X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=STEER%2FAliMagF.cxx;h=70eea8dfa43f772e32c6543b89099a1be5a1c9c6;hb=3b5284bda596770407077f834d1e145bdc870190;hp=0eff772f8fd31493ca30975ebd70e7e3266197fa;hpb=439b5096a34b91270cdb9eacc2f4c58a6dda29c5;p=u%2Fmrichter%2FAliRoot.git diff --git a/STEER/AliMagF.cxx b/STEER/AliMagF.cxx index 0eff772f8fd..70eea8dfa43 100644 --- a/STEER/AliMagF.cxx +++ b/STEER/AliMagF.cxx @@ -17,6 +17,7 @@ #include #include #include +#include #include "AliMagF.h" #include "AliMagWrapCheb.h" @@ -25,8 +26,7 @@ ClassImp(AliMagF) const Double_t AliMagF::fgkSol2DipZ = -700.; -const UShort_t AliMagF::fgkPolarityConvention = kConvLHC; - +const UShort_t AliMagF::fgkPolarityConvention = AliMagF::kConvLHC; /* Explanation for polarity conventions: these are the mapping between the current signs and main field components in L3 (Bz) and Dipole (Bx) (in Alice frame) @@ -37,12 +37,31 @@ const UShort_t AliMagF::fgkPolarityConvention = kConvLHC; positive L3 current -> positive Bz positive Dip current -> positive Bx 3) kConvLHC : defined by LHC - positive L3 current -> negative Bz + positive L3 current -> positive Bz positive Dip current -> negative Bx Note: only "negative Bz(L3) with postive Bx(Dipole)" and its inverse was mapped in 2005. Hence the GRP Manager will reject the runs with the current combinations (in the convention defined by the static Int_t AliMagF::GetPolarityConvention()) which do not lead to such field polarities. + + ----------------------------------------------- + + Explanation on integrals in the TPC region + GetTPCInt(xyz,b) and GetTPCRatInt(xyz,b) give integrals from point (x,y,z) to point (x,y,0) + (irrespectively of the z sign) of the following: + TPCInt: b contains int{bx}, int{by}, int{bz} + TPCRatInt: b contains int{bx/bz}, int{by/bz}, int{(bx/bz)^2+(by/bz)^2} + + The same applies to integral in cylindrical coordinates: + GetTPCIntCyl(rphiz,b) + GetTPCIntRatCyl(rphiz,b) + They accept the R,Phi,Z coordinate (-piExpandPathName(GetDataFileName()); TFile* file = TFile::Open(fname); if (!file) { - AliError(Form("Failed to open magnetic field data file %s\n",fname)); - return kFALSE; + AliFatal(Form("Failed to open magnetic field data file %s\n",fname)); } // fMeasuredMap = dynamic_cast(file->Get(GetParamName())); if (!fMeasuredMap) { - AliError(Form("Did not find field %s in %s\n",GetParamName(),fname)); - return kFALSE; + AliFatal(Form("Did not find field %s in %s\n",GetParamName(),fname)); } file->Close(); delete file; @@ -238,7 +253,7 @@ AliMagF& AliMagF::operator=(const AliMagF& src) //_______________________________________________________________________ void AliMagF::InitMachineField(BeamType_t btype, Double_t benergy) { - if (btype==kNoBeamField || benergy<1.) { + if (btype==kNoBeamField) { fQuadGradient = fDipoleField = fCCorrField = fACorr1Field = fACorr2Field = 0.; return; } @@ -353,7 +368,7 @@ void AliMagF::MachineField(const Double_t *x, Double_t *b) const //_______________________________________________________________________ void AliMagF::GetTPCInt(const Double_t *xyz, Double_t *b) const { - // Method to calculate the integral of magnetic integral from xyz to nearest cathode plane + // Method to calculate the integral_0^z of br,bt,bz b[0]=b[1]=b[2]=0.0; if (fMeasuredMap) { fMeasuredMap->GetTPCInt(xyz,b); @@ -361,10 +376,21 @@ void AliMagF::GetTPCInt(const Double_t *xyz, Double_t *b) const } } +//_______________________________________________________________________ +void AliMagF::GetTPCRatInt(const Double_t *xyz, Double_t *b) const +{ + // Method to calculate the integral_0^z of bx/bz,by/bz and (bx/bz)^2+(by/bz)^2 + b[0]=b[1]=b[2]=0.0; + if (fMeasuredMap) { + fMeasuredMap->GetTPCRatInt(xyz,b); + b[2] /= 100; + } +} + //_______________________________________________________________________ void AliMagF::GetTPCIntCyl(const Double_t *rphiz, Double_t *b) const { - // Method to calculate the integral of magnetic integral from point to nearest cathode plane + // Method to calculate the integral_0^z of br,bt,bz // in cylindrical coordiates ( -piGetTPCRatIntCyl(rphiz,b); + b[2] /= 100; + } +} + //_______________________________________________________________________ void AliMagF::SetFactorSol(Float_t fc) { @@ -416,3 +454,113 @@ Double_t AliMagF::GetFactorDip() const default : return fFactorDip; // case kConvMap2005: return fFactorDip; } } + +//_____________________________________________________________________________ +AliMagF* AliMagF::CreateFieldMap(Float_t l3Cur, Float_t diCur, Int_t convention, Bool_t uniform, + Float_t beamenergy, const Char_t *beamtype, const Char_t *path) +{ + //------------------------------------------------ + // The magnetic field map, defined externally... + // L3 current 30000 A -> 0.5 T + // L3 current 12000 A -> 0.2 T + // dipole current 6000 A + // The polarities must match the convention (LHC or DCS2008) + // unless the special uniform map was used for MC + //------------------------------------------------ + const Float_t l3NominalCurrent1=30000.; // (A) + const Float_t l3NominalCurrent2=12000.; // (A) + const Float_t diNominalCurrent =6000. ; // (A) + + const Float_t tolerance=0.03; // relative current tolerance + const Float_t zero=77.; // "zero" current (A) + // + BMap_t map = k5kG; + double sclL3,sclDip; + // + Float_t l3Pol = l3Cur > 0 ? 1:-1; + Float_t diPol = diCur > 0 ? 1:-1; + + l3Cur = TMath::Abs(l3Cur); + diCur = TMath::Abs(diCur); + // + if (TMath::Abs((sclDip=diCur/diNominalCurrent)-1.) > tolerance && !uniform) { + if (diCur <= zero) sclDip = 0.; // some small current.. -> Dipole OFF + else { + AliFatalGeneral("AliMagF",Form("Wrong dipole current (%f A)!",diCur)); + } + } + // + if (uniform) { + // special treatment of special MC with uniform mag field (normalized to 0.5 T) + // no check for scaling/polarities are done + map = k5kGUniform; + sclL3 = l3Cur/l3NominalCurrent1; + } + else { + if (TMath::Abs((sclL3=l3Cur/l3NominalCurrent1)-1.) < tolerance) map = k5kG; + else if (TMath::Abs((sclL3=l3Cur/l3NominalCurrent2)-1.) < tolerance) map = k2kG; + else if (l3Cur <= zero && diCur<=zero) { sclL3=0; sclDip=0; map = k5kGUniform;} + else { + AliFatalGeneral("AliMagF",Form("Wrong L3 current (%f A)!",l3Cur)); + } + } + // + if (sclDip!=0 && map!=k5kGUniform) { + if ( (l3Cur<=zero) || ((convention==kConvLHC && l3Pol!=diPol) || (convention==kConvDCS2008 && l3Pol==diPol)) ) { + AliFatalGeneral("AliMagF",Form("Wrong combination for L3/Dipole polarities (%c/%c) for convention %d", + l3Pol>0?'+':'-',diPol>0?'+':'-',GetPolarityConvention())); + } + } + // + if (l3Pol<0) sclL3 = -sclL3; + if (diPol<0) sclDip = -sclDip; + // + BeamType_t btype = kNoBeamField; + TString btypestr = beamtype; + btypestr.ToLower(); + TPRegexp protonBeam("(proton|p)\\s*-?\\s*\\1"); + TPRegexp ionBeam("(lead|pb|ion|a)\\s*-?\\s*\\1"); + if (btypestr.Contains(ionBeam)) btype = kBeamTypeAA; + else if (btypestr.Contains(protonBeam)) btype = kBeamTypepp; + else AliInfoGeneral("AliMagF",Form("Assume no LHC magnet field for the beam type %s, ",beamtype)); + char ttl[80]; + snprintf(ttl,79,"L3: %+5d Dip: %+4d kA; %s | Polarities in %s convention",(int)TMath::Sign(l3Cur,float(sclL3)), + (int)TMath::Sign(diCur,float(sclDip)),uniform ? " Constant":"", + convention==kConvLHC ? "LHC":"DCS2008"); + // LHC and DCS08 conventions have opposite dipole polarities + if ( GetPolarityConvention() != convention) sclDip = -sclDip; + // + return new AliMagF("MagneticFieldMap", ttl,sclL3,sclDip,map,btype,beamenergy,2,10.,path); + // +} + +//_____________________________________________________________________________ +const char* AliMagF::GetBeamTypeText() const +{ + const char *beamNA = "No Beam"; + const char *beamPP = "p-p"; + const char *beamPbPb= "Pb-Pb"; + switch ( fBeamType ) { + case kBeamTypepp : return beamPP; + case kBeamTypeAA : return beamPbPb; + case kNoBeamField: + default: return beamNA; + } +} + +//_____________________________________________________________________________ +void AliMagF::Print(Option_t *opt) const +{ + // print short or long info + TString opts = opt; opts.ToLower(); + AliInfo(Form("%s:%s",GetName(),GetTitle())); + AliInfo(Form("Solenoid (%+.2f*)%.0f kG, Dipole %s (%+.2f) %s", + GetFactorSol(),(fMapType==k5kG||fMapType==k5kGUniform)?5.:2., + fDipoleOFF ? "OFF":"ON",GetFactorDip(),fMapType==k5kGUniform?" |Constant Field!":"")); + if (opts.Contains("a")) { + AliInfo(Form("Machine B fields for %s beam (%.0f GeV): QGrad: %.4f Dipole: %.4f", + fBeamType==kBeamTypeAA ? "A-A":(fBeamType==kBeamTypepp ? "p-p":"OFF"), + fBeamEnergy,fQuadGradient,fDipoleField)); + AliInfo(Form("Uses %s of %s",GetParamName(),GetDataFileName())); + } +}