X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=PYTHIA6%2FAliPythia.cxx;h=fd61d2ec62cee8c790af28f384535535690c92cb;hb=7ae5fd2469093f70abaa1589658686ade2ec6fcd;hp=2902e85cc75fe82e96d820782e970fbfaddf68bc;hpb=d7de4a679fae05e769ee7a8a7f02c28aab15cba2;p=u%2Fmrichter%2FAliRoot.git diff --git a/PYTHIA6/AliPythia.cxx b/PYTHIA6/AliPythia.cxx index 2902e85cc75..fd61d2ec62c 100644 --- a/PYTHIA6/AliPythia.cxx +++ b/PYTHIA6/AliPythia.cxx @@ -17,9 +17,12 @@ #include "AliPythia.h" #include "AliPythiaRndm.h" -#include "../FASTSIM/AliFastGlauber.h" -#include "../FASTSIM/AliQuenchingWeights.h" +#include "AliFastGlauber.h" +#include "AliQuenchingWeights.h" +#include "AliOmegaDalitz.h" #include "TVector3.h" +#include "TLorentzVector.h" +#include "PyquenCommon.h" ClassImp(AliPythia) @@ -30,6 +33,10 @@ ClassImp(AliPythia) # define pyrobo pyrobo_ # define pyquen pyquen_ # define pyevnw pyevnw_ +# define pyshowq pyshowq_ +# define qpygin0 qpygin0_ +# define pytune pytune_ +# define py2ent py2ent_ # define type_of_call #else # define pyclus PYCLUS @@ -37,6 +44,10 @@ ClassImp(AliPythia) # define pyrobo PYROBO # define pyquen PYQUEN # define pyevnw PYEVNW +# define pyshowq PYSHOWQ +# define qpygin0 QPYGIN0 +# define pytune PYTUNE +# define py2ent PY2ENT # define type_of_call _stdcall #endif @@ -45,13 +56,27 @@ extern "C" void type_of_call pycell(Int_t & ); extern "C" void type_of_call pyshow(Int_t &, Int_t &, Double_t &); extern "C" void type_of_call pyrobo(Int_t &, Int_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &); extern "C" void type_of_call pyquen(Double_t &, Int_t &, Double_t &); -extern "C" void type_of_call pyevnw(){;} - +extern "C" void type_of_call pyevnw(); +extern "C" void type_of_call pyshowq(Int_t &, Int_t &, Double_t &); +extern "C" void type_of_call pytune(Int_t &); +extern "C" void type_of_call py2ent(Int_t &, Int_t&, Int_t&, Double_t&); +extern "C" void type_of_call qpygin0(); //_____________________________________________________________________________ AliPythia* AliPythia::fgAliPythia=NULL; -AliPythia::AliPythia() +AliPythia::AliPythia(): + fProcess(kPyMb), + fEcms(0.), + fStrucFunc(kCTEQ5L), + fXJet(0.), + fYJet(0.), + fNGmax(30), + fZmax(0.97), + fGlauber(0), + fQuenchingWeights(0), + fItune(-1), + fOmegaDalitz() { // Default Constructor // @@ -60,30 +85,62 @@ AliPythia::AliPythia() AliPythiaRndm::SetPythiaRandom(GetRandom()); fGlauber = 0; fQuenchingWeights = 0; + Int_t i = 0; + for (i = 0; i < 501; i++) fDefMDCY[i] = 0; + for (i = 0; i < 2001; i++) fDefMDME[i] = 0; + for (i = 0; i < 4; i++) fZQuench[i] = 0; +} + +AliPythia::AliPythia(const AliPythia& pythia): + TPythia6(pythia), + AliRndm(pythia), + fProcess(kPyMb), + fEcms(0.), + fStrucFunc(kCTEQ5L), + fXJet(0.), + fYJet(0.), + fNGmax(30), + fZmax(0.97), + fGlauber(0), + fQuenchingWeights(0), + fItune(-1), + fOmegaDalitz() +{ + // Copy Constructor + Int_t i; + for (i = 0; i < 501; i++) fDefMDCY[i] = 0; + for (i = 0; i < 2001; i++) fDefMDME[i] = 0; + for (i = 0; i < 4; i++) fZQuench[i] = 0; + pythia.Copy(*this); } -void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc) +void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc, Int_t itune) { // Initialise the process to generate if (!AliPythiaRndm::GetPythiaRandom()) AliPythiaRndm::SetPythiaRandom(GetRandom()); + fItune = itune; + fProcess = process; fEcms = energy; fStrucFunc = strucfunc; //...Switch off decay of pi0, K0S, Lambda, Sigma+-, Xi0-, Omega-. - SetMDCY(Pycomp(111) ,1,0); - SetMDCY(Pycomp(310) ,1,0); - SetMDCY(Pycomp(3122),1,0); - SetMDCY(Pycomp(3112),1,0); - SetMDCY(Pycomp(3212),1,0); - SetMDCY(Pycomp(3222),1,0); - SetMDCY(Pycomp(3312),1,0); - SetMDCY(Pycomp(3322),1,0); - SetMDCY(Pycomp(3334),1,0); - // select structure function + SetMDCY(Pycomp(111) ,1,0); // pi0 + SetMDCY(Pycomp(310) ,1,0); // K0S + SetMDCY(Pycomp(3122),1,0); // kLambda + SetMDCY(Pycomp(3112),1,0); // sigma - + SetMDCY(Pycomp(3222),1,0); // sigma + + SetMDCY(Pycomp(3312),1,0); // xi - + SetMDCY(Pycomp(3322),1,0); // xi 0 + SetMDCY(Pycomp(3334),1,0); // omega- + // Select structure function SetMSTP(52,2); - SetMSTP(51,strucfunc); + SetMSTP(51, AliStructFuncType::PDFsetIndex(strucfunc)); + // Particles produced in string fragmentation point directly to either of the two endpoints + // of the string (depending in the side they were generated from). + SetMSTU(16,2); + // // Pythia initialisation for selected processes// // @@ -153,7 +210,6 @@ void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfun // heavy quark masses SetPMAS(4,1,1.2); - SetMSTU(16,2); // // primordial pT SetMSTP(91,1); @@ -164,7 +220,6 @@ void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfun case kPyBeauty: SetMSEL(5); SetPMAS(5,1,4.75); - SetMSTU(16,2); break; case kPyJpsi: SetMSEL(0); @@ -213,6 +268,78 @@ void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfun AtlasTuning(); break; + + case kPyMbAtlasTuneMC09: +// Minimum Bias pp-Collisions +// +// +// select Pythia min. bias model + SetMSEL(0); + SetMSUB(92,1); // single diffraction AB-->XB + SetMSUB(93,1); // single diffraction AB-->AX + SetMSUB(94,1); // double diffraction + SetMSUB(95,1); // low pt production + + AtlasTuning_MC09(); + break; + + case kPyMbWithDirectPhoton: +// Minimum Bias pp-Collisions with direct photon processes added +// +// +// select Pythia min. bias model + SetMSEL(0); + SetMSUB(92,1); // single diffraction AB-->XB + SetMSUB(93,1); // single diffraction AB-->AX + SetMSUB(94,1); // double diffraction + SetMSUB(95,1); // low pt production + + SetMSUB(14,1); // + SetMSUB(18,1); // + SetMSUB(29,1); // + SetMSUB(114,1); // + SetMSUB(115,1); // + + + AtlasTuning(); + break; + + case kPyMbDefault: +// Minimum Bias pp-Collisions +// +// +// select Pythia min. bias model + SetMSEL(0); + SetMSUB(92,1); // single diffraction AB-->XB + SetMSUB(93,1); // single diffraction AB-->AX + SetMSUB(94,1); // double diffraction + SetMSUB(95,1); // low pt production + break; + case kPyLhwgMb: +// Les Houches Working Group 05 Minimum Bias pp-Collisions: hep-ph/0604120 +// -> Pythia 6.3 or above is needed +// + SetMSEL(0); + SetMSUB(92,1); // single diffraction AB-->XB + SetMSUB(93,1); // single diffraction AB-->AX + SetMSUB(94,1); // double diffraction + SetMSUB(95,1); // low pt production + + SetMSTP(51,AliStructFuncType::PDFsetIndex(kCTEQ6ll)); // CTEQ6ll pdf + SetMSTP(52,2); + SetMSTP(68,1); + SetMSTP(70,2); + SetMSTP(81,1); // Multiple Interactions ON + SetMSTP(82,4); // Double Gaussian Model + SetMSTP(88,1); + + SetPARP(82,2.3); // [GeV] PT_min at Ref. energy + SetPARP(83,0.5); // Core density in proton matter distribution (def.value) + SetPARP(84,0.5); // Core radius + SetPARP(85,0.9); // Regulates gluon prod. mechanism + SetPARP(90,0.2); // 2*epsilon (exponent in power law) + + break; case kPyMbNonDiffr: // Minimum Bias pp-Collisions // @@ -243,14 +370,14 @@ void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfun SetMSEL(1); // Pythia Tune A (CDF) // - SetPARP(67,4.); // Regulates Initial State Radiation + SetPARP(67,2.5); // Regulates Initial State Radiation (value from best fit to D0 dijet analysis) SetMSTP(82,4); // Double Gaussian Model SetPARP(82,2.0); // [GeV] PT_min at Ref. energy SetPARP(84,0.4); // Core radius SetPARP(85,0.90) ; // Regulates gluon prod. mechanism SetPARP(86,0.95); // Regulates gluon prod. mechanism SetPARP(89,1800.); // [GeV] Ref. energy - SetPARP(90,0.25); // 2*epsilon (exponent in power law) + SetPARP(90,0.25); // 2*epsilon (exponent in power law) break; case kPyDirectGamma: SetMSEL(10); @@ -298,6 +425,7 @@ void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfun case kPyD0ppMNR: case kPyDPlusppMNR: case kPyDPlusStrangeppMNR: + case kPyLambdacppMNR: // Tuning of Pythia parameters aimed to get a resonable agreement // between with the NLO calculation by Mangano, Nason, Ridolfi for the // c-cbar single inclusive and double differential distributions. @@ -400,6 +528,7 @@ void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfun // Set b-quark mass SetPMAS(5,1,4.75); break; + case kPyBeautyJets: case kPyBeautyppMNRwmi: // Tuning of Pythia parameters aimed to get a resonable agreement // between with the NLO calculation by Mangano, Nason, Ridolfi for the @@ -483,10 +612,14 @@ void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfun } // // Initialize PYTHIA +// +// Select the tune + if (itune > -1) Pytune(itune); + +// SetMSTP(41,1); // all resonance decays switched on - Initialize("CMS","p","p",fEcms); - + fOmegaDalitz.Init(); } Int_t AliPythia::CheckedLuComp(Int_t kf) @@ -497,7 +630,7 @@ Int_t AliPythia::CheckedLuComp(Int_t kf) return kc; } -void AliPythia::SetNuclei(Int_t a1, Int_t a2) +void AliPythia::SetNuclei(Int_t a1, Int_t a2, Int_t pdf) { // Treat protons as inside nuclei with mass numbers a1 and a2 // The MSTP array in the PYPARS common block is used to enable and @@ -508,9 +641,11 @@ void AliPythia::SetNuclei(Int_t a1, Int_t a2) // If the following mass number both not equal zero, nuclear corrections of the stf are used. // MSTP(192) : Mass number of nucleus side 1 // MSTP(193) : Mass number of nucleus side 2 +// MSTP(194) : Nuclear structure function: 0: EKS98 1:EPS08 SetMSTP(52,2); SetMSTP(192, a1); - SetMSTP(193, a2); + SetMSTP(193, a2); + SetMSTP(194, pdf); } @@ -593,17 +728,58 @@ void AliPythia::Pyrobo(Int_t imi, Int_t ima, Double_t the, Double_t phi, Double_ pyrobo(imi, ima, the, phi, bex, bey, bez); } +void AliPythia::Pytune(Int_t itune) +{ +/* +C +C ITUNE NAME (detailed descriptions below) +C 0 Default : No settings changed => linked Pythia version's defaults. +C ====== Old UE, Q2-ordered showers ========================================== +C 100 A : Rick Field's CDF Tune A +C 101 AW : Rick Field's CDF Tune AW +C 102 BW : Rick Field's CDF Tune BW +C 103 DW : Rick Field's CDF Tune DW +C 104 DWT : Rick Field's CDF Tune DW with slower UE energy scaling +C 105 QW : Rick Field's CDF Tune QW (NB: needs CTEQ6.1M pdfs externally) +C 106 ATLAS-DC2: Arthur Moraes' (old) ATLAS tune (ATLAS DC2 / Rome) +C 107 ACR : Tune A modified with annealing CR +C 108 D6 : Rick Field's CDF Tune D6 (NB: needs CTEQ6L pdfs externally) +C 109 D6T : Rick Field's CDF Tune D6T (NB: needs CTEQ6L pdfs externally) +C ====== Intermediate Models ================================================= +C 200 IM 1 : Intermediate model: new UE, Q2-ordered showers, annealing CR +C 201 APT : Tune A modified to use pT-ordered final-state showers +C ====== New UE, interleaved pT-ordered showers, annealing CR ================ +C 300 S0 : Sandhoff-Skands Tune 0 +C 301 S1 : Sandhoff-Skands Tune 1 +C 302 S2 : Sandhoff-Skands Tune 2 +C 303 S0A : S0 with "Tune A" UE energy scaling +C 304 NOCR : New UE "best try" without colour reconnections +C 305 Old : New UE, original (primitive) colour reconnections +C 306 ATLAS-CSC: Arthur Moraes' (new) ATLAS tune (needs CTEQ6L externally) +C ======= The Uppsala models ================================================= +C ( NB! must be run with special modified Pythia 6.215 version ) +C ( available from http://www.isv.uu.se/thep/MC/scigal/ ) +C 400 GAL 0 : Generalized area-law model. Old parameters +C 401 SCI 0 : Soft-Colour-Interaction model. Old parameters +C 402 GAL 1 : Generalized area-law model. Tevatron MB retuned (Skands) +*/ + pytune(itune); +} + +void AliPythia::Py2ent(Int_t idx, Int_t pdg1, Int_t pdg2, Double_t p){ + // Inset 2-parton system at line idx + py2ent(idx, pdg1, pdg2, p); +} -void AliPythia::InitQuenching(Float_t cMin, Float_t cMax, Float_t k, Int_t iECMethod) +void AliPythia::InitQuenching(Float_t cMin, Float_t cMax, Float_t k, Int_t iECMethod, Float_t zmax, Int_t ngmax) { // Initializes // (1) The quenching model using quenching weights according to C. Salgado and U. Wiedemann // (2) The nuclear geometry using the Glauber Model // - - - fGlauber = new AliFastGlauber(); + + fGlauber = AliFastGlauber::Instance(); fGlauber->Init(2); fGlauber->SetCentralityClass(cMin, cMax); @@ -611,6 +787,9 @@ void AliPythia::InitQuenching(Float_t cMin, Float_t cMax, Float_t k, Int_t iECMe fQuenchingWeights->InitMult(); fQuenchingWeights->SetK(k); fQuenchingWeights->SetECMethod(AliQuenchingWeights::kECMethod(iECMethod)); + fNGmax = ngmax; + fZmax = zmax; + } @@ -645,7 +824,7 @@ void AliPythia::Quench() Double_t px = 0., py = 0., pz = 0., e = 0., m = 0., p = 0., pt = 0., theta = 0., phi = 0.; Double_t pxq[4], pyq[4], pzq[4], eq[4], yq[4], mq[4], pq[4], phiq[4], thetaq[4], ptq[4]; Bool_t quenched[4]; - Double_t wjtKick[4]; + Double_t wjtKick[4] = {0., 0., 0., 0.}; Int_t nGluon[4]; Int_t qPdg[4]; Int_t imo, kst, pdg; @@ -728,7 +907,7 @@ void AliPythia::Quench() // // Avoid complete loss // - if (fZQuench[j] == 1.) fZQuench[j] = 0.95; + if (fZQuench[j] > fZmax) fZQuench[j] = fZmax; // // Some debug printing @@ -757,7 +936,7 @@ void AliPythia::Quench() if (!quenched[isys]) continue; nGluon[isys] = 1 + Int_t(fZQuench[isys] / (1. - fZQuench[isys])); - if (nGluon[isys] > 6) nGluon[isys] = 6; + if (nGluon[isys] > fNGmax) nGluon[isys] = fNGmax; zquench[isys] = 1. - TMath::Power(1. - fZQuench[isys], 1./Double_t(nGluon[isys])); wjtKick[isys] = wjtKick[isys] / TMath::Sqrt(Double_t(nGluon[isys])); @@ -893,9 +1072,13 @@ void AliPythia::Quench() // // Calculate new px, py // - Double_t pxNew = jtNew / jt * pxs; - Double_t pyNew = jtNew / jt * pys; + Double_t pxNew = 0; + Double_t pyNew = 0; + if (jt>0) { + pxNew = jtNew / jt * pxs; + pyNew = jtNew / jt * pys; + } // Double_t dpx = pxs - pxNew; // Double_t dpy = pys - pyNew; // Double_t dpz = pl - plNew; @@ -1033,17 +1216,17 @@ void AliPythia::Quench() // // Isotropic decay ???? Double_t cost = 2. * gRandom->Rndm() - 1.; - Double_t sint = TMath::Sqrt(1. - cost * cost); - Double_t phi = 2. * TMath::Pi() * gRandom->Rndm(); + Double_t sint = TMath::Sqrt((1.-cost)*(1.+cost)); + Double_t phis = 2. * TMath::Pi() * gRandom->Rndm(); Double_t pz1 = pst * cost; Double_t pz2 = -pst * cost; Double_t pt1 = pst * sint; Double_t pt2 = -pst * sint; - Double_t px1 = pt1 * TMath::Cos(phi); - Double_t py1 = pt1 * TMath::Sin(phi); - Double_t px2 = pt2 * TMath::Cos(phi); - Double_t py2 = pt2 * TMath::Sin(phi); + Double_t px1 = pt1 * TMath::Cos(phis); + Double_t py1 = pt1 * TMath::Sin(phis); + Double_t px2 = pt2 * TMath::Cos(phis); + Double_t py2 = pt2 * TMath::Sin(phis); fPyjets->P[0][iGlu] = px1; fPyjets->P[1][iGlu] = py1; @@ -1142,15 +1325,43 @@ void AliPythia::Quench() void AliPythia::Pyquen(Double_t a, Int_t ibf, Double_t b) { // Igor Lokthine's quenching routine + // http://lokhtin.web.cern.ch/lokhtin/pyquen/pyquen.txt + pyquen(a, ibf, b); } +void AliPythia::SetPyquenParameters(Double_t t0, Double_t tau0, Int_t nf, Int_t iengl, Int_t iangl) +{ + // Set the parameters for the PYQUEN package. + // See comments in PyquenCommon.h + + + PYQPAR.t0 = t0; + PYQPAR.tau0 = tau0; + PYQPAR.nf = nf; + PYQPAR.iengl = iengl; + PYQPAR.iangl = iangl; +} + + void AliPythia::Pyevnw() { // New multiple interaction scenario pyevnw(); } +void AliPythia::Pyshowq(Int_t ip1, Int_t ip2, Double_t qmax) +{ + // Call medium-modified Pythia jet reconstruction algorithm + // + pyshowq(ip1, ip2, qmax); +} + void AliPythia::Qpygin0() + { + // New multiple interaction scenario + qpygin0(); + } + void AliPythia::GetQuenchingParameters(Double_t& xp, Double_t& yp, Double_t z[4]) { // Return event specific quenching parameters @@ -1169,11 +1380,13 @@ void AliPythia::ConfigHeavyFlavor() // SetMSEL(1); - // No multiple interactions - SetMSTP(81,0); - SetPARP(81,0.0); - SetPARP(82,0.0); - + + if (fItune < 0) { + // No multiple interactions + SetMSTP(81,0); + SetPARP(81, 0.); + SetPARP(82, 0.); + } // Initial/final parton shower on (Pythia default) SetMSTP(61,1); SetMSTP(71,1); @@ -1190,15 +1403,94 @@ void AliPythia::AtlasTuning() { // // Configuration for the ATLAS tuning - SetMSTP(51, kCTEQ5L); // CTEQ5L pdf - SetMSTP(81,1); // Multiple Interactions ON - SetMSTP(82,4); // Double Gaussian Model - SetPARP(82,1.8); // [GeV] PT_min at Ref. energy - SetPARP(89,1000.); // [GeV] Ref. energy - SetPARP(90,0.16); // 2*epsilon (exponent in power law) - SetPARP(83,0.5); // Core density in proton matter distribution (def.value) - SetPARP(84,0.5); // Core radius - SetPARP(85,0.33); // Regulates gluon prod. mechanism - SetPARP(86,0.66); // Regulates gluon prod. mechanism - SetPARP(67,1); // Regulates Initial State Radiation + if (fItune > -1) return; + printf("ATLAS TUNE \n"); + + SetMSTP(51, AliStructFuncType::PDFsetIndex(kCTEQ5L)); // CTEQ5L pdf + SetMSTP(81,1); // Multiple Interactions ON + SetMSTP(82,4); // Double Gaussian Model + SetPARP(81,1.9); // Min. pt for multiple interactions (default in 6.2-14) + SetPARP(82,1.8); // [GeV] PT_min at Ref. energy + SetPARP(89,1000.); // [GeV] Ref. energy + SetPARP(90,0.16); // 2*epsilon (exponent in power law) + SetPARP(83,0.5); // Core density in proton matter distribution (def.value) + SetPARP(84,0.5); // Core radius + SetPARP(85,0.33); // Regulates gluon prod. mechanism + SetPARP(86,0.66); // Regulates gluon prod. mechanism + SetPARP(67,1); // Regulates Initial State Radiation +} + +void AliPythia::AtlasTuning_MC09() +{ + // + // Configuration for the ATLAS tuning + if (fItune > -1) return; + printf("ATLAS New TUNE MC09\n"); + SetMSTP(81,21); // treatment for MI, ISR, FSR and beam remnants: MI on, new model + SetMSTP(82, 4); // Double Gaussian Model + SetMSTP(52, 2); // External PDF + SetMSTP(51, 20650); // MRST LO* + + + SetMSTP(70, 0); // (was 2: def manual 1, def code 0) virtuality scale for ISR + SetMSTP(72, 1); // (was 0: def 1) maximum scale for FSR + SetMSTP(88, 1); // (was 0: def 1) strategy for qq junction to di-quark or baryon in beam remnant + SetMSTP(90, 0); // (was 1: def 0) strategy of compensate the primordial kT + + SetPARP(78, 0.3); // the amount of color reconnection in the final state + SetPARP(80, 0.1); // probability of color partons kicked out from beam remnant + SetPARP(82, 2.3); // [GeV] PT_min at Ref. energy + SetPARP(83, 0.8); // Core density in proton matter distribution (def.value) + SetPARP(84, 0.7); // Core radius + SetPARP(90, 0.25); // 2*epsilon (exponent in power law) + SetPARJ(81, 0.29); // (was 0.14: def 0.29) Labmda value in running alpha_s for parton showers + + SetMSTP(95, 6); + SetPARJ(41, 0.3); // a and b parameters of the symmm. Lund FF + SetPARJ(42, 0.58); + SetPARJ(46, 0.75); // mod. of the Lund FF for heavy end-point quarks + SetPARP(89,1800.); // [GeV] Ref. energy +} + +AliPythia& AliPythia::operator=(const AliPythia& rhs) +{ +// Assignment operator + rhs.Copy(*this); + return *this; +} + + void AliPythia::Copy(TObject&) const +{ + // + // Copy + // + Fatal("Copy","Not implemented!\n"); +} + +void AliPythia::DalitzDecays() +{ + + // + // Replace all omega dalitz decays with the correct matrix element decays + // + Int_t nt = fPyjets->N; + for (Int_t i = 0; i < nt; i++) { + if (fPyjets->K[1][i] != 223) continue; + Int_t fd = fPyjets->K[3][i] - 1; + Int_t ld = fPyjets->K[4][i] - 1; + if (fd < 0) continue; + if ((ld - fd) != 2) continue; + if ((fPyjets->K[1][fd] != 111) || + ((TMath::Abs(fPyjets->K[1][fd+1]) != 11) && (TMath::Abs(fPyjets->K[1][fd+1]) != 13))) + continue; + TLorentzVector omega(fPyjets->P[0][i], fPyjets->P[1][i], fPyjets->P[2][i], fPyjets->P[3][i]); + Int_t pdg = TMath::Abs(fPyjets->K[1][fd+1]); + fOmegaDalitz.Decay(pdg, &omega); + for (Int_t j = 0; j < 3; j++) { + for (Int_t k = 0; k < 4; k++) { + TLorentzVector vec = (fOmegaDalitz.Products())[2-j]; + fPyjets->P[k][fd+j] = vec[k]; + } + } + } }