X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=PMD%2FAliPMDv1.cxx;h=0f9e2fb640d5f337281e23f85ae7a2a99a53525d;hb=b5d461fff222d5220eb83d26ea639163e404fd49;hp=15efba1b4530c5c508ef53a593026c93db3ff204;hpb=a694ef0506cccb5af2b0cdcd1bfb136ec011e49c;p=u%2Fmrichter%2FAliRoot.git diff --git a/PMD/AliPMDv1.cxx b/PMD/AliPMDv1.cxx index 15efba1b453..0f9e2fb640d 100644 --- a/PMD/AliPMDv1.cxx +++ b/PMD/AliPMDv1.cxx @@ -1,4 +1,4 @@ -/************************************************************************** +/*************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * @@ -12,594 +12,2389 @@ * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ +/* $Id$ */ +// +/////////////////////////////////////////////////////////////////////////////// +// // +// Photon Multiplicity Detector Version 1 // +// Bedanga Mohanty : February 14th 2006 +//--------------------------------------------------- +// ALICE PMD FEE BOARDS IMPLEMENTATION +// Dt: 25th February 2006 +// M.M. Mondal, S.K. Prasad and P.K. Netrakanti +//--------------------------------------------------- +// Create final detector from Unit Modules +// Author : Bedanga and Viyogi June 2003 +//--------------------------------------------------- +// Modified by +// Dr. Y.P. Viyogi and Ranbir Singh +// Dt: 2nd February 2009 +// +//Begin_Html /* -$Log$ -Revision 1.6 1999/09/29 09:24:28 fca -Introduction of the Copyright and cvs Log + +*/ +//End_Html +// // +///////////////////////////////////////////////////////////////////////////// +//// + +#include +#include +#include +#include + +#include "AliConst.h" +#include "AliLog.h" +#include "AliMC.h" +#include "AliMagF.h" +#include "AliPMDv1.h" +#include "AliRun.h" +#include "AliTrackReference.h" + +const Int_t AliPMDv1::fgkNcolUM1 = 48; // Number of cols in UM, type 1 +const Int_t AliPMDv1::fgkNcolUM2 = 96; // Number of cols in UM, type 2 +const Int_t AliPMDv1::fgkNrowUM1 = 96; // Number of rows in UM, type 1 +const Int_t AliPMDv1::fgkNrowUM2 = 48; // Number of rows in UM, type 2 +const Float_t AliPMDv1::fgkCellRadius = 0.25; // Radius of a hexagonal cell +const Float_t AliPMDv1::fgkCellWall = 0.02; // Thickness of cell Wall +const Float_t AliPMDv1::fgkCellDepth = 0.50; // Gas thickness +const Float_t AliPMDv1::fgkThPCB = 0.16; // Thickness of PCB +const Float_t AliPMDv1::fgkThLead = 1.5; // Thickness of Pb +const Float_t AliPMDv1::fgkThSteel = 0.5; // Thickness of Steel +const Float_t AliPMDv1::fgkGap = 0.025; // Air Gap +const Float_t AliPMDv1::fgkZdist = 361.5; // z-position of the detector +const Float_t AliPMDv1::fgkSqroot3 = 1.7320508;// Square Root of 3 +const Float_t AliPMDv1::fgkSqroot3by2 = 0.8660254;// Square Root of 3 by 2 +const Float_t AliPMDv1::fgkSSBoundary = 0.3; +const Float_t AliPMDv1::fgkThSS = 1.23; // Old thickness of SS frame was 1.03 +const Float_t AliPMDv1::fgkThTopG10 = 0.33; +const Float_t AliPMDv1::fgkThBotG10 = 0.4; + + +ClassImp(AliPMDv1) + +//_____________________________________________________________________________ +AliPMDv1::AliPMDv1(): + fSMthick(0.), + fSMthickpmd(0.), + fDthick(0.), + fSMLengthax(0.), + fSMLengthay(0.), + fSMLengthbx(0.), + fSMLengthby(0.), + fMedSens(0) +{ + + // Default constructor + + for (Int_t i = 0; i < 3; i++) + { + fDboxmm1[i] = 0.; + fDboxmm12[i] = 0.; + fDboxmm2[i] = 0.; + fDboxmm22[i] = 0.; + } + for (Int_t i = 0; i < 48; i++) + { + fModStatus[i] = 1; + } + +} + +//_____________________________________________________________________________ +AliPMDv1::AliPMDv1(const char *name, const char *title): + AliPMD(name,title), + fSMthick(0.), + fSMthickpmd(0.), + fDthick(0.), + fSMLengthax(0.), + fSMLengthay(0.), + fSMLengthbx(0.), + fSMLengthby(0.), + fMedSens(0) +{ + + // Standard constructor + + for (Int_t i = 0; i < 3; i++) + { + fDboxmm1[i] = 0.; + fDboxmm12[i] = 0.; + fDboxmm2[i] = 0.; + fDboxmm22[i] = 0.; + } + for (Int_t i = 0; i < 48; i++) + { + fModStatus[i] = 1; + } +} + + + + +//_____________________________________________________________________________ +void AliPMDv1::CreateGeometry() +{ + // Create geometry for Photon Multiplicity Detector + + GetParameters(); + CreateSupermodule(); + CreatePMD(); +} + +//_____________________________________________________________________________ +void AliPMDv1::CreateSupermodule() +{ + // + // Creates the geometry of the cells of PMD, places them in modules + // which are rectangular objects. + // Basic unit is ECAR, a hexagonal cell made of Ar+CO2, which is + // placed inside another hexagonal cell made of Cu (ECCU) with larger + // radius, compared to ECAR. The difference in radius gives the dimension + // of half width of each cell wall. + // These cells are placed in a rectangular strip which are of 2 types + // EST1 and EST2. + // Two types of honeycomb EHC1 & EHC2 are made using strips EST1 & EST2. + // 4 types of unit modules are made EUM1 & EUM2 for PRESHOWER Plane and + // EUV1 & EUV2 for VETO Plane which contains strips placed repeatedly + // + // These unit moules are then placed inside EPM1, EPM2, EPM3 and EPM4 along + // with lead convertor ELDA & ELDB and Iron Supports EFE1, EFE2, EFE3 and EFE4 + // They have 6 unit moudles inside them in each plane. Therefore, total of 48 + // unit modules in both the planes (PRESHOWER Plane & VETO Plane). The numbering + // of unit modules is from 0 to 47. + // + // Steel channels (ECHA & ECHB) are also placed which are used to place the unit modules + // + // In order to account for the extra material around and on the detector, Girders (EGDR), + // girder's Carriage (EXGD), eight Aluminium boxes (ESV1,2,3,4 & EVV1,2,3,4) along with + // LVDBs (ELVD), cables (ECB1,2,3,4), and ELMBs (ELMB) are being placed in approximations. + // + // Four FR4 sheets (ECC1,2,3,4) are placed parallel to the PMD on both sides, which perform + // as cooling encloser + + // NOTE:- VOLUME Names : begining with "E" for all PMD volumes + + Int_t i,j; + Int_t number; + Int_t ihrotm,irotdm; + Float_t xb, yb, zb; + + Int_t *idtmed = fIdtmed->GetArray()-599; + + AliMatrix(ihrotm, 90., 30., 90., 120., 0., 0.); + AliMatrix(irotdm, 90., 180., 90., 270., 180., 0.); + + //******************************************************// + // STEP - I // + //******************************************************// + // First create the sensitive medium of a hexagon cell (ECAR) + // Inner hexagon filled with gas (Ar+CO2) + // Integer assigned to Ar+CO2 medium is 604 + + Float_t hexd2[10] = {0.,360.,6,2,-0.25,0.,0.23,0.25,0.,0.23}; + hexd2[4] = -fgkCellDepth/2.; + hexd2[7] = fgkCellDepth/2.; + hexd2[6] = fgkCellRadius - fgkCellWall; + hexd2[9] = fgkCellRadius - fgkCellWall; + + gMC->Gsvolu("ECAR", "PGON", idtmed[604], hexd2,10); + + //******************************************************// + // STEP - II // + //******************************************************// + // Place the sensitive medium inside a hexagon copper cell (ECCU) + // Outer hexagon made of Copper + // Integer assigned to Cu medium is 614 + + Float_t hexd1[10] = {0.,360.,6,2,-0.25,0.,0.25,0.25,0.,0.25}; + hexd1[4] = -fgkCellDepth/2.; + hexd1[7] = fgkCellDepth/2.; + hexd1[6] = fgkCellRadius; + hexd1[9] = fgkCellRadius; + + gMC->Gsvolu("ECCU", "PGON", idtmed[614], hexd1,10); + + // Place inner hex (sensitive volume) inside outer hex (copper) + + gMC->Gspos("ECAR", 1, "ECCU", 0., 0., 0., 0, "ONLY"); + + //******************************************************// + // STEP - III // + //******************************************************// + // Now create Two types of Rectangular strips (EST1, EST2) + // of 1 column and 96 or 48 cells length + + // volume for first strip EST1 made of AIR + // Integer assigned to Air medium is 698 + // strip type-1 is of 1 column and 96 rows i.e. of 96 cells length + + Float_t dbox1[3]; + dbox1[0] = fgkCellRadius/fgkSqroot3by2; + dbox1[1] = fgkNrowUM1*fgkCellRadius; + dbox1[2] = fgkCellDepth/2.; + + gMC->Gsvolu("EST1","BOX", idtmed[698], dbox1, 3); + + + // volume for second strip EST2 + // strip type-2 is of 1 column and 48 rows i.e. of 48 cells length + + Float_t dbox2[3]; + dbox2[1] = fgkNrowUM2*fgkCellRadius; + dbox2[0] = dbox1[0]; + dbox2[2] = dbox1[2]; + + gMC->Gsvolu("EST2","BOX", idtmed[698], dbox2, 3); + + // Place hexagonal cells ECCU placed inside EST1 + + xb = 0.; + zb = 0.; + yb = (dbox1[1]) - fgkCellRadius; + for (i = 1; i <= fgkNrowUM1; ++i) + { + number = i; + gMC->Gspos("ECCU", number, "EST1", xb,yb,zb, 0, "ONLY"); + yb -= (fgkCellRadius*2.); + } + + // Place hexagonal cells ECCU placed inside EST2 + xb = 0.; + zb = 0.; + yb = (dbox2[1]) - fgkCellRadius; + for (i = 1; i <= fgkNrowUM2; ++i) + { + number = i; + gMC->Gspos("ECCU", number, "EST2", xb,yb,zb, 0, "ONLY"); + yb -= (fgkCellRadius*2.); + } + + + //******************************************************// + // STEP - IV // + //******************************************************// + // Create EHC1 : The honey combs for a unit module type-1 + //-------------------------EHC1 Start-------------------// + + // First step is to create a honey comb unit module. + // This is named as EHC1 and is a volume of Air + // we will lay the EST1 strips of honey comb cells inside it. + + // Dimensions of EHC1 + // X-dimension = (dbox1[0]*fgkNcolUM1)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM1-1)/6.)+ 0.15+0.05+0.05; + // Y-dimension = Number of rows * cell radius/sqrt3by2 + 0.15+0.05+0.05; + // 0.15cm is the extension in honeycomb on both side of X and Y, 0.05 for air gap and 0.05 + // for G10 boundary around, which are now merged in the dimensions of EHC1 + // Z-dimension = cell depth/2 + + Float_t ehcExt = 0.15; + Float_t ehcAround = 0.05 + 0.05;; + + Float_t dbox3[3]; + dbox3[0] = (dbox1[0]*fgkNcolUM1)- + (fgkCellRadius*fgkSqroot3*(fgkNcolUM1-1)/6.) + ehcExt + ehcAround; + dbox3[1] = dbox1[1]+fgkCellRadius/2. + ehcExt + ehcAround; + dbox3[2] = fgkCellDepth/2.; + + //Create a BOX, Material AIR + gMC->Gsvolu("EHC1","BOX", idtmed[698], dbox3, 3); + // Place rectangular strips EST1 inside EHC1 unit module + xb = dbox3[0]-dbox1[0]; + + for (j = 1; j <= fgkNcolUM1; ++j) + { + if(j%2 == 0) + { + yb = -fgkCellRadius/2.0; + } + else + { + yb = fgkCellRadius/2.0; + } + number = j; + gMC->Gspos("EST1",number, "EHC1", xb - 0.25, yb , 0. , 0, "MANY"); + + //The strips are being placed from top towards bottom of the module + //This is because the first cell in a module in hardware is the top + //left corner cell + + xb = (dbox3[0]-dbox1[0])-j*fgkCellRadius*fgkSqroot3; + + } + + //--------------------EHC1 done----------------------------------------// + + + + //--------------------------------EHC2 Start---------------------------// + // Create EHC2 : The honey combs for a unit module type-2 + // First step is to create a honey comb unit module. + // This is named as EHC2, we will lay the EST2 strips of + // honey comb cells inside it. + + // Dimensions of EHC2 + // X-dimension = (dbox2[0]*fgkNcolUM2)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM2-1)/6.)+ 0.15+0.05+0.05; + // Y-dimension = Number of rows * cell radius/sqrt3by2 + 0.15+0.05+0.05; + // 0.15cm is the extension in honeycomb on both side of X and Y, 0.05 for air gap and 0.05 + // for G10 boundary around, which are now merged in the dimensions of EHC2 + // Z-dimension = cell depth/2 + + + Float_t dbox4[3]; + + dbox4[0] =(dbox2[0]*fgkNcolUM2)- + (fgkCellRadius*fgkSqroot3*(fgkNcolUM2-1)/6.) + ehcExt + ehcAround; + dbox4[1] = dbox2[1] + fgkCellRadius/2. + ehcExt + ehcAround; + dbox4[2] = dbox3[2]; + + //Create a BOX of AIR + gMC->Gsvolu("EHC2","BOX", idtmed[698], dbox4, 3); + + // Place rectangular strips EST2 inside EHC2 unit module + xb = dbox4[0]-dbox2[0]; + + for (j = 1; j <= fgkNcolUM2; ++j) + { + if(j%2 == 0) + { + yb = -fgkCellRadius/2.0; + } + else + { + yb = +fgkCellRadius/2.0; + } + number = j; + gMC->Gspos("EST2",number, "EHC2", xb - 0.25, yb , 0. ,0, "MANY"); + xb = (dbox4[0]-dbox2[0])-j*fgkCellRadius*fgkSqroot3; + } + + + //----------------------------EHC2 done-------------------------------// + + //====================================================================// + + // Now the job is to assmeble an Unit module + // It will have the following components + // (a) Base plate of G10 of 0.2cm + // (b) Air gap of 0.08cm + // (c) Bottom PCB of 0.16cm G10 + // (d) Honey comb 0f 0.5cm + // (e) Top PCB of 0.16cm G10 + // (f) Back Plane of 0.1cm G10 + // (g) Then all around then we have an air gap of 0.05cm + // (h) Then all around 0.05cm thick G10 insulation + // (i) Then all around Stainless Steel boundary channel 0.3 cm thick + + // In order to reduce the number of volumes and simplify the geometry + // following steps are performed: + // (I) Base Plate(0.2cm), Air gap(0.04cm) and Bottom PCB(0.16cm) + // are taken together as a G10 Plate EDGA (0.4cm) + // (II) Back Plane(0.1cm), Air Gap(0.04cm) and Top PCB(0.16cm) and extra + // clearance 0.03cm are taken together as G10 Plate EEGA(0.33cm) + // (III) The all around Air gap(0.05cm) and G10 boundary(0.05cm) are already + // merged in the dimension of EHC1, EHC2, EDGA and EEGA. Therefore, no + // separate volumes for all around materials + + //Let us first create them one by one + //--------------------------------------------------------------------// + + // ---------------- Lets do it first for UM Long Type -----// + // 4mm G10 Box : Bottom PCB + Air Gap + Base Plate + //================================================ + // Make a 4mm thick G10 Box for Unit module Long Type + // X-dimension is EHC1 - ehcExt + // Y-dimension is EHC1 - ehcExt + // EHC1 was extended 0.15cm(ehcExt) on both sides + // Z-dimension 0.4/2 = 0.2 cm + // Integer assigned to G10 medium is 607 + + Float_t dboxCGA[3]; + dboxCGA[0] = dbox3[0] - ehcExt; + dboxCGA[1] = dbox3[1] - ehcExt; + dboxCGA[2] = fgkThBotG10/2.; + + //Create a G10 BOX + gMC->Gsvolu("EDGA","BOX", idtmed[607], dboxCGA, 3); + + //-------------------------------------------------// + // 3.3mm G10 Box : Top PCB + Air GAp + Back Plane + //================================================ + // Make a 3.3mm thick G10 Box for Unit module Long Type + // X-dimension is EHC1 - ehcExt + // Y-dimension is EHC1 - ehcExt + // EHC1 was extended 0.15cm(ehcExt) on both sides + // Z-dimension 0.33/2 = 0.165 cm + + Float_t dboxEEGA[3]; + dboxEEGA[0] = dboxCGA[0]; + dboxEEGA[1] = dboxCGA[1]; + dboxEEGA[2] = fgkThTopG10/2.; + + //Create a G10 BOX + gMC->Gsvolu("EEGA","BOX", idtmed[607], dboxEEGA, 3); + + + //----------------------------------------------------------// + //Stainless Steel Bounadry : EUM1 & EUV1 + // + // Make a 3.63cm thick Stainless Steel boundary for Unit module Long Type + // 3.63cm equivalent to EDGA(0.4cm)+EHC1(0.5cm)+EEGA(0.33cm)+FEE Board(2.4cm) + // X-dimension is EEGA + fgkSSBoundary + // Y-dimension is EEGA + fgkSSBoundary + // Z-dimension 1.23/2 + 2.4/2. + // FEE Boards are 2.4cm thick + // Integer assigned to Stainless Steel medium is 618 + //------------------------------------------------------// + // A Stainless Steel Boundary Channel to house the unit module + // along with the FEE Boards + + Float_t dboxSS1[3]; + dboxSS1[0] = dboxCGA[0]+fgkSSBoundary; + dboxSS1[1] = dboxCGA[1]+fgkSSBoundary; + dboxSS1[2] = fgkThSS/2.+ 2.4/2.; + + //FOR PRESHOWER + //Stainless Steel boundary - Material Stainless Steel + gMC->Gsvolu("EUM1","BOX", idtmed[618], dboxSS1, 3); + + //FOR VETO + //Stainless Steel boundary - Material Stainless Steel + gMC->Gsvolu("EUV1","BOX", idtmed[618], dboxSS1, 3); + + //--------------------------------------------------------------------// + + + + + // ============ PMD FEE BOARDS IMPLEMENTATION ======================// + + // FEE board + // It is FR4 board of length * breadth :: 7cm * 2.4 cm + // and thickness 0.2cm + // Material medium is same as G10 + + Float_t dboxFEE[3]; + dboxFEE[0] = 0.2/2.; + dboxFEE[1] = 7.0/2.; + dboxFEE[2] = 2.4/2.; + + gMC->Gsvolu("EFEE","BOX", idtmed[607], dboxFEE, 3); + + // Now to create the Mother volume to accomodate FEE boards + // It should have the dimension few mm smaller than the back plane + // But, we have taken it as big as EUM1 or EUV1 + // It is to compensate the Stainless Steel medium of EUM1 or EUV1 + + // Create Mother volume of Air : Long TYPE + + Float_t dboxFEEBPlaneA[3]; + dboxFEEBPlaneA[0] = dboxSS1[0]; + dboxFEEBPlaneA[1] = dboxSS1[1]; + dboxFEEBPlaneA[2] = 2.4/2.; + + //Volume of same dimension as EUM1 or EUV1 of Material AIR + gMC->Gsvolu("EFBA","BOX", idtmed[698], dboxFEEBPlaneA, 3); + + //Placing the FEE boards in the Mother volume of AIR + + + Float_t xFee; // X-position of FEE board + Float_t yFee; // Y-position of FEE board + Float_t zFee = 0.0; // Z-position of FEE board + + Float_t xA = 0.5; //distance from the border to 1st FEE board/Translator + Float_t yA = 4.00; //distance from the border to 1st FEE board + Float_t xSepa = 1.70; //Distance between two FEE boards in X-side + Float_t ySepa = 8.00; //Distance between two FEE boards in Y-side + + + + // FEE Boards EFEE placed inside EFBA + + yFee = dboxFEEBPlaneA[1] - yA - 0.1 - 0.3; + // 0.1cm and 0.3cm are subtracted to shift the FEE Boards on their actual positions + // As the positions are changed, because we have taken the dimension of EFBA equal + // to the dimension of EUM1 or EUV1 + number = 1; + // The loop for six rows of FEE Board + for (i = 1; i <= 6; ++i) + { + // First we place the translator board + xFee = -dboxFEEBPlaneA[0] + xA + 0.1 +0.3; + + gMC->Gspos("EFEE", number, "EFBA", xFee,yFee,zFee, 0, "ONLY"); + + // The first FEE board is 11mm from the translator board + xFee += 1.1; + number += 1; + + for (j = 1; j <= 12; ++j) + { + gMC->Gspos("EFEE", number, "EFBA", xFee,yFee,zFee, 0, "ONLY"); + xFee += xSepa; + number += 1; + } + yFee -= ySepa; + } + + + // Now Place EEGA, EDGA, EHC1 and EFBA in EUM1 & EUV1 to complete the unit module + + + // FOR PRE SHOWER // + // Placing of all components of UM in AIR BOX EUM1 // + + //(1) FIRST PUT the 4mm G10 Box : EDGA + Float_t zedga = -dboxSS1[2] + fgkThBotG10/2.; + gMC->Gspos("EDGA", 1, "EUM1", 0., 0., zedga, 0, "ONLY"); + + //(2) NEXT PLACING the Honeycomb EHC1 + Float_t zehc1 = zedga + fgkThBotG10/2. + fgkCellDepth/2.; + gMC->Gspos("EHC1", 1, "EUM1", 0., 0., zehc1, 0, "ONLY"); + + //(3) NEXT PLACING the 3.3mm G10 Box : EEGA + Float_t zeega = zehc1 + fgkCellDepth/2. + fgkThTopG10/2.; + gMC->Gspos("EEGA", 1, "EUM1", 0., 0., zeega, 0, "ONLY"); + + //(4) NEXT PLACING the FEE BOARD : EFBA + Float_t zfeeboardA = zeega + fgkThTopG10/2. +1.2; + gMC->Gspos("EFBA", 1, "EUM1", 0., 0., zfeeboardA, 0, "ONLY"); + + // FOR VETO // + // Placing of all components of UM in AIR BOX EUV1 // + + //(1) FIRST PUT the FEE BOARD : EFBA + zfeeboardA = -dboxSS1[2] + 1.2; + gMC->Gspos("EFBA", 1, "EUV1", 0., 0., zfeeboardA, 0, "ONLY"); + + //(2) FIRST PLACING the 3.3mm G10 Box : EEGA + zeega = zfeeboardA + 1.2 + fgkThTopG10/2.; + gMC->Gspos("EEGA", 1, "EUV1", 0., 0., zeega, 0, "ONLY"); + + //(3) NEXT PLACING the Honeycomb EHC1 + zehc1 = zeega + fgkThTopG10/2 + fgkCellDepth/2.; + gMC->Gspos("EHC1", 1, "EUV1", 0., 0., zehc1, 0, "ONLY"); + + //(4) NEXT PUT THE 4mm G10 Box : EDGA + zedga = zehc1 + fgkCellDepth/2.+ fgkThBotG10/2.; + gMC->Gspos("EDGA", 1, "EUV1", 0., 0., zedga, 0, "ONLY"); + + + //=================== LONG TYPE COMPLETED =========================// + //------------ Lets do the same thing for UM Short Type -------------// + // 4mm G10 Box : Bottom PCB + Air Gap + Base Plate + //================================================ + // Make a 4mm thick G10 Box for Unit module ShortType + // X-dimension is EHC2 - ehcExt + // Y-dimension is EHC2 - ehcExt + // EHC2 was extended 0.15cm(ehcExt) on both sides + // Z-dimension 0.4/2 = 0.2 cm + // Integer assigned to G10 medium is 607 + + Float_t dboxCGB[3]; + dboxCGB[0] = dbox4[0] - ehcExt; + dboxCGB[1] = dbox4[1] - ehcExt; + dboxCGB[2] = 0.4/2.; + + //Create a G10 BOX + gMC->Gsvolu("EDGB","BOX", idtmed[607], dboxCGB, 3); + + //-------------------------------------------------// + // 3.3mm G10 Box : PCB + Air Gap + Back Plane + //================================================ + // Make a 3.3mm thick G10 Box for Unit module Short Type + // X-dimension is EHC2 - ehcExt + // Y-dimension is EHC2 - ehcExt + // EHC2 was extended 0.15cm(ehcExt) on both sides + // Z-dimension 0.33/2 = 0.165 cm + + Float_t dboxEEGB[3]; + dboxEEGB[0] = dboxCGB[0]; + dboxEEGB[1] = dboxCGB[1]; + dboxEEGB[2] = 0.33/2.; + + // Create a G10 BOX + gMC->Gsvolu("EEGB","BOX", idtmed[607], dboxEEGB, 3); + + + //Stainless Steel Bounadry : EUM2 & EUV2 + //================================== + // Make a 3.63cm thick Stainless Steel boundary for Unit module Short Type + // 3.63cm equivalent to EDGB(0.4cm)+EHC2(0.5cm)+EEGB(0.33cm)+FEE Board(2.4cm) + // X-dimension is EEGB + fgkSSBoundary + // Y-dimension is EEGB + fgkSSBoundary + // Z-dimension 1.23/2 + 2.4/2. + // FEE Boards are 2.4cm thick + // Integer assigned to Stainless Steel medium is 618 + //------------------------------------------------------// + // A Stainless Steel Boundary Channel to house the unit module + // along with the FEE Boards + + + Float_t dboxSS2[3]; + dboxSS2[0] = dboxCGB[0] + fgkSSBoundary; + dboxSS2[1] = dboxCGB[1] + fgkSSBoundary; + dboxSS2[2] = fgkThSS/2.+ 2.4/2.; + + //PRESHOWER + //Stainless Steel boundary - Material Stainless Steel + gMC->Gsvolu("EUM2","BOX", idtmed[618], dboxSS2, 3); + + //VETO + //Stainless Steel boundary - Material Stainless Steel + gMC->Gsvolu("EUV2","BOX", idtmed[618], dboxSS2, 3); + + //----------------------------------------------------------------// + //NOW THE FEE BOARD IMPLEMENTATION + + // To create the Mother volume to accomodate FEE boards + // It should have the dimension few mm smaller than the back plane + // But, we have taken it as big as EUM2 or EUV2 + // It is to compensate the Stainless Steel medium of EUM2 or EUV2 + + // Create Mother volume of Air : SHORT TYPE + //------------------------------------------------------// + + + Float_t dboxFEEBPlaneB[3]; + dboxFEEBPlaneB[0] = dboxSS2[0]; + dboxFEEBPlaneB[1] = dboxSS2[1]; + dboxFEEBPlaneB[2] = 2.4/2.; + + //Volume of same dimension as EUM2 or EUV2 of Material AIR + gMC->Gsvolu("EFBB","BOX", idtmed[698], dboxFEEBPlaneB, 3); + + + // FEE Boards EFEE placed inside EFBB + + yFee = dboxFEEBPlaneB[1] - yA -0.1 -0.3; + // 0.1cm and 0.3cm are subtracted to shift the FEE Boards on their actual positions + // As the positions are changed, because we have taken the dimension of EFBB equal + // to the dimension of EUM2 or EUV2 + number = 1; + for (i = 1; i <= 3; ++i) + { + xFee = -dboxFEEBPlaneB[0] + xA + 0.1 +0.3; + + //First we place the translator board + gMC->Gspos("EFEE", number, "EFBB", xFee,yFee,zFee, 0, "ONLY"); + // The first FEE board is 11mm from the translator board + xFee+=1.1; + number+=1; + + for (j = 1; j <= 12; ++j) + { + gMC->Gspos("EFEE", number, "EFBB", xFee,yFee,zFee, 0, "ONLY"); + xFee += xSepa; + number += 1; + } + + //Now we place Bridge Board + xFee = xFee - xSepa + 0.8 ; + //Bridge Board is at a distance 8mm from FEE board + gMC->Gspos("EFEE", number, "EFBB", xFee,yFee,zFee, 0, "ONLY"); + + number+=1; + xFee+=0.8; + + for (j = 1; j <= 12; ++j) + { + gMC->Gspos("EFEE", number, "EFBB", xFee,yFee,zFee, 0, "ONLY"); + xFee += xSepa; + number += 1; + } + yFee -= ySepa; + } + + + + // Now Place EEGB, EDGB, EHC2 and EFBB in EUM2 & EUV2 to complete the unit module + + // FOR PRE SHOWER + //- Placing of all components of UM in AIR BOX EUM2--// + //(1) FIRST PUT the G10 Box : EDGB + Float_t zedgb = -dboxSS2[2] + 0.4/2.; + gMC->Gspos("EDGB", 1, "EUM2", 0., 0., zedgb, 0, "ONLY"); + + //(2) NEXT PLACING the Honeycomb EHC2 + Float_t zehc2 = zedgb + 0.4/2. + fgkCellDepth/2.; + gMC->Gspos("EHC2", 1, "EUM2", 0., 0., zehc2, 0, "ONLY"); + + //(3) NEXT PLACING the G10 Box : EEGB + Float_t zeegb = zehc2 + fgkCellDepth/2. + 0.33/2.; + gMC->Gspos("EEGB", 1, "EUM2", 0., 0., zeegb, 0, "ONLY"); + + //(4) NEXT PLACING FEE BOARDS : EFBB + Float_t zfeeboardB = zeegb + 0.33/2.+1.2; + gMC->Gspos("EFBB", 1, "EUM2", 0., 0., zfeeboardB, 0, "ONLY"); + + // FOR VETO + // Placing of all components of UM in AIR BOX EUV2 // + + //(1) FIRST PUT the FEE BOARD : EUV2 + zfeeboardB = -dboxSS2[2] + 1.2; + gMC->Gspos("EFBB", 1, "EUV2", 0., 0., zfeeboardB, 0, "ONLY"); + + //(2) FIRST PLACING the G10 Box : EEGB + zeegb = zfeeboardB + 1.2 + 0.33/2.; + gMC->Gspos("EEGB", 1, "EUV2", 0., 0., zeegb, 0, "ONLY"); + + //(3) NEXT PLACING the Honeycomb EHC2 + zehc2 = zeegb + 0.33/2. + fgkCellDepth/2.; + gMC->Gspos("EHC2", 1, "EUV2", 0., 0., zehc2, 0, "ONLY"); + + //(4) NEXT PUT THE G10 Box : EDGB + zedgb = zehc2 + fgkCellDepth/2.+ 0.4/2.; + gMC->Gspos("EDGB", 1, "EUV2", 0., 0., zedgb, 0, "ONLY"); + + + //===================================================================// + //---------------------- UM Type B completed ------------------------// + +} + +//_______________________________________________________________________ + +void AliPMDv1::CreatePMD() +{ + // Create final detector from Unit Modules + // -- Author : Bedanga and Viyogi June 2003 + + + Float_t zp = fgkZdist; //Z-distance of PMD from Interaction Point + + Int_t jhrot12,jhrot13, irotdm; + Int_t *idtmed = fIdtmed->GetArray()-599; + + AliMatrix(irotdm, 90., 0., 90., 90., 180., 0.); + AliMatrix(jhrot12, 90., 180., 90., 270., 0., 0.); + AliMatrix(jhrot13, 90., 240., 90., 330., 0., 0.); + + // Now We Will Calculate Position Co-ordinates of EUM1 & EUV1 in EPM1 & EPM2 + + Float_t dbox1[3]; + dbox1[0] = fgkCellRadius/fgkSqroot3by2; + dbox1[1] = fgkNrowUM1*fgkCellRadius; + dbox1[2] = fgkCellDepth/2.; + + Float_t dbox3[3]; + dbox3[0] = (dbox1[0]*fgkNcolUM1)- + (fgkCellRadius*fgkSqroot3*(fgkNcolUM1-1)/6.) + 0.15 + 0.05 + 0.05; + dbox3[1] = dbox1[1]+fgkCellRadius/2. + 0.15 + 0.05 + 0.05; + dbox3[2] = fgkCellDepth/2.; + + Float_t dboxCGA[3]; + dboxCGA[0] = dbox3[0] - 0.15; + dboxCGA[1] = dbox3[1] - 0.15; + dboxCGA[2] = 0.4/2.; + + Float_t dboxSS1[3]; + dboxSS1[0] = dboxCGA[0]+fgkSSBoundary; + dboxSS1[1] = dboxCGA[1]+fgkSSBoundary; + dboxSS1[2] = fgkThSS/2.; + + Float_t dboxUM1[3]; + dboxUM1[0] = dboxSS1[0]; + dboxUM1[1] = dboxSS1[1]; + dboxUM1[2] = fgkThSS/2. + 1.2; + + Float_t dboxSM1[3]; + dboxSM1[0] = fSMLengthax + 0.05; // 0.05cm for the ESC1,2 + dboxSM1[1] = fSMLengthay; + dboxSM1[2] = dboxUM1[2]; + + // Position co-ordinates of the unit modules in EPM1 & EPM2 + Float_t xa1,xa2,xa3,ya1,ya2; + xa1 = dboxSM1[0] - dboxUM1[0]; + xa2 = xa1 - dboxUM1[0] - 0.1 - dboxUM1[0]; + xa3 = xa2 - dboxUM1[0] - 0.1 - dboxUM1[0]; + ya1 = dboxSM1[1] - 0.2 - dboxUM1[1]; + ya2 = ya1 - dboxUM1[1] - 0.3 - dboxUM1[1]; + + // Next to Calculate Position Co-ordinates of EUM2 & EUV2 in EPM3 & EPM4 + + Float_t dbox2[3]; + dbox2[1] = fgkNrowUM2*fgkCellRadius; + dbox2[0] = dbox1[0]; + dbox2[2] = dbox1[2]; + + Float_t dbox4[3]; + dbox4[0] =(dbox2[0]*fgkNcolUM2)- + (fgkCellRadius*fgkSqroot3*(fgkNcolUM2-1)/6.) + 0.15 + 0.05 + 0.05; + dbox4[1] = dbox2[1] + fgkCellRadius/2. + 0.15 + 0.05 + 0.05; + dbox4[2] = dbox3[2]; + + Float_t dboxCGB[3]; + dboxCGB[0] = dbox4[0] - 0.15; + dboxCGB[1] = dbox4[1] - 0.15; + dboxCGB[2] = 0.4/2.; + + Float_t dboxSS2[3]; + dboxSS2[0] = dboxCGB[0] + fgkSSBoundary; + dboxSS2[1] = dboxCGB[1] + fgkSSBoundary; + dboxSS2[2] = fgkThSS/2.; + + Float_t dboxUM2[3]; + dboxUM2[0] = dboxSS2[0]; + dboxUM2[1] = dboxSS2[1]; + dboxUM2[2] = fgkThSS/2. + 2.4/2.; // 2.4 cm is added for FEE Board thickness + + Float_t dboxSM2[3]; + dboxSM2[0] = fSMLengthbx + 0.05; // 0.05cm for the ESC3,4 + dboxSM2[1] = fSMLengthby; + dboxSM2[2] = dboxUM2[2]; + + // Position co-ordinates of the unit modules in EPM3 & EPM4 + // Space is added to provide a gapping for HV between UM's + Float_t xb1,xb2,yb1,yb2,yb3; + xb1 = dboxSM2[0] - 0.1 - dboxUM2[0]; + xb2 = xb1 - dboxUM2[0] - 0.1 - dboxUM2[0]; + yb1 = dboxSM2[1] - 0.2 - dboxUM2[1]; + yb2 = yb1 - dboxUM2[1] - 0.2 - dboxUM2[1]; + yb3 = yb2 - dboxUM2[1] - 0.3- dboxUM2[1]; + + + // Create Volumes for Lead(Pb) Plates + + // Lead Plate For LONG TYPE + // X-dimension of Lead Plate = 3*(X-dimension of EUM1 or EUV1) + gap provided between unit modules + // Y-dimension of Lead Plate = 2*(Y-dimension of EUM1 or EUV1) + thickness of SS channels + // + tolerance + // Z-demension of Lead Plate = 1.5cm + // Integer assigned to Pb-medium is 600 + + Float_t dboxLeadA[3]; + dboxLeadA[0] = fSMLengthax; + dboxLeadA[1] = fSMLengthay; + dboxLeadA[2] = fgkThLead/2.; + + gMC->Gsvolu("ELDA","BOX", idtmed[600], dboxLeadA, 3); + + //LEAD Plate For SHORT TYPE + // X-dimension of Lead Plate = 2*(X-dimension of EUM2 or EUV2) + gap provided between unit modules + // Y-dimension of Lead Plate = 3*(Y-dimension of EUM2 or EUV2) + thickness of SS channels + // + tolerance + // Z-demension of Lead Plate = 1.5cm + // Integer assigned to Pb-medium is 600 + + Float_t dboxLeadB[3]; + dboxLeadB[0] = fSMLengthbx; + dboxLeadB[1] = fSMLengthby; + dboxLeadB[2] = fgkThLead/2.; + + gMC->Gsvolu("ELDB","BOX", idtmed[600], dboxLeadB, 3); + + //=========== CREATE MOTHER VOLUMES FOR PMD ===========================/ + + Float_t serviceX = 23.2; + Float_t serviceYa = 5.2; + Float_t serviceYb = 9.8; + Float_t serviceXext = 16.0; + + // Five Mother Volumes of PMD are Created + // Two Volumes EPM1 & EPM2 of Long Type + // Other Two Volumes EPM3 & EPM4 for Short Type + // Fifth Volume EFGD for Girders and its Carriage + // Four Volmes EPM1, EPM2, EPM3 & EPM4 are Placed such that + // to create a hole and avoid overlap with Beam Pipe + + // Create Volume FOR EPM1 + // X-dimension = fSMLengthax + Extended Iron Support(23.2cm) + + // Extension in Module(16cm) for full coverage of Detector + 1mm thick SS-Plate + // Y-dimension = fSMLengthay + Extended Iron Support(5.2cm) + // Z-dimension = fSMthick/2.; fSMthick=17cm is full profile of PMD in Z-Side + // Note:- EPM1 is a Volume of Air + + Float_t gaspmd1[3]; + gaspmd1[0] = fSMLengthax + serviceX/2.+ serviceXext/2. + 0.05; //0.05cm for the thickness of + gaspmd1[1] = fSMLengthay + serviceYa/2.; //SS-plate for cooling encloser + gaspmd1[2] = fSMthick/2.; + + gMC->Gsvolu("EPM1", "BOX", idtmed[698], gaspmd1, 3); + + + // Create Volume FOR EPM2 + + // X-dimension = fSMLengthax + Extended Iron Support(23.2cm) + + // Extension in Module(16cm) for full coverage of Detector + 1mm thick SS-Plate + // Y-dimension = fSMLengthay + Extended Iron Support(9.8cm) + // Z-dimension = fSMthick/2.; fSMthick=17cm is full profile of PMD in Z-Side + // Note:- EPM2 is a Volume of Air + + Float_t gaspmd2[3]; + gaspmd2[0] = fSMLengthax + serviceX/2. + serviceXext/2. + 0.05; //0.05cm for the thickness of + gaspmd2[1] = fSMLengthay + serviceYb/2.; //SS-plate for cooling encloser + gaspmd2[2] = fSMthick/2.; + + gMC->Gsvolu("EPM2", "BOX", idtmed[698], gaspmd2, 3); + + // Create Volume FOR EPM3 + + // X-dimension = fSMLengthbx + Extended Iron Support(23.2cm) + + // Extension in Module(16cm) for full coverage of Detector + // Y-dimension = fSMLengthby + Extended Iron Support(5.2cm) + // Z-dimension = fSMthick/2.; fSMthick=17cm is full profile of PMD in Z-Side + // Note:- EPM3 is a Volume of Air + + + Float_t gaspmd3[3]; + gaspmd3[0] = fSMLengthbx + serviceX/2. + serviceXext/2.+ 0.05; //0.05cm for the thickness of + gaspmd3[1] = fSMLengthby + serviceYa/2.; //SS-plate for cooling encloser + gaspmd3[2] = fSMthick/2.; + + gMC->Gsvolu("EPM3", "BOX", idtmed[698], gaspmd3, 3); + + // Create Volume FOR EPM4 + + // X-dimension = fSMLengthbx + Extended Iron Support(23.2cm) + + // Extension in Module(16cm) for full coverage of Detector + // Y-dimension = fSMLengthby + Extended Iron Support(9.8cm) + // Z-dimension = fSMthick/2.; fSMthick=17cm is full profile of PMD in Z-Side + // Note:- EPM4 is a Volume of Air + + Float_t gaspmd4[3]; + gaspmd4[0] = fSMLengthbx + serviceX/2. + serviceXext/2.+ 0.05; //0.05cm for the thickness of + gaspmd4[1] = fSMLengthby + serviceYb/2.; //SS-plate for cooling encloser + gaspmd4[2] = fSMthick/2.; + + gMC->Gsvolu("EPM4", "BOX", idtmed[698], gaspmd4, 3); + + // Create the Fifth Mother Volume of Girders and its Carriage + //-------------------------------------------------------------// + // Create the Girders + + // X-dimension = 238.7cm + // Y-dimension = 12.0cm + // Z-dimension = 7.0cm + // Girders are the Volume of Iron + // And the Integer Assigned to SS is 618 + + Float_t grdr[3]; + grdr[0] = 238.7/2.; + grdr[1] = 12.0/2.; + grdr[2] = 7.0/2.; + + gMC->Gsvolu("EGDR", "BOX", idtmed[618], grdr, 3); + + // Create Air Strip for Girders as the Girders are hollow + // Girders are 1cm thick in Y and Z on both sides + + Float_t airgrdr[3]; + airgrdr[0] = grdr[0]; + airgrdr[1] = grdr[1] - 1.0; + airgrdr[2] = grdr[2] - 1.0; + + gMC->Gsvolu("EAIR", "BOX", idtmed[698], airgrdr, 3); + + // Positioning the air strip EAIR in girder EGDR + gMC->Gspos("EAIR", 1, "EGDR", 0., 0., 0., 0, "ONLY"); + + // Create the Carriage for Girders + // Originally, Carriage is divided in two parts + // 64.6cm on -X side, 44.2cm on +X side and 8.2cm is the gap between two + // In approximation we have taken these together as a single Volume + // With X = 64.6cm + 44.2cm + 8.2cm + // Y-dimension = 4.7cm + // Z-dimension = 18.5cm + // Carriage is a Volume of SS + + Float_t xgrdr[3]; + xgrdr[0] = (64.6 + 44.2 + 8.2)/2.; + xgrdr[1] = 4.7/2.; + xgrdr[2] = 18.5/2.; + + gMC->Gsvolu("EXGD", "BOX", idtmed[618], xgrdr, 3); + + // Create Air Strip for the Carriage EXGD as it is hollow + // Carriage is 1cm thick in Y on one side and in Z on both sides + + Float_t xairgrdr[3]; + xairgrdr[0] = xgrdr[0]; + xairgrdr[1] = xgrdr[1] - 0.5; + xairgrdr[2] = xgrdr[2] - 1.0; + + gMC->Gsvolu("EXIR", "BOX", idtmed[698], xairgrdr, 3); + + // Positioning the air strip EXIR in CArriage EXGD + gMC->Gspos("EXIR", 1, "EXGD", 0., -0.05, 0., 0, "ONLY"); + + // Now Create the master volume of air containing Girders & Carriage + + // X-dimension = same as X-dimension of Girders(EGDR) + // Y-dimension = Y of Girder(EGDR) + Y of Carriage(EXGD) + gap between two + // Z-dimenson = same as Z of Carriage(EXGD) + // Note:- It is a volume of Air + + Float_t fulgrdr[3]; + fulgrdr[0] = 238.7/2.; + fulgrdr[1] = 17.5/2.; + fulgrdr[2] = 18.5/2.; + + gMC->Gsvolu("EFGD", "BOX", idtmed[698], fulgrdr, 3); + + // Positioning the EGDR and EXGD in EFGD + + gMC->Gspos("EXGD", 1, "EFGD", 0., 6.4, 0., 0, "ONLY"); + gMC->Gspos("EGDR", 1, "EFGD", 0., -2.75, -5.75, 0, "ONLY"); + gMC->Gspos("EGDR", 2, "EFGD", 0., -2.75, 5.75, 0, "ONLY"); + + //=========== Mother Volumes are Created ============================// + + // Create the Volume of 1mm thick SS-Plate for cooling encloser + // These are placed on the side close to the Beam Pipe + // SS-Plate is perpendicular to the plane of Detector + + // For LONG TYPE + + // For EPM1 + // X-dimension = 0.1cm + // Y-dimension = same as Y of EPM1 + // Z-dimension = Y of EPM1 - 0.1; 0.1cm is subtracted as 1mm thick + // FR4 sheets for the detector encloser placed on both sides + // It is a Volume of SS + // Integer assigned to SS is 618 + + Float_t sscoolencl1[3]; + sscoolencl1[0] = 0.05; + sscoolencl1[1] = gaspmd1[1]; + sscoolencl1[2] = gaspmd1[2] - 0.2/2.; + + gMC->Gsvolu("ESC1", "BOX", idtmed[618], sscoolencl1, 3); + + // Placement of ESC1 in EPM1 + gMC->Gspos("ESC1", 1, "EPM1", -gaspmd1[0] + 0.05, 0., 0., 0, "ONLY"); + + + // For EPM2 + // X-dimension = 0.1cm + // Y-dimension = same as Y of EPM2 + // Z-dimension = Y of EPM2 - 0.1; 0.1cm is subtracted as 1mm thick + // FR4 sheets for the detector encloser placed on both sides + // It is a Volume of SS + + Float_t sscoolencl2[3]; + sscoolencl2[0] = 0.05; + sscoolencl2[1] = gaspmd2[1]; + sscoolencl2[2] = gaspmd2[2] - 0.2/2.; + + gMC->Gsvolu("ESC2", "BOX", idtmed[618], sscoolencl2, 3); + + // Placement of ESC2 in EPM2 + gMC->Gspos("ESC2", 1, "EPM2", gaspmd2[0] - 0.05 , 0., 0., 0, "ONLY"); + + // For SHORT TYPE + + // For EPM3 + // X-dimension = 0.1cm + // Y-dimension = same as Y of EPM3 + // Z-dimension = Y of EPM3 - 0.1; 0.1cm is subtracted as 1mm thick + // FR4 sheets for the detector encloser placed on both sides + // It is a Volume of SS + + Float_t sscoolencl3[3]; + sscoolencl3[0] = 0.05; + sscoolencl3[1] = gaspmd3[1]; + sscoolencl3[2] = gaspmd3[2] - 0.2/2.; + + gMC->Gsvolu("ESC3", "BOX", idtmed[618], sscoolencl3, 3); + + // Placement of ESC3 in EPM3 + gMC->Gspos("ESC3", 1, "EPM3", gaspmd3[0] - 0.05 , 0., 0., 0, "ONLY"); + + + // For EPM4 + // X-dimension = 0.1cm + // Y-dimension = same as Y of EPM4 + // Z-dimension = Y of EPM4 - 0.1; 0.1cm is subtracted as 1mm thick + // FR4 sheets for the detector encloser placed on both sides + // It is a Volume of SS + + Float_t sscoolencl4[3]; + sscoolencl4[0] = 0.05; + sscoolencl4[1] = gaspmd4[1]; + sscoolencl4[2] = gaspmd4[2] - 0.2/2.; + + gMC->Gsvolu("ESC4", "BOX", idtmed[618], sscoolencl4, 3); + + // Placement of ESC4 in EPM4 + gMC->Gspos("ESC4", 1, "EPM4", -gaspmd4[0] + 0.05 , 0., 0., 0, "ONLY"); + + //======== CREATE SS SUPPORTS FOR EPM1, EPM2, EPM3 & EPM4 =========// + // --- DEFINE SS volumes for EPM1 & EPM2 --- + + // Create SS Support For EPM1 + + // X-dimension = fSMLengthax + Extended Iron Support(23.2cm) + // Y-dimension = fSMLengthay + Extended Iron Support(5.2cm) + // Z-dimension = thickness of Iron support(0.5cm) + // It is a Volume of SS + // Integer assigned to SS is 618 + + Float_t dboxFea1[3]; + dboxFea1[0] = fSMLengthax + serviceX/2.; + dboxFea1[1] = fSMLengthay + serviceYa/2.; + dboxFea1[2] = fgkThSteel/2.; + + gMC->Gsvolu("EFE1","BOX", idtmed[618], dboxFea1, 3); + + + // Create SS Support For EPM2 + + // X-dimension = fSMLengthax + Extended Iron Support(23.2cm) + // Y-dimension = fSMLengthay + Extended Iron Support(9.8cm) + // Z-dimension = thickness of Iron support(0.5cm) + // It is a Volume of SS + // Integer assigned to SS is 618 + + Float_t dboxFea2[3]; + dboxFea2[0] = fSMLengthax + serviceX/2.; + dboxFea2[1] = fSMLengthay + serviceYb/2.; + dboxFea2[2] = fgkThSteel/2.; + + gMC->Gsvolu("EFE2","BOX", idtmed[618], dboxFea2, 3); + + // Create SS Support For EPM3 + + // X-dimension = fSMLengthbx + Extended Iron Support(23.2cm) + // Y-dimension = fSMLengthby + Extended Iron Support(5.2cm) + // Z-dimension = thickness of Iron support(0.5cm) + // It is a Volume of SS + // Integer assigned to SS is 618 + + Float_t dboxFea3[3]; + dboxFea3[0] = fSMLengthbx + serviceX/2.; + dboxFea3[1] = fSMLengthby + serviceYa/2.; + dboxFea3[2] = fgkThSteel/2.; + + gMC->Gsvolu("EFE3","BOX", idtmed[618], dboxFea3, 3); + + // Create SS Support For EPM4 + + // X-dimension = fSMLengthbx + Extended Iron Support(23.2cm) + // Y-dimension = fSMLengthby + Extended Iron Support(9.8cm) + // Z-dimension = thickness of Iron support(0.5cm) + // It is a Volume of SS + // Integer assigned to SS is 618 + + Float_t dboxFea4[3]; + dboxFea4[0] = fSMLengthbx + serviceX/2.; + dboxFea4[1] = fSMLengthby + serviceYb/2.; + dboxFea4[2] = fgkThSteel/2.; + + gMC->Gsvolu("EFE4","BOX", idtmed[618], dboxFea4, 3); + + + //=============== Volumes for SS support are Completed =============// + + // Create FR4 Sheets to enclose the PMD which are Placed parallel to the + // plane of the detector. Four FR4 sheets are created with the dimensions + // corresponding to the Iron Supports + // This is cooling encloser. + + // Create FR4 sheet ECC1 + // X-dimension = same as EFE1 + // Y-dimension = same as EFE1 + // Z-dimension = 0.1cm + // FR4 medium is same as that of G10 + // Integer assigned to FR4 medium is 607 + + Float_t enclos1[3]; + enclos1[0] = dboxFea1[0]; + enclos1[1] = dboxFea1[1]; + enclos1[2] = 0.05; + + gMC->Gsvolu("ECC1", "BOX", idtmed[607], enclos1, 3); + + // Create FR4 sheet ECC2 + // X-dimension = same as EFE2 + // Y-dimension = same as EFE2 + // Z-dimension = 0.1cm + + Float_t enclos2[3]; + enclos2[0] = dboxFea2[0]; + enclos2[1] = dboxFea2[1]; + enclos2[2] = 0.05; + + gMC->Gsvolu("ECC2", "BOX", idtmed[607], enclos2, 3); + + // Create FR4 sheet ECC3 + // X-dimension = same as EFE3 + // Y-dimension = same as EFE3 + // Z-dimension = 0.1cm + + Float_t enclos3[3]; + enclos3[0] = dboxFea3[0]; + enclos3[1] = dboxFea3[1]; + enclos3[2] = 0.05; + + gMC->Gsvolu("ECC3", "BOX", idtmed[607], enclos3, 3); + + // Create FR4 sheet ECC4 + // X-dimension = same as EFE4 + // Y-dimension = same as EFE4 + // Z-dimension = 0.1cm + + Float_t enclos4[3]; + enclos4[0] = dboxFea4[0]; + enclos4[1] = dboxFea4[1]; + enclos4[2] = 0.05; + + gMC->Gsvolu("ECC4", "BOX", idtmed[607], enclos4, 3); + + //--------------- FR4 SHEETS COMPLETED ---------------------------// + + //------------- Create the SS-Channels(Horizontal Rails) to Place + // Unit Modules on SS Support -------------------------------------// + + // Two types of SS-Channels are created + // as we have two types of modules + + // Create SS-channel for Long Type + // X-dimension = same as Lead Plate ELDA + // Y-dimension = 0.1cm + // Z-dimension = 2.0cm + // Volume medium is SS + + Float_t channel12[3]; + channel12[0] = fSMLengthax; + channel12[1] = 0.05; + channel12[2] = 2.0/2.; + + gMC->Gsvolu("ECHA", "BOX", idtmed[618], channel12, 3); + + // Create SS-channel for Short Type + // X-dimension = same as Lead Plate ELDB + // Y-dimension = 0.1cm + // Z-dimension = 2.0cm + // Volume medium is SS + + Float_t channel34[3]; + channel34[0] = fSMLengthbx; + channel34[1] = 0.05; + channel34[2] = 2.0/2.; + + gMC->Gsvolu("ECHB", "BOX", idtmed[618], channel34, 3); + + //----------------- SS-Channels are Copmleted --------------------// + + //========= POSITIONING OF SS SUPPORT AND LEAD PLATES IN QUADRANTS =====// + + /**************** Z-Distances of different Components **********/ + + Float_t zcva,zfea,zpba,zpsa,zchanVeto,zchanPS, zelvdbVeto, zelvdbPS; + + + zpba = - fgkThSteel/2.; //z-position of Pb plate + zfea = fgkThLead/2.; //z-position of SS-Support + zchanVeto = zpba - fgkThLead/2. - channel12[2]; //z-position of SS-channel on Veto + zchanPS = zfea + fgkThSteel/2. + channel12[2]; //z-position of SS-channel on Preshower + zpsa = zfea + fgkThSteel/2. + fDthick; //z-position of Preshower + zcva = zpba - fgkThLead/2.- fDthick; //z-position of Veto + + zelvdbVeto = zpba + fgkThLead/2. - 8.9/2.; //z-position of LVDBs on Veto side + zelvdbPS = zfea + fgkThSteel/2. + 7.4/2.; //z-position of LVDBs on Preshower side + + // FOR LONG TYPE + Float_t xLead1,yLead1,zLead1, xLead2,yLead2,zLead2; + Float_t xIron1,yIron1,zIron1, xIron2,yIron2,zIron2; + + + xIron1 = - 16.0/2. + 0.1/2.; // half of 0.1cm is added as 1mm SS sheet is placed + yIron1 = 0.; + zIron1 = zfea; + + xIron2 = 16.0/2. - 0.1/2.; // half of 0.1cm is added as 1mm SS sheet is placed + yIron2 = 0.; + zIron2 = zfea; + + + xLead1 = xIron1 - 23.2/2.; + yLead1 = -5.2/2.; + zLead1 = zpba; + + xLead2 =xIron2 + 23.2/2.; + yLead2 = 9.8/2.; + zLead2 = zpba; + + gMC->Gspos("EFE1", 1, "EPM1", xIron1, yIron1, zfea, 0, "ONLY"); + gMC->Gspos("ELDA", 1, "EPM1", xLead1, yLead1, zpba, 0, "ONLY"); + gMC->Gspos("EFE2", 1, "EPM2", xIron2, yIron2, zfea, 0, "ONLY"); + gMC->Gspos("ELDA", 1, "EPM2", xLead2, yLead2, zpba, jhrot12, "ONLY"); + + + // FOR SHORT TYPE + Float_t xLead3,yLead3,zLead3, xLead4,yLead4,zLead4; + Float_t xIron3,yIron3,zIron3, xIron4,yIron4,zIron4; + + + xIron3 = 16.0/2.- 0.1/2.; // half of 0.1cm is added as 1mm SS sheet is placed ; + yIron3 = 0.; + zIron3 = zfea; + + xIron4 = - 16.0/2.+ 0.1/2.; // half of 0.1cm is added as 1mm SS sheet is placed; + yIron4 = 0.; + zIron4 = zfea; + + xLead3 = xIron3 + 23.2/2.; + yLead3 = -5.2/2.; + zLead3 = zpba; + + xLead4 = xIron4 - 23.2/2.; + yLead4 = 9.8/2.; + zLead4 = zpba; + + gMC->Gspos("EFE3", 1, "EPM3", xIron3, yIron3, zfea, 0, "ONLY"); + gMC->Gspos("ELDB", 1, "EPM3", xLead3, yLead3, zpba, 0, "ONLY"); + gMC->Gspos("EFE4", 1, "EPM4", xIron4, yIron4, zfea, 0, "ONLY"); + gMC->Gspos("ELDB", 1, "EPM4", xLead4, yLead4, zpba, jhrot12, "ONLY"); + + //===================================================================// + // Placement of FR4 sheets as encloser of full profile of PMD + + gMC->Gspos("ECC1", 1, "EPM1", xIron1, yIron1, -8.45, 0, "ONLY"); + gMC->Gspos("ECC2", 1, "EPM2", xIron2, yIron2, -8.45, 0,"ONLY"); + gMC->Gspos("ECC3", 1, "EPM3", xIron3, yIron3, -8.45, 0,"ONLY"); + gMC->Gspos("ECC4", 1, "EPM4", xIron4, yIron4, -8.45, 0,"ONLY"); + + gMC->Gspos("ECC1", 2, "EPM1", xIron1, yIron1, 8.45, 0, "ONLY"); + gMC->Gspos("ECC2", 2, "EPM2", xIron2, yIron2, 8.45, 0,"ONLY"); + gMC->Gspos("ECC3", 2, "EPM3", xIron3, yIron3, 8.45, 0,"ONLY"); + gMC->Gspos("ECC4", 2, "EPM4", xIron4, yIron4, 8.45, 0,"ONLY"); + + //----------------- NOW TO PLACE SS-CHANNELS -----------------------// + + Float_t xchanepm11, ychanepm11,ychanepm12; + Float_t xchanepm21, ychanepm21,ychanepm22; + Float_t xchanepm31, ychanepm31,ychanepm32,ychanepm33,ychanepm34; + Float_t xchanepm41, ychanepm41,ychanepm42,ychanepm43,ychanepm44; + + xchanepm11 = xLead1; + ychanepm11 = ya1 + yLead1 + dboxSS1[1] + 0.1 + 0.1/2.; + ychanepm12 = ya1 + yLead1 - dboxSS1[1] - 0.1 - 0.1/2.; + + xchanepm21 = xLead2; + ychanepm21 = -ya1 + yLead2 - dboxSS1[1] - 0.1 - 0.1/2.; + ychanepm22 = -ya1 + yLead2 + dboxSS1[1] + 0.1 + 0.1/2.; + + gMC->Gspos("ECHA", 1, "EPM1", xchanepm11, ychanepm11, zchanPS, 0, "ONLY"); + gMC->Gspos("ECHA", 2, "EPM1", xchanepm11, ychanepm12, zchanPS, 0, "ONLY"); + gMC->Gspos("ECHA", 3, "EPM1", xchanepm11, ychanepm11, zchanVeto, 0, "ONLY"); + gMC->Gspos("ECHA", 4, "EPM1", xchanepm11, ychanepm12, zchanVeto, 0, "ONLY"); + gMC->Gspos("ECHA", 1, "EPM2", xchanepm21, ychanepm21, zchanPS, 0, "ONLY"); + gMC->Gspos("ECHA", 2, "EPM2", xchanepm21, ychanepm22, zchanPS, 0, "ONLY"); + gMC->Gspos("ECHA", 3, "EPM2", xchanepm21, ychanepm21, zchanVeto, 0, "ONLY"); + gMC->Gspos("ECHA", 4, "EPM2", xchanepm21, ychanepm22, zchanVeto, 0, "ONLY"); + + xchanepm31 = xLead3; + ychanepm31 = yb1 + yLead3 + dboxSS2[1] + 0.1 + 0.1/2.; + ychanepm32 = yb1 + yLead3 - dboxSS2[1] - 0.1 - 0.1/2.; + ychanepm33 = yb3 + yLead3 + dboxSS2[1] + 0.1 + 0.1/2.; + ychanepm34 = yb3 + yLead3 - dboxSS2[1] - 0.1 - 0.1/2.; + + xchanepm41 = xLead4; + ychanepm41 = -yb1 + yLead4 - dboxSS2[1] - 0.1 - 0.1/2.; + ychanepm42 = -yb1 + yLead4 + dboxSS2[1] + 0.1 + 0.1/2.; + ychanepm43 = -yb3 + yLead4 - dboxSS2[1] - 0.1 - 0.1/2.; + ychanepm44 = -yb3 + yLead4 + dboxSS2[1] + 0.1 + 0.1/2.; + + + gMC->Gspos("ECHB", 1, "EPM3", xchanepm31, ychanepm31, zchanPS, 0, "ONLY"); + gMC->Gspos("ECHB", 2, "EPM3", xchanepm31, ychanepm32, zchanPS, 0, "ONLY"); + gMC->Gspos("ECHB", 3, "EPM3", xchanepm31, ychanepm33, zchanPS, 0, "ONLY"); + gMC->Gspos("ECHB", 4, "EPM3", xchanepm31, ychanepm34 + 0.200005, zchanPS, 0, "ONLY"); + // Because of overlaping a factor 0.200005 is added in ychanepm34 + + gMC->Gspos("ECHB", 5, "EPM3", xchanepm31, ychanepm31, zchanVeto, 0, "ONLY"); + gMC->Gspos("ECHB", 6, "EPM3", xchanepm31, ychanepm32, zchanVeto, 0, "ONLY"); + gMC->Gspos("ECHB", 7, "EPM3", xchanepm31, ychanepm33, zchanVeto, 0, "ONLY"); + gMC->Gspos("ECHB", 8, "EPM3", xchanepm31, ychanepm34 + 0.200005, zchanVeto, 0, "ONLY"); + // Because of overlaping a factor 0.200005 is added in ychanepm34 + + gMC->Gspos("ECHB", 1, "EPM4", xchanepm41, ychanepm41, zchanPS, 0, "ONLY"); + gMC->Gspos("ECHB", 2, "EPM4", xchanepm41, ychanepm42, zchanPS, 0, "ONLY"); + gMC->Gspos("ECHB", 3, "EPM4", xchanepm41, ychanepm43, zchanPS, 0, "ONLY"); + gMC->Gspos("ECHB", 4, "EPM4", xchanepm41, ychanepm44 - 0.200002, zchanPS, 0, "ONLY"); + // Because of overlaping a factor 0.200002 is subtracted in ychanepm44 + + gMC->Gspos("ECHB", 5, "EPM4", xchanepm41, ychanepm41, zchanVeto, 0, "ONLY"); + gMC->Gspos("ECHB", 6, "EPM4", xchanepm41, ychanepm42, zchanVeto, 0, "ONLY"); + gMC->Gspos("ECHB", 7, "EPM4", xchanepm41, ychanepm43, zchanVeto, 0, "ONLY"); + gMC->Gspos("ECHB", 8, "EPM4", xchanepm41, ychanepm44 -0.200002, zchanVeto, 0, "ONLY"); + // Because of overlaping a factor 0.200002 is subtracted in ychanepm44 + + //================= Channel Placement Completed ======================// + //============ Now to Create Al Box and then LVDBs and Cables // + // are Placed inside it // + + // Eight Al Boxes are created, four on Preshower side + // and four on Veto side + + // FOR PRESHOWER + + // First to Create hollow Al Box + // there are two types of modules, therefore, two Al box of + // long type and two of short type are created + + // For Long Type + // X-dimension = 16.5cm + // Y-dimension = same as EFE1 + // Z-dimension = 7.4cm + // Integer assigned to Al medium is 603 + + Float_t esvdA1[3]; + esvdA1[0]= 16.5/2.; + esvdA1[1]= dboxFea1[1]; + esvdA1[2]= 7.4/2.; + + gMC->Gsvolu("ESV1", "BOX", idtmed[603], esvdA1, 3); + gMC->Gsvolu("ESV2", "BOX", idtmed[603], esvdA1, 3); + + // Create Air strip for Al Boxes type-A + // Al boxes are 3mm thick In X and Z on both sides + // X-dimension = 16.5cm - 0.3cm + // Y-dimension = same as EFE1 + // Z-dimension = 7.4cm - 0.3cm + + Float_t eairA1[3]; + eairA1[0]= esvdA1[0] - 0.3; + eairA1[1]= esvdA1[1]; + eairA1[2]= esvdA1[2] - 0.3; + + gMC->Gsvolu("EIR1", "BOX", idtmed[698], eairA1, 3); + gMC->Gsvolu("EIR2", "BOX", idtmed[698], eairA1, 3); + + // Put air strips EIR1 & EIR2 inside ESV1 & ESV2 respectively + gMC->Gspos("EIR1", 1, "ESV1", 0., 0., 0., 0, "ONLY"); + gMC->Gspos("EIR2", 1, "ESV2", 0., 0., 0., 0, "ONLY"); + + + // For Short Type + // X-dimension = 16.5cm + // Y-dimension = same as EFE3 + // Z-dimension = 7.4cm + + Float_t esvdA2[3]; + esvdA2[0]= esvdA1[0]; + esvdA2[1]= dboxFea3[1]; + esvdA2[2]= esvdA1[2]; + + gMC->Gsvolu("ESV3", "BOX", idtmed[603], esvdA2, 3); + gMC->Gsvolu("ESV4", "BOX", idtmed[603], esvdA2, 3); + + // Create Air strip for Al Boxes type-B + // Al boxes are 3mm thick In X and Z on both sides + // X-dimension = 16.5cm - 0.3cm + // Y-dimension = same as EFE3 + // Z-dimension = 7.4cm - 0.3cm + + Float_t eairA2[3]; + eairA2[0]= esvdA2[0] - 0.3; + eairA2[1]= esvdA2[1]; + eairA2[2]= esvdA2[2] - 0.3; + + gMC->Gsvolu("EIR3", "BOX", idtmed[698], eairA2, 3); + gMC->Gsvolu("EIR4", "BOX", idtmed[698], eairA2, 3); + + // Put air strips EIR3 & EIR4 inside ESV3 & ESV4 respectively + gMC->Gspos("EIR3", 1, "ESV3", 0., 0., 0., 0, "ONLY"); + gMC->Gspos("EIR4", 1, "ESV4", 0., 0., 0., 0, "ONLY"); + + + // FOR VETO + + // First to Create hollow Al Box + // there are two types of modules, therefore, two Al box of + // long type and two of short type are created + + // For Long Type + // X-dimension = 16.5cm + // Y-dimension = same as EFE1 + // Z-dimension = 8.9cm + // Integer assigned to Al medium is 603 + + Float_t esvdB1[3]; + esvdB1[0]= 16.5/2.; + esvdB1[1]= dboxFea1[1]; + esvdB1[2]= 8.9/2.; + + gMC->Gsvolu("EVV1", "BOX", idtmed[603], esvdB1, 3); + gMC->Gsvolu("EVV2", "BOX", idtmed[603], esvdB1, 3); + + // Create Air strip for Al Boxes long type + // Al boxes are 3mm thick In X and Z on both sides + // X-dimension = 16.5cm - 0.3cm + // Y-dimension = same as EFE1 + // Z-dimension = 8.9cm - 0.3cm + + Float_t eairB1[3]; + eairB1[0]= esvdB1[0] - 0.3; + eairB1[1]= esvdB1[1]; + eairB1[2]= esvdB1[2] - 0.3; + + gMC->Gsvolu("EIR5", "BOX", idtmed[698], eairB1, 3); + gMC->Gsvolu("EIR6", "BOX", idtmed[698], eairB1, 3); + + // Put air strips EIR5 & EIR6 inside EVV1 & EVV2 respectively + gMC->Gspos("EIR5", 1, "EVV1", 0., 0., 0., 0, "ONLY"); + gMC->Gspos("EIR6", 1, "EVV2", 0., 0., 0., 0, "ONLY"); + + + // For Short Type + // X-dimension = 16.5cm + // Y-dimension = same as EFE3 + // Z-dimension = 8.9cm + // Integer assigned to Al medium is 603 + + Float_t esvdB2[3]; + esvdB2[0]= esvdB1[0]; + esvdB2[1]= dboxFea3[1]; + esvdB2[2]= esvdB1[2]; + + gMC->Gsvolu("EVV3", "BOX", idtmed[603], esvdB2, 3); + gMC->Gsvolu("EVV4", "BOX", idtmed[603], esvdB2, 3); + + + // Create Air strip for Al Boxes short type + // Al boxes are 3mm thick In X and Z on both sides + // X-dimension = 16.5cm - 0.3cm + // Y-dimension = same as EFE3 + // Z-dimension = 8.9cm - 0.3cm + + Float_t eairB2[3]; + eairB2[0]= esvdB2[0] - 0.3; + eairB2[1]= esvdB2[1]; + eairB2[2]= esvdB2[2] - 0.3; + + gMC->Gsvolu("EIR7", "BOX", idtmed[698], eairB2, 3); + gMC->Gsvolu("EIR8", "BOX", idtmed[698], eairB2, 3); + + // Put air strips EIR7 & EIR8 inside EVV3 & EVV4 respectively + gMC->Gspos("EIR7", 1, "EVV3", 0., 0., 0., 0, "ONLY"); + gMC->Gspos("EIR8", 1, "EVV4", 0., 0., 0., 0, "ONLY"); + + //------------ Al Boxes Completed ----------------------/ + + //--------------Now Create LVDBs----------------------/ + + // LVDBs are the volumes of G10 + // X-dimension = 10.0cm + // Y-dimension = 8.0cm + // Z-dimension = 0.2cm + // Integer assigned to the G10 medium is 607 + + Float_t elvdb[3]; + elvdb[0]= 10.0/2.; + elvdb[1]= 8.0/2.; + elvdb[2]= 0.2/2.; + + gMC->Gsvolu("ELVD", "BOX", idtmed[607], elvdb, 3); + + + // Put the LVDBs inside Air Boxes + Float_t yesvd = dboxFea1[1] - 25.0 - 4.0; + + for(Int_t jj =1; jj<=6; jj++){ + + gMC->Gspos("ELVD", jj, "EIR1", 0., yesvd, 0., 0, "ONLY"); + gMC->Gspos("ELVD", jj, "EIR2", 0., yesvd, 0., 0, "ONLY"); + + yesvd = yesvd - 4.0 - 0.5 - 4.0; + + } + + yesvd = dboxFea3[1] - 15.0 - 4.0; + + for(Int_t jj =1; jj<=6; jj++){ + + gMC->Gspos("ELVD", jj, "EIR3", 0., yesvd, 0., 0, "ONLY"); + gMC->Gspos("ELVD", jj, "EIR4", 0., yesvd, 0., 0, "ONLY"); + + yesvd = yesvd - 4.0 - 0.5 - 4.0; + } + + yesvd = dboxFea1[1] - 25.0 - 4.0; + + for(Int_t jj =1; jj<=6; jj++){ + + gMC->Gspos("ELVD", jj, "EIR5", 0., yesvd, 0., 0, "ONLY"); + gMC->Gspos("ELVD", jj, "EIR6", 0., yesvd, 0., 0, "ONLY"); + + yesvd = yesvd - 4.0 - 0.5 - 4.0; + } + + yesvd = dboxFea3[1] - 15.0 - 4.0; + + for(Int_t jj =1; jj<=6; jj++){ + + gMC->Gspos("ELVD", jj, "EIR7", 0., yesvd, 0., 0, "ONLY"); + gMC->Gspos("ELVD", jj, "EIR8", 0., yesvd, 0., 0, "ONLY"); + + yesvd = yesvd - 4.0 - 0.5 - 4.0; + } + + + //----------------- LVDBs Placement Completed--------------// + + // ------------ Now Create Cables ------------------------// + + // There are a number of cables + // We have reduced the number of volumes to 4 + // And these 4 Volumes of Cables are placed repeatedly + // in the four quadrants (EPM1,2,3,4) + // The placement of Cables are in good approximations + // The material medium for Cables is a mixture of Plastic + // and Copper(Cu). Therefore, in a good approximation a mixture + // is created and Integer assigned to this medium is 631 + + Float_t cable1[3]; + cable1[0] = 2.5/2.; + cable1[1] = dboxFea1[1]; + cable1[2] = 2.4/2.; + + gMC->Gsvolu("ECB1", "BOX", idtmed[631], cable1, 3); + + Float_t cable2[3]; + cable2[0] = 2.5/2.; + cable2[1] = dboxFea3[1]; + cable2[2] = 2.4/2.; + + gMC->Gsvolu("ECB2", "BOX", idtmed[631], cable2, 3); + + Float_t cable3[3]; + cable3[0] = 2.5/2.; + cable3[1] = dboxFea3[1] - dboxUM2[1]; + cable3[2] = 2.4/2.; + + gMC->Gsvolu("ECB3", "BOX", idtmed[631], cable3, 3); + + Float_t cable4[3]; + cable4[0] = 2.5/2.; + cable4[1] = dboxUM2[1]; + cable4[2] = 2.4/2.; + + gMC->Gsvolu("ECB4", "BOX", idtmed[631], cable4, 3); + + // Calculation of the co-ordinates of Cables + + Float_t xcable11pm2, xcable12pm2, xcable2pm1, xcable2pm2, xcable21pm4, xcable22pm4; + Float_t xcable3pm1, xcable3pm3, xcable3pm4, xcable4pm3; + + Float_t ycable2pm1, ycable2pm2; + Float_t ycable3pm1, ycable3pm3, ycable3pm4, ycable4pm3; + + Float_t zcablePS, zcableVeto; + + xcable2pm1 = esvdA1[0] - 3.0 - cable1[0]; + xcable3pm1 = xcable2pm1 - cable1[0] - 0.5 - cable1[0]; + + xcable11pm2 = -esvdA1[0]+ 3.0 + cable1[0]; + xcable12pm2 = xcable11pm2 + cable1[0] + 0.5 + cable1[0]; + xcable2pm2 = xcable12pm2 + cable1[0] + 0.5 + cable1[0]; + + xcable3pm3 = -esvdB1[0] + 3.0 + cable1[0]; + xcable4pm3 = xcable3pm3 + cable1[0] + 0.5 + cable1[0]; + + xcable21pm4 = esvdB1[0] - 3.0 - cable1[0]; + xcable22pm4 = xcable21pm4 - cable1[0] -0.5 - cable1[0]; + xcable3pm4 = xcable22pm4 - cable1[0] -0.5 -cable1[0]; + + ycable2pm1 = -(esvdA1[1] - esvdA2[1]); + ycable3pm1 = -esvdA1[1] + cable3[1]; + + ycable2pm2 = -(esvdA1[1] - esvdA2[1]); + + ycable3pm3 = -dboxUM2[1]; + ycable4pm3 = -esvdA2[1] + dboxUM2[1]; + + ycable3pm4 = -dboxUM2[1]; + + zcablePS = -esvdA1[2] + 0.3 + cable1[2]; + zcableVeto = esvdB1[2] - 0.3 - cable1[2]; -*/ -/////////////////////////////////////////////////////////////////////////////// -// // -// Photon Multiplicity Detector Version 1 // -// // -//Begin_Html -/* - -*/ -//End_Html -// // -/////////////////////////////////////////////////////////////////////////////// -#include "AliPMDv1.h" -#include "AliRun.h" -#include "AliMC.h" -#include "AliConst.h" - -static Int_t maxbox, kdet; -static Float_t thmin,thmax,zdist,zdist1,thlow,thhigh; + // Placement of Cables in Air Boxes + gMC->Gspos("ECB2", 1, "EIR1", xcable2pm1, ycable2pm1, zcablePS, 0, "ONLY"); + gMC->Gspos("ECB3", 1, "EIR1", xcable3pm1, ycable3pm1, zcablePS, 0, "ONLY"); + gMC->Gspos("ECB2", 1, "EIR5", xcable2pm1, ycable2pm1, zcableVeto, 0, "ONLY"); + gMC->Gspos("ECB3", 1, "EIR5", xcable3pm1, ycable3pm1, zcableVeto, 0, "ONLY"); + + gMC->Gspos("ECB1", 1, "EIR2", xcable11pm2, 0., zcablePS, 0, "ONLY"); + gMC->Gspos("ECB1", 2, "EIR2", xcable12pm2, 0., zcablePS, 0, "ONLY"); + gMC->Gspos("ECB2", 1, "EIR2", xcable2pm2, ycable2pm2, zcablePS, 0, "ONLY"); + gMC->Gspos("ECB1", 1, "EIR6", xcable11pm2, 0., zcableVeto, 0, "ONLY"); + gMC->Gspos("ECB1", 2, "EIR6", xcable12pm2, 0., zcableVeto, 0, "ONLY"); + gMC->Gspos("ECB2", 1, "EIR6", xcable2pm2, ycable2pm2, zcableVeto, 0, "ONLY"); + + gMC->Gspos("ECB3", 1, "EIR3", xcable3pm3, ycable3pm3, zcablePS, 0, "ONLY"); + gMC->Gspos("ECB4", 1, "EIR3", xcable4pm3, ycable4pm3, zcablePS, 0, "ONLY"); + gMC->Gspos("ECB3", 1, "EIR7", xcable3pm3, ycable3pm3, zcableVeto, 0, "ONLY"); + gMC->Gspos("ECB4", 1, "EIR7", xcable4pm3, ycable4pm3, zcableVeto, 0, "ONLY"); + + gMC->Gspos("ECB2", 1, "EIR4", xcable21pm4, 0., zcablePS, 0, "ONLY"); + gMC->Gspos("ECB2", 2, "EIR4", xcable22pm4, 0., zcablePS, 0, "ONLY"); + gMC->Gspos("ECB3", 1, "EIR4", xcable3pm4, ycable3pm4, zcablePS, 0, "ONLY"); + gMC->Gspos("ECB2", 1, "EIR8", xcable21pm4, 0., zcableVeto, 0, "ONLY"); + gMC->Gspos("ECB2", 2, "EIR8", xcable22pm4, 0., zcableVeto, 0, "ONLY"); + gMC->Gspos("ECB3", 1, "EIR8", xcable3pm4, ycable3pm4, zcableVeto, 0, "ONLY"); + -ClassImp(AliPMDv1) - -//_____________________________________________________________________________ -AliPMDv1::AliPMDv1() -{ - // - // Default constructor - // - fMedSens=0; -} - -//_____________________________________________________________________________ -AliPMDv1::AliPMDv1(const char *name, const char *title) - : AliPMD(name,title) -{ - // - // Standard constructor - // - fMedSens=0; -} -//_____________________________________________________________________________ -void AliPMDv1::CreateGeometry() -{ - // - // Create geometry for Photon Multiplicity Detector Version 1 - // - //Begin_Html - /* - - */ - //End_Html - //Begin_Html - /* - - */ - //End_Html - CreatePads(); - CreateInside(); -} - -//_____________________________________________________________________________ -void AliPMDv1::CreateInside() -{ - // - // Create inside of Pads - // - // -- Author : Y.P. VIYOGI, 07/05/1996. - // -- Modified: P.V.K.S.Baba(JU), 15-12-97. -// Sipmd, the dimension of TUBE mother volume of PMD, other dimensions -// like sip01.. are to place more tubes in the volume at different eta bins. - Float_t sipmd[3] = { 40.,270.,15.}; - Float_t sip01[3] = { 10.,57.89,25.}; - Float_t sip02[3] = { 10.,64.03,25.}; - Float_t sip03[3] = { 10.,70.80,25.}; - Float_t sip04[3] = { 10.,78.32,25.}; - Float_t sip05[3] = { 10.,86.68,25.}; - Float_t sip06[3] = { 10.,95.91,25.}; - Float_t sip07[3] = { 10.,106.14,25.}; - Float_t sip08[3] = { 10.,117.48,25.}; - Float_t sip09[3] = { 10.,130.18,25.}; - Float_t sip10[3] = { 10.,144.18,25.}; - Float_t sip11[3] = { 10.,159.87,25.}; - Float_t sip12[3] = { 10.,177.43,25.}; - Float_t sip13[3] = { 10.,197.11,25.}; - Float_t sip14[3] = { 10.,219.28,25.}; - Float_t sipmdl[5] = { 10.,310.,25.,90.,270. }; - Float_t sipmdr[5] = { 10.,310.,25.,270.,90. }; - - const Float_t root3_4 = sqrt(3)/4.; - const Float_t root3_2 = sqrt(3)/2.; - // Float_t xiqa[4], yiqa[4]; - Int_t i; - // Float_t siqad[4]; - Float_t xp, yp, zp; - // Int_t idrotm[100]; - Int_t num_mod; - Int_t jhrotc,jhrotac; -// const Float_t delx=78.8; - const Float_t delx=76.75; - // const Float_t dely=delx*root3_2; -// const Float_t delz=1.6/2.; - AliMatrix(jhrotc, 90., 30., 90., 120., 0., 0.); - AliMatrix(jhrotac, 90., 330., 90., 240., 0., 0.); - Float_t x1= delx*root3_4; - Float_t x2= delx*root3_4 + delx*root3_2; - Float_t x3= delx*root3_4 + 2*delx*root3_2; - Float_t xpos[13]={-x1,-x1,-x1,-x1,-x2,-x2,-x2,-x2,-x2,-x3,-x3,-x3,-x3}; - Float_t x4=delx/4.; - Float_t ypos[13]={(-70.-x4-delx),-(70.+x4),(70.+x4),(70.+x4+delx),-x4+2*delx,-x4+delx,-x4,-x4-delx,-x4-2*delx,-3*x4-delx,-x4-delx/2.,-3*x4+delx,-3*x4+2*delx}; -// Float_t ypos[13]={(-70.-x4-delx),-(70.+x4),(70.+x4),(70.+x4+delx),(4*dely),(2*dely),0.,-(2*dely),-(4*dely),-3*x4-delx,-x4-delx/2.,-3*x4+delx,-3*x4+2*delx}; - Int_t *idtmed = fIdtmed->GetArray()-599; + + //=============== NOW POSITIONING THE Al Boxes IN EPM'S================// - // VOLUMES Names : begining with D for all PMD volumes, - // The names of SIZE variables begin with S and have more meaningful - // characters as shown below. - - // VOLUME SIZE MEDIUM : REMARKS - // ------ ----- ------ : --------------------------- - - // DPMD SIPMD AIR : INSIDE PMD and its SIZE - - - - // *** Define the DPMD Volume and fill with air *** - - gMC->Gsvolu("DPMD", "TUBE", idtmed[698], sipmd, 3); - gMC->Gsvolu("PM01", "TUBE", idtmed[698], sip01, 3); - gMC->Gsvolu("PM02", "TUBE", idtmed[698], sip02, 3); - gMC->Gsvolu("PM03", "TUBE", idtmed[698], sip03, 3); - gMC->Gsvolu("PM04", "TUBE", idtmed[698], sip04, 3); - gMC->Gsvolu("PM05", "TUBE", idtmed[698], sip05, 3); - gMC->Gsvolu("PM06", "TUBE", idtmed[698], sip06, 3); - gMC->Gsvolu("PM07", "TUBE", idtmed[698], sip07, 3); - gMC->Gsvolu("PM08", "TUBE", idtmed[698], sip08, 3); - gMC->Gsvolu("PM09", "TUBE", idtmed[698], sip09, 3); - gMC->Gsvolu("PM10", "TUBE", idtmed[698], sip10, 3); - gMC->Gsvolu("PM11", "TUBE", idtmed[698], sip11, 3); - gMC->Gsvolu("PM12", "TUBE", idtmed[698], sip12, 3); - gMC->Gsvolu("PM13", "TUBE", idtmed[698], sip13, 3); - gMC->Gsvolu("PM14", "TUBE", idtmed[698], sip14, 3); - gMC->Gsvolu("PMDL", "TUBS", idtmed[698], sipmdl, 5); - gMC->Gsvolu("PMDR", "TUBS", idtmed[698], sipmdr, 5); -// - const Int_t npad2=72; - Float_t hexd1[10] = {0.,360.,6,2,-0.4,0.,0.53,0.4,0.,0.53}; - Float_t dpara_sm[6] = {12.5,12.5,0.8,30.,0.,0.}; - dpara_sm[0]=(npad2+0.25)*hexd1[6] + 1.2; - dpara_sm[1] = dpara_sm[0] *root3_2; - Float_t dpara_dm11[6] = {12.5,12.5,0.8,30.,0.,0.}; - dpara_dm11[0]=dpara_sm[0]+.01; - dpara_dm11[1] = dpara_dm11[0] *root3_2; - dpara_dm11[2]= 6.2/2.; -// - for (i = 0; i < 2; ++i) { - num_mod=i+1; - gMC->Gsposp("DM11", num_mod, "DPMD", xpos[i],ypos[i],0., jhrotac, "ONLY", dpara_dm11, 6); - gMC->Gsposp("DM11", num_mod+13, "DPMD", TMath::Abs(xpos[i]),ypos[i],0., jhrotc, "ONLY", dpara_dm11, 6); - printf("Num_mod %d\n",num_mod); - } - maxbox=13; - for (i = 2; i < maxbox; ++i) { - num_mod=i+1; - gMC->Gsposp("DM11", num_mod, "DPMD", xpos[i],ypos[i],0., jhrotc, "ONLY", dpara_dm11, 6); - gMC->Gsposp("DM11", num_mod+13, "DPMD", TMath::Abs(xpos[i]),ypos[i],0., jhrotac, "ONLY", dpara_dm11, 6); - printf("Num_mod %d\n",num_mod); - } -// gMC->Gspos("PM01", 1, "DPMD", 0.,0.,0., 0, "ONLY"); -// gMC->Gspos("PM02", 1, "DPMD", 0.,0.,0., 0, "ONLY"); -// gMC->Gspos("PM03", 1, "DPMD", 0.,0.,0., 0, "ONLY"); -// gMC->Gspos("PM04", 1, "DPMD", 0.,0.,0., 0, "ONLY"); -// gMC->Gspos("PM05", 1, "DPMD", 0.,0.,0., 0, "ONLY"); -// gMC->Gspos("PM06", 1, "DPMD", 0.,0.,0., 0, "ONLY"); -// gMC->Gspos("PM07", 1, "DPMD", 0.,0.,0., 0, "ONLY"); -// gMC->Gspos("PM08", 1, "DPMD", 0.,0.,0., 0, "ONLY"); -// gMC->Gspos("PM09", 1, "DPMD", 0.,0.,0., 0, "ONLY"); -// gMC->Gspos("PM10", 1, "DPMD", 0.,0.,0., 0, "ONLY"); -// gMC->Gspos("PM11", 1, "DPMD", 0.,0.,0., 0, "ONLY"); -// gMC->Gspos("PM12", 1, "DPMD", 0.,0.,0., 0, "ONLY"); -// gMC->Gspos("PM13", 1, "DPMD", 0.,0.,0., 0, "ONLY"); -// gMC->Gspos("PM14", 1, "DPMD", 0.,0.,0., 0, "ONLY"); -// --- Place the DPMD in ALICE with front edge 5.8m from vertex --- - xp = 0.; - yp = 0.; - zp = zdist1; -// gMC->Gspos("PMDL", 1, "DPMD", xp,yp,0., 0, "ONLY"); -// gMC->Gspos("PMDR", 1, "DPMD", xp,yp,0., 0, "ONLY"); - gMC->Gspos("DPMD", 1, "ALIC", xp,yp,zp, 0, "ONLY"); - -} + + gMC->Gspos("ESV1", 1, "EPM1", dboxFea1[0] - esvdA1[0] - 8.0, 0., zelvdbPS, 0, "ONLY"); + gMC->Gspos("EVV1", 1, "EPM1", dboxFea1[0] - esvdB1[0] - 8.0, 0., zelvdbVeto, 0, "ONLY"); + + gMC->Gspos("ESV2", 1, "EPM2", -dboxFea2[0] + esvdA1[0] + 8.0, 2.3, zelvdbPS, 0, "ONLY"); + gMC->Gspos("EVV2", 1, "EPM2", -dboxFea2[0] + esvdB1[0] + 8.0, 2.3, zelvdbVeto, 0, "ONLY"); + + gMC->Gspos("ESV3", 1, "EPM3", -dboxFea3[0] + esvdA1[0] + 8.0, 0., zelvdbPS, 0, "ONLY"); + gMC->Gspos("EVV3", 1, "EPM3", -dboxFea3[0] + esvdB1[0] + 8.0, 0., zelvdbVeto, 0, "ONLY"); + + gMC->Gspos("ESV4", 1, "EPM4", dboxFea4[0] - esvdA1[0] - 8.0, 2.3, zelvdbPS, 0, "ONLY"); + gMC->Gspos("EVV4", 1, "EPM4", dboxFea4[0] - esvdB1[0] - 8.0, 2.3, zelvdbVeto, 0, "ONLY"); + + //==================================================================// + //====================== LAST THING IS TO INSTALL ELMB ================// + + // ELMB,s are the G10 Volumes -//_____________________________________________________________________________ -void AliPMDv1::CreatePads() -{ - // - // Create the geometry of the pads - // *** DEFINITION OF THE GEOMETRY OF THE PMD *** - // *** HEXAGONAL PADS WITH 10 MM SQUARE EQUIVALENT - // -- Author : S. Chattopadhyay, 02/04/1999. - -// Basic unit is DP11, a hexagonal cell, which is placed inside another -// hexagonal cell (DS11) of larger radius, compared to DP11. The difference in r// adius gives the dimension of half width of each cell wall. -// These cells are placed as 72 x 72 array in a -// rhombus shaped supermodule (DW11). The rhombus shaped modules are designed -// to have closed packed structure. -// Each supermodule (SUPR), made of G10 is filled with following components -// SMSS --> SS backing, -// SMAR --> Gap between gas hexagonal cells and G10 backing. -// DW11 --> Ar-Co2 filled gas hexagonal cells. -// SMAR -// These supermodules are placed inside the main module (DM11), with Fe and -// Pb converter positioned between CPV and PMD. -// DM11 made of -// SUPR (rotated to place steel on the other side), this works as preshower -// when PMD is placed in -ve z. -// SUPB --> Pb converter -// SUFE --> Fe backing -// SUPR --> supermodule without rotation (this acts as CPV). -// - - const Int_t npad2 = 72; - Float_t hexd1[10] = {0.,360.,6,2,-0.4,0.,0.53,0.4,0.,0.53}; -//total wall thickness=0.2*2 - Float_t hexd2[10] = {0.,360.,6,2,-0.4,0.,0.51,0.4,0.,0.51}; - Int_t i, j; - Float_t xb, yb, zb;//, sw[3]; - Int_t number; - Int_t ihrotm,irotdm; - const Float_t root3_cons = sqrt(3) /2.; - Int_t *idtmed = fIdtmed->GetArray()-599; + // First to create Air Volume to place ELMBs + Float_t xelmb[3]; + xelmb[0] = 10.0; + xelmb[1] = 4.0; + xelmb[2] = 0.5; + + gMC->Gsvolu("ELMB", "BOX", idtmed[698], xelmb, 3); + + // There are more G10 Volumes + // But in approximation, we reduced them to two + // ELM1 & ELM2 + + Float_t xelmb1[3]; + xelmb1[0] = 9.7; + xelmb1[1] = 3.6; + xelmb1[2] = 0.1; + + gMC->Gsvolu("ELM1", "BOX", idtmed[607], xelmb1, 3); + + Float_t xelmb2[3]; + xelmb2[0] = 6.0; + xelmb2[1] = 3.0; + xelmb2[2] = 0.1; + + gMC->Gsvolu("ELM2", "BOX", idtmed[607], xelmb2, 3); + + /******** NOW POSITIONING THE G10 VOLUMES ELM1 & ELM2 IN ELMB **********/ + + gMC->Gspos("ELM1", 1, "ELMB", 0., 0., -0.3, 0, "ONLY"); + gMC->Gspos("ELM2", 1, "ELMB", 0., 0., 0.3, 0, "ONLY"); + + // Position co-ordinates of ELMBs in EPM2 & EPM4 + + Float_t xelmbepm2, xelmbepm4, yelmbepm2, yelmbepm4, zelmbPS, zelmbVeto; + + xelmbepm2 = -gaspmd2[0] + 16.0 +23.2 + 2.5 + xelmb[0]; + xelmbepm4 = gaspmd4[0] - 16.0 -23.2 - 2.5 - xelmb[0]; + + yelmbepm2 = -gaspmd2[1] + 1.0 + xelmb[1]; + yelmbepm4 = -gaspmd4[1] + 1.0 + xelmb[1]; + + zelmbPS = zfea + fgkThSteel/2.+ xelmb[2]; + zelmbVeto = zfea - fgkThSteel/2.- xelmb[2]; + + /************ NOW PLACE ELMB'S IN EPM2 & EPM4 *********************/ + + // There are total of 14 ELMB volumes + // three on both sides of EPM2 (total of 6) + // and four on both sides of EPM4 (total of 8) + // The ELMBs are placed at the bottom of + // SS support, which is the extended part + + // Placement of ELMBs on EPM2 + for(Int_t kk=1;kk<=3;kk++){ + gMC->Gspos("ELMB", kk, "EPM2", xelmbepm2, yelmbepm2, zelmbPS, 0, "ONLY"); + xelmbepm2 = xelmbepm2 + xelmb[0] + 0.5 + xelmb[0]; + } + + xelmbepm2 = -gaspmd2[0] + 16.0 +23.2 + 2.5 + xelmb[0]; + + for(Int_t kk=4;kk<=6;kk++){ + gMC->Gspos("ELMB", kk, "EPM2", xelmbepm2, yelmbepm2, zelmbVeto, 0, "ONLY"); + xelmbepm2 = xelmbepm2 + xelmb[0] + 0.5 + xelmb[0]; + } + + // Placement of ELMBs on EPM4 + for(Int_t kk=1;kk<=4;kk++){ + gMC->Gspos("ELMB", kk, "EPM4", xelmbepm4, yelmbepm4, zelmbPS, 0, "ONLY"); + xelmbepm4 = xelmbepm4 - xelmb[0] - 0.5 - xelmb[0]; + } + + xelmbepm4 = gaspmd4[0] - 16.0 -23.2 - 2.5 - xelmb[0]; + for(Int_t kk=5;kk<=8;kk++){ + gMC->Gspos("ELMB", kk, "EPM4", xelmbepm4, yelmbepm4, zelmbVeto, 0, "ONLY"); + xelmbepm4 = xelmbepm4 - xelmb[0] - 0.5 - xelmb[0]; + } + + //========= Placement of ELMBs Completed ============================/ + + // ------------- Now to Place Unit Modules in four quadrants + // EPM1, EPM2, EPM3 & EPM4 ---------------------// + + // Position co-ordinates of Unit Modules + + Double_t xcord[24]; + Double_t ycord[24]; + + xcord[0] = xa1; + xcord[1] = xa2; + xcord[2] = xa3; + xcord[3] = xa1; + xcord[4] = xa2; + xcord[5] = xa3; + xcord[6] = -xa1; + xcord[7] = -xa2; + xcord[8] = -xa3; + xcord[9] = -xa1; + xcord[10] = -xa2; + xcord[11] = -xa3; + xcord[12] = xb1; + xcord[13] = xb2; + xcord[14] = xb1; + xcord[15] = xb2; + xcord[16] = xb1; + xcord[17] = xb2; + xcord[18] = -xb1; + xcord[19] = -xb2; + xcord[20] = -xb1; + xcord[21] = -xb2; + xcord[22] = -xb1; + xcord[23] = -xb2; + + ycord[0] = ya1; + ycord[1] = ya1; + ycord[2] = ya1; + ycord[3] = ya2; + ycord[4] = ya2; + ycord[5] = ya2; + ycord[6] = -ya1; + ycord[7] = -ya1; + ycord[8] = -ya1; + ycord[9] = -ya2; + ycord[10] = -ya2; + ycord[11] = -ya2; + ycord[12] = yb1; + ycord[13] = yb1; + ycord[14] = yb2; + ycord[15] = yb2; + ycord[16] = yb3+0.100007; //Because of overlapping the factor 0.100007 + ycord[17] = yb3+0.100007; // is added + ycord[18] = -yb1; + ycord[19] = -yb1; + ycord[20] = -yb2; + ycord[21] = -yb2; + ycord[22] = -yb3-0.100004; //Because of overlapping the factor 0.100007 + ycord[23] = -yb3-0.100004; // is added - AliMatrix(ihrotm, 90., 30., 90., 120., 0., 0.); - AliMatrix(irotdm, 90., 180., 90., 270., 180., 0.); - zdist1 = fIn[2]; - zdist = TMath::Abs(zdist1); -// - Int_t xrow=1; - Float_t dpara[6] = {12.5,12.5,0.4,30.,0.,0.}; - dpara[0]=(npad2+0.25)*hexd1[6]; - dpara[1] = dpara[0] *root3_cons; -// -//Subhasis, dimensional parameters of rhombus (dpara) as given to gsvolu -// rhombus to accomodate 72 x 72 hexagons, and with total 1.2cm extension -//(1mm tolerance on both side and 5mm thick G10 wall) -// + + // Placement of unit modules EUM1 & EUV1(long type) + // and EUM2 & EUV2(short type) + // in the four quadrants EPM1, EPM2, EPM3 & EPM4 -// **** PAD SIZE 10 MM SQUARE EQUIVALENT -// -// Inner hex filled with gas - gMC->Gsvolu("DP11", "PGON", idtmed[604], hexd2,10); - gMC->Gsatt("DP11", "SEEN", 1); - -// Outer hex filled with Plastic -//plastic gMC->Gsvolu("DS11", "PGON", idtmed[616], hexd1,10); -// Iron - gMC->Gsvolu("DS11", "PGON", idtmed[601], hexd1,10); - gMC->Gsatt("DS11", "SEEN", 1); -// --- place inner hex inside outer hex - gMC->Gsposp("DP11", 1, "DS11", 0., 0., 0., 0, "ONLY", hexd2, 10); -// Rhombus shaped supermodules (defined by PARA) -// volume for SUPERMODULE - Float_t dpara_sm[6] = {12.5,12.5,0.8,30.,0.,0.}; - dpara_sm[0]=(npad2+0.25)*hexd1[6] + 1.2; - dpara_sm[1] = dpara_sm[0] *root3_cons; -// - gMC->Gsvolu("SUPR","PARA", idtmed[607], dpara_sm, 6); - gMC->Gsatt("SUPR", "SEEN", 1); -// SS - Float_t dpara_ss[6] = {12.5,12.5,8.,30.,0.,0.}; - dpara_ss[0]= dpara[0]; - dpara_ss[1]= dpara[1]; - dpara_ss[2]= 0.3/2.; -// - gMC->Gsvolu("SMSS","PARA", idtmed[601], dpara_ss, 6); - gMC->Gsatt("SMSS", "SEEN", 1); -// Air - Float_t dpara_air[6] = {12.5,12.5,8.,30.,0.,0.}; - dpara_air[0]= dpara[0] - 0.5; - dpara_air[1]= dpara_air[0] * root3_cons; - dpara_air[2]= 0.1/2.; -// gMC->Gsvolu("SMAR","PARA", idtmed[604], dpara_air, 6); - gMC->Gsvolu("SMAR","PARA", idtmed[698], dpara_air, 6); - gMC->Gsatt("SMAR", "SEEN", 1); -// -// volume for gas chamber (DW11) -// -// gMC->Gsvolu("DW11","PARA", idtmed[604], dpara, 6); - gMC->Gsvolu("DW11","PARA", idtmed[698], dpara, 6); - gMC->Gsatt("DW11", "SEEN", 1); -// Place outer hex inside DW11 - yb = -dpara[1] + (1./root3_cons)*hexd1[6]; - zb = 0.; - for (j = 1; j <= npad2; ++j) { - xb =-(dpara[0] + dpara[1]*0.577) + 2*hexd1[6]; - if(xrow >= 2){ - xb = xb+(xrow-1)*hexd1[6]; + for(Int_t ii=0;ii<=5;ii++){ + if(fModStatus[ii]){ + gMC->Gspos("EUM1", ii, "EPM1", xcord[ii]+xLead1,ycord[ii]+yLead1, zpsa, 0, "ONLY"); + } + } + + for(Int_t ii=6;ii<=11;ii++){ + if(fModStatus[ii]) { + gMC->Gspos("EUM1", ii, "EPM2", xcord[ii]+xLead2, ycord[ii]+yLead2, zpsa, jhrot12, "ONLY"); } - for (i = 1; i <= npad2; ++i) { - number = i+(j-1)*npad2; - gMC->Gsposp("DS11", number, "DW11", xb, yb, zb, ihrotm, "ONLY", hexd1, 10); - xb += (hexd1[6]*2.); } - xrow = xrow+1; - yb += (hexd1[6]*sqrt(3.)); + + for(Int_t ii=12;ii<=17;ii++){ + if(fModStatus[ii]) { + gMC->Gspos("EUM2", ii, "EPM3", xcord[ii]+xLead3, ycord[ii]+yLead3, zpsa, 0, "ONLY"); + } } - Float_t z_ss,z_air1,z_air2,z_gas; -// Place other components inside super module - z_ss=-dpara_sm[2]+dpara_ss[2]; - gMC->Gspos("SMSS", 1, "SUPR", 0., 0., z_ss, 0, "ONLY"); - z_air1=z_ss+dpara_ss[2] +dpara_air[2]; - gMC->Gspos("SMAR", 1, "SUPR", 0., 0., z_air1, 0, "ONLY"); - z_gas=z_air1+dpara_air[2]+dpara[2]+0.1; - gMC->Gspos("DW11", 1, "SUPR", 0., 0., z_gas, 0, "ONLY"); - z_air2=z_gas+dpara[2]+0.1+dpara_air[2]; - gMC->Gspos("SMAR", 2, "SUPR", 0., 0., z_air2, 0, "ONLY"); - -// --- DEFINE MODules, iron, and lead voLUMES - - -// volume for SUPERMODULE -// Pb - Float_t dpara_pb[6] = {12.5,12.5,8.,30.,0.,0.}; - dpara_pb[0]=dpara_sm[0]; - dpara_pb[1]=dpara_sm[1]; -// dpara_pb[2]=1.1/2.; - dpara_pb[2]=1.5/2.; - gMC->Gsvolu("SUPB","PARA", idtmed[600], dpara_pb, 6); - gMC->Gsatt("SUPB", "SEEN", 1); -// Fe - Float_t dpara_fe[6] = {12.5,12.5,8.,30.,0.,0.}; - dpara_fe[0]=dpara_sm[0]; - dpara_fe[1]=dpara_sm[1]; - dpara_fe[2]=0.5/2.; - gMC->Gsvolu("SUFE","PARA", idtmed[601], dpara_fe, 6); - gMC->Gsatt("SUFE", "SEEN", 1); -// volume for DM11 - Float_t dpara_dm11[6] = {12.5,12.5,0.8,30.,0.,0.}; - dpara_dm11[0]=dpara_sm[0]+.01; - dpara_dm11[1] = dpara_dm11[0] *root3_cons; - dpara_dm11[2]= 6.2/2.; - -// - gMC->Gsvolu("DM11","PARA", idtmed[698], dpara_dm11, 6); - gMC->Gsatt("DM11", "SEEN", 1); -// position super module inside DM11 - Float_t z_ps,z_pb,z_fe,z_cv; - z_ps=-dpara_dm11[2]+dpara_sm[2]; - gMC->Gspos("SUPR", 1, "DM11", 0., 0., z_ps, irotdm, "ONLY"); - z_pb=z_ps+dpara_sm[2]+dpara_pb[2]; - gMC->Gspos("SUPB", 1, "DM11", 0., 0., z_pb, 0, "ONLY"); - z_fe=z_pb+dpara_pb[2]+dpara_fe[2]; - gMC->Gspos("SUFE", 1, "DM11", 0., 0., z_fe, 0, "ONLY"); - z_cv=z_fe+dpara_fe[2]+dpara_sm[2]; - gMC->Gspos("SUPR", 2, "DM11", 0., 0., z_cv, 0, "ONLY"); -// -} - -//_____________________________________________________________________________ -void AliPMDv1::DrawModule() -{ - // - // Draw a shaded view of the Photon Multiplicity Detector - // + + for(Int_t ii=18;ii<=23;ii++){ + if(fModStatus[ii]) { + gMC->Gspos("EUM2", ii, "EPM4", xcord[ii]+xLead4, ycord[ii]+yLead4, zpsa, jhrot12, "ONLY"); + } + } + + for(Int_t ii=24;ii<=29;ii++){ + if(fModStatus[ii]) { + gMC->Gspos("EUV1", ii, "EPM1", xcord[ii-24]+xLead1, ycord[ii-24]+yLead1, zcva, 0, "ONLY"); + } + } + + for(Int_t ii=30;ii<=35;ii++){ + if(fModStatus[ii]) { + gMC->Gspos("EUV1", ii, "EPM2", xcord[ii-24]+xLead2, ycord[ii-24]+yLead2, zcva, jhrot12, "ONLY"); + } + } + + for(Int_t ii=36;ii<=41;ii++){ + if(fModStatus[ii]) { + gMC->Gspos("EUV2", ii, "EPM3", xcord[ii-24]+xLead3, ycord[ii-24]+yLead3, zcva, 0, "ONLY"); + } + } + + for(Int_t ii=42;ii<=47;ii++){ + if(fModStatus[ii]) { + gMC->Gspos("EUV2", ii, "EPM4", xcord[ii-24]+xLead4, ycord[ii-24]+yLead4, zcva, jhrot12, "ONLY"); + } + } + + //-------------- Placement of Unit Modules Completed ---------------// + + // ========== PLACE THE EPMD IN ALICE ======================// + + // Now the Job to assemble the five mother volumes of PMD in ALICE + + // Z-distance of PMD from Interaction Point + + zp = fgkZdist; + + // X and Y-positions of the EPM1, EPM2, EPM3 & EPM4 + Float_t xfinal,yfinal; + Float_t xsm1, xsm2, xsm3, xsm4; + Float_t ysm1, ysm2, ysm3, ysm4; + + xfinal = (fSMLengthax + serviceX/2. + serviceXext/2. + 0.05) + 0.48/2. + + (fSMLengthbx + serviceX/2. + serviceXext/2.+ 0.05); - gMC->Gsatt("*", "seen", -1); - gMC->Gsatt("alic", "seen", 0); + //Extra width of the SS plate on Support Structure on X-side and 1mm thick SS for cooling encloser + //Extra width of the SS plate on Support Structure on X-side for B-Type + + yfinal = (fSMLengthay + serviceYa/2.)+ 0.20/2 + (fSMLengthby + serviceYb/2.); + + //serviceYa is the Extra width of the SS plate on Support Structur on Y-side for EPM1 & EPM3 + //serviceYb is the Extra width of the SS plate on Support Structur on Y-side for EPM2 & EPM4 + + + xsm1 = xfinal - (fSMLengthax + serviceX/2. + serviceXext/2. + 0.05); + ysm1 = yfinal - (fSMLengthay + serviceYa/2.) - 2.3; + + xsm2 = -xfinal + (fSMLengthax + serviceX/2. + serviceXext/2. + 0.05); + ysm2 = -yfinal + (fSMLengthay + serviceYb/2.) - 2.3; + + xsm3 = -xfinal + (fSMLengthbx + serviceX/2. + serviceXext/2. + 0.05); + ysm3 = yfinal - (fSMLengthby + serviceYa/2.) - 2.3; + + xsm4 = xfinal - (fSMLengthbx + serviceX/2. + serviceXext/2. + 0.05); + ysm4 = -yfinal + (fSMLengthby + serviceYb/2.) - 2.3; + + //Position Full PMD in ALICE // - // Set the visibility of the components - // - gMC->Gsatt("DP11","seen",0); - gMC->Gsatt("DS11","seen",1); - gMC->Gsatt("DW11","seen",0); - gMC->Gsatt("DM11","seen",1); - gMC->Gsatt("DPMD","seen",0); + // EPM1 EPM3 + // + // EPM4 EPM2 + // (rotated EPM3) (rotated EPM1) // - gMC->Gdopt("hide", "on"); - gMC->Gdopt("shad", "on"); - gMC->Gsatt("*", "fill", 7); - gMC->SetClipBox("."); - gMC->SetClipBox("*", 0, 3000, -3000, 3000, -6000, 6000); - gMC->DefaultRange(); - gMC->Gdraw("alic", 40, 30, 0, 22, 20.5, .02, .02); - gMC->Gdhead(1111, "Photon Multiplicity Detector Version 1"); - //gMC->Gdman(17, 5, "MAN"); - gMC->Gdopt("hide", "off"); + // EFGD + // (Girders and its Carriage) + + gMC->Gspos("EPM1", 1, "ALIC", xsm1,ysm1,zp, 0, "ONLY"); + gMC->Gspos("EPM2", 1, "ALIC", xsm2,ysm2,zp, 0, "ONLY"); + + gMC->Gspos("EPM3", 1, "ALIC", xsm3,ysm3,zp, 0, "ONLY"); + gMC->Gspos("EPM4", 1, "ALIC", xsm4,ysm4,zp, 0, "ONLY"); + + gMC->Gspos("EFGD", 1, "ALIC", 0., yfinal + fulgrdr[1], zp, 0, "ONLY"); } //_____________________________________________________________________________ + void AliPMDv1::CreateMaterials() { - // - // Create materials for the PMD version 1 + // Create materials for the PMD // // ORIGIN : Y. P. VIYOGI // + // cout << " Inside create materials " << endl; - // --- The Argon- CO2 mixture --- - Float_t ag[2] = { 39.95 }; - Float_t zg[2] = { 18. }; - Float_t wg[2] = { .8,.2 }; - Float_t dar = .001782; // --- Ar density in g/cm3 --- - // --- CO2 --- - Float_t ac[2] = { 12.,16. }; - Float_t zc[2] = { 6.,8. }; - Float_t wc[2] = { 1.,2. }; - Float_t dc = .001977; - Float_t dco = .002; // --- CO2 density in g/cm3 --- - - Float_t absl, radl, a, d, z; - Float_t dg; - Float_t x0ar; - Float_t buf[1]; - Int_t nbuf; - Float_t asteel[4] = { 55.847,51.9961,58.6934,28.0855 }; - Float_t zsteel[4] = { 26.,24.,28.,14. }; - Float_t wsteel[4] = { .715,.18,.1,.005 }; - - Int_t *idtmed = fIdtmed->GetArray()-599; - Int_t isxfld = gAlice->Field()->Integ(); - Float_t sxmgmx = gAlice->Field()->Max(); + Int_t isxfld = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Integ(); + Float_t sxmgmx = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Max(); // --- Define the various materials for GEANT --- + AliMaterial(1, "Pb $", 207.19, 82., 11.35, .56, 18.5); - x0ar = 19.55 / dar; - AliMaterial(2, "Argon$", 39.95, 18., dar, x0ar, 6.5e4); - AliMixture(3, "CO2 $", ac, zc, dc, -2, wc); + + // Argon + + Float_t dAr = 0.001782; // --- Ar density in g/cm3 --- + Float_t x0Ar = 19.55 / dAr; + AliMaterial(2, "Argon$", 39.95, 18., dAr, x0Ar, 6.5e4); + + // --- CO2 --- + + Float_t aCO2[2] = { 12.,16. }; + Float_t zCO2[2] = { 6.,8. }; + Float_t wCO2[2] = { 1.,2. }; + Float_t dCO2 = 0.001977; + AliMixture(3, "CO2 $", aCO2, zCO2, dCO2, -2, wCO2); + AliMaterial(4, "Al $", 26.98, 13., 2.7, 8.9, 18.5); + + // ArCO2 + + Float_t aArCO2[3] = {39.948,12.0107,15.9994}; + Float_t zArCO2[3] = {18.,6.,8.}; + Float_t wArCO2[3] = {0.7,0.08,0.22}; + Float_t dArCO2 = dAr * 0.7 + dCO2 * 0.3; + AliMixture(5, "ArCO2$", aArCO2, zArCO2, dArCO2, 3, wArCO2); + AliMaterial(6, "Fe $", 55.85, 26., 7.87, 1.76, 18.5); - AliMaterial(7, "W $", 183.85, 74., 19.3, .35, 10.3); - AliMaterial(8, "G10 $", 20., 10., 1.7, 19.4, 999.); - AliMaterial(9, "SILIC$", 28.09, 14., 2.33, 9.36, 45.); - AliMaterial(10, "Be $", 9.01, 4., 1.848, 35.3, 36.7); + + // G10 + + Float_t aG10[4]={1.,12.011,15.9994,28.086}; + Float_t zG10[4]={1.,6.,8.,14.}; + Float_t wG10[4]={0.15201,0.10641,0.49444,0.24714}; + AliMixture(8,"G10",aG10,zG10,1.7,4,wG10); + AliMaterial(15, "Cu $", 63.54, 29., 8.96, 1.43, 15.); - AliMaterial(16, "C $", 12.01, 6., 2.265, 18.8, 49.9); - AliMaterial(17, "POLYCARBONATE $", 20., 10., 1.2, 34.6, 999.); - - AliMaterial(96, "MYLAR$", 8.73, 4.55, 1.39, 28.7, 62.); - AliMaterial(97, "CONCR$", 20., 10., 2.5, 10.7, 40.); - AliMaterial(98, "Vacum$", 1e-9, 1e-9, 1e-9, 1e16, 1e16); - AliMaterial(99, "Air $", 14.61, 7.3, .0012, 30420., 67500.); - AliMixture(19, "STAINLESS STEEL$", asteel, zsteel, 7.88, 4, wsteel); - // define gas-mixtures - - char namate[21]; - gMC->Gfmate((*fIdmate)[3], namate, a, z, d, radl, absl, buf, nbuf); - ag[1] = a; - zg[1] = z; - dg = (dar * 4 + dco) / 5; - AliMixture(5, "ArCO2$", ag, zg, dg, 2, wg); + + // Steel + Float_t aSteel[4] = { 55.847,51.9961,58.6934,28.0855 }; + Float_t zSteel[4] = { 26.,24.,28.,14. }; + Float_t wSteel[4] = { .715,.18,.1,.005 }; + Float_t dSteel = 7.88; + AliMixture(19, "STAINLESS STEEL$", aSteel, zSteel, dSteel, 4, wSteel); + + + // --- CH2 : PLASTIC --- + + Float_t aCH2[2] = { 12.,1.}; + Float_t zCH2[2] = { 6.,1.}; + Float_t wCH2[2] = { 1.,2.}; + Float_t dCH2 = 0.95; + AliMixture(31, "CH2 $", aCH2, zCH2, dCH2, -2, wCH2); + + // --- CABLES : 80% Plastic and 20% Copper --- + + Float_t aCABLE[3] = { 12.,1.,63.5 }; + Float_t zCABLE[3] = { 6.,1.,29. }; + Float_t wCABLE[3] = { 0.6857, 0.1143, 0.2}; + Float_t dCABLE = dCH2*0.8 + 8.96*0.2; + AliMixture(32, "CABLE $", aCABLE, zCABLE, dCABLE, 3, wCABLE); + + + + //Air + + Float_t aAir[4]={12.0107,14.0067,15.9994,39.948}; + Float_t zAir[4]={6.,7.,8.,18.}; + Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827}; + Float_t dAir1 = 1.20479E-10; + Float_t dAir = 1.20479E-3; + AliMixture(98, "Vacum$", aAir, zAir, dAir1, 4, wAir); + AliMixture(99, "Air $", aAir, zAir, dAir , 4, wAir); // Define tracking media - AliMedium(1, "Pb conv.$", 1, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); - AliMedium(2, " S steel$", 19, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); - AliMedium(7, "W conv.$", 7, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); - AliMedium(8, "G10plate$", 8, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); - AliMedium(4, "Al $", 4, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); - AliMedium(6, "Fe $", 6, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); - AliMedium(5, "ArCO2 $", 5, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1); - AliMedium(9, "SILICON $", 9, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1); - AliMedium(10, "Be $", 10, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); - AliMedium(98, "Vacuum $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .1, 10); - AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .1, .1); - AliMedium(15, "Cu $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); - AliMedium(16, "C $", 16, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); - AliMedium(17, "PLOYCARB$", 17, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); + AliMedium(1, "Pb conv.$", 1, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); + AliMedium(4, "Al $", 4, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); + AliMedium(5, "ArCO2 $", 5, 1, 0, isxfld, sxmgmx, .1, .1, .10, .1); + AliMedium(6, "Fe $", 6, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); + AliMedium(8, "G10plate$", 8, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); + AliMedium(15, "Cu $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); + AliMedium(19, "S steel$", 19, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); + AliMedium(32, "CABLE $", 32, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); + AliMedium(98, "Vacuum $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .10, 10); + AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .10, .1); + + AliDebug(1,"Outside create materials"); - // --- Generate explicitly delta rays in the iron, aluminium and lead --- - gMC->Gstpar(idtmed[600], "LOSS", 3.); - gMC->Gstpar(idtmed[600], "DRAY", 1.); - - gMC->Gstpar(idtmed[603], "LOSS", 3.); - gMC->Gstpar(idtmed[603], "DRAY", 1.); - - gMC->Gstpar(idtmed[604], "LOSS", 3.); - gMC->Gstpar(idtmed[604], "DRAY", 1.); - - gMC->Gstpar(idtmed[605], "LOSS", 3.); - gMC->Gstpar(idtmed[605], "DRAY", 1.); - - gMC->Gstpar(idtmed[606], "LOSS", 3.); - gMC->Gstpar(idtmed[606], "DRAY", 1.); - - gMC->Gstpar(idtmed[607], "LOSS", 3.); - gMC->Gstpar(idtmed[607], "DRAY", 1.); - - // --- Energy cut-offs in the Pb and Al to gain time in tracking --- - // --- without affecting the hit patterns --- - gMC->Gstpar(idtmed[600], "CUTGAM", 1e-4); - gMC->Gstpar(idtmed[600], "CUTELE", 1e-4); - gMC->Gstpar(idtmed[600], "CUTNEU", 1e-4); - gMC->Gstpar(idtmed[600], "CUTHAD", 1e-4); - gMC->Gstpar(idtmed[605], "CUTGAM", 1e-4); - gMC->Gstpar(idtmed[605], "CUTELE", 1e-4); - gMC->Gstpar(idtmed[605], "CUTNEU", 1e-4); - gMC->Gstpar(idtmed[605], "CUTHAD", 1e-4); - gMC->Gstpar(idtmed[606], "CUTGAM", 1e-4); - gMC->Gstpar(idtmed[606], "CUTELE", 1e-4); - gMC->Gstpar(idtmed[606], "CUTNEU", 1e-4); - gMC->Gstpar(idtmed[606], "CUTHAD", 1e-4); - gMC->Gstpar(idtmed[603], "CUTGAM", 1e-4); - gMC->Gstpar(idtmed[603], "CUTELE", 1e-4); - gMC->Gstpar(idtmed[603], "CUTNEU", 1e-4); - gMC->Gstpar(idtmed[603], "CUTHAD", 1e-4); - gMC->Gstpar(idtmed[609], "CUTGAM", 1e-4); - gMC->Gstpar(idtmed[609], "CUTELE", 1e-4); - gMC->Gstpar(idtmed[609], "CUTNEU", 1e-4); - gMC->Gstpar(idtmed[609], "CUTHAD", 1e-4); - - // --- Prevent particles stopping in the gas due to energy cut-off --- - gMC->Gstpar(idtmed[604], "CUTGAM", 1e-5); - gMC->Gstpar(idtmed[604], "CUTELE", 1e-5); - gMC->Gstpar(idtmed[604], "CUTNEU", 1e-5); - gMC->Gstpar(idtmed[604], "CUTHAD", 1e-5); - gMC->Gstpar(idtmed[604], "CUTMUO", 1e-5); } //_____________________________________________________________________________ + void AliPMDv1::Init() { // // Initialises PMD detector after it has been built // - Int_t i; - kdet=1; - // - printf("\n"); - for(i=0;i<35;i++) printf("*"); - printf(" PMD_INIT "); - for(i=0;i<35;i++) printf("*"); - printf("\n"); - printf(" PMD simulation package (v1) initialised\n"); - printf(" parameters of pmd\n"); - printf("%6d %10.2f %10.2f %10.2f %10.2f %10.2f\n",kdet,thmin,thmax,zdist,thlow,thhigh); - // - for(i=0;i<80;i++) printf("*"); - printf("\n"); + // + AliDebug(2,"Inside Init"); + AliDebug(2,"PMD simulation package (v1) initialised"); + AliDebug(2,"parameters of pmd"); + AliDebug(2,Form("%10.2f %10.2f %10.2f %10.2f\n", + fgkCellRadius,fgkCellWall,fgkCellDepth,fgkZdist)); Int_t *idtmed = fIdtmed->GetArray()-599; fMedSens=idtmed[605-1]; + // --- Generate explicitly delta rays in the iron, aluminium and lead --- + // Gstpar is removed from this place and + // the energy cut offs in the medium moved to galice.cuts + + //gMC->Gstpar(idtmed[605], "LOSS", 3.); + //gMC->Gstpar(idtmed[605], "DRAY", 1.); + + // Visualization of volumes + gGeoManager->SetVolumeAttribute("ECAR", "SEEN", 0); + gGeoManager->SetVolumeAttribute("ECCU", "SEEN", 1); + gGeoManager->SetVolumeAttribute("ECCU", "COLO", 4); + gGeoManager->SetVolumeAttribute("EST1", "SEEN", 0); + gGeoManager->SetVolumeAttribute("EST2", "SEEN", 0); + gGeoManager->SetVolumeAttribute("EHC1", "SEEN", 0); + gGeoManager->SetVolumeAttribute("EHC2", "SEEN", 0); + gGeoManager->SetVolumeAttribute("EDGA", "SEEN", 1); + gGeoManager->SetVolumeAttribute("EDGB", "SEEN", 1); + gGeoManager->SetVolumeAttribute("EEGA", "SEEN", 1); + gGeoManager->SetVolumeAttribute("EEGB", "SEEN", 1); + gGeoManager->SetVolumeAttribute("EUM1", "SEEN", 0); + gGeoManager->SetVolumeAttribute("EUV1", "SEEN", 0); + gGeoManager->SetVolumeAttribute("EUM2", "SEEN", 0); + gGeoManager->SetVolumeAttribute("EUV2", "SEEN", 0); + + + gGeoManager->SetVolumeAttribute("EFEE", "SEEN", 0); + gGeoManager->SetVolumeAttribute("EFEE", "COLO", 4); + gGeoManager->SetVolumeAttribute("EFBA", "SEEN", 1); + gGeoManager->SetVolumeAttribute("EFBA", "COLO", 4); + gGeoManager->SetVolumeAttribute("EFBB", "SEEN", 0); + gGeoManager->SetVolumeAttribute("EFBB", "COLO", 4); + + gGeoManager->SetVolumeAttribute("ELDA", "SEEN", 0); + gGeoManager->SetVolumeAttribute("ELDB", "SEEN", 0); + + gGeoManager->SetVolumeAttribute("EFE1", "SEEN", 0); + gGeoManager->SetVolumeAttribute("EFE2", "SEEN", 0); + gGeoManager->SetVolumeAttribute("EFE3", "SEEN", 0); + gGeoManager->SetVolumeAttribute("EFE4", "SEEN", 0); + + gGeoManager->SetVolumeAttribute("ESC1", "SEEN", 0); + gGeoManager->SetVolumeAttribute("ECC1", "COLO", 2); + gGeoManager->SetVolumeAttribute("ESC2", "SEEN", 0); + gGeoManager->SetVolumeAttribute("ECC2", "COLO", 2); + gGeoManager->SetVolumeAttribute("ESC3", "SEEN", 0); + gGeoManager->SetVolumeAttribute("ECC3", "COLO", 2); + gGeoManager->SetVolumeAttribute("ESC4", "SEEN", 0); + gGeoManager->SetVolumeAttribute("ECC4", "COLO", 2); + + gGeoManager->SetVolumeAttribute("ECC1", "SEEN", 0); + gGeoManager->SetVolumeAttribute("ECC2", "SEEN", 0); + gGeoManager->SetVolumeAttribute("ECC3", "SEEN", 0); + gGeoManager->SetVolumeAttribute("ECC4", "SEEN", 0); + + gGeoManager->SetVolumeAttribute("EPM1", "SEEN", 1); + gGeoManager->SetVolumeAttribute("EPM2", "SEEN", 1); + gGeoManager->SetVolumeAttribute("EPM3", "SEEN", 1); + gGeoManager->SetVolumeAttribute("EPM4", "SEEN", 1); + + gGeoManager->SetVolumeAttribute("ECB1", "SEEN", 0); + gGeoManager->SetVolumeAttribute("ECB2", "SEEN", 0); + gGeoManager->SetVolumeAttribute("ECB3", "SEEN", 0); + gGeoManager->SetVolumeAttribute("ECB4", "SEEN", 0); + + gGeoManager->SetVolumeAttribute("ELMB", "SEEN", 0); + + gGeoManager->SetVolumeAttribute("ESV1", "SEEN", 0); + gGeoManager->SetVolumeAttribute("ESV2", "SEEN", 0); + gGeoManager->SetVolumeAttribute("ESV3", "SEEN", 0); + gGeoManager->SetVolumeAttribute("ESV4", "SEEN", 0); + + gGeoManager->SetVolumeAttribute("EVV1", "SEEN", 0); + gGeoManager->SetVolumeAttribute("EVV2", "SEEN", 0); + gGeoManager->SetVolumeAttribute("EVV3", "SEEN", 0); + gGeoManager->SetVolumeAttribute("EVV4", "SEEN", 0); + + gGeoManager->SetVolumeAttribute("EFGD", "SEEN", 0); } //_____________________________________________________________________________ + void AliPMDv1::StepManager() { // // Called at each step in the PMD // + Int_t copy; - Float_t hits[4], destep; + Float_t hits[5], destep; Float_t center[3] = {0,0,0}; - Int_t vol[5]; - // char *namep; - - if(gMC->GetMedium() == fMedSens && (destep = gMC->Edep())) { + Int_t vol[6]; + //const char *namep; + // printf("Current vol is ******** %s \n",namep); + if(gMC->CurrentMedium() == fMedSens && (destep = gMC->Edep())) { gMC->CurrentVolID(copy); -// namep=gMC->CurrentVolName(); -// printf("Current vol is %s \n",namep); + //namep=gMC->CurrentVolName(); + // printf("Current vol is %s \n",namep); vol[0]=copy; + gMC->CurrentVolOffID(1,copy); -// namep=gMC->CurrentVolOffName(1); -// printf("Current vol 11 is %s \n",namep); + //namep=gMC->CurrentVolOffName(1); + // printf("Current vol 11 is %s \n",namep); vol[1]=copy; + gMC->CurrentVolOffID(2,copy); -// namep=gMC->CurrentVolOffName(2); -// printf("Current vol 22 is %s \n",namep); + //namep=gMC->CurrentVolOffName(2); + // printf("Current vol 22 is %s \n",namep); vol[2]=copy; -// if(strncmp(namep,"DW11",4))vol[2]=1; + gMC->CurrentVolOffID(3,copy); -// namep=gMC->CurrentVolOffName(3); -// printf("Current vol 33 is %s \n",namep); + //namep=gMC->CurrentVolOffName(3); + // printf("Current vol 33 is %s \n",namep); vol[3]=copy; + gMC->CurrentVolOffID(4,copy); -// namep=gMC->CurrentVolOffName(4); -// printf("Current vol 44 is %s \n",namep); + //namep=gMC->CurrentVolOffName(4); + // printf("Current vol 44 is %s \n",namep); vol[4]=copy; -// printf("volume number %d,%d,%d,%d,%d \n",vol[0],vol[1],vol[2],vol[3],vol[4]); + + gMC->CurrentVolOffID(5,copy); + //namep=gMC->CurrentVolOffName(5); + //printf("Current vol 55 is %s \n",namep); + vol[5]=copy; + + + // printf("volume number %4d %4d %4d %4d %4d %4d %10.3f \n",vol[0],vol[1],vol[2],vol[3],vol[4],vol[5],destep*1000000);// edep in MeV + + gMC->Gdtom(center,hits,1); hits[3] = destep*1e9; //Number in eV - AddHit(gAlice->CurrentTrack(), vol, hits); + + // this is for pile-up events + hits[4] = gMC->TrackTime(); + + AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); + + AddTrackReference(gAlice->GetMCApp()->GetCurrentTrackNumber(), AliTrackReference::kPMD); + } } + +//------------------------------------------------------------------------ +// Get parameters + +void AliPMDv1::GetParameters() +{ + // This gives all the parameters of the detector + // such as Length of Supermodules, type A, type B, + // thickness of the Supermodule + // + + fSMLengthax = 32.7434; + //The total length in X is due to the following components + // Factor 3 is because of 3 module length in X for this type + // fgkNcolUM1*fgkCellRadius (48 x 0.25): Total span of each module in X + // fgkCellRadius/2. : There is offset of 1/2 cell + // 0.05+0.05 : Insulation gaps etc + // fgkSSBoundary (0.3) : Boundary frame + // double XA = 3.0*((fgkCellRadius/fgkSqroot3by2*fgkNcolUM1)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM1-1)/6.)+(2.0*fgkGap)+(2.0*fgkGap)+fgkSSBoundary) + (2.0*0.075); + + fSMLengthbx = 42.6136; + //The total length in X is due to the following components + // Factor 2 is because of 2 module length in X for this type + // fgkNcolUM2*fgkCellRadius (96 x 0.25): Total span of each module in X + // fgkCellRadius/2. : There is offset of 1/2 cell + // 0.05+0.05 : Insulation gaps etc + // fgkSSBoundary (0.3) : Boundary frame + //double XB = 2.0*((fgkCellRadius/fgkSqroot3by2*fgkNcolUM2)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM2-1)/6.)+(2.0*fgkGap)+(2.0*fgkGap)+fgkSSBoundary) + 0.1; + + + + fSMLengthay = 49.35; + //The total length in Y is due to the following components + // Factor 2 is because of 2 module length in Y for this type + // fgkCellRadius/fgkSqroot3by2)*fgkNrowUM1 (0.25/sqrt3/2 * 96): Total span of each module in Y + // of strips + // 0.05+0.05 : Insulation gaps etc + // fgkSSBoundary (0.3) : Boundary frame + // 0.6cm is the channel width plus tolerance + // double YA = 2.0*(fgkNrowUM1*fgkCellRadius+fgkCellRadius/2.+(2.0*fgkGap)+(2.0*fgkGap)+fgkSSBoundary) + 0.6/2.; + + fSMLengthby = 37.925; + //The total length in Y is due to the following components + // Factor 3 is because of 3 module length in Y for this type + // fgkCellRadius/fgkSqroot3by2)*fgkNrowUM2 (0.25/sqrt3/2 * 48): Total span of each module in Y + // of strips + // 0.05+0.05 : Insulation gaps etc + // fgkSSBoundary (0.3) : Boundary frame + // 10mm is the channel width plus tolerance + //double YB = 3.0*((fgkNrowUM2*fgkCellRadius + fgkCellRadius/2.)+(2.0*fgkGap)+(2.0*fgkGap)+fgkSSBoundary) + 1.0/2.; + + + //Thickness of a pre/veto plane + fDthick = fgkThSS/2. + 1.2; // 1.2 added as FEE Board are now assembled with pre/veto + + //Thickness of the PMD ; 2.4 added for FEE boards + fSMthickpmd = 2.0*(fgkThSS/2.) +fgkThSteel/2.+fgkThLead/2.0 + 2.4/2.; + + fSMthick = 17.; //17 cm is the full profile of PMD + + +} + + +// --------------------------------------------------------------- +void AliPMDv1::AddAlignableVolumes() const +{ + // + // Create entries for alignable volumes associating the symbolic volume + // name with the corresponding volume path. Needs to be syncronized with + // eventual changes in the geometry. + // + SetSectorAlignable(); + +} +// ---------------------------------------------------------------- +void AliPMDv1::SetSectorAlignable() const +{ + // + + TString vpsector = "ALIC_1/EPM"; + TString vpappend = "_1"; + + TString snsector="PMD/Sector"; + TString volpath, symname; + + for(Int_t cnt=1; cnt<=4; cnt++){ + //for(Int_t cnt=1; cnt<=4; cnt++){ + volpath = vpsector; + volpath += cnt; + volpath += vpappend; + symname = snsector; + symname += cnt; + if(!gGeoManager->SetAlignableEntry(symname.Data(),volpath.Data())) + { + AliFatal("Unable to set alignable entry!"); + } + } +} +// ------------------------------------------------------------------ +void AliPMDv1::SetCpvOff() +{ + // Set the entire CPV plane off + + for (Int_t imodule = 24; imodule < 48; imodule++) + fModStatus[imodule] = 0; +} +// ------------------------------------------------------------------ +void AliPMDv1::SetPreOff() +{ + // Set the entire Preshower plane off + + for (Int_t imodule = 0; imodule < 24; imodule++) + fModStatus[imodule] = 0; + +} +// ------------------------------------------------------------------ +void AliPMDv1::SetModuleOff(Int_t imodule) +{ + // Set the individual module off + + fModStatus[imodule] = 0; + +}