X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=MUON%2FMUONmassPlot_ESD.C;h=5b30efc9212965b12beb01ab0a18044aa840b8fd;hb=cdffeaea701fbd9e9680151faeb669ee0f89bd6a;hp=fd99cde511df7d9c2fe6076e9c6e7dd2bae0169f;hpb=ac3c532500941d952883e97e9099178e2a549f25;p=u%2Fmrichter%2FAliRoot.git diff --git a/MUON/MUONmassPlot_ESD.C b/MUON/MUONmassPlot_ESD.C index fd99cde511d..5b30efc9212 100644 --- a/MUON/MUONmassPlot_ESD.C +++ b/MUON/MUONmassPlot_ESD.C @@ -1,5 +1,6 @@ #if !defined(__CINT__) || defined(__MAKECINT__) // ROOT includes +#include "TTree.h" #include "TBranch.h" #include "TClonesArray.h" #include "TLorentzVector.h" @@ -9,53 +10,60 @@ #include "TParticle.h" #include "TTree.h" #include +#include +#include // STEER includes -#include "AliRun.h" -#include "AliRunLoader.h" -#include "AliHeader.h" -#include "AliLoader.h" -#include "AliStack.h" -#include "AliESD.h" +#include "AliLog.h" +#include "AliCDBManager.h" +#include "AliESDEvent.h" +#include "AliESDVertex.h" +#include "AliESDMuonTrack.h" // MUON includes -#include "AliESDMuonTrack.h" +#include "AliMUONCDB.h" +#include "AliMUONTrackParam.h" +#include "AliMUONTrackExtrap.h" +#include "AliMUONESDInterface.h" #endif -// -// Macro MUONmassPlot.C for ESD -// Ch. Finck, Subatech, April. 2004 -// - -// macro to make invariant mass plots -// for combinations of 2 muons with opposite charges, -// from root file "MUON.tracks.root" containing the result of track reconstruction. -// Histograms are stored on the "MUONmassPlot.root" file. -// introducing TLorentzVector for parameter calculations (Pt, P,rap,etc...) -// using Invariant Mass for rapidity. - -// Arguments: -// FirstEvent (default 0) -// LastEvent (default 0) -// ResType (default 553) -// 553 for Upsilon, anything else for J/Psi -// Chi2Cut (default 100) -// to keep only tracks with chi2 per d.o.f. < Chi2Cut -// PtCutMin (default 1) -// to keep only tracks with transverse momentum > PtCutMin -// PtCutMax (default 10000) -// to keep only tracks with transverse momentum < PtCutMax -// massMin (default 9.17 for Upsilon) -// & massMax (default 9.77 for Upsilon) -// to calculate the reconstruction efficiency for resonances with invariant mass -// massMin < mass < massMax. - -// Add parameters and histograms for analysis - -Bool_t MUONmassPlot(char* filename = "galice.root", Int_t FirstEvent = 0, Int_t LastEvent = 10000, - char* esdFileName = "AliESDs.root", Int_t ResType = 553, - Float_t Chi2Cut = 100., Float_t PtCutMin = 1., Float_t PtCutMax = 10000., - Float_t massMin = 9.17,Float_t massMax = 9.77) + +/// \ingroup macros +/// \file MUONmassPlot_ESD.C +/// \brief Macro MUONmassPlot_ESD.C for ESD +/// +/// \author Ch. Finck, Subatech, April. 2004 +/// +/// +/// Macro to make invariant mass plots +/// for combinations of 2 muons with opposite charges, +/// from root file "MUON.tracks.root" containing the result of track reconstruction. +/// Histograms are stored on the "MUONmassPlot.root" file. +/// introducing TLorentzVector for parameter calculations (Pt, P,rap,etc...) +/// using Invariant Mass for rapidity. +/// +/// Add parameters and histograms for analysis + +Bool_t MUONmassPlot(const char* esdFileName = "AliESDs.root", const char* geoFilename = "geometry.root", + const char* ocdbPath = "local://$ALICE_ROOT/OCDB", + Int_t FirstEvent = 0, Int_t LastEvent = 10000, Int_t ExtrapToVertex = -1, + Int_t ResType = 553, Float_t Chi2Cut = 100., Float_t PtCutMin = 1., + Float_t PtCutMax = 10000., Float_t massMin = 9.17,Float_t massMax = 9.77) { + /// \param FirstEvent (default 0) + /// \param LastEvent (default 10000) + /// \param ExtrapToVertex (default -1) + /// - <0: no extrapolation; + /// - =0: extrapolation to (0,0,0); + /// - >0: extrapolation to ESDVertex if available, else to (0,0,0) + /// \param ResType 553 for Upsilon, anything else for J/Psi (default 553) + /// \param Chi2Cut to keep only tracks with chi2 per d.o.f. < Chi2Cut (default 100) + /// \param PtCutMin to keep only tracks with transverse momentum > PtCutMin (default 1) + /// \param PtCutMax to keep only tracks with transverse momentum < PtCutMax (default 10000) + /// \param massMin (default 9.17 for Upsilon) + /// \param massMax (default 9.77 for Upsilon); + /// to calculate the reconstruction efficiency for resonances with invariant mass + /// massMin < mass < massMax. + cout << "MUONmassPlot " << endl; cout << "FirstEvent " << FirstEvent << endl; cout << "LastEvent " << LastEvent << endl; @@ -70,7 +78,6 @@ Bool_t MUONmassPlot(char* filename = "galice.root", Int_t FirstEvent = 0, Int_t //Reset ROOT and connect tree file gROOT->Reset(); - // File for histograms and histogram booking TFile *histoFile = new TFile("MUONmassPlot.root", "RECREATE"); TH1F *hPtMuon = new TH1F("hPtMuon", "Muon Pt (GeV/c)", 100, 0., 20.); @@ -80,9 +87,10 @@ Bool_t MUONmassPlot(char* filename = "galice.root", Int_t FirstEvent = 0, Int_t TH1F *hChi2PerDof = new TH1F("hChi2PerDof", "Muon track chi2/d.o.f.", 100, 0., 20.); TH1F *hInvMassAll = new TH1F("hInvMassAll", "Mu+Mu- invariant mass (GeV/c2)", 480, 0., 12.); TH1F *hInvMassBg = new TH1F("hInvMassBg", "Mu+Mu- invariant mass BG(GeV/c2)", 480, 0., 12.); -TH2F *hInvMassAll_vs_Pt = new TH2F("hInvMassAll_vs_Pt","hInvMassAll_vs_Pt",480,0.,12.,80,0.,20.); -TH2F *hInvMassBgk_vs_Pt = new TH2F("hInvMassBgk_vs_Pt","hInvMassBgk_vs_Pt",480,0.,12.,80,0.,20.); -TH1F *hInvMassRes; + TH2F *hInvMassAll_vs_Pt = new TH2F("hInvMassAll_vs_Pt","hInvMassAll_vs_Pt",480,0.,12.,80,0.,20.); + TH2F *hInvMassBgk_vs_Pt = new TH2F("hInvMassBgk_vs_Pt","hInvMassBgk_vs_Pt",480,0.,12.,80,0.,20.); + TH1F *hInvMassRes; + TH1F *hPrimaryVertex = new TH1F("hPrimaryVertex","SPD reconstructed Z vertex",150,-15,15); if (ResType == 553) { hInvMassRes = new TH1F("hInvMassRes", "Mu+Mu- invariant mass (GeV/c2) around Upsilon", 60, 8., 11.); @@ -100,84 +108,116 @@ TH1F *hInvMassRes; // settings Int_t EventInMass = 0; + Int_t EventInMassMatch = 0; + Int_t NbTrigger = 0; + Float_t muonMass = 0.105658389; // Float_t UpsilonMass = 9.46037; // Float_t JPsiMass = 3.097; - Double_t thetaX, thetaY, pYZ; + Int_t fCharge1, fCharge2; Double_t fPxRec1, fPyRec1, fPzRec1, fE1; Double_t fPxRec2, fPyRec2, fPzRec2, fE2; - Int_t fCharge, fCharge2; - Int_t ntrackhits, nevents; + Int_t ntrackhits; Double_t fitfmin; - + Double_t fZVertex=0; + Double_t fYVertex=0; + Double_t fXVertex=0; + Double_t errXVtx=0; + Double_t errYVtx=0; TLorentzVector fV1, fV2, fVtot; - // open run loader and load gAlice, kinematics and header - AliRunLoader* runLoader = AliRunLoader::Open(filename); - if (!runLoader) { - Error("MUONmass_ESD", "getting run loader from file %s failed", - filename); - return kFALSE; - } - - runLoader->LoadgAlice(); - gAlice = runLoader->GetAliRun(); - if (!gAlice) { - Error("MUONmass_ESD", "no galice object found"); - return kFALSE; + // Import TGeo geometry (needed by AliMUONTrackExtrap::ExtrapToVertex) + if (!gGeoManager) { + TGeoManager::Import(geoFilename); + if (!gGeoManager) { + Error("MUONmass_ESD", "getting geometry from file %s failed", geoFilename); + return kFALSE; + } } - // open the ESD file TFile* esdFile = TFile::Open(esdFileName); if (!esdFile || !esdFile->IsOpen()) { Error("MUONmass_ESD", "opening ESD file %s failed", esdFileName); return kFALSE; } + AliESDEvent* esd = new AliESDEvent(); + TTree* tree = (TTree*) esdFile->Get("esdTree"); + if (!tree) { + Error("MUONmass_ESD", "no ESD tree found"); + return kFALSE; + } + esd->ReadFromTree(tree); + + // get run number + if (tree->GetEvent(0) <= 0) { + Error("MUONmass_ESD", "no ESD object found for event 0"); + return kFALSE; + } + Int_t runNumber = esd->GetRunNumber(); + + // load necessary data from OCDB + AliCDBManager::Instance()->SetDefaultStorage(ocdbPath); + AliCDBManager::Instance()->SetRun(runNumber); + if (!AliMUONCDB::LoadField()) return kFALSE; + + // set the magnetic field for track extrapolations + AliMUONTrackExtrap::SetField(); - runLoader->LoadHeader(); - nevents = runLoader->GetNumberOfEvents(); - + AliMUONTrackParam trackParam; + // Loop over events + Int_t nevents = (Int_t)tree->GetEntries(); for (Int_t iEvent = FirstEvent; iEvent <= TMath::Min(LastEvent, nevents - 1); iEvent++) { - // get current event - runLoader->GetEvent(iEvent); - // get the event summary data - char esdName[256]; - sprintf(esdName, "ESD%d", iEvent); - AliESD* esd = (AliESD*) esdFile->Get(esdName); - if (!esd) { + if (tree->GetEvent(iEvent) <= 0) { Error("MUONmass_ESD", "no ESD object found for event %d", iEvent); return kFALSE; } + + // get the SPD reconstructed vertex (vertexer) and fill the histogram + AliESDVertex* Vertex = (AliESDVertex*) esd->GetVertex(); + if (Vertex->GetNContributors()) { + fZVertex = Vertex->GetZv(); + fYVertex = Vertex->GetYv(); + fXVertex = Vertex->GetXv(); + errXVtx = Vertex->GetXRes(); + errYVtx = Vertex->GetYRes(); + } + hPrimaryVertex->Fill(fZVertex); - Int_t nTracks = (Int_t)esd->GetNumberOfMuonTracks() ; // + Int_t nTracks = (Int_t)esd->GetNumberOfMuonTracks() ; // printf("\n Nb of events analysed: %d\r",iEvent); - // cout << " number of tracks: " << nrectracks <GetMuonTrack(iTrack); - - thetaX = muonTrack->GetThetaX(); - thetaY = muonTrack->GetThetaY(); - - pYZ = 1./TMath::Abs(muonTrack->GetInverseBendingMomentum()); - fPzRec1 = - pYZ / TMath::Sqrt(1.0 + TMath::Tan(thetaY)*TMath::Tan(thetaX)); - fPxRec1 = fPzRec1 * TMath::Tan(thetaX); - fPyRec1 = fPzRec1 * TMath::Tan(thetaY); - fCharge = Int_t(TMath::Sign(1.,muonTrack->GetInverseBendingMomentum())); - - fE1 = TMath::Sqrt(muonMass * muonMass + fPxRec1 * fPxRec1 + fPyRec1 * fPyRec1 + fPzRec1 * fPzRec1); - fV1.SetPxPyPzE(fPxRec1, fPyRec1, fPzRec1, fE1); - + // skip ghosts + if (!esd->GetMuonTrack(iTrack)->ContainTrackerData()) continue; + + AliESDMuonTrack* muonTrack = new AliESDMuonTrack(*(esd->GetMuonTrack(iTrack))); + + // extrapolate to vertex if required and available + if (ExtrapToVertex > 0 && Vertex->GetNContributors()) { + AliMUONESDInterface::GetParamAtFirstCluster(*muonTrack, trackParam); + AliMUONTrackExtrap::ExtrapToVertex(&trackParam, fXVertex, fYVertex, fZVertex, errXVtx, errYVtx); + AliMUONESDInterface::SetParamAtVertex(trackParam, *muonTrack); // put the new parameters in this copy of AliESDMuonTrack + } else if ((ExtrapToVertex > 0 && !Vertex->GetNContributors()) || ExtrapToVertex == 0){ + AliMUONESDInterface::GetParamAtFirstCluster(*muonTrack, trackParam); + AliMUONTrackExtrap::ExtrapToVertex(&trackParam, 0., 0., 0., 0., 0.); + AliMUONESDInterface::SetParamAtVertex(trackParam, *muonTrack); // put the new parameters in this copy of AliESDMuonTrack + } + + fCharge1 = Int_t(TMath::Sign(1.,muonTrack->GetInverseBendingMomentum())); + + muonTrack->LorentzP(fV1); + ntrackhits = muonTrack->GetNHit(); fitfmin = muonTrack->GetChi2(); @@ -193,43 +233,49 @@ TH1F *hInvMassRes; // chi2 per d.o.f. Float_t ch1 = fitfmin / (2.0 * ntrackhits - 5); // printf(" px %f py %f pz %f NHits %d Norm.chi2 %f charge %d\n", -// fPxRec1, fPyRec1, fPzRec1, ntrackhits, ch1, fCharge); +// fPxRec1, fPyRec1, fPzRec1, ntrackhits, ch1, fCharge1); // condition for good track (Chi2Cut and PtCut) - if ((ch1 < Chi2Cut) && (pt1 > PtCutMin) && (pt1 < PtCutMax)) { +// if ((ch1 < Chi2Cut) && (pt1 > PtCutMin) && (pt1 < PtCutMax)) { // fill histos hPtMuon and hChi2PerDof hPtMuon->Fill(pt1); hPMuon->Fill(p1); hChi2PerDof->Fill(ch1); hRapMuon->Fill(rapMuon1); - if (fCharge > 0) { + if (fCharge1 > 0) { hPtMuonPlus->Fill(pt1); - hThetaPhiPlus->Fill(TMath::ATan2(fPyRec1,fPxRec1)*180./TMath::Pi(),TMath::ATan2(pt1,fPzRec1)*180./3.1415); + hThetaPhiPlus->Fill(fV1.Phi()*180./TMath::Pi(),fV1.Theta()*180./TMath::Pi()); } else { hPtMuonMinus->Fill(pt1); - hThetaPhiMinus->Fill(TMath::ATan2(fPyRec1,fPxRec1)*180./TMath::Pi(),TMath::ATan2(pt1,fPzRec1)*180./3.1415); + hThetaPhiMinus->Fill(fV1.Phi()*180./TMath::Pi(),fV1.Theta()*180./TMath::Pi()); } // loop over second track of combination for (Int_t iTrack2 = iTrack + 1; iTrack2 < nTracks; iTrack2++) { - AliESDMuonTrack* muonTrack = esd->GetMuonTrack(iTrack2); - - thetaX = muonTrack->GetThetaX(); - thetaY = muonTrack->GetThetaY(); - - pYZ = 1./TMath::Abs(muonTrack->GetInverseBendingMomentum()); - fPzRec2 = - pYZ / TMath::Sqrt(1.0 + TMath::Tan(thetaY)*TMath::Tan(thetaX)); - fPxRec2 = fPzRec2 * TMath::Tan(thetaX); - fPyRec2 = fPzRec2 * TMath::Tan(thetaY); - fCharge2 = Int_t(TMath::Sign(1.,muonTrack->GetInverseBendingMomentum())); + // skip ghosts + if (!esd->GetMuonTrack(iTrack2)->ContainTrackerData()) continue; + + AliESDMuonTrack* muonTrack2 = new AliESDMuonTrack(*(esd->GetMuonTrack(iTrack2))); + + // extrapolate to vertex if required and available + if (ExtrapToVertex > 0 && Vertex->GetNContributors()) { + AliMUONESDInterface::GetParamAtFirstCluster(*muonTrack2, trackParam); + AliMUONTrackExtrap::ExtrapToVertex(&trackParam, fXVertex, fYVertex, fZVertex, errXVtx, errYVtx); + AliMUONESDInterface::SetParamAtVertex(trackParam, *muonTrack2); // put the new parameters in this copy of AliESDMuonTrack + } else if ((ExtrapToVertex > 0 && !Vertex->GetNContributors()) || ExtrapToVertex == 0){ + AliMUONESDInterface::GetParamAtFirstCluster(*muonTrack2, trackParam); + AliMUONTrackExtrap::ExtrapToVertex(&trackParam, 0., 0., 0., 0., 0.); + AliMUONESDInterface::SetParamAtVertex(trackParam, *muonTrack2); // put the new parameters in this copy of AliESDMuonTrack + } + + fCharge2 = Int_t(TMath::Sign(1.,muonTrack2->GetInverseBendingMomentum())); - fE2 = TMath::Sqrt(muonMass * muonMass + fPxRec2 * fPxRec2 + fPyRec2 * fPyRec2 + fPzRec2 * fPzRec2); - fV2.SetPxPyPzE(fPxRec2, fPyRec2, fPzRec2, fE2); + muonTrack2->LorentzP(fV2); - ntrackhits = muonTrack->GetNHit(); - fitfmin = muonTrack->GetChi2(); + ntrackhits = muonTrack2->GetNHit(); + fitfmin = muonTrack2->GetChi2(); // transverse momentum Float_t pt2 = fV2.Pt(); @@ -238,10 +284,10 @@ TH1F *hInvMassRes; Float_t ch2 = fitfmin / (2.0 * ntrackhits - 5); // condition for good track (Chi2Cut and PtCut) - if ((ch2 < Chi2Cut) && (pt2 > PtCutMin) && (pt2 < PtCutMax)) { +// if ((ch2 < Chi2Cut) && (pt2 > PtCutMin) && (pt2 < PtCutMax)) { // condition for opposite charges - if ((fCharge * fCharge2) == -1) { + if ((fCharge1 * fCharge2) == -1) { // invariant mass fVtot = fV1 + fV2; @@ -251,20 +297,32 @@ TH1F *hInvMassRes; hInvMassAll->Fill(invMass); hInvMassRes->Fill(invMass); hInvMassAll_vs_Pt->Fill(invMass,fVtot.Pt()); + Int_t ptTrig; + if (ResType == 553) + ptTrig = 0x20;// mask for Hpt unlike sign pair + else + ptTrig = 0x10;// mask for Lpt unlike sign pair + + if (esd->GetTriggerMask() & ptTrig) NbTrigger++; if (invMass > massMin && invMass < massMax) { EventInMass++; + if (muonTrack2->GetMatchTrigger() && (esd->GetTriggerMask() & ptTrig))// match with trigger + EventInMassMatch++; + hRapResonance->Fill(fVtot.Rapidity()); hPtResonance->Fill(fVtot.Pt()); } - } // if (fCharge * fCharge2) == -1) - } // if ((ch2 < Chi2Cut) && (pt2 > PtCutMin) && (pt2 < PtCutMax)) + } // if (fCharge1 * fCharge2) == -1) +// } // if ((ch2 < Chi2Cut) && (pt2 > PtCutMin) && (pt2 < PtCutMax)) + delete muonTrack2; } // for (Int_t iTrack2 = iTrack + 1; iTrack2 < iTrack; iTrack2++) - } // if (ch1 < Chi2Cut) && (pt1 > PtCutMin)&& (pt1 < PtCutMax) ) +// } // if (ch1 < Chi2Cut) && (pt1 > PtCutMin)&& (pt1 < PtCutMax) ) + delete muonTrack; } // for (Int_t iTrack = 0; iTrack < nrectracks; iTrack++) hNumberOfTrack->Fill(nTracks); - esdFile->Delete(); + // esdFile->Delete(); } // for (Int_t iEvent = FirstEvent; // Loop over events for bg event @@ -305,16 +363,10 @@ TH1F *hInvMassRes; histoFile->Write(); histoFile->Close(); - cout << "MUONmassPlot " << endl; - cout << "FirstEvent " << FirstEvent << endl; - cout << "LastEvent " << LastEvent << endl; - cout << "ResType " << ResType << endl; - cout << "Chi2Cut " << Chi2Cut << endl; - cout << "PtCutMin " << PtCutMin << endl; - cout << "PtCutMax " << PtCutMax << endl; - cout << "massMin " << massMin << endl; - cout << "massMax " << massMax << endl; + cout << endl; cout << "EventInMass " << EventInMass << endl; + cout << "NbTrigger " << NbTrigger << endl; + cout << "EventInMass match with trigger " << EventInMassMatch << endl; return kTRUE; }