Chamber Material represented by Alu sheet - tpar[0]= iChamber->RInner(); - tpar[1]= iChamber->ROuter(); - tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2; - gMC->Gsvolu("C01A", "TUBE", idAlu2, tpar, 3); - gMC->Gsvolu("C02A", "TUBE",idAlu2, tpar, 3); - gMC->Gspos("C01A", 1, "C01M", 0., 0., 0., 0, "ONLY"); - gMC->Gspos("C02A", 1, "C02M", 0., 0., 0., 0, "ONLY"); -// -// Sensitive volumes - // tpar[2] = iChamber->DGas(); - tpar[2] = iChamber->DGas()/2; - gMC->Gsvolu("C01G", "TUBE", idGas, tpar, 3); - gMC->Gsvolu("C02G", "TUBE", idGas, tpar, 3); - gMC->Gspos("C01G", 1, "C01A", 0., 0., 0., 0, "ONLY"); - gMC->Gspos("C02G", 1, "C02A", 0., 0., 0., 0, "ONLY"); -// -// Frame Crosses to be placed inside gas - // NONE: chambers are sensitive everywhere -// if (frameCrosses) { - -// dr = (iChamber->ROuter() - iChamber->RInner()); -// bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2; -// bpar[1] = dframep1/2; -// bpar[2] = iChamber->DGas()/2; -// gMC->Gsvolu("C01F", "BOX", idAlu1, bpar, 3); -// gMC->Gsvolu("C02F", "BOX", idAlu1, bpar, 3); - -// gMC->Gspos("C01F",1,"C01G", +iChamber->RInner()+bpar[0] , 0, 0, -// idrotm[1100],"ONLY"); -// gMC->Gspos("C01F",2,"C01G", -iChamber->RInner()-bpar[0] , 0, 0, -// idrotm[1100],"ONLY"); -// gMC->Gspos("C01F",3,"C01G", 0, +iChamber->RInner()+bpar[0] , 0, -// idrotm[1101],"ONLY"); -// gMC->Gspos("C01F",4,"C01G", 0, -iChamber->RInner()-bpar[0] , 0, -// idrotm[1101],"ONLY"); - -// gMC->Gspos("C02F",1,"C02G", +iChamber->RInner()+bpar[0] , 0, 0, -// idrotm[1100],"ONLY"); -// gMC->Gspos("C02F",2,"C02G", -iChamber->RInner()-bpar[0] , 0, 0, -// idrotm[1100],"ONLY"); -// gMC->Gspos("C02F",3,"C02G", 0, +iChamber->RInner()+bpar[0] , 0, -// idrotm[1101],"ONLY"); -// gMC->Gspos("C02F",4,"C02G", 0, -iChamber->RInner()-bpar[0] , 0, -// idrotm[1101],"ONLY"); -// } - } - if (stations[1]) { - -//******************************************************************** -// Station 2 ** -//******************************************************************** - // indices 1 and 2 for first and second chambers in the station - // iChamber (first chamber) kept for other quanties than Z, - // assumed to be the same in both chambers - iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[2]; - iChamber2 =(AliMUONChamber*) (*fChambers)[3]; - zpos1=iChamber1->Z(); - zpos2=iChamber2->Z(); - dstation = zpos2 - zpos1; - // DGas and DAlu not changed from standard values - zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; - -// -// Mother volume - tpar[0] = iChamber->RInner()-dframep; - tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); - tpar[2] = dstation/5; - - gMC->Gsvolu("C03M", "TUBE", idAir, tpar, 3); - gMC->Gsvolu("C04M", "TUBE", idAir, tpar, 3); - gMC->Gspos("C03M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); - gMC->Gspos("C04M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); - -// // Aluminium frames -// // Outer frames -// pgpar[0] = 360/12/2; -// pgpar[1] = 360.; -// pgpar[2] = 12.; -// pgpar[3] = 2; -// pgpar[4] = -dframez/2; -// pgpar[5] = iChamber->ROuter(); -// pgpar[6] = pgpar[5]+dframep; -// pgpar[7] = +dframez/2; -// pgpar[8] = pgpar[5]; -// pgpar[9] = pgpar[6]; -// gMC->Gsvolu("C03O", "PGON", idAlu1, pgpar, 10); -// gMC->Gsvolu("C04O", "PGON", idAlu1, pgpar, 10); -// gMC->Gspos("C03O",1,"C03M", 0.,0.,-zfpos, 0,"ONLY"); -// gMC->Gspos("C03O",2,"C03M", 0.,0.,+zfpos, 0,"ONLY"); -// gMC->Gspos("C04O",1,"C04M", 0.,0.,-zfpos, 0,"ONLY"); -// gMC->Gspos("C04O",2,"C04M", 0.,0.,+zfpos, 0,"ONLY"); -// // -// // Inner frame -// tpar[0]= iChamber->RInner()-dframep; -// tpar[1]= iChamber->RInner(); -// tpar[2]= dframez/2; -// gMC->Gsvolu("C03I", "TUBE", idAlu1, tpar, 3); -// gMC->Gsvolu("C04I", "TUBE", idAlu1, tpar, 3); - -// gMC->Gspos("C03I",1,"C03M", 0.,0.,-zfpos, 0,"ONLY"); -// gMC->Gspos("C03I",2,"C03M", 0.,0.,+zfpos, 0,"ONLY"); -// gMC->Gspos("C04I",1,"C04M", 0.,0.,-zfpos, 0,"ONLY"); -// gMC->Gspos("C04I",2,"C04M", 0.,0.,+zfpos, 0,"ONLY"); -// -// Frame Crosses - if (frameCrosses) { - // outside gas - // security for inside mother volume - bpar[0] = (iChamber->ROuter() - iChamber->RInner()) - * TMath::Cos(TMath::ASin(dframep1 / - (iChamber->ROuter() - iChamber->RInner()))) - / 2.0; - bpar[1] = dframep1/2; - // total thickness will be (4 * bpar[2]) for each chamber, - // which has to be equal to (2 * dframez) - DAlu - bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0; - gMC->Gsvolu("C03B", "BOX", idAlu1, bpar, 3); - gMC->Gsvolu("C04B", "BOX", idAlu1, bpar, 3); - - gMC->Gspos("C03B",1,"C03M", +iChamber->RInner()+bpar[0] , 0,-zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C03B",2,"C03M", -iChamber->RInner()-bpar[0] , 0,-zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C03B",3,"C03M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, - idrotm[1101],"ONLY"); - gMC->Gspos("C03B",4,"C03M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, - idrotm[1101],"ONLY"); - gMC->Gspos("C03B",5,"C03M", +iChamber->RInner()+bpar[0] , 0,+zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C03B",6,"C03M", -iChamber->RInner()-bpar[0] , 0,+zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C03B",7,"C03M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, - idrotm[1101],"ONLY"); - gMC->Gspos("C03B",8,"C03M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, - idrotm[1101],"ONLY"); - - gMC->Gspos("C04B",1,"C04M", +iChamber->RInner()+bpar[0] , 0,-zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C04B",2,"C04M", -iChamber->RInner()-bpar[0] , 0,-zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C04B",3,"C04M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, - idrotm[1101],"ONLY"); - gMC->Gspos("C04B",4,"C04M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, - idrotm[1101],"ONLY"); - gMC->Gspos("C04B",5,"C04M", +iChamber->RInner()+bpar[0] , 0,+zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C04B",6,"C04M", -iChamber->RInner()-bpar[0] , 0,+zfpos, - idrotm[1100],"ONLY"); - gMC->Gspos("C04B",7,"C04M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, - idrotm[1101],"ONLY"); - gMC->Gspos("C04B",8,"C04M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, - idrotm[1101],"ONLY"); - } -// -// Chamber Material represented by Alu sheet - tpar[0]= iChamber->RInner(); - tpar[1]= iChamber->ROuter(); - tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2; - gMC->Gsvolu("C03A", "TUBE", idAlu2, tpar, 3); - gMC->Gsvolu("C04A", "TUBE", idAlu2, tpar, 3); - gMC->Gspos("C03A", 1, "C03M", 0., 0., 0., 0, "ONLY"); - gMC->Gspos("C04A", 1, "C04M", 0., 0., 0., 0, "ONLY"); -// -// Sensitive volumes - // tpar[2] = iChamber->DGas(); - tpar[2] = iChamber->DGas()/2; - gMC->Gsvolu("C03G", "TUBE", idGas, tpar, 3); - gMC->Gsvolu("C04G", "TUBE", idGas, tpar, 3); - gMC->Gspos("C03G", 1, "C03A", 0., 0., 0., 0, "ONLY"); - gMC->Gspos("C04G", 1, "C04A", 0., 0., 0., 0, "ONLY"); -// -// Frame Crosses to be placed inside gas - // NONE: chambers are sensitive everywhere -// if (frameCrosses) { - -// dr = (iChamber->ROuter() - iChamber->RInner()); -// bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2; -// bpar[1] = dframep1/2; -// bpar[2] = iChamber->DGas()/2; -// gMC->Gsvolu("C03F", "BOX", idAlu1, bpar, 3); -// gMC->Gsvolu("C04F", "BOX", idAlu1, bpar, 3); - -// gMC->Gspos("C03F",1,"C03G", +iChamber->RInner()+bpar[0] , 0, 0, -// idrotm[1100],"ONLY"); -// gMC->Gspos("C03F",2,"C03G", -iChamber->RInner()-bpar[0] , 0, 0, -// idrotm[1100],"ONLY"); -// gMC->Gspos("C03F",3,"C03G", 0, +iChamber->RInner()+bpar[0] , 0, -// idrotm[1101],"ONLY"); -// gMC->Gspos("C03F",4,"C03G", 0, -iChamber->RInner()-bpar[0] , 0, -// idrotm[1101],"ONLY"); - -// gMC->Gspos("C04F",1,"C04G", +iChamber->RInner()+bpar[0] , 0, 0, -// idrotm[1100],"ONLY"); -// gMC->Gspos("C04F",2,"C04G", -iChamber->RInner()-bpar[0] , 0, 0, -// idrotm[1100],"ONLY"); -// gMC->Gspos("C04F",3,"C04G", 0, +iChamber->RInner()+bpar[0] , 0, -// idrotm[1101],"ONLY"); -// gMC->Gspos("C04F",4,"C04G", 0, -iChamber->RInner()-bpar[0] , 0, -// idrotm[1101],"ONLY"); -// } - } - // define the id of tracking media: - Int_t idCopper = idtmed[1110]; - Int_t idGlass = idtmed[1111]; - Int_t idCarbon = idtmed[1112]; - Int_t idRoha = idtmed[1113]; - - // sensitive area: 40*40 cm**2 - const Float_t sensLength = 40.; - const Float_t sensHeight = 40.; - const Float_t sensWidth = 0.5; // according to TDR fig 2.120 - const Int_t sensMaterial = idGas; - const Float_t yOverlap = 1.5; - - // PCB dimensions in cm; width: 30 mum copper - const Float_t pcbLength = sensLength; - const Float_t pcbHeight = 60.; - const Float_t pcbWidth = 0.003; - const Int_t pcbMaterial = idCopper; - - // Insulating material: 200 mum glass fiber glued to pcb - const Float_t insuLength = pcbLength; - const Float_t insuHeight = pcbHeight; - const Float_t insuWidth = 0.020; - const Int_t insuMaterial = idGlass; - - // Carbon fiber panels: 200mum carbon/epoxy skin - const Float_t panelLength = sensLength; - const Float_t panelHeight = sensHeight; - const Float_t panelWidth = 0.020; - const Int_t panelMaterial = idCarbon; - - // rohacell between the two carbon panels - const Float_t rohaLength = sensLength; - const Float_t rohaHeight = sensHeight; - const Float_t rohaWidth = 0.5; - const Int_t rohaMaterial = idRoha; - - // Frame around the slat: 2 sticks along length,2 along height - // H: the horizontal ones - const Float_t hFrameLength = pcbLength; - const Float_t hFrameHeight = 1.5; - const Float_t hFrameWidth = sensWidth; - const Int_t hFrameMaterial = idGlass; - - // V: the vertical ones - const Float_t vFrameLength = 4.0; - const Float_t vFrameHeight = sensHeight + hFrameHeight; - const Float_t vFrameWidth = sensWidth; - const Int_t vFrameMaterial = idGlass; - - // B: the horizontal border filled with rohacell - const Float_t bFrameLength = hFrameLength; - const Float_t bFrameHeight = (pcbHeight - sensHeight)/2. - hFrameHeight; - const Float_t bFrameWidth = hFrameWidth; - const Int_t bFrameMaterial = idRoha; - - // NULOC: 30 mum copper + 200 mum vetronite (same radiation length as 14mum copper) - const Float_t nulocLength = 2.5; - const Float_t nulocHeight = 7.5; - const Float_t nulocWidth = 0.0030 + 0.0014; // equivalent copper width of vetronite; - const Int_t nulocMaterial = idCopper; - - const Float_t slatHeight = pcbHeight; - const Float_t slatWidth = sensWidth + 2.*(pcbWidth + insuWidth + - 2.* panelWidth + rohaWidth); - const Int_t slatMaterial = idAir; - const Float_t dSlatLength = vFrameLength; // border on left and right - - Float_t spar[3]; - Int_t i, j; - - // the panel volume contains the rohacell - - Float_t twidth = 2 * panelWidth + rohaWidth; - Float_t panelpar[3] = { panelLength/2., panelHeight/2., twidth/2. }; - Float_t rohapar[3] = { rohaLength/2., rohaHeight/2., rohaWidth/2. }; - - // insulating material contains PCB-> gas-> 2 borders filled with rohacell - - twidth = 2*(insuWidth + pcbWidth) + sensWidth; - Float_t insupar[3] = { insuLength/2., insuHeight/2., twidth/2. }; - twidth -= 2 * insuWidth; - Float_t pcbpar[3] = { pcbLength/2., pcbHeight/2., twidth/2. }; - Float_t senspar[3] = { sensLength/2., sensHeight/2., sensWidth/2. }; - Float_t theight = 2*hFrameHeight + sensHeight; - Float_t hFramepar[3]={hFrameLength/2., theight/2., hFrameWidth/2.}; - Float_t bFramepar[3]={bFrameLength/2., bFrameHeight/2., bFrameWidth/2.}; - Float_t vFramepar[3]={vFrameLength/2., vFrameHeight/2., vFrameWidth/2.}; - Float_t nulocpar[3]={nulocLength/2., nulocHeight/2., nulocWidth/2.}; - Float_t xx; - Float_t xxmax = (bFrameLength - nulocLength)/2.; - Int_t index=0; - - if (stations[2]) { - -//******************************************************************** -// Station 3 ** -//******************************************************************** - // indices 1 and 2 for first and second chambers in the station - // iChamber (first chamber) kept for other quanties than Z, - // assumed to be the same in both chambers - iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[4]; - iChamber2 =(AliMUONChamber*) (*fChambers)[5]; - zpos1=iChamber1->Z(); - zpos2=iChamber2->Z(); - dstation = zpos2 - zpos1; - -// zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more -// -// Mother volume - tpar[0] = iChamber->RInner()-dframep; - tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); - tpar[2] = dstation/5; - - char *slats5Mother = "C05M"; - char *slats6Mother = "C06M"; - Float_t zoffs5 = 0; - Float_t zoffs6 = 0; - - if (gMC->VolId("DDIP")) { - slats5Mother="DDIP"; - slats6Mother="DDIP"; - - zoffs5 = zpos1; - zoffs6 = zpos2; - } - else { - gMC->Gsvolu("C05M", "TUBE", idAir, tpar, 3); - gMC->Gsvolu("C06M", "TUBE", idAir, tpar, 3); - gMC->Gspos("C05M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); - gMC->Gspos("C06M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); - } - - // volumes for slat geometry (xx=5,..,10 chamber id): - // Sxx0 Sxx1 Sxx2 Sxx3 --> Slat Mother volumes - // SxxG --> Sensitive volume (gas) - // SxxP --> PCB (copper) - // SxxI --> Insulator (vetronite) - // SxxC --> Carbon panel - // SxxR --> Rohacell - // SxxH, SxxV --> Horizontal and Vertical frames (vetronite) - // SB5x --> Volumes for the 35 cm long PCB - // slat dimensions: slat is a MOTHER volume!!! made of air - - // only for chamber 5: slat 1 has a PCB shorter by 5cm! - - Float_t tlength = 35.; - Float_t panelpar2[3] = { tlength/2., panelpar[1], panelpar[2]}; - Float_t rohapar2[3] = { tlength/2., rohapar[1], rohapar[2]}; - Float_t insupar2[3] = { tlength/2., insupar[1], insupar[2]}; - Float_t pcbpar2[3] = { tlength/2., pcbpar[1], pcbpar[2]}; - Float_t senspar2[3] = { tlength/2., senspar[1], senspar[2]}; - Float_t hFramepar2[3] = { tlength/2., hFramepar[1], hFramepar[2]}; - Float_t bFramepar2[3] = { tlength/2., bFramepar[1], bFramepar[2]}; - - const Int_t nSlats3 = 5; // number of slats per quadrant - const Int_t nPCB3[nSlats3] = {3,3,4,3,2}; // n PCB per slat - const Float_t xpos3[nSlats3] = {31., 40., 0., 0., 0.}; - Float_t slatLength3[nSlats3]; - - // create and position the slat (mother) volumes - - char volNam5[5]; - char volNam6[5]; - Float_t xSlat3; - - Float_t spar2[3]; - for (i = 0; iGsvolu(volNam5,"BOX",slatMaterial,spar2,3); - gMC->Gspos(volNam5, i*4+1,slats5Mother, xSlat32, ySlat31, zoffs5+zSlat+2.*dzCh3, 0, "ONLY"); - gMC->Gspos(volNam5, i*4+2,slats5Mother,-xSlat32, ySlat31, zoffs5+zSlat-2.*dzCh3, 0, "ONLY"); - - if (i>0) { - gMC->Gspos(volNam5, i*4+3,slats5Mother, xSlat32, ySlat32, zoffs5+zSlat+2.*dzCh3, 0, "ONLY"); - gMC->Gspos(volNam5, i*4+4,slats5Mother,-xSlat32, ySlat32, zoffs5+zSlat-2.*dzCh3, 0, "ONLY"); - } - sprintf(volNam6,"S06%d",i); - gMC->Gsvolu(volNam6,"BOX",slatMaterial,spar,3); - gMC->Gspos(volNam6, i*4+1,slats6Mother, xSlat3, ySlat31, zoffs6+zSlat+2.*dzCh3, 0, "ONLY"); - gMC->Gspos(volNam6, i*4+2,slats6Mother,-xSlat3, ySlat31, zoffs6+zSlat-2.*dzCh3, 0, "ONLY"); - if (i>0) { - gMC->Gspos(volNam6, i*4+3,slats6Mother, xSlat3, ySlat32, zoffs6+zSlat+2.*dzCh3, 0, "ONLY"); - gMC->Gspos(volNam6, i*4+4,slats6Mother,-xSlat3, ySlat32, zoffs6+zSlat-2.*dzCh3, 0, "ONLY"); - } - } - - // create the panel volume - - gMC->Gsvolu("S05C","BOX",panelMaterial,panelpar,3); - gMC->Gsvolu("SB5C","BOX",panelMaterial,panelpar2,3); - gMC->Gsvolu("S06C","BOX",panelMaterial,panelpar,3); - - // create the rohacell volume - - gMC->Gsvolu("S05R","BOX",rohaMaterial,rohapar,3); - gMC->Gsvolu("SB5R","BOX",rohaMaterial,rohapar2,3); - gMC->Gsvolu("S06R","BOX",rohaMaterial,rohapar,3); - - // create the insulating material volume - - gMC->Gsvolu("S05I","BOX",insuMaterial,insupar,3); - gMC->Gsvolu("SB5I","BOX",insuMaterial,insupar2,3); - gMC->Gsvolu("S06I","BOX",insuMaterial,insupar,3); - - // create the PCB volume - - gMC->Gsvolu("S05P","BOX",pcbMaterial,pcbpar,3); - gMC->Gsvolu("SB5P","BOX",pcbMaterial,pcbpar2,3); - gMC->Gsvolu("S06P","BOX",pcbMaterial,pcbpar,3); - - // create the sensitive volumes, - gMC->Gsvolu("S05G","BOX",sensMaterial,0,0); - gMC->Gsvolu("S06G","BOX",sensMaterial,0,0); - - - // create the vertical frame volume - - gMC->Gsvolu("S05V","BOX",vFrameMaterial,vFramepar,3); - gMC->Gsvolu("S06V","BOX",vFrameMaterial,vFramepar,3); - - // create the horizontal frame volume - - gMC->Gsvolu("S05H","BOX",hFrameMaterial,hFramepar,3); - gMC->Gsvolu("SB5H","BOX",hFrameMaterial,hFramepar2,3); - gMC->Gsvolu("S06H","BOX",hFrameMaterial,hFramepar,3); - - // create the horizontal border volume - - gMC->Gsvolu("S05B","BOX",bFrameMaterial,bFramepar,3); - gMC->Gsvolu("SB5B","BOX",bFrameMaterial,bFramepar2,3); - gMC->Gsvolu("S06B","BOX",bFrameMaterial,bFramepar,3); - - index=0; - for (i = 0; iGspos("S05V",2*i-1,volNam5, xvFrame2, 0., 0. , 0, "ONLY"); - gMC->Gspos("S05V",2*i ,volNam5,-xvFrame2, 0., 0. , 0, "ONLY"); - gMC->Gspos("S06V",2*i-1,volNam6, xvFrame, 0., 0. , 0, "ONLY"); - gMC->Gspos("S06V",2*i ,volNam6,-xvFrame, 0., 0. , 0, "ONLY"); - } - // position the panels and the insulating material - for (j=0; jGspos("SB5C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY"); - gMC->Gspos("SB5C",2*index ,volNam5, xx, 0.,-zPanel , 0, "ONLY"); - gMC->Gspos("SB5I",index ,volNam5, xx, 0., 0 , 0, "ONLY"); - } - else if ( (i==1 || i==2) && j < nPCB3[i]-1) { - gMC->Gspos("S05C",2*index-1,volNam5, xx2, 0., zPanel , 0, "ONLY"); - gMC->Gspos("S05C",2*index ,volNam5, xx2, 0.,-zPanel , 0, "ONLY"); - gMC->Gspos("S05I",index ,volNam5, xx2, 0., 0 , 0, "ONLY"); - } - else { - gMC->Gspos("S05C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY"); - gMC->Gspos("S05C",2*index ,volNam5, xx, 0.,-zPanel , 0, "ONLY"); - gMC->Gspos("S05I",index ,volNam5, xx, 0., 0 , 0, "ONLY"); - } - gMC->Gspos("S06C",2*index-1,volNam6, xx, 0., zPanel , 0, "ONLY"); - gMC->Gspos("S06C",2*index ,volNam6, xx, 0.,-zPanel , 0, "ONLY"); - gMC->Gspos("S06I",index,volNam6, xx, 0., 0 , 0, "ONLY"); - } - } - - // position the rohacell volume inside the panel volume - gMC->Gspos("S05R",1,"S05C",0.,0.,0.,0,"ONLY"); - gMC->Gspos("SB5R",1,"SB5C",0.,0.,0.,0,"ONLY"); - gMC->Gspos("S06R",1,"S06C",0.,0.,0.,0,"ONLY"); - - // position the PCB volume inside the insulating material volume - gMC->Gspos("S05P",1,"S05I",0.,0.,0.,0,"ONLY"); - gMC->Gspos("SB5P",1,"SB5I",0.,0.,0.,0,"ONLY"); - gMC->Gspos("S06P",1,"S06I",0.,0.,0.,0,"ONLY"); - // position the horizontal frame volume inside the PCB volume - gMC->Gspos("S05H",1,"S05P",0.,0.,0.,0,"ONLY"); - gMC->Gspos("SB5H",1,"SB5P",0.,0.,0.,0,"ONLY"); - gMC->Gspos("S06H",1,"S06P",0.,0.,0.,0,"ONLY"); - // position the sensitive volume inside the horizontal frame volume - gMC->Gsposp("S05G",1,"S05H",0.,0.,0.,0,"ONLY",senspar,3); - gMC->Gsposp("S05G",1,"SB5H",0.,0.,0.,0,"ONLY",senspar2,3); - gMC->Gsposp("S06G",1,"S06H",0.,0.,0.,0,"ONLY",senspar,3); - // position the border volumes inside the PCB volume - Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; - gMC->Gspos("S05B",1,"S05P",0., yborder,0.,0,"ONLY"); - gMC->Gspos("S05B",2,"S05P",0.,-yborder,0.,0,"ONLY"); - gMC->Gspos("SB5B",1,"SB5P",0., yborder,0.,0,"ONLY"); - gMC->Gspos("SB5B",2,"SB5P",0.,-yborder,0.,0,"ONLY"); - gMC->Gspos("S06B",1,"S06P",0., yborder,0.,0,"ONLY"); - gMC->Gspos("S06B",2,"S06P",0.,-yborder,0.,0,"ONLY"); - - // create the NULOC volume and position it in the horizontal frame - - gMC->Gsvolu("S05N","BOX",nulocMaterial,nulocpar,3); - gMC->Gsvolu("S06N","BOX",nulocMaterial,nulocpar,3); - index = 0; - Float_t xxmax2 = xxmax - 5./2.; - for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) { - index++; - gMC->Gspos("S05N",2*index-1,"S05B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); - gMC->Gspos("S05N",2*index ,"S05B", xx, 0., bFrameWidth/4., 0, "ONLY"); - if (xx > -xxmax2 && xx< xxmax2) { - gMC->Gspos("S05N",2*index-1,"SB5B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); - gMC->Gspos("S05N",2*index ,"SB5B", xx, 0., bFrameWidth/4., 0, "ONLY"); - } - gMC->Gspos("S06N",2*index-1,"S06B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); - gMC->Gspos("S06N",2*index ,"S06B", xx, 0., bFrameWidth/4., 0, "ONLY"); - } - - // position the volumes approximating the circular section of the pipe - Float_t yoffs = sensHeight/2. - yOverlap; - Float_t epsilon = 0.001; - Int_t ndiv=6; - Float_t divpar[3]; - Double_t dydiv= sensHeight/ndiv; - Double_t ydiv = yoffs -dydiv; - Int_t imax=0; - imax = 1; - Float_t rmin = 33.; - Float_t z1 = spar[2], z2=2*spar[2]*1.01; - for (Int_t idiv=0;idivGsposp("S05G",imax+4*idiv+1,slats5Mother, xvol, yvol, zoffs5+z1+z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S06G",imax+4*idiv+1,slats6Mother, xvol, yvol, zoffs6+z1+z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S05G",imax+4*idiv+2,slats5Mother, xvol,-yvol, zoffs5+z1+z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S06G",imax+4*idiv+2,slats6Mother, xvol,-yvol, zoffs6+z1+z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S05G",imax+4*idiv+3,slats5Mother,-xvol, yvol, zoffs5+z1-z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S06G",imax+4*idiv+3,slats6Mother,-xvol, yvol, zoffs6+z1-z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S05G",imax+4*idiv+4,slats5Mother,-xvol,-yvol, zoffs5+z1-z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S06G",imax+4*idiv+4,slats6Mother,-xvol,-yvol, zoffs6+z1-z2, 0, "ONLY",divpar,3); - } - } - - if (stations[3]) { - -//******************************************************************** -// Station 4 ** -//******************************************************************** - // indices 1 and 2 for first and second chambers in the station - // iChamber (first chamber) kept for other quanties than Z, - // assumed to be the same in both chambers - iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[6]; - iChamber2 =(AliMUONChamber*) (*fChambers)[7]; - zpos1=iChamber1->Z(); - zpos2=iChamber2->Z(); - dstation = zpos2 - zpos1; -// zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more - -// -// Mother volume - tpar[0] = iChamber->RInner()-dframep; - tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); - tpar[2] = dstation/4; - - gMC->Gsvolu("C07M", "TUBE", idAir, tpar, 3); - gMC->Gsvolu("C08M", "TUBE", idAir, tpar, 3); - gMC->Gspos("C07M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); - gMC->Gspos("C08M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); - - - const Int_t nSlats4 = 6; // number of slats per quadrant - const Int_t nPCB4[nSlats4] = {4,4,5,5,4,3}; // n PCB per slat - const Float_t xpos4[nSlats4] = {38.5, 40., 0., 0., 0., 0.}; - Float_t slatLength4[nSlats4]; - - // create and position the slat (mother) volumes - - char volNam7[5]; - char volNam8[5]; - Float_t xSlat4; - Float_t ySlat4; - - for (i = 0; iGsvolu(volNam7,"BOX",slatMaterial,spar,3); - gMC->Gspos(volNam7, i*4+1,"C07M", xSlat4, ySlat4, zSlat+2.*dzCh4, 0, "ONLY"); - gMC->Gspos(volNam7, i*4+2,"C07M",-xSlat4, ySlat4, zSlat-2.*dzCh4, 0, "ONLY"); - if (i>0) { - gMC->Gspos(volNam7, i*4+3,"C07M", xSlat4,-ySlat4, zSlat+2.*dzCh4, 0, "ONLY"); - gMC->Gspos(volNam7, i*4+4,"C07M",-xSlat4,-ySlat4, zSlat-2.*dzCh4, 0, "ONLY"); - } - sprintf(volNam8,"S08%d",i); - gMC->Gsvolu(volNam8,"BOX",slatMaterial,spar,3); - gMC->Gspos(volNam8, i*4+1,"C08M", xSlat4, ySlat4, zSlat+2.*dzCh4, 0, "ONLY"); - gMC->Gspos(volNam8, i*4+2,"C08M",-xSlat4, ySlat4, zSlat-2.*dzCh4, 0, "ONLY"); - if (i>0) { - gMC->Gspos(volNam8, i*4+3,"C08M", xSlat4,-ySlat4, zSlat+2.*dzCh4, 0, "ONLY"); - gMC->Gspos(volNam8, i*4+4,"C08M",-xSlat4,-ySlat4, zSlat-2.*dzCh4, 0, "ONLY"); - } - } - - - // create the panel volume - - gMC->Gsvolu("S07C","BOX",panelMaterial,panelpar,3); - gMC->Gsvolu("S08C","BOX",panelMaterial,panelpar,3); - - // create the rohacell volume - - gMC->Gsvolu("S07R","BOX",rohaMaterial,rohapar,3); - gMC->Gsvolu("S08R","BOX",rohaMaterial,rohapar,3); - - // create the insulating material volume - - gMC->Gsvolu("S07I","BOX",insuMaterial,insupar,3); - gMC->Gsvolu("S08I","BOX",insuMaterial,insupar,3); - - // create the PCB volume - - gMC->Gsvolu("S07P","BOX",pcbMaterial,pcbpar,3); - gMC->Gsvolu("S08P","BOX",pcbMaterial,pcbpar,3); - - // create the sensitive volumes, - - gMC->Gsvolu("S07G","BOX",sensMaterial,0,0); - gMC->Gsvolu("S08G","BOX",sensMaterial,0,0); - - // create the vertical frame volume - - gMC->Gsvolu("S07V","BOX",vFrameMaterial,vFramepar,3); - gMC->Gsvolu("S08V","BOX",vFrameMaterial,vFramepar,3); - - // create the horizontal frame volume - - gMC->Gsvolu("S07H","BOX",hFrameMaterial,hFramepar,3); - gMC->Gsvolu("S08H","BOX",hFrameMaterial,hFramepar,3); - - // create the horizontal border volume - - gMC->Gsvolu("S07B","BOX",bFrameMaterial,bFramepar,3); - gMC->Gsvolu("S08B","BOX",bFrameMaterial,bFramepar,3); - - index=0; - for (i = 0; iGspos("S07V",2*i-1,volNam7, xvFrame, 0., 0. , 0, "ONLY"); - gMC->Gspos("S07V",2*i ,volNam7,-xvFrame, 0., 0. , 0, "ONLY"); - gMC->Gspos("S08V",2*i-1,volNam8, xvFrame, 0., 0. , 0, "ONLY"); - gMC->Gspos("S08V",2*i ,volNam8,-xvFrame, 0., 0. , 0, "ONLY"); - } - // position the panels and the insulating material - for (j=0; jGspos("S07C",2*index-1,volNam7, xx, 0., zPanel , 0, "ONLY"); - gMC->Gspos("S07C",2*index ,volNam7, xx, 0.,-zPanel , 0, "ONLY"); - gMC->Gspos("S08C",2*index-1,volNam8, xx, 0., zPanel , 0, "ONLY"); - gMC->Gspos("S08C",2*index ,volNam8, xx, 0.,-zPanel , 0, "ONLY"); - - gMC->Gspos("S07I",index,volNam7, xx, 0., 0 , 0, "ONLY"); - gMC->Gspos("S08I",index,volNam8, xx, 0., 0 , 0, "ONLY"); - } - } - - // position the rohacell volume inside the panel volume - gMC->Gspos("S07R",1,"S07C",0.,0.,0.,0,"ONLY"); - gMC->Gspos("S08R",1,"S08C",0.,0.,0.,0,"ONLY"); - - // position the PCB volume inside the insulating material volume - gMC->Gspos("S07P",1,"S07I",0.,0.,0.,0,"ONLY"); - gMC->Gspos("S08P",1,"S08I",0.,0.,0.,0,"ONLY"); - // position the horizontal frame volume inside the PCB volume - gMC->Gspos("S07H",1,"S07P",0.,0.,0.,0,"ONLY"); - gMC->Gspos("S08H",1,"S08P",0.,0.,0.,0,"ONLY"); - // position the sensitive volume inside the horizontal frame volume - gMC->Gsposp("S07G",1,"S07H",0.,0.,0.,0,"ONLY",senspar,3); - gMC->Gsposp("S08G",1,"S08H",0.,0.,0.,0,"ONLY",senspar,3); - // position the border volumes inside the PCB volume - Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; - gMC->Gspos("S07B",1,"S07P",0., yborder,0.,0,"ONLY"); - gMC->Gspos("S07B",2,"S07P",0.,-yborder,0.,0,"ONLY"); - gMC->Gspos("S08B",1,"S08P",0., yborder,0.,0,"ONLY"); - gMC->Gspos("S08B",2,"S08P",0.,-yborder,0.,0,"ONLY"); - - // create the NULOC volume and position it in the horizontal frame - - gMC->Gsvolu("S07N","BOX",nulocMaterial,nulocpar,3); - gMC->Gsvolu("S08N","BOX",nulocMaterial,nulocpar,3); - index = 0; - for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) { - index++; - gMC->Gspos("S07N",2*index-1,"S07B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); - gMC->Gspos("S07N",2*index ,"S07B", xx, 0., bFrameWidth/4., 0, "ONLY"); - gMC->Gspos("S08N",2*index-1,"S08B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); - gMC->Gspos("S08N",2*index ,"S08B", xx, 0., bFrameWidth/4., 0, "ONLY"); - } - - // position the volumes approximating the circular section of the pipe - Float_t yoffs = sensHeight/2. - yOverlap; - Float_t epsilon = 0.001; - Int_t ndiv=6; - Float_t divpar[3]; - Double_t dydiv= sensHeight/ndiv; - Double_t ydiv = yoffs -dydiv; - Int_t imax=0; - imax = 1; - Float_t rmin = 40.; - Float_t z1 = -spar[2], z2=2*spar[2]*1.01; - for (Int_t idiv=0;idivGsposp("S07G",imax+4*idiv+1,"C07M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S08G",imax+4*idiv+1,"C08M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S07G",imax+4*idiv+2,"C07M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S08G",imax+4*idiv+2,"C08M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S07G",imax+4*idiv+3,"C07M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S08G",imax+4*idiv+3,"C08M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S07G",imax+4*idiv+4,"C07M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S08G",imax+4*idiv+4,"C08M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); - } - - - - - - } - - if (stations[4]) { - - -//******************************************************************** -// Station 5 ** -//******************************************************************** - // indices 1 and 2 for first and second chambers in the station - // iChamber (first chamber) kept for other quanties than Z, - // assumed to be the same in both chambers - iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[8]; - iChamber2 =(AliMUONChamber*) (*fChambers)[9]; - zpos1=iChamber1->Z(); - zpos2=iChamber2->Z(); - dstation = zpos2 - zpos1; -// zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more - -// -// Mother volume - tpar[0] = iChamber->RInner()-dframep; - tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); - tpar[2] = dstation/5.; - - gMC->Gsvolu("C09M", "TUBE", idAir, tpar, 3); - gMC->Gsvolu("C10M", "TUBE", idAir, tpar, 3); - gMC->Gspos("C09M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); - gMC->Gspos("C10M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); - - - const Int_t nSlats5 = 7; // number of slats per quadrant - const Int_t nPCB5[nSlats5] = {5,5,6,6,5,4,3}; // n PCB per slat - const Float_t xpos5[nSlats5] = {38.5, 40., 0., 0., 0., 0., 0.}; - Float_t slatLength5[nSlats5]; - char volNam9[5]; - char volNam10[5]; - Float_t xSlat5; - Float_t ySlat5; - - for (i = 0; iGsvolu(volNam9,"BOX",slatMaterial,spar,3); - gMC->Gspos(volNam9, i*4+1,"C09M", xSlat5, ySlat5, zSlat+2.*dzCh5, 0, "ONLY"); - gMC->Gspos(volNam9, i*4+2,"C09M",-xSlat5, ySlat5, zSlat-2.*dzCh5, 0, "ONLY"); - if (i>0) { - gMC->Gspos(volNam9, i*4+3,"C09M", xSlat5,-ySlat5, zSlat+2.*dzCh5, 0, "ONLY"); - gMC->Gspos(volNam9, i*4+4,"C09M",-xSlat5,-ySlat5, zSlat-2.*dzCh5, 0, "ONLY"); - } - sprintf(volNam10,"S10%d",i); - gMC->Gsvolu(volNam10,"BOX",slatMaterial,spar,3); - gMC->Gspos(volNam10, i*4+1,"C10M", xSlat5, ySlat5, zSlat+2.*dzCh5, 0, "ONLY"); - gMC->Gspos(volNam10, i*4+2,"C10M",-xSlat5, ySlat5, zSlat-2.*dzCh5, 0, "ONLY"); - if (i>0) { - gMC->Gspos(volNam10, i*4+3,"C10M", xSlat5,-ySlat5, zSlat+2.*dzCh5, 0, "ONLY"); - gMC->Gspos(volNam10, i*4+4,"C10M",-xSlat5,-ySlat5, zSlat-2.*dzCh5, 0, "ONLY"); - } - } - - // create the panel volume - - gMC->Gsvolu("S09C","BOX",panelMaterial,panelpar,3); - gMC->Gsvolu("S10C","BOX",panelMaterial,panelpar,3); - - // create the rohacell volume - - gMC->Gsvolu("S09R","BOX",rohaMaterial,rohapar,3); - gMC->Gsvolu("S10R","BOX",rohaMaterial,rohapar,3); - - // create the insulating material volume - - gMC->Gsvolu("S09I","BOX",insuMaterial,insupar,3); - gMC->Gsvolu("S10I","BOX",insuMaterial,insupar,3); - - // create the PCB volume - - gMC->Gsvolu("S09P","BOX",pcbMaterial,pcbpar,3); - gMC->Gsvolu("S10P","BOX",pcbMaterial,pcbpar,3); - - // create the sensitive volumes, - - gMC->Gsvolu("S09G","BOX",sensMaterial,0,0); - gMC->Gsvolu("S10G","BOX",sensMaterial,0,0); - - // create the vertical frame volume - - gMC->Gsvolu("S09V","BOX",vFrameMaterial,vFramepar,3); - gMC->Gsvolu("S10V","BOX",vFrameMaterial,vFramepar,3); - - // create the horizontal frame volume - - gMC->Gsvolu("S09H","BOX",hFrameMaterial,hFramepar,3); - gMC->Gsvolu("S10H","BOX",hFrameMaterial,hFramepar,3); - - // create the horizontal border volume - - gMC->Gsvolu("S09B","BOX",bFrameMaterial,bFramepar,3); - gMC->Gsvolu("S10B","BOX",bFrameMaterial,bFramepar,3); - - index=0; - for (i = 0; iGspos("S09V",2*i-1,volNam9, xvFrame, 0., 0. , 0, "ONLY"); - gMC->Gspos("S09V",2*i ,volNam9,-xvFrame, 0., 0. , 0, "ONLY"); - gMC->Gspos("S10V",2*i-1,volNam10, xvFrame, 0., 0. , 0, "ONLY"); - gMC->Gspos("S10V",2*i ,volNam10,-xvFrame, 0., 0. , 0, "ONLY"); - } - - // position the panels and the insulating material - for (j=0; jGspos("S09C",2*index-1,volNam9, xx, 0., zPanel , 0, "ONLY"); - gMC->Gspos("S09C",2*index ,volNam9, xx, 0.,-zPanel , 0, "ONLY"); - gMC->Gspos("S10C",2*index-1,volNam10, xx, 0., zPanel , 0, "ONLY"); - gMC->Gspos("S10C",2*index ,volNam10, xx, 0.,-zPanel , 0, "ONLY"); - - gMC->Gspos("S09I",index,volNam9, xx, 0., 0 , 0, "ONLY"); - gMC->Gspos("S10I",index,volNam10, xx, 0., 0 , 0, "ONLY"); - } - } - - // position the rohacell volume inside the panel volume - gMC->Gspos("S09R",1,"S09C",0.,0.,0.,0,"ONLY"); - gMC->Gspos("S10R",1,"S10C",0.,0.,0.,0,"ONLY"); +/// Standard onstructor - // position the PCB volume inside the insulating material volume - gMC->Gspos("S09P",1,"S09I",0.,0.,0.,0,"ONLY"); - gMC->Gspos("S10P",1,"S10I",0.,0.,0.,0,"ONLY"); - // position the horizontal frame volume inside the PCB volume - gMC->Gspos("S09H",1,"S09P",0.,0.,0.,0,"ONLY"); - gMC->Gspos("S10H",1,"S10P",0.,0.,0.,0,"ONLY"); - // position the sensitive volume inside the horizontal frame volume - gMC->Gsposp("S09G",1,"S09H",0.,0.,0.,0,"ONLY",senspar,3); - gMC->Gsposp("S10G",1,"S10H",0.,0.,0.,0,"ONLY",senspar,3); - // position the border volumes inside the PCB volume - Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; - gMC->Gspos("S09B",1,"S09P",0., yborder,0.,0,"ONLY"); - gMC->Gspos("S09B",2,"S09P",0.,-yborder,0.,0,"ONLY"); - gMC->Gspos("S10B",1,"S10P",0., yborder,0.,0,"ONLY"); - gMC->Gspos("S10B",2,"S10P",0.,-yborder,0.,0,"ONLY"); - - // create the NULOC volume and position it in the horizontal frame - - gMC->Gsvolu("S09N","BOX",nulocMaterial,nulocpar,3); - gMC->Gsvolu("S10N","BOX",nulocMaterial,nulocpar,3); - index = 0; - for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) { - index++; - gMC->Gspos("S09N",2*index-1,"S09B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); - gMC->Gspos("S09N",2*index ,"S09B", xx, 0., bFrameWidth/4., 0, "ONLY"); - gMC->Gspos("S10N",2*index-1,"S10B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); - gMC->Gspos("S10N",2*index ,"S10B", xx, 0., bFrameWidth/4., 0, "ONLY"); - } - // position the volumes approximating the circular section of the pipe - Float_t yoffs = sensHeight/2. - yOverlap; - Float_t epsilon = 0.001; - Int_t ndiv=6; - Float_t divpar[3]; - Double_t dydiv= sensHeight/ndiv; - Double_t ydiv = yoffs -dydiv; - Int_t imax=0; - // for (Int_t islat=0; islatGsposp("S09G",imax+4*idiv+1,"C09M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S10G",imax+4*idiv+1,"C10M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S09G",imax+4*idiv+2,"C09M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S10G",imax+4*idiv+2,"C10M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S09G",imax+4*idiv+3,"C09M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S10G",imax+4*idiv+3,"C10M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S09G",imax+4*idiv+4,"C09M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); - gMC->Gsposp("S10G",imax+4*idiv+4,"C10M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); - } - - } - - -/////////////////////////////////////// -// GEOMETRY FOR THE TRIGGER CHAMBERS // -/////////////////////////////////////// - -// 03/00 P. Dupieux : introduce a slighly more realistic -// geom. of the trigger readout planes with -// 2 Zpos per trigger plane (alternate -// between left and right of the trigger) - -// Parameters of the Trigger Chambers - -// DP03-01 introduce dead zone of +/- 2 cm arround x=0 (as in TDR, fig3.27) - const Float_t kDXZERO=2.; - const Float_t kXMC1MIN=34.; - const Float_t kXMC1MED=51.; - const Float_t kXMC1MAX=272.; - const Float_t kYMC1MIN=34.; - const Float_t kYMC1MAX=51.; - const Float_t kRMIN1=50.; -// DP03-01 const Float_t kRMAX1=62.; - const Float_t kRMAX1=64.; - const Float_t kRMIN2=50.; -// DP03-01 const Float_t kRMAX2=66.; - const Float_t kRMAX2=68.; - -// zposition of the middle of the gas gap in mother vol - const Float_t kZMCm=-3.6; - const Float_t kZMCp=+3.6; - - -// TRIGGER STATION 1 - TRIGGER STATION 1 - TRIGGER STATION 1 - - // iChamber 1 and 2 for first and second chambers in the station - // iChamber (first chamber) kept for other quanties than Z, - // assumed to be the same in both chambers - iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[10]; - iChamber2 =(AliMUONChamber*) (*fChambers)[11]; - - // 03/00 - // zpos1 and zpos2 are now the middle of the first and second - // plane of station 1 : - // zpos1=(16075+15995)/2=16035 mm, thick/2=40 mm - // zpos2=(16225+16145)/2=16185 mm, thick/2=40 mm - // - // zpos1m=15999 mm , zpos1p=16071 mm (middles of gas gaps) - // zpos2m=16149 mm , zpos2p=16221 mm (middles of gas gaps) - // rem : the total thickness accounts for 1 mm of al on both - // side of the RPCs (see zpos1 and zpos2), as previously - - zpos1=iChamber1->Z(); - zpos2=iChamber2->Z(); - - -// Mother volume definition - tpar[0] = iChamber->RInner(); - tpar[1] = iChamber->ROuter(); - tpar[2] = 4.0; - gMC->Gsvolu("CM11", "TUBE", idAir, tpar, 3); - gMC->Gsvolu("CM12", "TUBE", idAir, tpar, 3); - -// Definition of the flange between the beam shielding and the RPC - tpar[0]= kRMIN1; - tpar[1]= kRMAX1; - tpar[2]= 4.0; - - gMC->Gsvolu("CF1A", "TUBE", idAlu1, tpar, 3); //Al - gMC->Gspos("CF1A", 1, "CM11", 0., 0., 0., 0, "MANY"); - gMC->Gspos("CF1A", 2, "CM12", 0., 0., 0., 0, "MANY"); - - -// FIRST PLANE OF STATION 1 - -// ratios of zpos1m/zpos1p and inverse for first plane - Float_t zmp=(zpos1-3.6)/(zpos1+3.6); - Float_t zpm=1./zmp; - - -// Definition of prototype for chambers in the first plane - - tpar[0]= 0.; - tpar[1]= 0.; - tpar[2]= 0.; - - gMC->Gsvolu("CC1A", "BOX ", idAlu1, tpar, 0); //Al - gMC->Gsvolu("CB1A", "BOX ", idtmed[1107], tpar, 0); //Bakelite - gMC->Gsvolu("CG1A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer - -// chamber type A - tpar[0] = -1.; - tpar[1] = -1.; - -// DP03-01 const Float_t kXMC1A=kXMC1MED+(kXMC1MAX-kXMC1MED)/2.; - const Float_t kXMC1A=kDXZERO+kXMC1MED+(kXMC1MAX-kXMC1MED)/2.; - const Float_t kYMC1Am=0.; - const Float_t kYMC1Ap=0.; - - tpar[2] = 0.1; - gMC->Gsposp("CG1A", 1, "CB1A", 0., 0., 0., 0, "ONLY",tpar,3); - tpar[2] = 0.3; - gMC->Gsposp("CB1A", 1, "CC1A", 0., 0., 0., 0, "ONLY",tpar,3); - - tpar[2] = 0.4; - tpar[0] = (kXMC1MAX-kXMC1MED)/2.; - tpar[1] = kYMC1MIN; - - gMC->Gsposp("CC1A", 1, "CM11",kXMC1A,kYMC1Am,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 2, "CM11",-kXMC1A,kYMC1Ap,kZMCp, 0, "ONLY", tpar, 3); - -// chamber type B - Float_t tpar1save=tpar[1]; - Float_t y1msave=kYMC1Am; - Float_t y1psave=kYMC1Ap; - - tpar[0] = (kXMC1MAX-kXMC1MIN)/2.; - tpar[1] = (kYMC1MAX-kYMC1MIN)/2.; - -// DP03-01 const Float_t kXMC1B=kXMC1MIN+tpar[0]; - const Float_t kXMC1B=kDXZERO+kXMC1MIN+tpar[0]; - const Float_t kYMC1Bp=(y1msave+tpar1save)*zpm+tpar[1]; - const Float_t kYMC1Bm=(y1psave+tpar1save)*zmp+tpar[1]; - - gMC->Gsposp("CC1A", 3, "CM11",kXMC1B,kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 4, "CM11",-kXMC1B,kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 5, "CM11",kXMC1B,-kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 6, "CM11",-kXMC1B,-kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3); - -// chamber type C (end of type B !!) - tpar1save=tpar[1]; - y1msave=kYMC1Bm; - y1psave=kYMC1Bp; - - tpar[0] = kXMC1MAX/2; - tpar[1] = kYMC1MAX/2; - - -// DP03-01 const Float_t kXMC1C=tpar[0]; - const Float_t kXMC1C=kDXZERO+tpar[0]; -// warning : same Z than type B - const Float_t kYMC1Cp=(y1psave+tpar1save)*1.+tpar[1]; - const Float_t kYMC1Cm=(y1msave+tpar1save)*1.+tpar[1]; - - gMC->Gsposp("CC1A", 7, "CM11",kXMC1C,kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 8, "CM11",-kXMC1C,kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 9, "CM11",kXMC1C,-kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 10, "CM11",-kXMC1C,-kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3); - -// chamber type D, E and F (same size) - tpar1save=tpar[1]; - y1msave=kYMC1Cm; - y1psave=kYMC1Cp; - - tpar[0] = kXMC1MAX/2.; - tpar[1] = kYMC1MIN; - -// DP03-01 const Float_t kXMC1D=tpar[0]; - const Float_t kXMC1D=kDXZERO+tpar[0]; - const Float_t kYMC1Dp=(y1msave+tpar1save)*zpm+tpar[1]; - const Float_t kYMC1Dm=(y1psave+tpar1save)*zmp+tpar[1]; - - gMC->Gsposp("CC1A", 11, "CM11",kXMC1D,kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 12, "CM11",-kXMC1D,kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 13, "CM11",kXMC1D,-kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 14, "CM11",-kXMC1D,-kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3); - - - tpar1save=tpar[1]; - y1msave=kYMC1Dm; - y1psave=kYMC1Dp; - const Float_t kYMC1Ep=(y1msave+tpar1save)*zpm+tpar[1]; - const Float_t kYMC1Em=(y1psave+tpar1save)*zmp+tpar[1]; - - gMC->Gsposp("CC1A", 15, "CM11",kXMC1D,kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 16, "CM11",-kXMC1D,kYMC1Em,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 17, "CM11",kXMC1D,-kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 18, "CM11",-kXMC1D,-kYMC1Em,kZMCm, 0, "ONLY", tpar, 3); - - tpar1save=tpar[1]; - y1msave=kYMC1Em; - y1psave=kYMC1Ep; - const Float_t kYMC1Fp=(y1msave+tpar1save)*zpm+tpar[1]; - const Float_t kYMC1Fm=(y1psave+tpar1save)*zmp+tpar[1]; - - gMC->Gsposp("CC1A", 19, "CM11",kXMC1D,kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 20, "CM11",-kXMC1D,kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 21, "CM11",kXMC1D,-kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC1A", 22, "CM11",-kXMC1D,-kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3); - -// Positioning first plane in ALICE - gMC->Gspos("CM11", 1, "ALIC", 0., 0., zpos1, 0, "ONLY"); - -// End of geometry definition for the first plane of station 1 - - - -// SECOND PLANE OF STATION 1 : proj ratio = zpos2/zpos1 - - const Float_t kZ12=zpos2/zpos1; - -// Definition of prototype for chambers in the second plane of station 1 - - tpar[0]= 0.; - tpar[1]= 0.; - tpar[2]= 0.; - - gMC->Gsvolu("CC2A", "BOX ", idAlu1, tpar, 0); //Al - gMC->Gsvolu("CB2A", "BOX ", idtmed[1107], tpar, 0); //Bakelite - gMC->Gsvolu("CG2A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer - -// chamber type A - tpar[0] = -1.; - tpar[1] = -1.; - - const Float_t kXMC2A=kXMC1A*kZ12; - const Float_t kYMC2Am=0.; - const Float_t kYMC2Ap=0.; - - tpar[2] = 0.1; - gMC->Gsposp("CG2A", 1, "CB2A", 0., 0., 0., 0, "ONLY",tpar,3); - tpar[2] = 0.3; - gMC->Gsposp("CB2A", 1, "CC2A", 0., 0., 0., 0, "ONLY",tpar,3); - - tpar[2] = 0.4; - tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ12; - tpar[1] = kYMC1MIN*kZ12; - - gMC->Gsposp("CC2A", 1, "CM12",kXMC2A,kYMC2Am,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 2, "CM12",-kXMC2A,kYMC2Ap,kZMCp, 0, "ONLY", tpar, 3); - - -// chamber type B - - tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ12; - tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ12; - - const Float_t kXMC2B=kXMC1B*kZ12; - const Float_t kYMC2Bp=kYMC1Bp*kZ12; - const Float_t kYMC2Bm=kYMC1Bm*kZ12; - gMC->Gsposp("CC2A", 3, "CM12",kXMC2B,kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 4, "CM12",-kXMC2B,kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 5, "CM12",kXMC2B,-kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 6, "CM12",-kXMC2B,-kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3); - - -// chamber type C (end of type B !!) - - tpar[0] = (kXMC1MAX/2)*kZ12; - tpar[1] = (kYMC1MAX/2)*kZ12; - - const Float_t kXMC2C=kXMC1C*kZ12; - const Float_t kYMC2Cp=kYMC1Cp*kZ12; - const Float_t kYMC2Cm=kYMC1Cm*kZ12; - gMC->Gsposp("CC2A", 7, "CM12",kXMC2C,kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 8, "CM12",-kXMC2C,kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 9, "CM12",kXMC2C,-kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 10, "CM12",-kXMC2C,-kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3); - -// chamber type D, E and F (same size) - - tpar[0] = (kXMC1MAX/2.)*kZ12; - tpar[1] = kYMC1MIN*kZ12; - - const Float_t kXMC2D=kXMC1D*kZ12; - const Float_t kYMC2Dp=kYMC1Dp*kZ12; - const Float_t kYMC2Dm=kYMC1Dm*kZ12; - gMC->Gsposp("CC2A", 11, "CM12",kXMC2D,kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 12, "CM12",-kXMC2D,kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 13, "CM12",kXMC2D,-kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 14, "CM12",-kXMC2D,-kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3); - - const Float_t kYMC2Ep=kYMC1Ep*kZ12; - const Float_t kYMC2Em=kYMC1Em*kZ12; - gMC->Gsposp("CC2A", 15, "CM12",kXMC2D,kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 16, "CM12",-kXMC2D,kYMC2Em,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 17, "CM12",kXMC2D,-kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 18, "CM12",-kXMC2D,-kYMC2Em,kZMCm, 0, "ONLY", tpar, 3); - - - const Float_t kYMC2Fp=kYMC1Fp*kZ12; - const Float_t kYMC2Fm=kYMC1Fm*kZ12; - gMC->Gsposp("CC2A", 19, "CM12",kXMC2D,kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 20, "CM12",-kXMC2D,kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 21, "CM12",kXMC2D,-kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC2A", 22, "CM12",-kXMC2D,-kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3); - -// Positioning second plane of station 1 in ALICE - - gMC->Gspos("CM12", 1, "ALIC", 0., 0., zpos2, 0, "ONLY"); - -// End of geometry definition for the second plane of station 1 - - - -// TRIGGER STATION 2 - TRIGGER STATION 2 - TRIGGER STATION 2 - - // 03/00 - // zpos3 and zpos4 are now the middle of the first and second - // plane of station 2 : - // zpos3=(17075+16995)/2=17035 mm, thick/2=40 mm - // zpos4=(17225+17145)/2=17185 mm, thick/2=40 mm - // - // zpos3m=16999 mm , zpos3p=17071 mm (middles of gas gaps) - // zpos4m=17149 mm , zpos4p=17221 mm (middles of gas gaps) - // rem : the total thickness accounts for 1 mm of al on both - // side of the RPCs (see zpos3 and zpos4), as previously - iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[12]; - iChamber2 =(AliMUONChamber*) (*fChambers)[13]; - Float_t zpos3=iChamber1->Z(); - Float_t zpos4=iChamber2->Z(); - - -// Mother volume definition - tpar[0] = iChamber->RInner(); - tpar[1] = iChamber->ROuter(); - tpar[2] = 4.0; - - gMC->Gsvolu("CM21", "TUBE", idAir, tpar, 3); - gMC->Gsvolu("CM22", "TUBE", idAir, tpar, 3); - -// Definition of the flange between the beam shielding and the RPC -// ???? interface shielding - - tpar[0]= kRMIN2; - tpar[1]= kRMAX2; - tpar[2]= 4.0; - - gMC->Gsvolu("CF2A", "TUBE", idAlu1, tpar, 3); //Al - gMC->Gspos("CF2A", 1, "CM21", 0., 0., 0., 0, "MANY"); - gMC->Gspos("CF2A", 2, "CM22", 0., 0., 0., 0, "MANY"); - - - -// FIRST PLANE OF STATION 2 : proj ratio = zpos3/zpos1 - - const Float_t kZ13=zpos3/zpos1; - -// Definition of prototype for chambers in the first plane of station 2 - tpar[0]= 0.; - tpar[1]= 0.; - tpar[2]= 0.; - - gMC->Gsvolu("CC3A", "BOX ", idAlu1, tpar, 0); //Al - gMC->Gsvolu("CB3A", "BOX ", idtmed[1107], tpar, 0); //Bakelite - gMC->Gsvolu("CG3A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer - - -// chamber type A - tpar[0] = -1.; - tpar[1] = -1.; - - const Float_t kXMC3A=kXMC1A*kZ13; - const Float_t kYMC3Am=0.; - const Float_t kYMC3Ap=0.; - - tpar[2] = 0.1; - gMC->Gsposp("CG3A", 1, "CB3A", 0., 0., 0., 0, "ONLY",tpar,3); - tpar[2] = 0.3; - gMC->Gsposp("CB3A", 1, "CC3A", 0., 0., 0., 0, "ONLY",tpar,3); - - tpar[2] = 0.4; - tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ13; - tpar[1] = kYMC1MIN*kZ13; - gMC->Gsposp("CC3A", 1, "CM21",kXMC3A,kYMC3Am,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 2, "CM21",-kXMC3A,kYMC3Ap,kZMCp, 0, "ONLY", tpar, 3); - - -// chamber type B - tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ13; - tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ13; - - const Float_t kXMC3B=kXMC1B*kZ13; - const Float_t kYMC3Bp=kYMC1Bp*kZ13; - const Float_t kYMC3Bm=kYMC1Bm*kZ13; - gMC->Gsposp("CC3A", 3, "CM21",kXMC3B,kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 4, "CM21",-kXMC3B,kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 5, "CM21",kXMC3B,-kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 6, "CM21",-kXMC3B,-kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3); - - -// chamber type C (end of type B !!) - tpar[0] = (kXMC1MAX/2)*kZ13; - tpar[1] = (kYMC1MAX/2)*kZ13; - - const Float_t kXMC3C=kXMC1C*kZ13; - const Float_t kYMC3Cp=kYMC1Cp*kZ13; - const Float_t kYMC3Cm=kYMC1Cm*kZ13; - gMC->Gsposp("CC3A", 7, "CM21",kXMC3C,kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 8, "CM21",-kXMC3C,kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 9, "CM21",kXMC3C,-kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 10, "CM21",-kXMC3C,-kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3); - - -// chamber type D, E and F (same size) - - tpar[0] = (kXMC1MAX/2.)*kZ13; - tpar[1] = kYMC1MIN*kZ13; - - const Float_t kXMC3D=kXMC1D*kZ13; - const Float_t kYMC3Dp=kYMC1Dp*kZ13; - const Float_t kYMC3Dm=kYMC1Dm*kZ13; - gMC->Gsposp("CC3A", 11, "CM21",kXMC3D,kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 12, "CM21",-kXMC3D,kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 13, "CM21",kXMC3D,-kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 14, "CM21",-kXMC3D,-kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3); - - const Float_t kYMC3Ep=kYMC1Ep*kZ13; - const Float_t kYMC3Em=kYMC1Em*kZ13; - gMC->Gsposp("CC3A", 15, "CM21",kXMC3D,kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 16, "CM21",-kXMC3D,kYMC3Em,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 17, "CM21",kXMC3D,-kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 18, "CM21",-kXMC3D,-kYMC3Em,kZMCm, 0, "ONLY", tpar, 3); - - const Float_t kYMC3Fp=kYMC1Fp*kZ13; - const Float_t kYMC3Fm=kYMC1Fm*kZ13; - gMC->Gsposp("CC3A", 19, "CM21",kXMC3D,kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 20, "CM21",-kXMC3D,kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 21, "CM21",kXMC3D,-kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC3A", 22, "CM21",-kXMC3D,-kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3); + AliDebug(1,Form("ctor this=%p",this)); + + // Load mapping + if ( ! AliMpCDB::LoadMpSegmentation() ) { + AliFatal("Could not access mapping from OCDB !"); + } + // By default include all stations -// Positioning first plane of station 2 in ALICE - - gMC->Gspos("CM21", 1, "ALIC", 0., 0., zpos3, 0, "ONLY"); - -// End of geometry definition for the first plane of station 2 - - - - -// SECOND PLANE OF STATION 2 : proj ratio = zpos4/zpos1 - - const Float_t kZ14=zpos4/zpos1; - -// Definition of prototype for chambers in the second plane of station 2 - - tpar[0]= 0.; - tpar[1]= 0.; - tpar[2]= 0.; - - gMC->Gsvolu("CC4A", "BOX ", idAlu1, tpar, 0); //Al - gMC->Gsvolu("CB4A", "BOX ", idtmed[1107], tpar, 0); //Bakelite - gMC->Gsvolu("CG4A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer - -// chamber type A - tpar[0] = -1.; - tpar[1] = -1.; - - const Float_t kXMC4A=kXMC1A*kZ14; - const Float_t kYMC4Am=0.; - const Float_t kYMC4Ap=0.; - - tpar[2] = 0.1; - gMC->Gsposp("CG4A", 1, "CB4A", 0., 0., 0., 0, "ONLY",tpar,3); - tpar[2] = 0.3; - gMC->Gsposp("CB4A", 1, "CC4A", 0., 0., 0., 0, "ONLY",tpar,3); - - tpar[2] = 0.4; - tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ14; - tpar[1] = kYMC1MIN*kZ14; - gMC->Gsposp("CC4A", 1, "CM22",kXMC4A,kYMC4Am,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 2, "CM22",-kXMC4A,kYMC4Ap,kZMCp, 0, "ONLY", tpar, 3); - - -// chamber type B - tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ14; - tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ14; - - const Float_t kXMC4B=kXMC1B*kZ14; - const Float_t kYMC4Bp=kYMC1Bp*kZ14; - const Float_t kYMC4Bm=kYMC1Bm*kZ14; - gMC->Gsposp("CC4A", 3, "CM22",kXMC4B,kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 4, "CM22",-kXMC4B,kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 5, "CM22",kXMC4B,-kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 6, "CM22",-kXMC4B,-kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3); - - -// chamber type C (end of type B !!) - tpar[0] =(kXMC1MAX/2)*kZ14; - tpar[1] = (kYMC1MAX/2)*kZ14; - - const Float_t kXMC4C=kXMC1C*kZ14; - const Float_t kYMC4Cp=kYMC1Cp*kZ14; - const Float_t kYMC4Cm=kYMC1Cm*kZ14; - gMC->Gsposp("CC4A", 7, "CM22",kXMC4C,kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 8, "CM22",-kXMC4C,kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 9, "CM22",kXMC4C,-kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 10, "CM22",-kXMC4C,-kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3); - - -// chamber type D, E and F (same size) - tpar[0] = (kXMC1MAX/2.)*kZ14; - tpar[1] = kYMC1MIN*kZ14; - - const Float_t kXMC4D=kXMC1D*kZ14; - const Float_t kYMC4Dp=kYMC1Dp*kZ14; - const Float_t kYMC4Dm=kYMC1Dm*kZ14; - gMC->Gsposp("CC4A", 11, "CM22",kXMC4D,kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 12, "CM22",-kXMC4D,kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 13, "CM22",kXMC4D,-kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 14, "CM22",-kXMC4D,-kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3); - - const Float_t kYMC4Ep=kYMC1Ep*kZ14; - const Float_t kYMC4Em=kYMC1Em*kZ14; - gMC->Gsposp("CC4A", 15, "CM22",kXMC4D,kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 16, "CM22",-kXMC4D,kYMC4Em,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 17, "CM22",kXMC4D,-kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 18, "CM22",-kXMC4D,-kYMC4Em,kZMCm, 0, "ONLY", tpar, 3); - - const Float_t kYMC4Fp=kYMC1Fp*kZ14; - const Float_t kYMC4Fm=kYMC1Fm*kZ14; - gMC->Gsposp("CC4A", 19, "CM22",kXMC4D,kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 20, "CM22",-kXMC4D,kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 21, "CM22",kXMC4D,-kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3); - gMC->Gsposp("CC4A", 22, "CM22",-kXMC4D,-kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3); - - -// Positioning second plane of station 2 in ALICE - - gMC->Gspos("CM22", 1, "ALIC", 0., 0., zpos4, 0, "ONLY"); - -// End of geometry definition for the second plane of station 2 - -// End of trigger geometry definition - + fStepSum = new Float_t [AliMUONConstants::NCh()]; + fDestepSum = new Float_t [AliMUONConstants::NCh()]; + for (Int_t i=0; iSetParameter(0,1.02138); + fElossRatio->SetParameter(1,-9.54149e-02); + fElossRatio->SetParameter(2,+7.83433e-02); + fElossRatio->SetParameter(3,-9.98208e-03); + fElossRatio->SetParameter(4,+3.83279e-04); + + // Angle effect in tracking chambers at theta =10 degres as a function of ElossRatio (Khalil BOUDJEMLINE sep 2003 Ph.D Thesis) (in micrometers) + fAngleEffect10 = new TF1("AngleEffect10","[0]+[1]*x+[2]*x*x",0.5,3.0); + fAngleEffect10->SetParameter(0, 1.90691e+02); + fAngleEffect10->SetParameter(1,-6.62258e+01); + fAngleEffect10->SetParameter(2,+1.28247e+01); + // Angle effect: Normalisation form theta=10 degres to theta between 0 and 10 (Khalil BOUDJEMLINE sep 2003 Ph.D Thesis) + // Angle with respect to the wires assuming that chambers are perpendicular to the z axis. + fAngleEffectNorma = new TF1("AngleEffectNorma","[0]+[1]*x+[2]*x*x+[3]*x*x*x",0.0,10.0); + fAngleEffectNorma->SetParameter(0,4.148); + fAngleEffectNorma->SetParameter(1,-6.809e-01); + fAngleEffectNorma->SetParameter(2,5.151e-02); + fAngleEffectNorma->SetParameter(3,-1.490e-03); + + // Magnetic field effect: Normalisation form theta=16 degres (eq. 10 degrees B=0) to theta between -20 and 20 (Lamia Benhabib jun 2006 ) + // Angle with respect to the wires assuming that chambers are perpendicular to the z axis. + fMagAngleEffectNorma = new TF2("MagAngleEffectNorma","121.24/(([1]+[2]*abs(y))+[3]*abs(x-[0]*y)+[4]*abs((x-[0]*y)*(x-[0]*y))+[5]*abs((x-[0]*y)*(x-[0]*y)*(x-[0]*y))+[6]*abs((x-[0]*y)*(x-[0]*y)*(x-[0]*y)*(x-[0]*y)))",-20.0,20.0,-1.,1.); + fMagAngleEffectNorma->SetParameters(8.6995, 25.4022, 13.8822, 2.4717, 1.1551, -0.0624, 0.0012); } - - //___________________________________________ -void AliMUONv1::CreateMaterials() +AliMUONv1::~AliMUONv1() { - // *** DEFINITION OF AVAILABLE MUON MATERIALS *** - // - // Ar-CO2 gas (80%+20%) - Float_t ag1[3] = { 39.95,12.01,16. }; - Float_t zg1[3] = { 18.,6.,8. }; - Float_t wg1[3] = { .8,.0667,.13333 }; - Float_t dg1 = .001821; - // - // Ar-buthane-freon gas -- trigger chambers - Float_t atr1[4] = { 39.95,12.01,1.01,19. }; - Float_t ztr1[4] = { 18.,6.,1.,9. }; - Float_t wtr1[4] = { .56,.1262857,.2857143,.028 }; - Float_t dtr1 = .002599; - // - // Ar-CO2 gas - Float_t agas[3] = { 39.95,12.01,16. }; - Float_t zgas[3] = { 18.,6.,8. }; - Float_t wgas[3] = { .74,.086684,.173316 }; - Float_t dgas = .0018327; - // - // Ar-Isobutane gas (80%+20%) -- tracking - Float_t ag[3] = { 39.95,12.01,1.01 }; - Float_t zg[3] = { 18.,6.,1. }; - Float_t wg[3] = { .8,.057,.143 }; - Float_t dg = .0019596; - // - // Ar-Isobutane-Forane-SF6 gas (49%+7%+40%+4%) -- trigger - Float_t atrig[5] = { 39.95,12.01,1.01,19.,32.066 }; - Float_t ztrig[5] = { 18.,6.,1.,9.,16. }; - Float_t wtrig[5] = { .49,1.08,1.5,1.84,0.04 }; - Float_t dtrig = .0031463; - // - // bakelite - - Float_t abak[3] = {12.01 , 1.01 , 16.}; - Float_t zbak[3] = {6. , 1. , 8.}; - Float_t wbak[3] = {6. , 6. , 1.}; - Float_t dbak = 1.4; - - Float_t epsil, stmin, deemax, tmaxfd, stemax; - - Int_t iSXFLD = gAlice->Field()->Integ(); - Float_t sXMGMX = gAlice->Field()->Max(); - // - // --- Define the various materials for GEANT --- - AliMaterial(9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2); - AliMaterial(10, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2); - AliMaterial(15, "AIR$ ", 14.61, 7.3, .001205, 30423.24, 67500); - AliMixture(19, "Bakelite$", abak, zbak, dbak, -3, wbak); - AliMixture(20, "ArC4H10 GAS$", ag, zg, dg, 3, wg); - AliMixture(21, "TRIG GAS$", atrig, ztrig, dtrig, -5, wtrig); - AliMixture(22, "ArCO2 80%$", ag1, zg1, dg1, 3, wg1); - AliMixture(23, "Ar-freon $", atr1, ztr1, dtr1, 4, wtr1); - AliMixture(24, "ArCO2 GAS$", agas, zgas, dgas, 3, wgas); - // materials for slat: - // Sensitive area: gas (already defined) - // PCB: copper - // insulating material and frame: vetronite - // walls: carbon, rohacell, carbon - Float_t aglass[5]={12.01, 28.09, 16., 10.8, 23.}; - Float_t zglass[5]={ 6., 14., 8., 5., 11.}; - Float_t wglass[5]={ 0.5, 0.105, 0.355, 0.03, 0.01}; - Float_t dglass=1.74; +/// Destructor + + AliDebug(1,Form("dtor this=%p",this)); + delete [] fStepSum; + delete [] fDestepSum; + delete fElossRatio; + delete fAngleEffect10; + delete fAngleEffectNorma; + delete fMagAngleEffectNorma; +} - // rohacell: C9 H13 N1 O2 - Float_t arohac[4] = {12.01, 1.01, 14.010, 16.}; - Float_t zrohac[4] = { 6., 1., 7., 8.}; - Float_t wrohac[4] = { 9., 13., 1., 2.}; - Float_t drohac = 0.03; +//__________________________________________________ +void AliMUONv1::CreateGeometry() +{ +/// Construct geometry using geometry builder - AliMaterial(31, "COPPER$", 63.54, 29., 8.96, 1.4, 0.); - AliMixture(32, "Vetronite$",aglass, zglass, dglass, 5, wglass); - AliMaterial(33, "Carbon$", 12.01, 6., 2.265, 18.8, 49.9); - AliMixture(34, "Rohacell$", arohac, zrohac, drohac, -4, wrohac); + fGeometryBuilder->CreateGeometry(); +} +//________________________________________________________________ +void AliMUONv1::CreateMaterials() +{ +/// Construct materials using geometry builder - epsil = .001; // Tracking precision, - stemax = -1.; // Maximum displacement for multiple scat - tmaxfd = -20.; // Maximum angle due to field deflection - deemax = -.3; // Maximum fractional energy loss, DLS - stmin = -.8; - // - // Air - AliMedium(1, "AIR_CH_US ", 15, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin); - // - // Aluminum + fGeometryBuilder->CreateMaterials(); +} - AliMedium(4, "ALU_CH_US ", 9, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, - fMaxDestepAlu, epsil, stmin); - AliMedium(5, "ALU_CH_US ", 10, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, - fMaxDestepAlu, epsil, stmin); - // - // Ar-isoC4H10 gas +//________________________________________________________________ +void AliMUONv1::UpdateInternalGeometry() +{ +/// Update geometry after applying mis-alignment - AliMedium(6, "AR_CH_US ", 20, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, - fMaxDestepGas, epsil, stmin); -// - // Ar-Isobuthane-Forane-SF6 gas + // Load mapping + if ( ! AliMpCDB::LoadMpSegmentation() ) { + AliFatal("Could not access mapping from OCDB !"); + } - AliMedium(7, "GAS_CH_TRIGGER ", 21, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin); + fGeometryBuilder->UpdateInternalGeometry(); +} - AliMedium(8, "BAKE_CH_TRIGGER ", 19, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, - fMaxDestepAlu, epsil, stmin); +//________________________________________________________________ +void AliMUONv1::AddAlignableVolumes() const +{ +/// Construct materials using geometry builder - AliMedium(9, "ARG_CO2 ", 22, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, - fMaxDestepAlu, epsil, stmin); - // tracking media for slats: check the parameters!! - AliMedium(11, "PCB_COPPER ", 31, 0, iSXFLD, sXMGMX, tmaxfd, - fMaxStepAlu, fMaxDestepAlu, epsil, stmin); - AliMedium(12, "VETRONITE ", 32, 0, iSXFLD, sXMGMX, tmaxfd, - fMaxStepAlu, fMaxDestepAlu, epsil, stmin); - AliMedium(13, "CARBON ", 33, 0, iSXFLD, sXMGMX, tmaxfd, - fMaxStepAlu, fMaxDestepAlu, epsil, stmin); - AliMedium(14, "Rohacell ", 34, 0, iSXFLD, sXMGMX, tmaxfd, - fMaxStepAlu, fMaxDestepAlu, epsil, stmin); + GetGeometryTransformer()->AddAlignableVolumes(); } -//___________________________________________ +//___________________________________________ void AliMUONv1::Init() -{ - // - // Initialize Tracking Chambers - // +{ +/// Initialize geometry - if(fDebug) printf("\n%s: Start Init for version 1 - CPC chamber type\n\n",ClassName()); - Int_t i; - for (i=0; iInit(); - } + AliDebug(1,"Start Init for version 1 - CPC chamber type"); - // - // Set the chamber (sensitive region) GEANT identifier - AliMC* gMC = AliMC::GetMC(); - ((AliMUONChamber*)(*fChambers)[0])->SetGid(gMC->VolId("C01G")); - ((AliMUONChamber*)(*fChambers)[1])->SetGid(gMC->VolId("C02G")); - - ((AliMUONChamber*)(*fChambers)[2])->SetGid(gMC->VolId("C03G")); - ((AliMUONChamber*)(*fChambers)[3])->SetGid(gMC->VolId("C04G")); - - ((AliMUONChamber*)(*fChambers)[4])->SetGid(gMC->VolId("S05G")); - ((AliMUONChamber*)(*fChambers)[5])->SetGid(gMC->VolId("S06G")); - - ((AliMUONChamber*)(*fChambers)[6])->SetGid(gMC->VolId("S07G")); - ((AliMUONChamber*)(*fChambers)[7])->SetGid(gMC->VolId("S08G")); + fGeometryBuilder->InitGeometry(); + AliDebug(1,"Finished Init for version 1 - CPC chamber type"); + - ((AliMUONChamber*)(*fChambers)[8])->SetGid(gMC->VolId("S09G")); - ((AliMUONChamber*)(*fChambers)[9])->SetGid(gMC->VolId("S10G")); + // Build segmentation + // using geometry parametrisation + // + // Build response + // + AliMUONResponseFactory respFactory("default", fIsTailEffect); + respFactory.Build(this); + +} - ((AliMUONChamber*)(*fChambers)[10])->SetGid(gMC->VolId("CG1A")); - ((AliMUONChamber*)(*fChambers)[11])->SetGid(gMC->VolId("CG2A")); - ((AliMUONChamber*)(*fChambers)[12])->SetGid(gMC->VolId("CG3A")); - ((AliMUONChamber*)(*fChambers)[13])->SetGid(gMC->VolId("CG4A")); +//__________________________________________________________________ +Int_t AliMUONv1::GetGeomModuleId(Int_t volId) const +{ +/// Check if the volume with specified volId is a sensitive volume (gas) +/// of some chamber and return the chamber number; +/// if not sensitive volume - return 0. - if(fDebug) printf("\n%s: Finished Init for version 1 - CPC chamber type\n",ClassName()); + for (Int_t i = 0; i < AliMUONConstants::NGeomModules(); i++) { + if ( GetGeometry()->GetModule(i)->IsSensitiveVolume(volId) ) + return i; + } - //cp - if(fDebug) printf("\n%s: Start Init for Trigger Circuits\n",ClassName()); - for (i=0; iInit(i); - } - if(fDebug) printf("%s: Finished Init for Trigger Circuits\n",ClassName()); - //cp + return -1; +} +//_______________________________________________________________________________ +TString AliMUONv1::CurrentVolumePath() const +{ +/// Return current volume path +/// (Could be removed when this function is available via gMC) + + TString path = ""; + TString name; + Int_t copyNo; + Int_t imother = 0; + do { + name = gMC->CurrentVolOffName(imother); + gMC->CurrentVolOffID(imother++, copyNo); + TString add = "/"; + add += name; + add += "_"; + add += copyNo; + path.Insert(0,add); + } + while ( name != TString("ALIC") ); + + return path; } -//___________________________________________ +//_______________________________________________________________________________ void AliMUONv1::StepManager() { - Int_t copy, id; - static Int_t idvol; - static Int_t vol[2]; - Int_t ipart; - TLorentzVector pos; - TLorentzVector mom; - Float_t theta,phi; - Float_t destep, step; - - static Float_t eloss, eloss2, xhit, yhit, zhit, tof, tlength; - const Float_t kBig = 1.e10; - static Float_t hits[15]; - - TClonesArray &lhits = *fHits; +/// Step manager for the chambers - // - // // Only charged tracks if( !(gMC->TrackCharge()) ) return; - // + // Only charged tracks + // Only gas gap inside chamber // Tag chambers and record hits when track enters - idvol=-1; - id=gMC->CurrentVolID(copy); - - for (Int_t i = 1; i <= AliMUONConstants::NCh(); i++) { - if(id==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()){ - vol[0] = i; - idvol = i-1; - } - } - if (idvol == -1) return; - // - // Get current particle id (ipart), track position (pos) and momentum (mom) - gMC->TrackPosition(pos); - gMC->TrackMomentum(mom); - - ipart = gMC->TrackPid(); + static Int_t idvol=-1, iEnter = 0; + Int_t copy; + const Float_t kBig = 1.e10; + static Double_t xyzEnter[3]; // - // momentum loss and steplength in last step - destep = gMC->Edep(); - step = gMC->TrackStep(); + // Only gas gap inside chamber + // Tag chambers and record hits when track enters + Int_t id=gMC->CurrentVolID(copy); + Int_t iGeomModule = GetGeomModuleId(id); + if (iGeomModule == -1) return; + + // Detection elements id + const AliMUONGeometryModule* kGeometryModule + = GetGeometry()->GetModule(iGeomModule); + AliMUONGeometryDetElement* detElement + = kGeometryModule->FindBySensitiveVolume(CurrentVolumePath()); + + if (!detElement && iGeomModule < AliMUONConstants::NGeomModules()-2) { + iGeomModule++; + const AliMUONGeometryModule* kGeometryModule2 + = GetGeometry()->GetModule(iGeomModule); + detElement + = kGeometryModule2->FindBySensitiveVolume(CurrentVolumePath()); + } + + Int_t detElemId = 0; + if (detElement) detElemId = detElement->GetUniqueID(); + + if (!detElemId) { + AliErrorStream() + << "Geometry module id: " + << setw(3) << iGeomModule << " " + << "Current SV: " + << CurrentVolumePath() + << " detElemId: " + << setw(5) << detElemId + << endl; + Double_t x, y, z; + gMC->TrackPosition(x, y, z); + AliErrorStream() + << " global position: " + << x << ", " << y << ", " << z + << endl; + AliErrorStream() << "DetElemId not identified." << endl; + } - // - // record hits when track enters ... - if( gMC->IsTrackEntering()) { - gMC->SetMaxStep(fMaxStepGas); - Double_t tc = mom[0]*mom[0]+mom[1]*mom[1]; - Double_t rt = TMath::Sqrt(tc); - Double_t pmom = TMath::Sqrt(tc+mom[2]*mom[2]); - Double_t tx = mom[0]/pmom; - Double_t ty = mom[1]/pmom; - Double_t tz = mom[2]/pmom; - Double_t s = ((AliMUONChamber*)(*fChambers)[idvol]) - ->ResponseModel() - ->Pitch()/tz; - theta = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg; - phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg; - hits[0] = Float_t(ipart); // Geant3 particle type - hits[1] = pos[0]+s*tx; // X-position for hit - hits[2] = pos[1]+s*ty; // Y-position for hit - hits[3] = pos[2]+s*tz; // Z-position for hit - hits[4] = theta; // theta angle of incidence - hits[5] = phi; // phi angle of incidence - hits[8] = (Float_t) fNPadHits; // first padhit - hits[9] = -1; // last pad hit - hits[10] = mom[3]; // hit momentum P - hits[11] = mom[0]; // Px - hits[12] = mom[1]; // Py - hits[13] = mom[2]; // Pz - tof=gMC->TrackTime(); - hits[14] = tof; // Time of flight - tlength = 0; - eloss = 0; - eloss2 = 0; - xhit = pos[0]; - yhit = pos[1]; - zhit = pos[2]; - Chamber(idvol).ChargeCorrelationInit(); - // Only if not trigger chamber - - - - - if(idvol < AliMUONConstants::NTrackingCh()) { - // - // Initialize hit position (cursor) in the segmentation model - ((AliMUONChamber*) (*fChambers)[idvol]) - ->SigGenInit(pos[0], pos[1], pos[2]); - } else { - //geant3->Gpcxyz(); - //printf("In the Trigger Chamber #%d\n",idvol-9); - } - } - eloss2+=destep; + Int_t iChamber = AliMpDEManager::GetChamberId(detElemId) + 1; + idvol = iChamber -1; + + // Filling TrackRefs file for MUON. Our Track references are the active volume of the chambers + if ( (gMC->IsTrackEntering() || gMC->IsTrackExiting() ) ) { + AliTrackReference* trackReference + = AddTrackReference(gAlice->GetMCApp()->GetCurrentTrackNumber(), AliTrackReference::kMUON); + trackReference->SetUserId(detElemId); + } - // - // Calculate the charge induced on a pad (disintegration) in case - // - // Mip left chamber ... - if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){ - gMC->SetMaxStep(kBig); - eloss += destep; - tlength += step; - - Float_t x0,y0,z0; - Float_t localPos[3]; - Float_t globalPos[3] = {pos[0], pos[1], pos[2]}; - gMC->Gmtod(globalPos,localPos,1); + if( gMC->IsTrackEntering() ) { + Float_t theta = fTrackMomentum.Theta(); + if ( fIsMaxStep && (TMath::Pi()-theta)*kRaddeg>=15. ) { + gMC->SetMaxStep(fStepMaxInActiveGas); // We use Pi-theta because z is negative + } + iEnter = 1; + gMC->TrackPosition(xyzEnter[0], xyzEnter[1], xyzEnter[2]); // save coordinates of entrance point + } - if(idvol < AliMUONConstants::NTrackingCh()) { -// tracking chambers - x0 = 0.5*(xhit+pos[0]); - y0 = 0.5*(yhit+pos[1]); - z0 = 0.5*(zhit+pos[2]); - } else { -// trigger chambers - x0 = xhit; - y0 = yhit; - z0 = 0.; - } - + // AliDebug(1, + // Form("Active volume found %d chamber %d Z chamber is %f ",idvol,iChamber, + // ( (AliMUONChamber*)(*fChambers)[idvol])->Z())) ; + // Particule id and mass, + Int_t ipart = gMC->TrackPid(); + Float_t mass = gMC->TrackMass(); + + fDestepSum[idvol]+=gMC->Edep(); + // Get current particle id (ipart), track position (pos) and momentum (mom) + if ( fStepSum[idvol]==0.0 ) gMC->TrackMomentum(fTrackMomentum); + fStepSum[idvol]+=gMC->TrackStep(); + + // if (AliDebugLevel()) { + // AliDebug(1,Form("Step, iChamber %d, Particle %d, theta %f phi %f mass %f StepSum %f eloss %g", + // iChamber,ipart, fTrackMomentum.Theta()*kRaddeg, fTrackMomentum.Phi()*kRaddeg, + // mass, fStepSum[idvol], gMC->Edep())); + // AliDebug(1,Form("Step:Track Momentum %f %f %f", fTrackMomentum.X(), fTrackMomentum.Y(), + // fTrackMomentum.Z())); + // gMC->TrackPosition(fTrackPosition); + // AliDebug(1,Form("Step: Track Position %f %f %f",fTrackPosition.X(), + // fTrackPosition.Y(),fTrackPosition.Z())) ; + //} + + // Track left chamber or StepSum larger than fStepMaxInActiveGas + if ( gMC->IsTrackExiting() || + gMC->IsTrackStop() || + gMC->IsTrackDisappeared()|| + (fStepSum[idvol]>fStepMaxInActiveGas) ) { + + if ( fIsMaxStep && + ( gMC->IsTrackExiting() || + gMC->IsTrackStop() || + gMC->IsTrackDisappeared() ) ) gMC->SetMaxStep(kBig); + if (fDestepSum[idvol] == 0) { + // AZ - no energy release + fStepSum[idvol] = 0; // Reset for the next event + iEnter = 0; + return; + } - if (eloss >0) MakePadHits(x0,y0,z0,eloss,tof,idvol); - - - hits[6] = tlength; // track length - hits[7] = eloss2; // de/dx energy loss + gMC->TrackPosition(fTrackPosition); + Float_t theta = fTrackMomentum.Theta(); + Float_t phi = fTrackMomentum.Phi(); + + Int_t merge = 0; + Double_t xyz0[3]={0}, xyz1[3]={0}, tmp[3]={0}; + if (gMC->IsTrackExiting() && iEnter != 0) { + // AZ - this code is to avoid artificial hit splitting at the + // "fake" boundary inside the same chamber. It will still produce + // 2 hits but with the same coordinates (at the wire) to allow + // their merging at the digitization level. + + // Only for a track going from the entrance to the exit from the volume + // Get local coordinates + gMC->Gmtod(xyzEnter, xyz0, 1); // local coord. at the entrance + + fTrackPosition.Vect().GetXYZ(tmp); + gMC->Gmtod(tmp, xyz1, 1); // local coord. at the exit + Float_t dx = xyz0[0] - xyz1[0]; + Float_t dy = xyz0[1] - xyz1[1]; + Float_t thLoc = TMath::ATan2 (TMath::Sqrt(dx*dx+dy*dy), TMath::Abs(xyz0[2]-xyz1[2])); + if (thLoc * TMath::RadToDeg() < 15) merge = 1; + } - if (fNPadHits > (Int_t)hits[8]) { - hits[8] = hits[8]+1; - hits[9] = (Float_t) fNPadHits; + if (merge) { + Double_t dz = -0.5; + if (xyz1[2] != xyz0[2]) dz = xyz0[2] / (xyz1[2] - xyz0[2]); + tmp[0] = xyz0[0] - (xyz1[0] - xyz0[0]) * dz; // local coord. at the wire + tmp[1] = xyz0[1] - (xyz1[1] - xyz0[1]) * dz; + tmp[2] = xyz0[2] - (xyz1[2] - xyz0[2]) * dz; + gMC->Gdtom(tmp, xyz1, 1); // global coord. at the wire + fTrackPosition.SetXYZT(xyz1[0], xyz1[1], xyz1[2], fTrackPosition.T()); + } else { + TLorentzVector backToWire( fStepSum[idvol]/2.*sin(theta)*cos(phi), + fStepSum[idvol]/2.*sin(theta)*sin(phi), + fStepSum[idvol]/2.*cos(theta),0.0 ); + fTrackPosition-=backToWire; + //printf(" %d %d %d %f %d \n", gMC->IsTrackExiting(), gMC->IsTrackStop(), gMC->IsTrackDisappeared(), fStepSum[idvol], iEnter); + // AliDebug(1, + // Form("Track Position %f %f %f",fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z())); + // AliDebug(1, + // Form("Exit: Track backToWire %f %f %f",backToWire.X(),backToWire.Y(),backToWire.Z())) ; + } + + //-------------- Angle effect + // Ratio between energy loss of particle and Mip as a function of BetaGamma of particle (Energy/Mass) + + Float_t betaxGamma = fTrackMomentum.P()/mass;// pc/mc2 + Float_t sigmaEffect10degrees; + Float_t sigmaEffectThetadegrees; + Float_t eLossParticleELossMip; + Float_t yAngleEffect=0.; + Float_t thetawires = TMath::ASin( TMath::Sin(TMath::Pi()-theta) * TMath::Sin(phi) ) ;// We use Pi-theta because z is negative + Double_t bField[3] = {0}; + fTrackPosition.Vect().GetXYZ(tmp); + TGeoGlobalMagField::Instance()->Field(tmp,bField); + + if (fAngleEffect && !fMagEffect){ + thetawires = TMath::Abs(thetawires); + if ( (betaxGamma >3.2) && (thetawires*kRaddeg<=15.) ) { + betaxGamma=TMath::Log(betaxGamma); + eLossParticleELossMip = fElossRatio->Eval(betaxGamma); + // 10 degrees is a reference for a model (arbitrary) + sigmaEffect10degrees=fAngleEffect10->Eval(eLossParticleELossMip);// in micrometers + // Angle with respect to the wires assuming that chambers are perpendicular to the z axis. + sigmaEffectThetadegrees = sigmaEffect10degrees/fAngleEffectNorma->Eval(thetawires*kRaddeg); // For 5mm gap + if ( (iChamber==1) || (iChamber==2) ) + sigmaEffectThetadegrees/=(1.09833e+00+1.70000e-02*(thetawires*kRaddeg)); // The gap is different (4mm) + yAngleEffect=1.e-04*gRandom->Gaus(0,sigmaEffectThetadegrees); // Error due to the angle effect in cm + } + } + else if (fAngleEffect && fMagEffect) { + if ( (betaxGamma >3.2) && (TMath::Abs(thetawires*kRaddeg)<=15.) ) { + betaxGamma=TMath::Log(betaxGamma); + eLossParticleELossMip = fElossRatio->Eval(betaxGamma); + // 10 degrees is a reference for a model (arbitrary) + sigmaEffect10degrees=fAngleEffect10->Eval(eLossParticleELossMip);// in micrometers + // Angle with respect to the wires assuming that chambers are perpendicular to the z axis. + sigmaEffectThetadegrees = sigmaEffect10degrees/fMagAngleEffectNorma->Eval(thetawires*kRaddeg,bField[0]/10.); // For 5mm gap + if ( (iChamber==1) || (iChamber==2) ) + sigmaEffectThetadegrees/=(1.09833e+00+1.70000e-02*(thetawires*kRaddeg)); // The gap is different (4mm) + yAngleEffect=1.e-04*gRandom->Gaus(0,sigmaEffectThetadegrees); // Error due to the angle effect in cm } -// -// new hit - - new(lhits[fNhits++]) - AliMUONHit(fIshunt, gAlice->CurrentTrack(), vol,hits); - eloss = 0; - // - // Check additional signal generation conditions - // defined by the segmentation - // model (boundary crossing conditions) - // only for tracking chambers - } else if - ((idvol < AliMUONConstants::NTrackingCh()) && - ((AliMUONChamber*) (*fChambers)[idvol])->SigGenCond(pos[0], pos[1], pos[2])) - { - ((AliMUONChamber*) (*fChambers)[idvol]) - ->SigGenInit(pos[0], pos[1], pos[2]); - - Float_t localPos[3]; - Float_t globalPos[3] = {pos[0], pos[1], pos[2]}; - gMC->Gmtod(globalPos,localPos,1); + } - eloss += destep; + AliMUONHit hit(fIshunt, + gAlice->GetMCApp()->GetCurrentTrackNumber(), + detElemId, ipart, + fTrackPosition.X(), + fTrackPosition.Y()+yAngleEffect, + fTrackPosition.Z(), + gMC->TrackTime(), + fTrackMomentum.P(), + theta, + phi, + fStepSum[idvol], + fDestepSum[idvol], + fTrackPosition.X(), + fTrackPosition.Y(), + fTrackPosition.Z()); + + fHitStore->Add(hit); - if (eloss > 0 && idvol < AliMUONConstants::NTrackingCh()) - MakePadHits(0.5*(xhit+pos[0]),0.5*(yhit+pos[1]),pos[2],eloss,tof,idvol); - xhit = pos[0]; - yhit = pos[1]; - zhit = pos[2]; - eloss = 0; - tlength += step ; - // - // nothing special happened, add up energy loss - } else { - eloss += destep; - tlength += step ; + fStepSum[idvol] =0; // Reset for the next event + fDestepSum[idvol]=0; // Reset for the next event + iEnter = 0; } } - -