X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=PMD%2FAliPMDv0.cxx;h=1b8e5c9b348cea5c087ff8d1ac9b9411c59fab26;hb=9d1f4be9d108920a436165f6ed2a36c6709c89a9;hp=b4b4fc79273ffb0c515b38615f3cc5d1baf52678;hpb=0a6d8768ce40a9b604fed91727f482d13bf2bf9b;p=u%2Fmrichter%2FAliRoot.git diff --git a/PMD/AliPMDv0.cxx b/PMD/AliPMDv0.cxx index b4b4fc79273..1b8e5c9b348 100644 --- a/PMD/AliPMDv0.cxx +++ b/PMD/AliPMDv0.cxx @@ -1,3 +1,21 @@ +/*************************************************************************** + * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * + * * + * Author: The ALICE Off-line Project. * + * Contributors are mentioned in the code where appropriate. * + * * + * Permission to use, copy, modify and distribute this software and its * + * documentation strictly for non-commercial purposes is hereby granted * + * without fee, provided that the above copyright notice appears in all * + * copies and that both the copyright notice and this permission notice * + * appear in the supporting documentation. The authors make no claims * + * about the suitability of this software for any purpose. It is * + * provided "as is" without express or implied warranty. * + **************************************************************************/ + +/* $Id$ */ + +// /////////////////////////////////////////////////////////////////////////////// // // // Photon Multiplicity Detector Version 1 // @@ -9,188 +27,67 @@ //End_Html // // /////////////////////////////////////////////////////////////////////////////// +//// + +#include +#include +#include + +#include "AliConst.h" +#include "AliMagF.h" #include "AliPMDv0.h" #include "AliRun.h" -#include "AliMC.h" -#include "AliConst.h" - -static Float_t smod2[3], smod3[3], smod4[3]; -static Int_t maxbox, kdet; -static Float_t thgas,thmin,thmax,zdist,zdist1,thlow, - thhigh,edge; -static Int_t numqu; -static Float_t xbox[40][40], ybox[40][40]; -static Int_t pindex[40][40]; - +#include "AliMC.h" +#include "AliLog.h" + +const Int_t AliPMDv0::fgkNcellHole = 24; // Hole dimension +const Float_t AliPMDv0::fgkCellRadius = 0.25; // Radius of a hexagonal cell +const Float_t AliPMDv0::fgkCellWall = 0.02; // Thickness of cell Wall +const Float_t AliPMDv0::fgkCellDepth = 0.50; // Gas thickness +const Float_t AliPMDv0::fgkBoundary = 0.7; // Thickness of Boundary wall +const Float_t AliPMDv0::fgkThBase = 0.3; // Thickness of Base plate +const Float_t AliPMDv0::fgkThAir = 0.1; // Thickness of Air +const Float_t AliPMDv0::fgkThPCB = 0.16; // Thickness of PCB +const Float_t AliPMDv0::fgkThLead = 1.5; // Thickness of Pb +const Float_t AliPMDv0::fgkThSteel = 0.5; // Thickness of Steel +const Float_t AliPMDv0::fgkZdist = 361.5; // z-position of the detector +const Float_t AliPMDv0::fgkSqroot3 = 1.7320508;// Square Root of 3 +const Float_t AliPMDv0::fgkSqroot3by2 = 0.8660254;// Square Root of 3 by 2 +const Float_t AliPMDv0::fgkPi = 3.14159; // pi + ClassImp(AliPMDv0) + //_____________________________________________________________________________ -AliPMDv0::AliPMDv0() : AliPMD() +AliPMDv0::AliPMDv0(): + fSMthick(0.), + fSMLength(0.), + fMedSens(0), + fNcellSM(0) { // // Default constructor // - fMedSens=0; } //_____________________________________________________________________________ -AliPMDv0::AliPMDv0(const char *name, const char *title) - : AliPMD(name,title) +AliPMDv0::AliPMDv0(const char *name, const char *title): + AliPMD(name,title), + fSMthick(0.), + fSMLength(0.), + fMedSens(0), + fNcellSM(0) { // // Standard constructor // - fMedSens=0; -} - -//_____________________________________________________________________________ -void AliPMDv0::Coordnew() -{ - // - // Find coordinates for pad geometry - // - // Author Y.P. Viyogi, VECC Calcutta - // - - Float_t th1, th2, dbox, dist; - //Float_t xoff[40][40], yoff[40][40]; - Int_t i, j, nbox; - Float_t rlow; - Int_t xoff1[3], yoff1[3], l; - Float_t rhigh, dmax, hole; - Int_t kk, nhol; - Float_t rr, xx, yy; - - th1 = thmin * kPI / 180; - th2 = thmax * kPI / 180; - /* ESTIMATES FOR OCTAGON */ - dist = zdist * TMath::Tan(th2); - /* *** 04.06.97 Fixed Module size of 6 cm, 0 mm boundary. */ - /* *** variable pad sizes of 0.3 mm, 0.5 mm, 1.0 mm and 1.2 mm */ - dbox = edge * 2 + 24; - maxbox = Int_t(dist / dbox + .5); - dmax= maxbox * dbox; - /* NOW GET THE HOLE SIZE ETC. */ - hole = zdist * TMath::Tan(th1); - nhol = Int_t(hole / dbox + .5); - hole = nhol * dbox; - - rlow = zdist * TMath::Tan(thlow * kPI / 180); - rhigh = zdist * TMath::Tan(thhigh * kPI / 180); - for (i = 1; i <= 40; ++i) { - for (j = 1; j <= 40; ++j) { - //index[j][i] = 0; - //xoff[j][i] = 0; - //yoff[j][i] = 0; - xbox[j][i] = 0; - /* L5: */ - ybox[j][i] = 0; - } - } - - // NOW START PLACING THE BOXES IN VARIOUS LAYERS, START FROM THE CENTRE - - yy = dbox / 2; - for(i=0;i<3;i++) yoff1[i]=0; - nbox = 0; - // PRINT*,'MAXBOX=',MAXBOX - for (i = 1; i <= maxbox; ++i) { - xx = dbox / 2; - for(j=0;j<3;j++) xoff1[j]=0; - for (j = 1; j <= maxbox; ++j) { - rr = sqrt(xx*xx+yy*yy); - if (rr >= hole && rr <= dmax) { - // BOX CAN BE FITTED - //index[j][i] = 2; - //if (rr < rlow) index[j][i] = 1; - //else if (rr > rhigh) index[j][i] = 3; - xbox[j][i] = xx; - ybox[j][i] = yy; - ++nbox; - //xoff[j][i] = xoff1[index[j][i] - 1]; - //yoff[j][i] = yoff1[index[j][i] - 1]; - } - if (kdet == 1) kk = 1; else kk = 0; - for (l = 1; l <= 3; ++l) - xoff1[l - 1] += fNumPads[l + kk - 1]; - xx += dbox; - } - - if (kdet == 1) kk = 1; else kk=0; - - for (l = 1; l <= 3; ++l) - yoff1[l - 1] += fNumPads[l + kk - 1]; - yy += dbox; - } } -//_____________________________________________________________________________ -void AliPMDv0::Coordinates() -{ - // - // SUBROUTINE TO COMPUTE THE X- AND Y- COORDINATES OF THE BOXES - // WHICH CAN FIT INTO THE CIRCULAR REGION BETWEEN THE GIVEN ANGLES. - // INPUT : ZDIST, THMIN, THMAX, PADSIZE (FOR INSIDE and OUTSIDE PMD). - // ALL DIMENSIONS IN CM. - // -- Author : Y.P. VIYOGI, 10/05/1996. - - Float_t hole, dmax, dbox; - Int_t nhol; - Float_t dist; - Int_t nbox; - Float_t rlow; - Int_t i, j; - Float_t rhigh, rr, xx, yy, th1, th2; - - th1 = thmin*kPI/180; - th2 = thmax*kPI/180; - // ESTIMATES FOR OCTAGON - dist = zdist * TMath::Tan(th2); - // *** 04.06.97 Fixed Module size of 24 cm, 3 mm boundary. - // *** variable pad sizes of 8 mm, 10 mm, 12mm and 15 mm - dbox = edge*2 + 24.; - maxbox = Int_t(dist / dbox + .5); - dmax = maxbox*dbox; - // NOW GET THE HOLE SIZE ETC. - hole = zdist * TMath::Tan(th1); - nhol = Int_t(hole / dbox + .5); - hole = nhol * dbox; - - rlow = zdist * TMath::Tan(thlow*kPI/180); - rhigh = zdist * TMath::Tan(thhigh*kPI/180); - for (i = 0; i < 40; ++i) { - for (j = 0; j < 40; ++j) { - pindex[j][i] = 0; - xbox[j][i] = 0; - ybox[j][i] = 0; - } - } - - // NOW START PLACING THE BOXES IN VARIOUS LAYERS, START FROM THE CENTRE - yy = dbox / 2; - nbox = 0; - for (i = 0; i < maxbox; ++i) { - xx = dbox / 2; - for (j = 0; j < maxbox; ++j) { - rr = TMath::Sqrt(xx*xx + yy*yy); - if (rr >= hole && rr <= dmax) { // BOX CAN BE FITTED - pindex[j][i] = 2; - if (rr < rlow) pindex[j][i] = 1; - if (rr > rhigh) pindex[j][i] = 3; - xbox[j][i] = xx; - ybox[j][i] = yy; - ++nbox; - } - xx += dbox; - } - yy += dbox; - } -} - //_____________________________________________________________________________ void AliPMDv0::CreateGeometry() { // - // Create geometry for Photon Multiplicity Detector Version 1 + // Create geometry for Photon Multiplicity Detector Version 3 : + // April 2, 2001 // //Begin_Html /* @@ -202,233 +99,642 @@ void AliPMDv0::CreateGeometry() */ //End_Html - CreatePads(); - CreateInside(); + GetParameters(); + CreateSupermodule(); + CreatePMD(); } - + //_____________________________________________________________________________ -void AliPMDv0::CreateInside() +void AliPMDv0::CreateSupermodule() { // - // Create inside of Pads + // Creates the geometry of the cells, places them in supermodule which + // is a rhombus object. + + // *** DEFINITION OF THE GEOMETRY OF THE PMD *** + // *** HEXAGONAL CELLS WITH CELL RADIUS 0.25 cm (see "GetParameters") + // -- Author : S. Chattopadhyay, 02/04/1999. + + // Basic unit is ECAR, a hexagonal cell made of Ar+CO2, which is placed inside another + // hexagonal cell made of Cu (ECCU) with larger radius, compared to ECAR. The difference + // in radius gives the dimension of half width of each cell wall. + // These cells are placed as 72 x 72 array in a + // rhombus shaped supermodule (EHC1). The rhombus shaped modules are designed + // to have closed packed structure. + // + // Each supermodule (ESMA, ESMB), made of G10 is filled with following components + // EAIR --> Air gap between gas hexagonal cells and G10 backing. + // EHC1 --> Rhombus shaped parallelopiped containing the hexagonal cells + // EAIR --> Air gap between gas hexagonal cells and G10 backing. // - // -- Author : Y.P. VIYOGI, 07/05/1996. - // -- Modified: P.V.K.S.Baba(JU), 15-12-97. + // ESMA, ESMB are placed in EMM1 along with EMPB (Pb converter) + // and EMFE (iron support) + + // EMM1 made of + // ESMB --> Normal supermodule, mirror image of ESMA + // EMPB --> Pb converter + // EMFE --> Fe backing + // ESMA --> Normal supermodule + // + // ESMX, ESMY are placed in EMM2 along with EMPB (Pb converter) + // and EMFE (iron support) + + // EMM2 made of + // ESMY --> Special supermodule, mirror image of ESMX, + // EMPB --> Pb converter + // EMFE --> Fe backing + // ESMX --> First of the two Special supermodules near the hole + + // EMM3 made of + // ESMQ --> Special supermodule, mirror image of ESMX, + // EMPB --> Pb converter + // EMFE --> Fe backing + // ESMP --> Second of the two Special supermodules near the hole + + // EMM2 and EMM3 are used to create the hexagonal HOLE + + // + // EPMD + // | + // | + // --------------------------------------------------------------------------- + // | | | | | + // EHOL EMM1 EMM2 EMM3 EALM + // | | | + // -------------------- -------------------- -------------------- + // | | | | | | | | | | | | + // ESMB EMPB EMFE ESMA ESMY EMPB EMFE ESMX ESMQ EMPB EMFE ESMP + // | | | + // ------------ ------------ ------------- + // | | | | | | | | | + // EAIR EHC1 EAIR EAIR EHC2 EAIR EAIR EHC3 EAIR + // | | | + // ECCU ECCU ECCU + // | | | + // ECAR ECAR ECAR + + + Int_t i, j; + Float_t xb, yb, zb; + Int_t number; + Int_t ihrotm,irotdm; + Int_t *idtmed = fIdtmed->GetArray()-599; + + AliMatrix(ihrotm, 90., 30., 90., 120., 0., 0.); + AliMatrix(irotdm, 90., 180., 90., 270., 180., 0.); + + //Subhasis, dimensional parameters of rhombus (dpara) as given to gsvolu + // rhombus to accomodate 72 x 72 hexagons, and with total 1.2cm extension + //(1mm tolerance on both side and 5mm thick G10 wall) + // + // **** CELL SIZE 20 mm^2 EQUIVALENT + // Inner hexagon filled with gas (Ar+CO2) + + Float_t hexd2[10] = {0.,360.,6,2,-0.25,0.,0.23,0.25,0.,0.23}; + + hexd2[4]= -fgkCellDepth/2.; + hexd2[7]= fgkCellDepth/2.; + hexd2[6]= fgkCellRadius - fgkCellWall; + hexd2[9]= fgkCellRadius - fgkCellWall; - Float_t sipmd[3] = { 300.,300.,5. }; + // Gas replaced by vacuum for v0(insensitive) version of PMD. + + gMC->Gsvolu("ECAR", "PGON", idtmed[697], hexd2,10); + gMC->Gsatt("ECAR", "SEEN", 0); - Int_t i2; + // Outer hexagon made of Copper - Float_t xiqa[4], yiqa[4]; - Int_t inum2, inum3, inum4, i, j, k; - Float_t siqad[4]; - Float_t zd, xd, yd, xp, yp, zp; - Int_t idrotm[100]; + Float_t hexd1[10] = {0.,360.,6,2,-0.25,0.,0.25,0.25,0.,0.25}; + + hexd1[4]= -fgkCellDepth/2.; + hexd1[7]= fgkCellDepth/2.; + hexd1[6]= fgkCellRadius; + hexd1[9]= fgkCellRadius; + + gMC->Gsvolu("ECCU", "PGON", idtmed[614], hexd1,10); + gMC->Gsatt("ECCU", "SEEN", 1); + + // --- place inner hex inside outer hex + + gMC->Gspos("ECAR", 1, "ECCU", 0., 0., 0., 0, "ONLY"); + + // Rhombus shaped supermodules (defined by PARA) - Int_t *idtmed = fIdtmed->GetArray()-599; + // volume for SUPERMODULE + + Float_t dparasm1[6] = {12.5,12.5,0.8,30.,0.,0.}; + dparasm1[0] = (fNcellSM+0.25)*hexd1[6] ; + dparasm1[1] = dparasm1[0] *fgkSqroot3by2; + dparasm1[2] = fSMthick/2.; - // VOLUMES Names : begining with D for all PMD volumes, - // The names of SIZE variables begin with S and have more meaningful - // characters as shown below. + // + gMC->Gsvolu("ESMA","PARA", idtmed[607], dparasm1, 6); + gMC->Gsatt("ESMA", "SEEN", 0); + // + gMC->Gsvolu("ESMB","PARA", idtmed[607], dparasm1, 6); + gMC->Gsatt("ESMB", "SEEN", 0); - // VOLUME SIZE MEDIUM : REMARKS - // ------ ----- ------ : --------------------------- + // Air residing between the PCB and the base + + Float_t dparaair[6] = {12.5,12.5,8.,30.,0.,0.}; + dparaair[0]= dparasm1[0]; + dparaair[1]= dparasm1[1]; + dparaair[2]= fgkThAir/2.; - // DPMD SIPMD AIR : INSIDE PMD and its SIZE - - - - // *** Define the DPMD Volume and fill with air *** - - gMC->Gsvolu("DPMD", "BOX ", idtmed[698], sipmd, 3); - - // *** Define DIQU Volume and fill with air - siqad[0] = sipmd[0] / 2. - 1.; - siqad[1] = sipmd[1] / 2. - 1.; - siqad[2] = sipmd[2]; - gMC->Gsvolu("DIQU","BOX ", idtmed[698], siqad, 3); - gMC->Gsatt("DIQU", "SEEN", 1); - - - // --- Place the modules in INSIDE PMD (DPMD) - // --- FIRST CALCULATE THE COORDINATES OF THE MODULES WHICH CAN BE - // --- ACCOMODATED. - - kdet = 1; - Coordinates(); - - //inum = 0; - zd = 0.; - AliMatrix(idrotm[1], 90., 0., 90., 90., 0., 0.); - AliMatrix(idrotm[2], 90., 180., 90., 90., 0., 0.); - AliMatrix(idrotm[3], 90., 180., 90., 270., 0., 0.); - AliMatrix(idrotm[4], 90., 0., 90., 270., 0., 0.); - // **** Filling the DIQU Vol. (One Quadrant) - inum2 = 0; - inum3 = 0; - inum4 = 0; - for (i = 0; i < maxbox; ++i) { - i2 = maxbox; - for (j = 0; j < i2; ++j) { - if (xbox[j][i] <= 0 && ybox[j][i] <= 0) continue; - xd = xbox[j][i] - siqad[0]; - yd = ybox[j][i] - siqad[1]; - if (pindex[j][i] == 1) { - ++inum2; - gMC->Gsposp("DM11", inum2, "DIQU", xd, yd, zd, 0, "ONLY", smod2, 3); - } - if (pindex[j][i] == 2) { - ++inum3; - gMC->Gsposp("DM12", inum3, "DIQU", xd, yd, zd, 0, "ONLY", smod3, 3); - } - if (pindex[j][i] == 3) { - ++inum4; - gMC->Gsposp("DM13", inum4, "DIQU", xd, yd, zd, 0, "ONLY", smod4, 3); - } - } + gMC->Gsvolu("EAIR","PARA", idtmed[698], dparaair, 6); + gMC->Gsatt("EAIR", "SEEN", 0); + + // volume for honeycomb chamber EHC1 + + Float_t dpara1[6] = {12.5,12.5,0.4,30.,0.,0.}; + dpara1[0] = dparasm1[0]; + dpara1[1] = dparasm1[1]; + dpara1[2] = fgkCellDepth/2.; + + gMC->Gsvolu("EHC1","PARA", idtmed[698], dpara1, 6); + gMC->Gsatt("EHC1", "SEEN", 1); + + // Place hexagonal cells ECCU cells inside EHC1 (72 X 72) + + Int_t xrow = 1; + + yb = -dpara1[1] + (1./fgkSqroot3by2)*hexd1[6]; + zb = 0.; + + for (j = 1; j <= fNcellSM; ++j) { + xb =-(dpara1[0] + dpara1[1]*0.577) + 2*hexd1[6]; //0.577=tan(30deg) + if(xrow >= 2){ + xb = xb+(xrow-1)*hexd1[6]; } - xiqa[0] = siqad[0]; - xiqa[1] = -siqad[0]; - xiqa[2] = xiqa[1]; - xiqa[3] = xiqa[0]; - yiqa[0] = siqad[0]; - yiqa[1] = yiqa[0]; - yiqa[2] = -siqad[0]; - yiqa[3] = yiqa[2]; - i2 = numqu; - for (k = 1; k <= i2; ++k) { - gMC->Gsposp("DIQU", k, "DPMD", xiqa[k-1], yiqa[k-1], zd, idrotm[k], "ONLY", siqad, 3); + for (i = 1; i <= fNcellSM; ++i) { + number = i+(j-1)*fNcellSM; + gMC->Gspos("ECCU", number, "EHC1", xb,yb,zb, ihrotm, "ONLY"); + xb += (hexd1[6]*2.); } - - // --- Place the DPMD in ALICE with front edge 6.0m from vertex --- - xp = 0.; - yp = 0.; - zp = zdist1; - gMC->Gspos("DPMD", 1, "ALIC", xp, yp, zp, 0, "ONLY"); - + xrow = xrow+1; + yb += (hexd1[6]*fgkSqroot3); + } + + + // Place EHC1 and EAIR into ESMA and ESMB + + Float_t zAir1,zAir2,zGas; + + //ESMA is normal supermodule with base at bottom, with EHC1 + zAir1= -dparasm1[2] + fgkThBase + dparaair[2]; + gMC->Gspos("EAIR", 1, "ESMA", 0., 0., zAir1, 0, "ONLY"); + zGas=zAir1+dparaair[2]+ fgkThPCB + dpara1[2]; + //Line below Commented for version 0 of PMD routine + // gMC->Gspos("EHC1", 1, "ESMA", 0., 0., zGas, 0, "ONLY"); + zAir2=zGas+dpara1[2]+ fgkThPCB + dparaair[2]; + gMC->Gspos("EAIR", 2, "ESMA", 0., 0., zAir2, 0, "ONLY"); + + // ESMB is mirror image of ESMA, with base at top, with EHC1 + + zAir1= -dparasm1[2] + fgkThPCB + dparaair[2]; + gMC->Gspos("EAIR", 3, "ESMB", 0., 0., zAir1, 0, "ONLY"); + zGas=zAir1+dparaair[2]+ fgkThPCB + dpara1[2]; + //Line below Commented for version 0 of PMD routine + // gMC->Gspos("EHC1", 2, "ESMB", 0., 0., zGas, 0, "ONLY"); + zAir2=zGas+dpara1[2]+ fgkThPCB + dparaair[2]; + gMC->Gspos("EAIR", 4, "ESMB", 0., 0., zAir2, 0, "ONLY"); + + + // special supermodule EMM2(GEANT only) containing 6 unit modules + // volume for SUPERMODULE + + Float_t dparasm2[6] = {12.5,12.5,0.8,30.,0.,0.}; + dparasm2[0]=(fNcellSM+0.25)*hexd1[6] ; + dparasm2[1] = (fNcellSM - fgkNcellHole + 0.25) * fgkSqroot3by2 * hexd1[6]; + dparasm2[2] = fSMthick/2.; + + gMC->Gsvolu("ESMX","PARA", idtmed[607], dparasm2, 6); + gMC->Gsatt("ESMX", "SEEN", 0); + // + gMC->Gsvolu("ESMY","PARA", idtmed[607], dparasm2, 6); + gMC->Gsatt("ESMY", "SEEN", 0); + + Float_t dpara2[6] = {12.5,12.5,0.4,30.,0.,0.}; + dpara2[0] = dparasm2[0]; + dpara2[1] = dparasm2[1]; + dpara2[2] = fgkCellDepth/2.; + + gMC->Gsvolu("EHC2","PARA", idtmed[698], dpara2, 6); + gMC->Gsatt("EHC2", "SEEN", 1); + + + // Air residing between the PCB and the base + + Float_t dpara2Air[6] = {12.5,12.5,8.,30.,0.,0.}; + dpara2Air[0]= dparasm2[0]; + dpara2Air[1]= dparasm2[1]; + dpara2Air[2]= fgkThAir/2.; + + gMC->Gsvolu("EAIX","PARA", idtmed[698], dpara2Air, 6); + gMC->Gsatt("EAIX", "SEEN", 0); + + // Place hexagonal single cells ECCU inside EHC2 + // skip cells which go into the hole in top left corner. + + xrow=1; + yb = -dpara2[1] + (1./fgkSqroot3by2)*hexd1[6]; + zb = 0.; + for (j = 1; j <= (fNcellSM - fgkNcellHole); ++j) { + xb =-(dpara2[0] + dpara2[1]*0.577) + 2*hexd1[6]; + if(xrow >= 2){ + xb = xb+(xrow-1)*hexd1[6]; + } + for (i = 1; i <= fNcellSM; ++i) { + number = i+(j-1)*fNcellSM; + gMC->Gspos("ECCU", number, "EHC2", xb,yb,zb, ihrotm, "ONLY"); + xb += (hexd1[6]*2.); + } + xrow = xrow+1; + yb += (hexd1[6]*fgkSqroot3); + } + + + // ESMX is normal supermodule with base at bottom, with EHC2 + + zAir1= -dparasm2[2] + fgkThBase + dpara2Air[2]; + gMC->Gspos("EAIX", 1, "ESMX", 0., 0., zAir1, 0, "ONLY"); + zGas=zAir1+dpara2Air[2]+ fgkThPCB + dpara2[2]; + //Line below Commented for version 0 of PMD routine + // gMC->Gspos("EHC2", 1, "ESMX", 0., 0., zGas, 0, "ONLY"); + zAir2=zGas+dpara2[2]+ fgkThPCB + dpara2Air[2]; + gMC->Gspos("EAIX", 2, "ESMX", 0., 0., zAir2, 0, "ONLY"); + + // ESMY is mirror image of ESMX with base at bottom, with EHC2 + + zAir1= -dparasm2[2] + fgkThPCB + dpara2Air[2]; + gMC->Gspos("EAIX", 3, "ESMY", 0., 0., zAir1, 0, "ONLY"); + zGas=zAir1+dpara2Air[2]+ fgkThPCB + dpara2[2]; + //Line below Commented for version 0 of PMD routine + // gMC->Gspos("EHC2", 2, "ESMY", 0., 0., zGas, 0, "ONLY"); + zAir2=zGas+dpara2[2]+ fgkThPCB + dpara2Air[2]; + gMC->Gspos("EAIX", 4, "ESMY", 0., 0., zAir2, 0, "ONLY"); + + // + // special supermodule EMM3 (GEANT only) containing 2 unit modules + // volume for SUPERMODULE + // + Float_t dparaSM3[6] = {12.5,12.5,0.8,30.,0.,0.}; + dparaSM3[0]=(fNcellSM - fgkNcellHole +0.25)*hexd1[6] ; + dparaSM3[1] = (fgkNcellHole + 0.25) * hexd1[6] * fgkSqroot3by2; + dparaSM3[2] = fSMthick/2.; + + gMC->Gsvolu("ESMP","PARA", idtmed[607], dparaSM3, 6); + gMC->Gsatt("ESMP", "SEEN", 0); + // + gMC->Gsvolu("ESMQ","PARA", idtmed[607], dparaSM3, 6); + gMC->Gsatt("ESMQ", "SEEN", 0); + + Float_t dpara3[6] = {12.5,12.5,0.4,30.,0.,0.}; + dpara3[0] = dparaSM3[0]; + dpara3[1] = dparaSM3[1]; + dpara3[2] = fgkCellDepth/2.; + + gMC->Gsvolu("EHC3","PARA", idtmed[698], dpara3, 6); + gMC->Gsatt("EHC3", "SEEN", 1); + + // Air residing between the PCB and the base + + Float_t dpara3Air[6] = {12.5,12.5,8.,30.,0.,0.}; + dpara3Air[0]= dparaSM3[0]; + dpara3Air[1]= dparaSM3[1]; + dpara3Air[2]= fgkThAir/2.; + + gMC->Gsvolu("EAIP","PARA", idtmed[698], dpara3Air, 6); + gMC->Gsatt("EAIP", "SEEN", 0); + + + // Place hexagonal single cells ECCU inside EHC3 + // skip cells which go into the hole in top left corner. + + xrow=1; + yb = -dpara3[1] + (1./fgkSqroot3by2)*hexd1[6]; + zb = 0.; + for (j = 1; j <= fgkNcellHole; ++j) { + xb =-(dpara3[0] + dpara3[1]*0.577) + 2*hexd1[6]; + if(xrow >= 2){ + xb = xb+(xrow-1)*hexd1[6]; + } + for (i = 1; i <= (fNcellSM - fgkNcellHole); ++i) { + number = i+(j-1)*(fNcellSM - fgkNcellHole); + gMC->Gspos("ECCU", number, "EHC3", xb,yb,zb, ihrotm, "ONLY"); + xb += (hexd1[6]*2.); + } + xrow = xrow+1; + yb += (hexd1[6]*fgkSqroot3); + } + + // ESMP is normal supermodule with base at bottom, with EHC3 + + zAir1= -dparaSM3[2] + fgkThBase + dpara3Air[2]; + gMC->Gspos("EAIP", 1, "ESMP", 0., 0., zAir1, 0, "ONLY"); + zGas=zAir1+dpara3Air[2]+ fgkThPCB + dpara3[2]; + //Line below Commented for version 0 of PMD routine + // gMC->Gspos("EHC3", 1, "ESMP", 0., 0., zGas, 0, "ONLY"); + zAir2=zGas+dpara3[2]+ fgkThPCB + dpara3Air[2]; + gMC->Gspos("EAIP", 2, "ESMP", 0., 0., zAir2, 0, "ONLY"); + + // ESMQ is mirror image of ESMP with base at bottom, with EHC3 + + zAir1= -dparaSM3[2] + fgkThPCB + dpara3Air[2]; + gMC->Gspos("EAIP", 3, "ESMQ", 0., 0., zAir1, 0, "ONLY"); + zGas=zAir1+dpara3Air[2]+ fgkThPCB + dpara3[2]; + //Line below Commented for version 0 of PMD routine + // gMC->Gspos("EHC3", 2, "ESMQ", 0., 0., zGas, 0, "ONLY"); + zAir2=zGas+dpara3[2]+ fgkThPCB + dpara3Air[2]; + gMC->Gspos("EAIP", 4, "ESMQ", 0., 0., zAir2, 0, "ONLY"); + } //_____________________________________________________________________________ -void AliPMDv0::CreatePads() + +void AliPMDv0::CreatePMD() { // - // Create the geometry of the pads - // *** DEFINITION OF THE GEOMETRY OF THE PMD *** - // *** DIFFERENT PADS WITH SIZES 8 MM, 10 MM, 12 MM AND 15 MM SQUARE - // -- Author : Y.P. VIYOGI, 04/06/1997. - // -- Modified: P.V.K.S.Baba(JU), 13-12-97. - - Int_t npad2; - Float_t /* scpv1[3], */ scpv2[3] /*, scpv3[3], scpv4[3] */; - Float_t spsw1[3], spsw2[3];//, spsw3[3], spsw4[3]; - Float_t sw[3], xc, yc, zc; - Float_t sfe[3]; - Float_t spb[3], pad1, pad2, pad3, pad4; - // VOLUMES Names : begining with D for all PMD volumes, - - // DM11 : MODULE TYPE + // Create final detector from supermodules + // + // -- Author : Y.P. VIYOGI, 07/05/1996. + // -- Modified: P.V.K.S.Baba(JU), 15-12-97. + // -- Modified: For New Geometry YPV, March 2001. + + Float_t xp, yp, zp; + Int_t i,j; + Int_t nummod; + Int_t jhrot12,jhrot13, irotdm; + Int_t *idtmed = fIdtmed->GetArray()-599; + // VOLUMES Names : begining with "E" for all PMD volumes, // The names of SIZE variables begin with S and have more meaningful // characters as shown below. - // VOLUME SIZE MEDIUM : REMARKS // ------ ----- ------ : --------------------------- - - // DPPB SPB PB : PB Converter and its SIZE - // DPFE SFE FE : FE Support Plate and its SIZE - - // DW11 SPSW3 G10 : PRESHOWER - // DV11 SCPV3 G10 : CPV - // ****************** VOLUME TREE ****************** - - // DM11 (Module) - // | - // | - // ------------------------------------------------- - // | | | | - // | | | | - // DV11( CPV) DPFE DPPB DW11(Preshower) - // ************************************************************ - + // EPMD GASPMD AIR : INSIDE PMD and its SIZE + // *** Define the EPMD Volume and fill with air *** + // Gaspmd, the dimension of HEXAGONAL mother volume of PMD, + + + Float_t gaspmd[10] = {0.,360.,6,2,-4.,12.,150.,4.,12.,150.}; + + gaspmd[5] = fgkNcellHole * fgkCellRadius * 2. * fgkSqroot3by2; + gaspmd[8] = gaspmd[5]; + + gMC->Gsvolu("EPMD", "PGON", idtmed[698], gaspmd, 10); + gMC->Gsatt("EPMD", "SEEN", 0); + + AliMatrix(irotdm, 90., 0., 90., 90., 180., 0.); + + AliMatrix(jhrot12, 90., 120., 90., 210., 0., 0.); + AliMatrix(jhrot13, 90., 240., 90., 330., 0., 0.); + + + Float_t dmthick = 2. * fSMthick + fgkThLead + fgkThSteel; + + // dparaemm1 array contains parameters of the imaginary volume EMM1, + // EMM1 is a master module of type 1, which has 24 copies in the PMD. + // EMM1 : normal volume as in old cases + + + Float_t dparaemm1[6] = {12.5,12.5,0.8,30.,0.,0.}; + dparaemm1[0] = fSMLength/2.; + dparaemm1[1] = dparaemm1[0] *fgkSqroot3by2; + dparaemm1[2] = dmthick/2.; + + gMC->Gsvolu("EMM1","PARA", idtmed[698], dparaemm1, 6); + gMC->Gsatt("EMM1", "SEEN", 1); + + // + // --- DEFINE Modules, iron, and lead volumes + // Pb Convertor for EMM1 + + Float_t dparapb1[6] = {12.5,12.5,8.,30.,0.,0.}; + dparapb1[0] = fSMLength/2.; + dparapb1[1] = dparapb1[0] * fgkSqroot3by2; + dparapb1[2] = fgkThLead/2.; + + gMC->Gsvolu("EPB1","PARA", idtmed[600], dparapb1, 6); + gMC->Gsatt ("EPB1", "SEEN", 0); + + // Fe Support for EMM1 + Float_t dparafe1[6] = {12.5,12.5,8.,30.,0.,0.}; + dparafe1[0] = dparapb1[0]; + dparafe1[1] = dparapb1[1]; + dparafe1[2] = fgkThSteel/2.; + + gMC->Gsvolu("EFE1","PARA", idtmed[618], dparafe1, 6); + gMC->Gsatt ("EFE1", "SEEN", 0); + + // + // position supermodule ESMA, ESMB, EPB1, EFE1 inside EMM1 + + Float_t zps,zpb,zfe,zcv; + + zps = -dparaemm1[2] + fSMthick/2.; + gMC->Gspos("ESMB", 1, "EMM1", 0., 0., zps, 0, "ONLY"); + zpb = zps+fSMthick/2.+dparapb1[2]; + gMC->Gspos("EPB1", 1, "EMM1", 0., 0., zpb, 0, "ONLY"); + zfe = zpb+dparapb1[2]+dparafe1[2]; + gMC->Gspos("EFE1", 1, "EMM1", 0., 0., zfe, 0, "ONLY"); + zcv = zfe+dparafe1[2]+fSMthick/2.; + gMC->Gspos("ESMA", 1, "EMM1", 0., 0., zcv, 0, "ONLY"); + + // EMM2 : special master module having full row of cells but the number + // of rows limited by hole. + + Float_t dparaemm2[6] = {12.5,12.5,0.8,30.,0.,0.}; + dparaemm2[0] = fSMLength/2.; + dparaemm2[1] = (fNcellSM - fgkNcellHole + 0.25)*fgkCellRadius*fgkSqroot3by2; + dparaemm2[2] = dmthick/2.; + + gMC->Gsvolu("EMM2","PARA", idtmed[698], dparaemm2, 6); + gMC->Gsatt("EMM2", "SEEN", 1); + + // Pb Convertor for EMM2 + Float_t dparapb2[6] = {12.5,12.5,8.,30.,0.,0.}; + dparapb2[0] = dparaemm2[0]; + dparapb2[1] = dparaemm2[1]; + dparapb2[2] = fgkThLead/2.; + + gMC->Gsvolu("EPB2","PARA", idtmed[600], dparapb2, 6); + gMC->Gsatt ("EPB2", "SEEN", 0); + + // Fe Support for EMM2 + Float_t dparafe2[6] = {12.5,12.5,8.,30.,0.,0.}; + dparafe2[0] = dparapb2[0]; + dparafe2[1] = dparapb2[1]; + dparafe2[2] = fgkThSteel/2.; + + gMC->Gsvolu("EFE2","PARA", idtmed[618], dparafe2, 6); + gMC->Gsatt ("EFE2", "SEEN", 0); + + // position supermodule ESMX, ESMY inside EMM2 + + zps = -dparaemm2[2] + fSMthick/2.; + gMC->Gspos("ESMY", 1, "EMM2", 0., 0., zps, 0, "ONLY"); + zpb = zps + fSMthick/2.+dparapb2[2]; + gMC->Gspos("EPB2", 1, "EMM2", 0., 0., zpb, 0, "ONLY"); + zfe = zpb + dparapb2[2]+dparafe2[2]; + gMC->Gspos("EFE2", 1, "EMM2", 0., 0., zfe, 0, "ONLY"); + zcv = zfe + dparafe2[2]+fSMthick/2.; + gMC->Gspos("ESMX", 1, "EMM2", 0., 0., zcv, 0, "ONLY"); + // + // EMM3 : special master module having truncated rows and columns of cells + // limited by hole. + + Float_t dparaemm3[6] = {12.5,12.5,0.8,30.,0.,0.}; + dparaemm3[0] = dparaemm2[1]/fgkSqroot3by2; + dparaemm3[1] = (fgkNcellHole + 0.25) * fgkCellRadius *fgkSqroot3by2; + dparaemm3[2] = dmthick/2.; + + gMC->Gsvolu("EMM3","PARA", idtmed[698], dparaemm3, 6); + gMC->Gsatt("EMM3", "SEEN", 1); + + // Pb Convertor for EMM3 + Float_t dparapb3[6] = {12.5,12.5,8.,30.,0.,0.}; + dparapb3[0] = dparaemm3[0]; + dparapb3[1] = dparaemm3[1]; + dparapb3[2] = fgkThLead/2.; + + gMC->Gsvolu("EPB3","PARA", idtmed[600], dparapb3, 6); + gMC->Gsatt ("EPB3", "SEEN", 0); + + // Fe Support for EMM3 + Float_t dparafe3[6] = {12.5,12.5,8.,30.,0.,0.}; + dparafe3[0] = dparapb3[0]; + dparafe3[1] = dparapb3[1]; + dparafe3[2] = fgkThSteel/2.; + + gMC->Gsvolu("EFE3","PARA", idtmed[618], dparafe3, 6); + gMC->Gsatt ("EFE3", "SEEN", 0); + + // position supermodule ESMP, ESMQ inside EMM3 + + zps = -dparaemm3[2] + fSMthick/2.; + gMC->Gspos("ESMQ", 1, "EMM3", 0., 0., zps, 0, "ONLY"); + zpb = zps + fSMthick/2.+dparapb3[2]; + gMC->Gspos("EPB3", 1, "EMM3", 0., 0., zpb, 0, "ONLY"); + zfe = zpb + dparapb3[2]+dparafe3[2]; + gMC->Gspos("EFE3", 1, "EMM3", 0., 0., zfe, 0, "ONLY"); + zcv = zfe + dparafe3[2] + fSMthick/2.; + gMC->Gspos("ESMP", 1, "EMM3", 0., 0., zcv, 0, "ONLY"); + // + + // EHOL is a tube structure made of air + // + //Float_t d_hole[3]; + //d_hole[0] = 0.; + //d_hole[1] = fgkNcellHole * fgkCellRadius *2. * fgkSqroot3by2 + boundary; + //d_hole[2] = dmthick/2.; + // + //gMC->Gsvolu("EHOL", "TUBE", idtmed[698], d_hole, 3); + //gMC->Gsatt("EHOL", "SEEN", 1); + + //Al-rod as boundary of the supermodules + + Float_t alRod[3] ; + alRod[0] = fSMLength * 3/2. - gaspmd[5]/2 - fgkBoundary ; + alRod[1] = fgkBoundary; + alRod[2] = dmthick/2.; + + gMC->Gsvolu("EALM","BOX ", idtmed[698], alRod, 3); + gMC->Gsatt ("EALM", "SEEN", 1); + Float_t xalm[3]; + xalm[0]=alRod[0] + gaspmd[5] + 3.0*fgkBoundary; + xalm[1]=-xalm[0]/2.; + xalm[2]=xalm[1]; + + Float_t yalm[3]; + yalm[0]=0.; + yalm[1]=xalm[0]*fgkSqroot3by2; + yalm[2]=-yalm[1]; + + // delx = full side of the supermodule + Float_t delx=fSMLength * 3.; + Float_t x1= delx*fgkSqroot3by2 /2.; + Float_t x4=delx/4.; + + // placing master modules and Al-rod in PMD + + Float_t dx = fSMLength; + Float_t dy = dx * fgkSqroot3by2; + Float_t xsup[9] = {-dx/2., dx/2., 3.*dx/2., + -dx, 0., dx, + -3.*dx/2., -dx/2., dx/2.}; + + Float_t ysup[9] = {dy, dy, dy, + 0., 0., 0., + -dy, -dy, -dy}; + + // xpos and ypos are the x & y coordinates of the centres of EMM1 volumes + + Float_t xoff = fgkBoundary * TMath::Tan(fgkPi/6.); + Float_t xmod[3]={x4 + xoff , x4 + xoff, -2.*x4-fgkBoundary/fgkSqroot3by2}; + Float_t ymod[3] = {-x1 - fgkBoundary, x1 + fgkBoundary, 0.}; + Float_t xpos[9], ypos[9], x2, y2, x3, y3; + + Float_t xemm2 = fSMLength/2. - + (fNcellSM + fgkNcellHole + 0.25) * fgkCellRadius * 0.5 + + xoff; + Float_t yemm2 = -(fNcellSM + fgkNcellHole + 0.25)*fgkCellRadius*fgkSqroot3by2 + - fgkBoundary; + + Float_t xemm3 = (fNcellSM + 0.5 * fgkNcellHole + 0.25) * fgkCellRadius + + xoff; + Float_t yemm3 = - (fgkNcellHole - 0.25) * fgkCellRadius * fgkSqroot3by2 - + fgkBoundary; + + Float_t theta[3] = {0., 2.*fgkPi/3., 4.*fgkPi/3.}; + Int_t irotate[3] = {0, jhrot12, jhrot13}; + + nummod=0; + for (j=0; j<3; ++j) { + gMC->Gspos("EALM", j+1, "EPMD", xalm[j],yalm[j], 0., irotate[j], "ONLY"); + x2=xemm2*TMath::Cos(theta[j]) - yemm2*TMath::Sin(theta[j]); + y2=xemm2*TMath::Sin(theta[j]) + yemm2*TMath::Cos(theta[j]); + + gMC->Gspos("EMM2", j+1, "EPMD", x2,y2, 0., irotate[j], "ONLY"); + + x3=xemm3*TMath::Cos(theta[j]) - yemm3*TMath::Sin(theta[j]); + y3=xemm3*TMath::Sin(theta[j]) + yemm3*TMath::Cos(theta[j]); + + gMC->Gspos("EMM3", j+4, "EPMD", x3,y3, 0., irotate[j], "ONLY"); + + for (i=1; i<9; ++i) { + xpos[i]=xmod[j] + xsup[i]*TMath::Cos(theta[j]) - + ysup[i]*TMath::Sin(theta[j]); + ypos[i]=ymod[j] + xsup[i]*TMath::Sin(theta[j]) + + ysup[i]*TMath::Cos(theta[j]); + + AliDebugClass(1,Form("xpos: %f, ypos: %f", xpos[i], ypos[i])); + + nummod = nummod+1; + + AliDebugClass(1,Form("nummod %d",nummod)); + + gMC->Gspos("EMM1", nummod + 6, "EPMD", xpos[i],ypos[i], 0., irotate[j], "ONLY"); + + } + } - Int_t *idtmed = fIdtmed->GetArray()-599; + // place EHOL in the centre of EPMD + // gMC->Gspos("EHOL", 1, "EPMD", 0.,0.,0., 0, "ONLY"); - thgas = fPar[2]; - thmin = fIn[0]; - thmax = fIn[1]; - zdist1 = fIn[2]; - zdist = TMath::Abs(zdist1); - thlow = fIn[3]; - thhigh = fIn[4]; - edge = fGeo[1]; - numqu = Int_t(fGeo[2]); - - pad1 = fPadSize[0]; - pad2 = fPadSize[1]; - pad3 = fPadSize[2]; - pad4 = fPadSize[3]; - npad2 = Int_t(24/fPadSize[1]); - - spsw2[0] = (npad2 * pad2)/2 + edge; - spsw2[1] = spsw2[0]; - spsw2[2] = (thgas + .4) / 2; - scpv2[0] = spsw2[0]; - scpv2[1] = spsw2[1]; - scpv2[2] = spsw2[2]; -// The modules (DW11 and DV11 are filed with gas, G10 plate is ignored) - gMC->Gsvolu("DW11","BOX ", idtmed[604], spsw2, 3); - gMC->Gsatt("DW11", "SEEN", 1); - gMC->Gsvolu("DV11","BOX ", idtmed[604], spsw2, 3); - gMC->Gsatt("DV11", "SEEN", 1); - - // --- DEFINE MODULES, IRON, TUNGSTEN AND LEAD VOLUMES - - - spb[0] = spsw1[0]; - spb[1] = spsw1[1]; - spb[2] = .75; - gMC->Gsvolu("DPPB","BOX ", idtmed[600], spb, 3); - gMC->Gsatt("DPPB", "SEEN", 1); - - sw[0] = spsw1[0]; - sw[1] = spsw1[1]; - sw[2] = 0.9/2.; - gMC->Gsvolu("DPW ","BOX ", idtmed[600], sw, 3); - gMC->Gsatt("DPW ", "SEEN", 1); - - sfe[0] = spsw1[0]; - sfe[1] = spsw1[1]; - sfe[2] = 0.6/2.; - gMC->Gsvolu("DPFE","BOX ", idtmed[605], sfe, 3); - gMC->Gsatt("DPFE", "SEEN", 1); - - smod2[0] = spsw2[0]; - smod2[1] = smod2[0]; - smod2[2] = spsw2[2] + sfe[2] + spb[2] + scpv2[2]; - gMC->Gsvolu("DM11", "BOX ", idtmed[698], smod2, 3); - - // --- place gas box (as CPV), iron support, lead converter and gas box - // --- (preshower) in the module - xc = 0.; - yc = 0.; - // --- First the CPV box - zc = -(spsw2[2] + sfe[2] + spb[2] + spsw2[2]) + spsw2[2]; - gMC->Gspos("DV11", 1, "DM11", xc, yc, zc, 0, "ONLY"); - // --- Then iron support plate - zc = zc + sfe[2] + spsw2[2]; - gMC->Gspos("DPFE", 1, "DM11", xc, yc, zc, 0, "ONLY"); - // --- Then lead converter plate - zc = zc + sfe[2] + spb[2]; - gMC->Gspos("DPPB", 1, "DM11", xc, yc, zc, 0, "ONLY"); - // --- Lastly the preshower box - zc = zc + spb[2] + spsw2[2]; - gMC->Gspos("DW11", 1, "DM11", xc, yc, zc, 0, "ONLY"); + // --- Place the EPMD in ALICE + xp = 0.; + yp = 0.; + zp = fgkZdist; + gMC->Gspos("EPMD", 1, "ALIC", xp,yp,zp, 0, "ONLY"); + } + //_____________________________________________________________________________ -void AliPMDv0::DrawModule() +void AliPMDv0::DrawModule() const { // // Draw a shaded view of the Photon Multiplicity Detector @@ -439,14 +745,14 @@ void AliPMDv0::DrawModule() // // Set the visibility of the components // - gMC->Gsatt("DW11","seen",0); - gMC->Gsatt("DV11","seen",0); - gMC->Gsatt("DPPB","seen",1); - gMC->Gsatt("DPW ","seen",1); - gMC->Gsatt("DPFE","seen",1); - gMC->Gsatt("DM11","seen",1); - gMC->Gsatt("DPMD","seen",0); - gMC->Gsatt("DIQU","seen",0); + gMC->Gsatt("ECAR","seen",0); + gMC->Gsatt("ECCU","seen",1); + gMC->Gsatt("EHC1","seen",1); + gMC->Gsatt("EHC1","seen",1); + gMC->Gsatt("EHC2","seen",1); + gMC->Gsatt("EMM1","seen",1); + gMC->Gsatt("EHOL","seen",1); + gMC->Gsatt("EPMD","seen",0); // gMC->Gdopt("hide", "on"); gMC->Gdopt("shad", "on"); @@ -454,9 +760,10 @@ void AliPMDv0::DrawModule() gMC->SetClipBox("."); gMC->SetClipBox("*", 0, 3000, -3000, 3000, -6000, 6000); gMC->DefaultRange(); - gMC->Gdraw("alic", 40, 30, 0, 22, 15.5, .04, .04); + gMC->Gdraw("alic", 40, 30, 0, 22, 20.5, .02, .02); gMC->Gdhead(1111, "Photon Multiplicity Detector Version 1"); - gMC->Gdman(17, 5, "MAN"); + + //gMC->Gdman(17, 5, "MAN"); gMC->Gdopt("hide", "off"); } @@ -464,75 +771,111 @@ void AliPMDv0::DrawModule() void AliPMDv0::CreateMaterials() { // - // Create materials for the PMD version 1 + // Create materials for the PMD // // ORIGIN : Y. P. VIYOGI // - // --- The Argon- CO2 mixture --- - Float_t ag[2] = { 39.95 }; - Float_t zg[2] = { 18. }; - Float_t wg[2] = { .8,.2 }; - Float_t dar = .001782; // --- Ar density in g/cm3 --- - // --- CO2 --- - Float_t ac[2] = { 12.,16. }; - Float_t zc[2] = { 6.,8. }; - Float_t wc[2] = { 1.,2. }; - Float_t dc = .001977; - Float_t dco = .002; // --- CO2 density in g/cm3 --- - - Float_t absl, radl, a, d, z; - Float_t dg; - Float_t x0ar; - Float_t buf[1]; - Int_t nbuf; - - Int_t *idtmed = fIdtmed->GetArray()-599; - Int_t isxfld = gAlice->Field()->Integ(); - Float_t sxmgmx = gAlice->Field()->Max(); + // cout << " Inside create materials " << endl; + + Int_t isxfld = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Integ(); + Float_t sxmgmx = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Max(); // --- Define the various materials for GEANT --- + AliMaterial(1, "Pb $", 207.19, 82., 11.35, .56, 18.5); - x0ar = 19.55 / dar; - AliMaterial(2, "Argon$", 39.95, 18., dar, x0ar, 6.5e4); - AliMixture(3, "CO2 $", ac, zc, dc, -2, wc); + + // Argon + + Float_t dAr = 0.001782; // --- Ar density in g/cm3 --- + Float_t x0Ar = 19.55 / dAr; + AliMaterial(2, "Argon$", 39.95, 18., dAr, x0Ar, 6.5e4); + + // --- CO2 --- + + Float_t aCO2[2] = { 12.,16. }; + Float_t zCO2[2] = { 6.,8. }; + Float_t wCO2[2] = { 1.,2. }; + Float_t dCO2 = 0.001977; + AliMixture(3, "CO2 $", aCO2, zCO2, dCO2, -2, wCO2); + AliMaterial(4, "Al $", 26.98, 13., 2.7, 8.9, 18.5); + + // ArCO2 + + Float_t aArCO2[3] = {39.948,12.0107,15.9994}; + Float_t zArCO2[3] = {18.,6.,8.}; + Float_t wArCO2[3] = {0.7,0.08,0.22}; + Float_t dArCO2 = dAr * 0.7 + dCO2 * 0.3; + AliMixture(5, "ArCO2$", aArCO2, zArCO2, dArCO2, 3, wArCO2); + AliMaterial(6, "Fe $", 55.85, 26., 7.87, 1.76, 18.5); - AliMaterial(7, "W $", 183.85, 74., 19.3, .35, 10.3); - AliMaterial(8, "G10 $", 20., 10., 1.7, 19.4, 999); - AliMaterial(9, "SILIC$", 28.09, 14., 2.33, 9.36, 45.); - AliMaterial(10, "Be $", 9.01, 4., 1.848, 35.3, 36.7); - AliMaterial(15, "Cu $", 63.54, 29., 8.96, 1.43, 15.); - AliMaterial(16, "C $", 12.01, 6., 2.265, 18.8, 49.9); - - AliMaterial(96, "MYLAR$", 8.73, 4.55, 1.39, 28.7, 62.); - AliMaterial(97, "CONCR$", 20., 10., 2.5, 10.7, 40.); - AliMaterial(98, "Vacum$", 1e-9, 1e-9, 1e-9, 1e16, 1e16); - AliMaterial(99, "Air $", 14.61, 7.3, .0012, 30420., 67500.); - - // define gas-mixtures + + // G10 - char namate[21]; - gMC->Gfmate((*fIdmate)[3], namate, a, z, d, radl, absl, buf, nbuf); - ag[1] = a; - zg[1] = z; - dg = (dar * 4 + dco) / 5; - AliMixture(5, "ArCO2$", ag, zg, dg, 2, wg); + Float_t aG10[4]={1.,12.011,15.9994,28.086}; + Float_t zG10[4]={1.,6.,8.,14.}; + //PH Float_t wG10[4]={0.148648649,0.104054054,0.483499056,0.241666667}; + Float_t wG10[4]={0.15201,0.10641,0.49444,0.24714}; + AliMixture(8,"G10",aG10,zG10,1.7,4,wG10); + AliMaterial(15, "Cu $", 63.54, 29., 8.96, 1.43, 15.); + + // Steel + Float_t aSteel[4] = { 55.847,51.9961,58.6934,28.0855 }; + Float_t zSteel[4] = { 26.,24.,28.,14. }; + Float_t wSteel[4] = { .715,.18,.1,.005 }; + Float_t dSteel = 7.88; + AliMixture(19, "STAINLESS STEEL$", aSteel, zSteel, dSteel, 4, wSteel); + + //Air + + Float_t aAir[4]={12.0107,14.0067,15.9994,39.948}; + Float_t zAir[4]={6.,7.,8.,18.}; + Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827}; + Float_t dAir1 = 1.20479E-10; + Float_t dAir = 1.20479E-3; + AliMixture(98, "Vacum$", aAir, zAir, dAir1, 4, wAir); + AliMixture(99, "Air $", aAir, zAir, dAir , 4, wAir); + // Define tracking media - AliMedium(1, "Pb conv.$", 1, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); - AliMedium(7, "W conv.$", 7, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); - AliMedium(8, "G10plate$", 8, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); - AliMedium(4, "Al $", 4, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); - AliMedium(6, "Fe $", 6, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); - AliMedium(5, "ArCO2 $", 5, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1); - AliMedium(9, "SILICON $", 9, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1); - AliMedium(10, "Be $", 10, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); - AliMedium(98, "Vacuum $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .1, 10); - AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .1, .1); - AliMedium(15, "Cu $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); - AliMedium(16, "C $", 16, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); - + AliMedium(1, "Pb conv.$", 1, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); + AliMedium(4, "Al $", 4, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); + AliMedium(5, "ArCO2 $", 5, 1, 0, isxfld, sxmgmx, .1, .1, .10, .1); + AliMedium(6, "Fe $", 6, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); + AliMedium(8, "G10plate$", 8, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); + AliMedium(15, "Cu $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); + AliMedium(19, "S steel$", 19, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); + AliMedium(98, "Vacuum $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .10, 10); + AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .10, .1); + +} + +//_____________________________________________________________________________ +void AliPMDv0::Init() +{ + // + // Initialises PMD detector after it has been built + // + Int_t i; + // kdet=1; + // + if(AliLog::GetGlobalDebugLevel()>0) { + printf("\n%s: ",ClassName()); + for(i=0;i<35;i++) printf("*"); + printf(" PMD_INIT "); + for(i=0;i<35;i++) printf("*"); + printf("\n%s: ",ClassName()); + printf(" PMD simulation package (v0) initialised\n"); + printf("%s: parameters of pmd\n", ClassName()); + printf("%s: %10.2f %10.2f %10.2f \ + %10.2f\n",ClassName(),fgkCellRadius,fgkCellWall,fgkCellDepth,fgkZdist ); + printf("%s: ",ClassName()); + for(i=0;i<80;i++) printf("*"); + printf("\n"); + } + Int_t *idtmed = fIdtmed->GetArray()-599; + fMedSens=idtmed[605-1]; // --- Generate explicitly delta rays in the iron, aluminium and lead --- gMC->Gstpar(idtmed[600], "LOSS", 3.); gMC->Gstpar(idtmed[600], "DRAY", 1.); @@ -570,10 +913,10 @@ void AliPMDv0::CreateMaterials() gMC->Gstpar(idtmed[603], "CUTELE", 1e-4); gMC->Gstpar(idtmed[603], "CUTNEU", 1e-4); gMC->Gstpar(idtmed[603], "CUTHAD", 1e-4); - gMC->Gstpar(idtmed[609], "CUTGAM", 1e-4); - gMC->Gstpar(idtmed[609], "CUTELE", 1e-4); - gMC->Gstpar(idtmed[609], "CUTNEU", 1e-4); - gMC->Gstpar(idtmed[609], "CUTHAD", 1e-4); +// gMC->Gstpar(idtmed[609], "CUTGAM", 1e-4); +// gMC->Gstpar(idtmed[609], "CUTELE", 1e-4); +// gMC->Gstpar(idtmed[609], "CUTNEU", 1e-4); +// gMC->Gstpar(idtmed[609], "CUTHAD", 1e-4); // --- Prevent particles stopping in the gas due to energy cut-off --- gMC->Gstpar(idtmed[604], "CUTGAM", 1e-5); @@ -583,31 +926,6 @@ void AliPMDv0::CreateMaterials() gMC->Gstpar(idtmed[604], "CUTMUO", 1e-5); } -//_____________________________________________________________________________ -void AliPMDv0::Init() -{ - // - // Initialises PMD detector after it has been built - // - Int_t i; - kdet=1; - // - printf("\n"); - for(i=0;i<35;i++) printf("*"); - printf(" PMD_INIT "); - for(i=0;i<35;i++) printf("*"); - printf("\n"); - printf(" PMD simulation package initialised\n"); - printf(" parameters of pmd\n"); - printf("%6d %10.2f %10.2f %10.2f %10.2f %10.2f\n",kdet,thmin,thmax,zdist,thlow,thhigh); - // - for(i=0;i<80;i++) printf("*"); - printf("\n"); - // - Int_t *idtmed = fIdtmed->GetArray()-599; - fMedSens=idtmed[605-1]; -} - //_____________________________________________________________________________ void AliPMDv0::StepManager() { @@ -618,25 +936,66 @@ void AliPMDv0::StepManager() Float_t hits[4], destep; Float_t center[3] = {0,0,0}; Int_t vol[5]; - const char* namep; + //char *namep; + + if(gMC->CurrentMedium() == fMedSens && (destep = gMC->Edep())) { - if(gMC->GetMedium() == fMedSens && (destep = gMC->Edep())) { - gMC->CurrentVolID(copy); + + //namep=gMC->CurrentVolName(); + //printf("Current vol is %s \n",namep); + vol[0]=copy; gMC->CurrentVolOffID(1,copy); + + //namep=gMC->CurrentVolOffName(1); + //printf("Current vol 11 is %s \n",namep); + vol[1]=copy; gMC->CurrentVolOffID(2,copy); - namep=gMC->CurrentVolOffName(2); + + //namep=gMC->CurrentVolOffName(2); + //printf("Current vol 22 is %s \n",namep); + vol[2]=copy; - if(strncmp(namep,"DW11",4))vol[2]=1; - if(strncmp(namep,"DV11",4))vol[2]=2; + + // if(strncmp(namep,"EHC1",4))vol[2]=1; + gMC->CurrentVolOffID(3,copy); + + //namep=gMC->CurrentVolOffName(3); + //printf("Current vol 33 is %s \n",namep); + vol[3]=copy; gMC->CurrentVolOffID(4,copy); + + //namep=gMC->CurrentVolOffName(4); + //printf("Current vol 44 is %s \n",namep); + vol[4]=copy; + //printf("volume number %d,%d,%d,%d,%d,%f \n",vol[0],vol[1],vol[2],vol[3],vol[4],destep*1000000); + gMC->Gdtom(center,hits,1); hits[3] = destep*1e9; //Number in eV - AddHit(gAlice->CurrentTrack(), vol, hits); + AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); } } + + +//------------------------------------------------------------------------ +// Get parameters + +void AliPMDv0::GetParameters() +{ + // This gives all the parameters of the detector + // such as Length of Supermodules + // thickness of the Supermodule + // + Int_t ncellum, numum; + ncellum = 24; + numum = 3; + fNcellSM = ncellum * numum; //no. of cells in a row in one supermodule + fSMLength = (fNcellSM + 0.25 )*fgkCellRadius*2.; + fSMthick = fgkThBase + fgkThAir + fgkThPCB + fgkCellDepth + + fgkThPCB + fgkThAir + fgkThPCB; +}