X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=PWGGA%2FCaloTrackCorrelations%2FAliAnaPi0EbE.h;h=e65bcd4d10cc71722a53bec34fee6b97a54dea75;hb=64306d78531a76521f66467b4c10d21c7a49c61f;hp=6ff07cccf802e2300417901a8149fe431c084354;hpb=667432ef45760f2f2ec724f3e2e21330d31e192b;p=u%2Fmrichter%2FAliRoot.git diff --git a/PWGGA/CaloTrackCorrelations/AliAnaPi0EbE.h b/PWGGA/CaloTrackCorrelations/AliAnaPi0EbE.h index 6ff07cccf80..e65bcd4d10c 100755 --- a/PWGGA/CaloTrackCorrelations/AliAnaPi0EbE.h +++ b/PWGGA/CaloTrackCorrelations/AliAnaPi0EbE.h @@ -32,7 +32,7 @@ class AliAnaPi0EbE : public AliAnaCaloTrackCorrBaseClass { TList * GetCreateOutputObjects(); - Int_t GetMCIndex(const Int_t aodTag); + Int_t GetMCIndex(Int_t aodTag); void Init(); @@ -46,14 +46,15 @@ class AliAnaPi0EbE : public AliAnaCaloTrackCorrBaseClass { // Main - void FillPileUpHistograms(const Float_t energy, const Float_t time) ; + void FillEMCALBCHistograms(Float_t energy, Float_t eta, Float_t phi, Float_t time); - void FillRejectedClusterHistograms(const TLorentzVector mom, const Int_t mctag); + void FillPileUpHistograms(Float_t pt, Float_t time, AliVCluster * c) ; - void FillSelectedClusterHistograms(AliVCluster* cluster, - const Int_t nLocMax, - const Int_t tag, - const Float_t asy = 0); + void FillRejectedClusterHistograms(TLorentzVector mom, Int_t mctag, Int_t nMaxima); + + void FillSelectedClusterHistograms(AliVCluster* cluster, Float_t pt, + Int_t nLocMax, Int_t tag, + Float_t asy = 0); void FillWeightHistograms(AliVCluster *clus); @@ -88,11 +89,18 @@ class AliAnaPi0EbE : public AliAnaCaloTrackCorrBaseClass { Int_t GetNLMCutMin() const { return fNLMCutMin ; } Int_t GetNLMCutMax() const { return fNLMCutMax ; } - void SetTimeCut(Double_t min, Double_t max) { fTimeCutMin = min; + void SetNLMMinEnergy(Int_t i, Float_t min) { if (i < 3 && i >=0 ) fNLMECutMin[i] = min ; } + Float_t GetNLMMinEnergy(Int_t i) const { if( i < 3 && i >=0 ) return fNLMECutMin[i] ; else return 0 ; } + + void SetTimeCut(Double_t min, Double_t max) { fTimeCutMin = min; fTimeCutMax = max ; } Double_t GetTimeCutMin() const { return fTimeCutMin ; } Double_t GetTimeCutMax() const { return fTimeCutMax ; } + Bool_t IsTrackMatchRejectionOn() const { return fRejectTrackMatch ; } + void SwitchOnTrackMatchRejection() { fRejectTrackMatch = kTRUE ; } + void SwitchOffTrackMatchRejection() { fRejectTrackMatch = kFALSE ; } + void SwitchOnFillPileUpHistograms() { fFillPileUpHistograms = kTRUE ; } void SwitchOffFillPileUpHistograms() { fFillPileUpHistograms = kFALSE ; } @@ -108,15 +116,32 @@ class AliAnaPi0EbE : public AliAnaCaloTrackCorrBaseClass { void SwitchOnOnlySimpleSSHistoFill() { fFillOnlySimpleSSHisto = kTRUE ; } void SwitchOffOnlySimpleHistoFill() { fFillOnlySimpleSSHisto = kFALSE ; } + void SwitchOnFillEMCALBCHistograms() { fFillEMCALBCHistograms = kTRUE ; } + void SwitchOffFillEMCALBCHistograms() { fFillEMCALBCHistograms = kFALSE ; } - //For histograms - enum mcTypes { kmcPhoton = 0, kmcConversion = 1, kmcPi0 = 2, - kmcEta = 3, kmcElectron = 4, kmcHadron = 5 }; + void SwitchOnSplitClusterDistToBad() { fCheckSplitDistToBad = kTRUE ; } + void SwitchOffSplitClusterDistToBad() { fCheckSplitDistToBad = kFALSE ; } + + void SwitchOnHighMultiplicityHistoFill() { fFillHighMultHistograms = kTRUE ; } + void SwitchOffHighMultiplicityHistoFill() { fFillHighMultHistograms = kFALSE; } + + void SwitchOnAllNLMHistoFill() { fFillAllNLMHistograms = kTRUE ; } + void SwitchOffAllNLMHistoFill() { fFillAllNLMHistograms = kFALSE; } + void SwitchOnSelectIsolatedDecay() { fSelectIsolatedDecay = kTRUE ; } + void SwitchOffSelectIsolatedDecay() { fSelectIsolatedDecay = kFALSE; } + + //For histograms + enum mcTypes { kmcPi0 = 0, kmcEta = 1, kmcPhoton = 2, + kmcPi0Decay = 3, kmcEtaDecay = 4, kmcOtherDecay = 5, + kmcElectron = 6, kmcHadron = 7 } ; + + static const Int_t fgkNmcTypes = 8; + private: anaTypes fAnaType; // Select analysis type - + //Only for pi0 SS identification case, kSSCalo TString fCalorimeter ; // Calorimeter where the gamma is searched; Float_t fMinDist ; // Minimal distance to bad channel to accept cluster @@ -124,94 +149,191 @@ class AliAnaPi0EbE : public AliAnaCaloTrackCorrBaseClass { Float_t fMinDist3; // One more cut on distance used for acceptance-efficiency study Int_t fNLMCutMin ; // Remove clusters/cells with number of local maxima smaller than this value Int_t fNLMCutMax ; // Remove clusters/cells with number of local maxima larger than this value + Float_t fNLMECutMin[3] ; // Minimum energy of the cluster, depending on nlm. Double_t fTimeCutMin ; // Remove clusters/cells with time smaller than this value, in ns Double_t fTimeCutMax ; // Remove clusters/cells with time larger than this value, in ns + Bool_t fRejectTrackMatch ; // Remove clusters which have an associated TPC track + Bool_t fSelectIsolatedDecay; // Select pairs where at least one is declared isolated (run first AliAnaParticleIsolation) Bool_t fFillPileUpHistograms; // Fill pile-up related histograms Bool_t fFillWeightHistograms ; // Fill weigth histograms Bool_t fFillTMHisto; // Fill track matching plots Bool_t fFillSelectClHisto; // Fill selected cluster histograms Bool_t fFillOnlySimpleSSHisto; // Fill selected cluster histograms, selected SS histograms + Bool_t fFillEMCALBCHistograms; // Fill eta-phi BC dependent histograms + Bool_t fFillHighMultHistograms; // Fill high multiplicity histograms + Bool_t fFillAllNLMHistograms; // Fill all NLM dependent histograms //Only for combination of calorimeter and conversion photons, kIMCaloTracks TString fInputAODGammaConvName; // Name of AOD branch with conversion photons + + Bool_t fCheckSplitDistToBad; // Check the distance to bad channel and to EMCal borders of split clusters //Histograms TH1F * fhPt ; //! Number of identified pi0/eta vs pT TH1F * fhE ; //! Number of identified pi0/eta vs E - TH2F * fhEEta ; //! E vs eta of identified pi0/eta - TH2F * fhEPhi ; //! E vs phi of identified pi0/eta - TH2F * fhEtaPhi ; //! eta vs phi of identified pi0/eta + TH2F * fhPtEta ; //! Pt vs eta of identified pi0/eta + TH2F * fhPtPhi ; //! Pt vs phi of identified pi0/eta + TH2F * fhEtaPhi ; //! eta vs phi of identified pi0/eta + TH2F * fhEtaPhiEMCALBC0 ; //! Pseudorapidity vs Phi of clusters + TH2F * fhEtaPhiEMCALBC1 ; //! Pseudorapidity vs Phi of clusters + TH2F * fhEtaPhiEMCALBCN ; //! Pseudorapidity vs Phi of clusters + + TH2F * fhEtaPhiTriggerEMCALBC[11] ; //! Pseudorapidity vs Phi of pi0 for E > 2 + TH2F * fhTimeTriggerEMCALBC [11] ; //! Time distribution of pi0, when trigger is in a given BC + TH2F * fhTimeTriggerEMCALBCPileUpSPD[11] ; //! Time distribution of pi0, when trigger is in a given BC, tagged as pile-up SPD + TH2F * fhEtaPhiTriggerEMCALBCUM[11] ; //! Pseudorapidity vs Phi of pi0 for E > 2, not matched to trigger + TH2F * fhTimeTriggerEMCALBCUM[11] ; //! Time distribution of pi0, when trigger is in a given BC, not matched to trigger + + TH2F * fhTimeTriggerEMCALBC0UMReMatchOpenTime ; //! Time distribution of pi0s in event, when trigger is not found, rematched open time trigger + TH2F * fhTimeTriggerEMCALBC0UMReMatchCheckNeigh ; //! Time distribution of pi0s in event, when trigger is not found, rematched with neigbour patchs + TH2F * fhTimeTriggerEMCALBC0UMReMatchBoth ; //! Time distribution of pi0s in event, when trigger is not found, rematched open both + + TH2F * fhPtCentrality ; //! centrality vs pi0/eta pT + TH2F * fhPtEventPlane ; //! event plane vs pi0/eta pT + TH2F * fhMCPtCentrality[fgkNmcTypes]; //! centrality vs pi0/eta pT coming from X TH1F * fhPtReject ; //! Number of rejected as pi0/eta vs pT TH1F * fhEReject ; //! Number of rejected as pi0/eta vs E - TH2F * fhEEtaReject ; //! E vs eta of rejected as pi0/eta - TH2F * fhEPhiReject ; //! E vs phi of rejected as pi0/eta + TH2F * fhPtEtaReject ; //! pT vs eta of rejected as pi0/eta + TH2F * fhPtPhiReject ; //! pT vs phi of rejected as pi0/eta TH2F * fhEtaPhiReject ; //! eta vs phi of rejected as pi0/eta TH2F * fhMass ; //! pair mass vs E, for all pairs - TH2F * fhAsymmetry ; //! cluster E vs asymmetry of 2 splitted clusters + TH2F * fhMassPt ; //! pair mass vs pT, for all pairs + TH2F * fhMassSplitPt ; //! pair mass vs pT (split), for all pairs TH2F * fhSelectedMass ; //! pair mass vs E, for selected pairs - TH2F * fhSelectedAsymmetry ; //! cluster E vs asymmetry of 2 splitted clusters, for selected pairs + TH2F * fhSelectedMassPt ; //! pair mass vs pT, for selected pairs + TH2F * fhSelectedMassSplitPt ; //! pair mass vs pT (split), for selected pairs + + TH2F * fhMassPtLocMax[3] ; //! pair mass vs pT, for all pairs, for each NLM case + TH2F * fhSelectedMassPtLocMax[3] ; //! pair mass vs pT, for selected pairs, for each NLM case + TH2F * fhSelectedMassPtLocMaxSM[3][22];//! pair mass vs pT, for selected pairs, for each NLM case, for each SM + TH2F * fhMCSelectedMassPtLocMax[fgkNmcTypes][3] ;//! pair mass vs pT, for selected pairs, vs originating particle + + TH2F * fhSelectedLambda0PtLocMaxSM[3][22];//! pair mass vs pT, for selected pairs, for each NLM case, for each SM + + TH2F * fhMassNoOverlap ; //! pair mass vs E, for all pairs, no overlap + TH2F * fhMassPtNoOverlap ; //! pair mass vs pT, for all pairs, no overlap + TH2F * fhMassSplitPtNoOverlap ; //! pair mass vs pT (split), for all pairs, no overlap + TH2F * fhSelectedMassNoOverlap ; //! pair mass vs E, for selected pairs, no overlap + TH2F * fhSelectedMassPtNoOverlap ; //! pair mass vs pT, for selected pairs, no overlap + TH2F * fhSelectedMassSplitPtNoOverlap ; //! pair mass vs pT (split), for selected pairs, no overlap + + TH2F * fhMCPi0PtRecoPtPrim; //! pt reco vs pt prim for pi0 mother + TH2F * fhMCEtaPtRecoPtPrim; //! pt reco vs pt prim for eta mother + TH2F * fhMCPi0PtRecoPtPrimNoOverlap; //! pt reco vs pt prim for pi0 mother + TH2F * fhMCEtaPtRecoPtPrimNoOverlap; //! pt reco vs pt prim for eta mother + TH2F * fhMCPi0SplitPtRecoPtPrim; //! pt split reco vs pt prim for pi0 mother + TH2F * fhMCEtaSplitPtRecoPtPrim; //! pt split reco vs pt prim for eta mother + TH2F * fhMCPi0SplitPtRecoPtPrimNoOverlap; //! pt split reco vs pt prim for pi0 mother + TH2F * fhMCEtaSplitPtRecoPtPrimNoOverlap; //! pt split reco vs pt prim for eta mother + + TH2F * fhMCPi0SelectedPtRecoPtPrim; //! pt reco vs pt prim for pi0 mother + TH2F * fhMCEtaSelectedPtRecoPtPrim; //! pt reco vs pt prim for eta mother + TH2F * fhMCPi0SelectedPtRecoPtPrimNoOverlap; //! pt reco vs pt prim for pi0 mother + TH2F * fhMCEtaSelectedPtRecoPtPrimNoOverlap; //! pt reco vs pt prim for eta mother + + TH2F * fhMCPi0SelectedSplitPtRecoPtPrim; //! pt split reco vs pt prim for pi0 mother + TH2F * fhMCEtaSelectedSplitPtRecoPtPrim; //! pt split reco vs pt prim for eta mother + TH2F * fhMCPi0SelectedSplitPtRecoPtPrimNoOverlap; //! pt split reco vs pt prim for pi0 mother + TH2F * fhMCEtaSelectedSplitPtRecoPtPrimNoOverlap; //! pt split reco vs pt prim for eta mother + + TH2F * fhMCPi0PtRecoPtPrimLocMax[3]; //! pt reco vs pt prim for pi0 mother, vs NLM + TH2F * fhMCEtaPtRecoPtPrimLocMax[3]; //! pt reco vs pt prim for eta mother, vs NLM + TH2F * fhMCPi0SplitPtRecoPtPrimLocMax[3]; //! pt split reco vs pt prim for pi0 mother, vs NLM + TH2F * fhMCEtaSplitPtRecoPtPrimLocMax[3]; //! pt split reco vs pt prim for eta mother, vs NLM + + TH2F * fhMCPi0SelectedPtRecoPtPrimLocMax[3]; //! pt reco vs pt prim for pi0 mother, vs NLM + TH2F * fhMCEtaSelectedPtRecoPtPrimLocMax[3]; //! pt reco vs pt prim for eta mother, vs NLM + TH2F * fhMCPi0SelectedSplitPtRecoPtPrimLocMax[3]; //! pt split reco vs pt prim for pi0 mother, vs NLM + TH2F * fhMCEtaSelectedSplitPtRecoPtPrimLocMax[3]; //! pt split reco vs pt prim for eta mother, vs NLM + + TH2F * fhAsymmetry ; //! cluster pT vs asymmetry of 2 splitted clusters + TH2F * fhSelectedAsymmetry ; //! cluster pT vs asymmetry of 2 splitted clusters, for selected pairs + TH1F * fhSplitE ; //! split sub-cluster pair energy sum + TH1F * fhSplitPt ; //! split sub-cluster pair pT sum + TH2F * fhSplitPtEta ; //! split sub-cluster pair pT sum vs eta + TH2F * fhSplitPtPhi ; //! split sub-cluster pair pT sum vs phi + TH2F * fhNLocMaxSplitPt ; //! split sub-cluster pair pT sum, as a function of n maxima + TH1F * fhPtDecay ; //! Number of identified pi0/eta decay photons vs pT - TH1F * fhEDecay ; //! Number of identified pi0/eta decay photons vs E - - TH2F * fhEDispersion ; //! E vs disp of selected cluster - TH2F * fhELambda0 ; //! E vs lambda0 of selected cluster - TH2F * fhELambda1 ; //! E vs lambda1 of selected cluster - TH2F * fhELambda0NoTRD ; //! E vs lambda0 of selected cluster, not behind TRD - TH2F * fhELambda0FracMaxCellCut ;//! E vs lambda0 of selected cluster, fraction of cluster energy in max cell cut - TH2F * fhEFracMaxCell ; //! E vs frac max cell of selected cluster - TH2F * fhEFracMaxCellNoTRD ; //! E vs frac max cell of selected cluster, not behind TRD - TH2F * fhENCells; //! E vs N cells in selected cluster - TH2F * fhETime; //! E vs Time of selected cluster - TH2F * fhEPairDiffTime; //! E vs Pair of clusters time difference vs E - - TH2F * fhDispEtaE ; //! shower dispersion in eta direction - TH2F * fhDispPhiE ; //! shower dispersion in phi direction - TH2F * fhLambda0DispEta[7] ; //! shower shape correlation l0 vs disp eta - TH2F * fhLambda0DispPhi[7] ; //! shower shape correlation l0 vs disp phi - TH2F * fhSumEtaE ; //! shower dispersion in eta direction - TH2F * fhSumPhiE ; //! shower dispersion in phi direction - TH2F * fhSumEtaPhiE ; //! shower dispersion in eta and phi direction - TH2F * fhDispEtaPhiDiffE ; //! shower dispersion eta - phi - TH2F * fhSphericityE ; //! shower sphericity in eta vs phi - TH2F * fhDispEtaDispPhi[7] ; //! shower dispersion in eta direction vs phi direction for 5 E bins [0-2],[2-4],[4-6],[6-10],[> 10] - TH2F * fhAsymmetryLambda0[7] ; //! E asymmetry of 2 splitted clusters vs lam0 for 5 E bins - TH2F * fhAsymmetryDispEta[7] ; //! E asymmetry of 2 splitted clusters vs lam0 for 5 E bins - TH2F * fhAsymmetryDispPhi[7] ; //! E asymmetry of 2 splitted clusters vs lam0 for 5 E bins + + TH2F * fhPtDispersion ; //! pT vs disp of selected cluster + TH2F * fhPtLambda0 ; //! pT vs lambda0 of selected cluster + TH2F * fhPtLambda0NoSplitCut ; //! pT vs lambda0 of cluster before the split selection. + TH2F * fhPtLambda1 ; //! pT vs lambda1 of selected cluster + TH2F * fhPtLambda0NoTRD ; //! pT vs lambda0 of selected cluster, not behind TRD + TH2F * fhPtLambda0FracMaxCellCut ;//! pT vs lambda0 of selected cluster, fraction of cluster energy in max cell cut + TH2F * fhPtFracMaxCell ; //! pT vs frac max cell of selected cluster + TH2F * fhPtFracMaxCellNoTRD ; //! pT vs frac max cell of selected cluster, not behind TRD + TH2F * fhPtNCells; //! pT vs N cells in selected cluster + TH2F * fhPtTime; //! pT vs Time of selected cluster + TH2F * fhEPairDiffTime; //! E pair vs Pair of clusters time difference vs E + + TH2F * fhPtDispEta ; //! shower dispersion in eta direction + TH2F * fhPtDispPhi ; //! shower dispersion in phi direction + TH2F * fhLambda0DispEta[7] ; //! shower shape correlation l0 vs disp eta + TH2F * fhLambda0DispPhi[7] ; //! shower shape correlation l0 vs disp phi + TH2F * fhPtSumEta ; //! shower dispersion in eta direction + TH2F * fhPtSumPhi ; //! shower dispersion in phi direction + TH2F * fhPtSumEtaPhi ; //! shower dispersion in eta and phi direction + TH2F * fhPtDispEtaPhiDiff ; //! shower dispersion eta - phi + TH2F * fhPtSphericity ; //! shower sphericity in eta vs phi + TH2F * fhDispEtaDispPhi[7] ; //! shower dispersion in eta direction vs phi direction for 5 E bins [0-2],[2-4],[4-6],[6-10],[> 10] + TH2F * fhAsymmetryLambda0[7] ; //! E asymmetry of 2 splitted clusters vs lam0 for 5 E bins + TH2F * fhAsymmetryDispEta[7] ; //! E asymmetry of 2 splitted clusters vs lam0 for 5 E bins + TH2F * fhAsymmetryDispPhi[7] ; //! E asymmetry of 2 splitted clusters vs lam0 for 5 E bins //MC histograms - TH2F * fhEMCLambda0[6] ; //! E vs lambda0 of pi0 pairs but really from MC particle - TH2F * fhEMCLambda1[6] ; //! E vs lambda1 of pi0 pairs but really from MC particle - TH2F * fhEMCDispersion[6] ; //! E vs dispersion of pi0 pairs but really from MC particle - TH2F * fhEMCLambda0NoTRD[6] ; //! E vs lambda0 of pi0 pairs but really from MC particle, not behind TRD - TH2F * fhEMCLambda0FracMaxCellCut[6] ;//! E vs lambda0 of pi0 pairs but really from MC particle, fraction of cluster energy in max cell cut - TH2F * fhEMCFracMaxCell[6] ; //! E vs fraction of max cell - - TH2F * fhMCEDispEta[6] ; //! shower dispersion in eta direction - TH2F * fhMCEDispPhi[6] ; //! shower dispersion in phi direction - TH2F * fhMCLambda0DispEta[7][6] ; //! shower shape correlation l0 vs disp eta - TH2F * fhMCLambda0DispPhi[7][6] ; //! shower shape correlation l0 vs disp phi - TH2F * fhMCESumEtaPhi[6] ; //! shower dispersion in eta vs phi direction - TH2F * fhMCEDispEtaPhiDiff[6] ; //! shower dispersion in eta -phi direction - TH2F * fhMCESphericity[6] ; //! shower sphericity, eta vs phi - TH2F * fhMCDispEtaDispPhi[7][6] ; //! shower dispersion in eta direction vs phi direction for 5 E bins [0-2],[2-4],[4-6],[6-10],[> 10] - TH2F * fhMCEAsymmetry[6] ; //! E asymmetry of 2 splitted clusters vs cluster E - TH2F * fhMCAsymmetryLambda0[7][6] ; //! E asymmetry of 2 splitted clusters vs lam0 for 5 E bins - TH2F * fhMCAsymmetryDispEta[7][6] ; //! E asymmetry of 2 splitted clusters vs lam0 for 5 E bins - TH2F * fhMCAsymmetryDispPhi[7][6] ; //! E asymmetry of 2 splitted clusters vs lam0 for 5 E bins - - TH1F * fhMCE[6]; //! Number of identified as pi0 vs E coming from X - TH1F * fhMCPt[6]; //! Number of identified as pi0 vs Pt coming from X - TH2F * fhMCPhi[6]; //! Phi of identified as pi0, coming from X - TH2F * fhMCEta[6]; //! eta of identified as pi0, coming from X - TH1F * fhMCEReject[6]; //! Number of rejected as pi0 vs E coming from X - TH1F * fhMCPtReject[6]; //! Number of rejected as pi0 vs Pt coming from X + TH1F * fhMCPtDecay [fgkNmcTypes]; //! pT from MC particle + TH1F * fhMCPtDecayLostPairPi0; //! pT for tagged clustres when MC Pi0 Decay, when companion is lost + TH1F * fhMCPtDecayLostPairEta; //! pT for tagged clustres when MC Eta Decay, when companion is lost + TH2F * fhMCPtLambda0 [fgkNmcTypes]; //! pT vs lambda0 of pi0 pairs but really from MC particle + TH2F * fhMCPtLambda1 [fgkNmcTypes]; //! pT vs lambda1 of pi0 pairs but really from MC particle + TH2F * fhMCPtDispersion [fgkNmcTypes]; //! pT vs dispersion of pi0 pairs but really from MC particle + TH2F * fhMCPtLambda0NoTRD [fgkNmcTypes]; //! pT vs lambda0 of pi0 pairs but really from MC particle, not behind TRD + TH2F * fhMCPtLambda0FracMaxCellCut[fgkNmcTypes]; //! pT vs lambda0 of pi0 pairs but really from MC particle, fraction of cluster energy in max cell cut + TH2F * fhMCPtFracMaxCell [fgkNmcTypes]; //! pT vs fraction of max cell + TH2F * fhMCPtDispEta [fgkNmcTypes]; //! shower dispersion in eta direction + TH2F * fhMCPtDispPhi [fgkNmcTypes]; //! shower dispersion in phi direction + TH2F * fhMCLambda0DispEta [7][fgkNmcTypes]; //! shower shape correlation l0 vs disp eta + TH2F * fhMCLambda0DispPhi [7][fgkNmcTypes]; //! shower shape correlation l0 vs disp phi + TH2F * fhMCPtSumEtaPhi [fgkNmcTypes]; //! shower dispersion in eta vs phi direction + TH2F * fhMCPtDispEtaPhiDiff [fgkNmcTypes]; //! shower dispersion in eta -phi direction + TH2F * fhMCPtSphericity [fgkNmcTypes]; //! shower sphericity, eta vs phi + TH2F * fhMCDispEtaDispPhi [7][fgkNmcTypes]; //! shower dispersion in eta direction vs phi direction for 5 E bins [0-2],[2-4],[4-6],[6-10],[> 10] + TH2F * fhMCPtAsymmetry [fgkNmcTypes]; //! E asymmetry of 2 splitted clusters vs cluster pT + TH2F * fhMCAsymmetryLambda0[7][fgkNmcTypes]; //! E asymmetry of 2 splitted clusters vs lam0 for 5 E bins + TH2F * fhMCAsymmetryDispEta[7][fgkNmcTypes]; //! E asymmetry of 2 splitted clusters vs lam0 for 5 E bins + TH2F * fhMCAsymmetryDispPhi[7][fgkNmcTypes]; //! E asymmetry of 2 splitted clusters vs lam0 for 5 E bins + + TH1F * fhMCE [fgkNmcTypes]; //! Number of identified as pi0 vs E coming from X + TH1F * fhMCPt [fgkNmcTypes]; //! Number of identified as pi0 vs Pt coming from X + TH2F * fhMCPtPhi [fgkNmcTypes]; //! pt vs phi of identified as pi0, coming from X + TH2F * fhMCPtEta [fgkNmcTypes]; //! pt vs eta of identified as pi0, coming from X + TH1F * fhMCEReject [fgkNmcTypes]; //! Number of rejected as pi0 vs E coming from X + TH1F * fhMCPtReject [fgkNmcTypes]; //! Number of rejected as pi0 vs Pt coming from X + + TH1F * fhMCSplitE [fgkNmcTypes]; //! Number of identified as pi0 vs sum E split coming from X + TH1F * fhMCSplitPt [fgkNmcTypes]; //! Number of identified as pi0 vs sum Pt split coming from X + TH2F * fhMCSplitPtPhi [fgkNmcTypes]; //! pt vs phi of identified as pi0, coming from X + TH2F * fhMCSplitPtEta [fgkNmcTypes]; //! pt vs eta of identified as pi0, coming from X + TH2F * fhMCNLocMaxSplitPt [fgkNmcTypes]; //! Number of identified as pi0 vs sum Pt split coming from X, for different NLM + + TH2F * fhMCMassPt [fgkNmcTypes]; //! pair pT vs Mass coming from X + TH2F * fhMCMassSplitPt [fgkNmcTypes]; //! pair pT (split) vs Mass coming from X + TH2F * fhMCSelectedMassPt [fgkNmcTypes]; //! selected pair pT vs Mass coming from X + TH2F * fhMCSelectedMassSplitPt[fgkNmcTypes]; //! selected pair pT (split) vs Mass coming from X + TH2F * fhMCMassPtNoOverlap [fgkNmcTypes]; //! pair pT vs Mass coming from X, no random particles overlap + TH2F * fhMCMassSplitPtNoOverlap [fgkNmcTypes]; //! pair pT (split) vs Mass coming from X, no random particles overlap + TH2F * fhMCSelectedMassPtNoOverlap [fgkNmcTypes]; //! selected pair pT vs Mass coming from X, no random particles overlap + TH2F * fhMCSelectedMassSplitPtNoOverlap[fgkNmcTypes]; //! selected pair pT (split) vs Mass coming from X, no random particles overlap + TH2F * fhMCPi0PtGenRecoFraction; //! SS id, clusters id as pi0 (eta), coming from 2 photon, pi0 primary, pt vs E prim pi0 / E reco TH2F * fhMCEtaPtGenRecoFraction; //! SS id, clusters id as pi0 (eta), coming from 2 photon, eta primary, pt vs E prim eta / E reco TH1F * fhMCPi0DecayPt; //! SS id, clusters id as pi0 (eta), coming from 1 photon, pi0 decay primary, pt @@ -225,53 +347,82 @@ class AliAnaPi0EbE : public AliAnaCaloTrackCorrBaseClass { TH2F * fhAnglePairMCPi0; //! pair opening angle, origin is same pi0 TH2F * fhAnglePairMCEta; //! pair opening angle, origin is same eta + TH2F * fhMCPi0PtOrigin ; //! Mass of reoconstructed pi0 pairs in calorimeter vs mother + TH2F * fhMCEtaPtOrigin ; //! Mass of reoconstructed pi0 pairs in calorimeter vs mother + TH2F * fhMCPi0ProdVertex; //! Spectrum of selected pi0 vs production vertex + TH2F * fhMCEtaProdVertex; //! Spectrum of selected eta vs production vertex + // Weight studies - TH2F * fhECellClusterRatio; //! e cell / e cluster vs e cluster for selected photons - TH2F * fhECellClusterLogRatio; //! log (e cell / e cluster) vs e cluster for selected photons - TH2F * fhEMaxCellClusterRatio; //! e max cell / e cluster vs e cluster for selected photons - TH2F * fhEMaxCellClusterLogRatio;//! log (e max cell / e cluster) vs e cluster for selected photons - TH2F * fhLambda0ForW0[14]; //! L0 for 7 defined w0= 3, 3.5 ... 6 for selected photons - //TH2F * fhLambda1ForW0[7]; //! L1 for 7 defined w0= 3, 3.5 ... 6 for selected photons + TH2F * fhECellClusterRatio; //! e cell / e cluster vs e cluster for selected photons + TH2F * fhECellClusterLogRatio; //! log (e cell / e cluster) vs e cluster for selected photons + TH2F * fhEMaxCellClusterRatio; //! e max cell / e cluster vs e cluster for selected photons + TH2F * fhEMaxCellClusterLogRatio; //! log (e max cell / e cluster) vs e cluster for selected photons + TH2F * fhLambda0ForW0[14]; //! L0 for 7 defined w0= 3, 3.5 ... 6 for selected photons + //TH2F * fhLambda1ForW0[7]; //! L1 for 7 defined w0= 3, 3.5 ... 6 for selected photons // Track Matching - TH2F * fhTrackMatchedDEta ; //! Eta distance between track and cluster vs cluster E - TH2F * fhTrackMatchedDPhi ; //! Phi distance between track and cluster vs cluster E - TH2F * fhTrackMatchedDEtaDPhi ; //! Eta vs Phi distance between track and cluster, E cluster > 0.5 GeV - TH2F * fhTrackMatchedMCParticle; //! Trace origin of matched particle - TH2F * fhdEdx ; //! matched track dEdx vs cluster E - TH2F * fhEOverP; //! matched track E cluster over P track vs cluster E - TH2F * fhEOverPNoTRD; //! matched track E cluster over P track vs cluster E, not behind TRD + TH2F * fhTrackMatchedDEta ; //! Eta distance between track and cluster vs cluster E + TH2F * fhTrackMatchedDPhi ; //! Phi distance between track and cluster vs cluster E + TH2F * fhTrackMatchedDEtaDPhi ; //! Eta vs Phi distance between track and cluster, E cluster > 0.5 GeV + TH2F * fhTrackMatchedDEtaPos ; //! Eta distance between track and cluster vs cluster E + TH2F * fhTrackMatchedDPhiPos ; //! Phi distance between track and cluster vs cluster E + TH2F * fhTrackMatchedDEtaDPhiPos ; //! Eta vs Phi distance between track and cluster, E cluster > 0.5 GeV + TH2F * fhTrackMatchedDEtaNeg ; //! Eta distance between track and cluster vs cluster E + TH2F * fhTrackMatchedDPhiNeg ; //! Phi distance between track and cluster vs cluster E + TH2F * fhTrackMatchedDEtaDPhiNeg ; //! Eta vs Phi distance between track and cluster, E cluster > 0.5 GeV + + TH2F * fhTrackMatchedMCParticlePt; //! Trace origin of matched particle, energy + TH2F * fhTrackMatchedMCParticleDEta;//! Trace origin of matched particle, eta residual + TH2F * fhTrackMatchedMCParticleDPhi;//! Trace origin of matched particle, phi residual + TH2F * fhdEdx ; //! matched track dEdx vs cluster E + TH2F * fhEOverP; //! matched track E cluster over P track vs cluster E + TH2F * fhEOverPNoTRD; //! matched track E cluster over P track vs cluster E, not behind TRD // Local maxima - TH2F * fhNLocMax; //! number of maxima in selected clusters - TH2F * fhELambda0LocMax[3] ; //! E vs lambda0 of selected cluster, 1,2,>2 local maxima in cluster - TH2F * fhELambda1LocMax[3] ; //! E vs lambda1 of selected cluster, 1,2,>2 local maxima in cluster - TH2F * fhEDispersionLocMax[3] ; //! E vs lambda1 of selected cluster, 1,2,>2 local maxima in cluster - TH2F * fhEDispEtaLocMax[3] ; //! E vs eta dispersion of selected cluster, 1,2,>2 local maxima in cluster - TH2F * fhEDispPhiLocMax[3] ; //! E vs phi dispersion of selected cluster, 1,2,>2 local maxima in cluster - TH2F * fhESumEtaPhiLocMax[3] ; //! E vs dispersion in eta and phi direction - TH2F * fhEDispEtaPhiDiffLocMax[3] ; //! E vs dispersion eta - phi - TH2F * fhESphericityLocMax[3] ; //! E vs sphericity in eta vs phi - TH2F * fhEAsymmetryLocMax[3] ; //! E asymmetry of 2 splitted clusters vs cluster E for different NLM - - TH2F * fhMassPairLocMax[8]; //! pair mass, origin is same pi0, combine clusters depending on number of maxima + TH2F * fhNLocMaxPt; //! number of maxima in selected clusters + TH2F * fhNLocMaxPtSM[22] ; //! number of maxima in selected clusters, per super module + TH2F * fhMCNLocMaxPt[fgkNmcTypes]; //! number of maxima in selected clusters, vs originating particle + TH2F * fhPtLambda0LocMax[3] ; //! pT vs lambda0 of selected cluster, 1,2,>2 local maxima in cluster + TH2F * fhMCPtLambda0LocMax[fgkNmcTypes][3] ; //! pT vs lambda0 of selected cluster, 1,2,>2 local maxima in cluster, vs originating particle + TH2F * fhPtLambda1LocMax[3] ; //! pT vs lambda1 of selected cluster, 1,2,>2 local maxima in cluster + TH2F * fhPtDispersionLocMax[3] ; //! pT vs lambda1 of selected cluster, 1,2,>2 local maxima in cluster + TH2F * fhPtDispEtaLocMax[3] ; //! pT vs eta dispersion of selected cluster, 1,2,>2 local maxima in cluster + TH2F * fhPtDispPhiLocMax[3] ; //! pT vs phi dispersion of selected cluster, 1,2,>2 local maxima in cluster + TH2F * fhPtSumEtaPhiLocMax[3] ; //! pT vs dispersion in eta and phi direction + TH2F * fhPtDispEtaPhiDiffLocMax[3]; //! pT vs dispersion eta - phi + TH2F * fhPtSphericityLocMax[3] ; //! pT vs sphericity in eta vs phi + TH2F * fhPtAsymmetryLocMax[3] ; //! E asymmetry of 2 splitted clusters vs cluster E for different NLM + TH2F * fhMassPairLocMax[8]; //! pair mass, origin is same pi0, combine clusters depending on number of maxima + + TH2F * fhNLocMaxPtReject; //! number of maxima in selected clusters + TH2F * fhMCNLocMaxPtReject[fgkNmcTypes]; //! number of maxima in selected clusters + // Pile-up - TH1F * fhPtPi0PileUp[7]; //! pT distribution of selected pi0/eta - TH2F * fhTimeENoCut; //! time of cluster vs E, no cut - TH2F * fhTimeESPD; //! time of cluster vs E, IsSPDPileUp - TH2F * fhTimeESPDMulti; //! time of cluster vs E, IsSPDPileUpMulti + TH1F * fhPtPileUp[7]; //! pT distribution of selected pi0/eta + TH2F * fhPtCellTimePileUp[7]; //! pT vs Time inside cluster, before any selection, not max cell + TH2F * fhPtTimeDiffPileUp[7]; //! pT vs Time difference inside cluster, before any selection + TH2F * fhTimePtNoCut; //! time of cluster vs pT, no cut + TH2F * fhTimePtSPD; //! time of cluster vs pT, IsSPDPileUp + TH2F * fhTimePtSPDMulti; //! time of cluster vs pT, IsSPDPileUpMulti TH2F * fhTimeNPileUpVertSPD; //! time of cluster vs n pile-up vertices from SPD TH2F * fhTimeNPileUpVertTrack; //! time of cluster vs n pile-up vertices from Tracks TH2F * fhTimeNPileUpVertContributors; //! time of cluster vs n pile-up vertex from SPD contributors TH2F * fhTimePileUpMainVertexZDistance; //! time of cluster vs difference of z main vertex and pile-up vertex TH2F * fhTimePileUpMainVertexZDiamond; //! time of cluster vs difference of z diamond and pile-up vertex + TH2F * fhPtNPileUpSPDVtx; //! cluster pt vs number of spd pile-up vertices + TH2F * fhPtNPileUpTrkVtx; //! cluster pt vs number of track pile-up vertices + TH2F * fhPtNPileUpSPDVtxTimeCut; //! cluster pt vs number of spd pile-up vertices, time cut +-25 ns + TH2F * fhPtNPileUpTrkVtxTimeCut; //! cluster pt vs number of track pile-up vertices, time cut +- 25 ns + TH2F * fhPtNPileUpSPDVtxTimeCut2; //! cluster pt vs number of spd pile-up vertices, time cut +-75 ns + TH2F * fhPtNPileUpTrkVtxTimeCut2; //! cluster pt vs number of track pile-up vertices, time cut +- 75 ns + AliAnaPi0EbE( const AliAnaPi0EbE & pi0ebe) ; // cpy ctor AliAnaPi0EbE & operator = (const AliAnaPi0EbE & pi0ebe) ; // cpy assignment - ClassDef(AliAnaPi0EbE,22) + ClassDef(AliAnaPi0EbE,41) } ;