X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=TFluka%2FTFluka.cxx;h=83fa891fdfd30321c4c76c333f40d75d3fd4b232;hb=ea776286538fe60f90e3273427c9a5f4556ee557;hp=41a32bff4c3d37193ea86067a8a4ce5ff33a0294;hpb=5929ad29610764495bfcdd12cf6e3b09be95de10;p=u%2Fmrichter%2FAliRoot.git diff --git a/TFluka/TFluka.cxx b/TFluka/TFluka.cxx index 41a32bff4c3..83fa891fdfd 100644 --- a/TFluka/TFluka.cxx +++ b/TFluka/TFluka.cxx @@ -15,9 +15,22 @@ /* $Id$ */ +// +// Realisation of the TVirtualMC interface for the FLUKA code +// (See official web side http://www.fluka.org/). +// +// This implementation makes use of the TGeo geometry modeller. +// User configuration is via automatic generation of FLUKA input cards. +// +// Authors: +// A. Fasso +// E. Futo +// A. Gheata +// A. Morsch +// + #include -#include "TClonesArray.h" #include "TFluka.h" #include "TCallf77.h" //For the fortran calls #include "Fdblprc.h" //(DBLPRC) fluka common @@ -29,14 +42,19 @@ #include "Ftrackr.h" //(TRACKR) fluka common #include "Fpaprop.h" //(PAPROP) fluka common #include "Ffheavy.h" //(FHEAVY) fluka common +#include "Fopphst.h" //(OPPHST) fluka common +#include "Fstack.h" //(STACK) fluka common #include "TVirtualMC.h" -#include "TG4GeometryManager.h" //For the geometry management -#include "TG4DetConstruction.h" //For the detector construction - -#include "FGeometryInit.hh" +#include "TMCProcess.h" +#include "TGeoManager.h" +#include "TGeoMaterial.h" +#include "TGeoMedium.h" +#include "TFlukaMCGeometry.h" +#include "TGeoMCGeometry.h" +#include "TFlukaCerenkov.h" +#include "TFlukaConfigOption.h" #include "TLorentzVector.h" -#include "FlukaVolume.h" // Fluka methods that may be needed. #ifndef WIN32 @@ -73,150 +91,165 @@ ClassImp(TFluka) // //---------------------------------------------------------------------------- // TFluka constructors and destructors. -//____________________________________________________________________________ +//______________________________________________________________________________ TFluka::TFluka() :TVirtualMC(), fVerbosityLevel(0), - sInputFileName(""), - fDetector(0), - fCurrentFlukaRegion(-1) + fInputFileName(""), + fProcesses(0), + fCuts(0), + fUserScore(0) { // // Default constructor // + fGeneratePemf = kFALSE; + fNVolumes = 0; + fCurrentFlukaRegion = -1; + fGeom = 0; + fMCGeo = 0; + fMaterials = 0; + fDummyBoundary = 0; + fFieldFlag = 1; + fStopped = 0; } +//______________________________________________________________________________ TFluka::TFluka(const char *title, Int_t verbosity, Bool_t isRootGeometrySupported) :TVirtualMC("TFluka",title, isRootGeometrySupported), fVerbosityLevel(verbosity), - sInputFileName(""), + fInputFileName(""), fTrackIsEntering(0), fTrackIsExiting(0), - fDetector(0), - fCurrentFlukaRegion(-1) + fTrackIsNew(0), + fProcesses(new TObjArray(100)), + fCuts(new TObjArray(100)), + fUserScore(new TObjArray(100)) { - if (fVerbosityLevel >=3) - cout << "==> TFluka::TFluka(" << title << ") constructor called." << endl; - - - // create geometry manager - if (fVerbosityLevel >=2) - cout << "\t* Creating G4 Geometry manager..." << endl; - fGeometryManager = new TG4GeometryManager(); - if (fVerbosityLevel >=2) - cout << "\t* Creating G4 Detector..." << endl; - fDetector = new TG4DetConstruction(); - FGeometryInit* geominit = FGeometryInit::GetInstance(); - if (geominit) - geominit->setDetConstruction(fDetector); - else { - cerr << "ERROR: Could not create FGeometryInit!" << endl; - cerr << " Exiting!!!" << endl; - abort(); - } - - if (fVerbosityLevel >=3) - cout << "<== TFluka::TFluka(" << title << ") constructor called." << endl; - - fVolumeMediaMap = new TClonesArray("FlukaVolume",1000); - fNVolumes = 0; - fMediaByRegion = 0; + // create geometry interface + if (fVerbosityLevel >=3) + cout << "<== TFluka::TFluka(" << title << ") constructor called." << endl; + SetCoreInputFileName(); + SetInputFileName(); + SetGeneratePemf(kFALSE); + fNVolumes = 0; + fCurrentFlukaRegion = -1; + fDummyBoundary = 0; + fFieldFlag = 1; + fGeneratePemf = kFALSE; + fMCGeo = new TGeoMCGeometry("MCGeo", "TGeo Implementation of VirtualMCGeometry", kTRUE); + fGeom = new TFlukaMCGeometry("geom", "ALICE geometry"); + if (verbosity > 2) fGeom->SetDebugMode(kTRUE); + fMaterials = 0; + fStopped = 0; } +//______________________________________________________________________________ TFluka::~TFluka() { - if (fVerbosityLevel >=3) - cout << "==> TFluka::~TFluka() destructor called." << endl; +// Destructor + if (fVerbosityLevel >=3) + cout << "<== TFluka::~TFluka() destructor called." << endl; + + delete fGeom; + delete fMCGeo; + + if (fCuts) { + fCuts->Delete(); + delete fCuts; + } + + if (fProcesses) { + fProcesses->Delete(); + delete fProcesses; + } - delete fGeometryManager; - fVolumeMediaMap->Delete(); - delete fVolumeMediaMap; - - if (fVerbosityLevel >=3) - cout << "<== TFluka::~TFluka() destructor called." << endl; } // -//_____________________________________________________________________________ +//______________________________________________________________________________ // TFluka control methods -//____________________________________________________________________________ +//______________________________________________________________________________ void TFluka::Init() { - - if (fVerbosityLevel >=3) - cout << "==> TFluka::Init() called." << endl; - - cout << "\t* InitPhysics() - Prepare input file to be called" << endl; - InitPhysics(); // prepare input file - cout << "\t* InitPhysics() - Prepare input file was called" << endl; - - if (fVerbosityLevel >=2) - cout << "\t* Changing lfdrtr = (" << (GLOBAL.lfdrtr?'T':'F') - << ") in fluka..." << endl; - GLOBAL.lfdrtr = true; - - if (fVerbosityLevel >=2) - cout << "\t* Opening file " << sInputFileName << endl; - const char* fname = sInputFileName; - fluka_openinp(lunin, PASSCHARA(fname)); - - if (fVerbosityLevel >=2) - cout << "\t* Calling flukam..." << endl; - flukam(1); - - if (fVerbosityLevel >=2) - cout << "\t* Closing file " << sInputFileName << endl; - fluka_closeinp(lunin); - - FinishGeometry(); - - if (fVerbosityLevel >=3) - cout << "<== TFluka::Init() called." << endl; - +// +// Geometry initialisation +// + if (fVerbosityLevel >=3) cout << "==> TFluka::Init() called." << endl; + + if (!gGeoManager) new TGeoManager("geom", "FLUKA geometry"); + fApplication->ConstructGeometry(); + TGeoVolume *top = (TGeoVolume*)gGeoManager->GetListOfVolumes()->First(); + gGeoManager->SetTopVolume(top); + gGeoManager->CloseGeometry("di"); + gGeoManager->DefaultColors(); // to be removed + fNVolumes = fGeom->NofVolumes(); + fGeom->CreateFlukaMatFile("flukaMat.inp"); + if (fVerbosityLevel >=3) { + printf("== Number of volumes: %i\n ==", fNVolumes); + cout << "\t* InitPhysics() - Prepare input file to be called" << endl; + } + // now we have TGeo geometry created and we have to patch alice.inp + // with the material mapping file FlukaMat.inp } + +//______________________________________________________________________________ void TFluka::FinishGeometry() { // // Build-up table with region to medium correspondance // - char tmp[5]; - - if (fVerbosityLevel >=3) + if (fVerbosityLevel >=3) { cout << "==> TFluka::FinishGeometry() called." << endl; - -// fGeometryManager->Ggclos(); - - FGeometryInit* flugg = FGeometryInit::GetInstance(); - - fMediaByRegion = new Int_t[fNVolumes+2]; - for (Int_t i = 0; i < fNVolumes; i++) - { - FlukaVolume* vol = dynamic_cast((*fVolumeMediaMap)[i]); - TString volName = vol->GetName(); - Int_t media = vol->GetMedium(); - if (fVerbosityLevel >= 3) - printf("Finish Geometry: volName, media %d %s %d \n", i, volName.Data(), media); - strcpy(tmp, volName.Data()); - tmp[4] = '\0'; - flugg->SetMediumFromName(tmp, media, i+1); - fMediaByRegion[i] = media; - } - - flugg->BuildMediaMap(); - - if (fVerbosityLevel >=3) + printf("----FinishGeometry - nothing to do with TGeo\n"); cout << "<== TFluka::FinishGeometry() called." << endl; + } } +//______________________________________________________________________________ void TFluka::BuildPhysics() { - if (fVerbosityLevel >=3) - cout << "==> TFluka::BuildPhysics() called." << endl; - - - if (fVerbosityLevel >=3) - cout << "<== TFluka::BuildPhysics() called." << endl; +// +// Prepare FLUKA input files and call FLUKA physics initialisation +// + + if (fVerbosityLevel >=3) + cout << "==> TFluka::BuildPhysics() called." << endl; +// Prepare input file with the current physics settings + InitPhysics(); + cout << "\t* InitPhysics() - Prepare input file was called" << endl; + + if (fVerbosityLevel >=2) + cout << "\t* Changing lfdrtr = (" << (GLOBAL.lfdrtr?'T':'F') + << ") in fluka..." << endl; + GLOBAL.lfdrtr = true; + + if (fVerbosityLevel >=2) + cout << "\t* Opening file " << fInputFileName << endl; + const char* fname = fInputFileName; + fluka_openinp(lunin, PASSCHARA(fname)); + + if (fVerbosityLevel >=2) + cout << "\t* Calling flukam..." << endl; + flukam(1); + + if (fVerbosityLevel >=2) + cout << "\t* Closing file " << fInputFileName << endl; + fluka_closeinp(lunin); + + FinishGeometry(); + + if (fVerbosityLevel >=3) + cout << "<== TFluka::Init() called." << endl; + + + if (fVerbosityLevel >=3) + cout << "<== TFluka::BuildPhysics() called." << endl; } +//______________________________________________________________________________ void TFluka::ProcessEvent() { +// +// Process one event +// if (fVerbosityLevel >=3) cout << "==> TFluka::ProcessEvent() called." << endl; fApplication->GeneratePrimaries(); @@ -226,8 +259,12 @@ void TFluka::ProcessEvent() { cout << "<== TFluka::ProcessEvent() called." << endl; } +//______________________________________________________________________________ +Bool_t TFluka::ProcessRun(Int_t nevent) { +// +// Run steering +// -void TFluka::ProcessRun(Int_t nevent) { if (fVerbosityLevel >=3) cout << "==> TFluka::ProcessRun(" << nevent << ") called." << endl; @@ -236,203 +273,422 @@ void TFluka::ProcessRun(Int_t nevent) { cout << "\t* GLOBAL.fdrtr = " << (GLOBAL.lfdrtr?'T':'F') << endl; cout << "\t* Calling flukam again..." << endl; } + fApplication->InitGeometry(); - fApplication->BeginEvent(); - ProcessEvent(); - fApplication->FinishEvent(); + Int_t todo = TMath::Abs(nevent); + for (Int_t ev = 0; ev < todo; ev++) { + fApplication->BeginEvent(); + ProcessEvent(); + fApplication->FinishEvent(); + } + if (fVerbosityLevel >=3) cout << "<== TFluka::ProcessRun(" << nevent << ") called." << endl; - + return kTRUE; } //_____________________________________________________________________________ // methods for building/management of geometry -//____________________________________________________________________________ + // functions from GCONS +//____________________________________________________________________________ void TFluka::Gfmate(Int_t imat, char *name, Float_t &a, Float_t &z, Float_t &dens, Float_t &radl, Float_t &absl, - Float_t* ubuf, Int_t& nbuf) { + Float_t* /*ubuf*/, Int_t& /*nbuf*/) { // - fGeometryManager->Gfmate(imat, name, a, z, dens, radl, absl, ubuf, nbuf); + TGeoMaterial *mat; + TIter next (gGeoManager->GetListOfMaterials()); + while ((mat = (TGeoMaterial*)next())) { + if (mat->GetUniqueID() == (UInt_t)imat) break; + } + if (!mat) { + Error("Gfmate", "no material with index %i found", imat); + return; + } + sprintf(name, "%s", mat->GetName()); + a = mat->GetA(); + z = mat->GetZ(); + dens = mat->GetDensity(); + radl = mat->GetRadLen(); + absl = mat->GetIntLen(); } +//______________________________________________________________________________ void TFluka::Gfmate(Int_t imat, char *name, Double_t &a, Double_t &z, Double_t &dens, Double_t &radl, Double_t &absl, - Double_t* ubuf, Int_t& nbuf) { + Double_t* /*ubuf*/, Int_t& /*nbuf*/) { // - fGeometryManager->Gfmate(imat, name, a, z, dens, radl, absl, ubuf, nbuf); + TGeoMaterial *mat; + TIter next (gGeoManager->GetListOfMaterials()); + while ((mat = (TGeoMaterial*)next())) { + if (mat->GetUniqueID() == (UInt_t)imat) break; + } + if (!mat) { + Error("Gfmate", "no material with index %i found", imat); + return; + } + sprintf(name, "%s", mat->GetName()); + a = mat->GetA(); + z = mat->GetZ(); + dens = mat->GetDensity(); + radl = mat->GetRadLen(); + absl = mat->GetIntLen(); } // detector composition +//______________________________________________________________________________ void TFluka::Material(Int_t& kmat, const char* name, Double_t a, Double_t z, Double_t dens, Double_t radl, Double_t absl, Float_t* buf, Int_t nwbuf) { // - fGeometryManager - ->Material(kmat, name, a, z, dens, radl, absl, buf, nwbuf); + Double_t* dbuf = fGeom->CreateDoubleArray(buf, nwbuf); + Material(kmat, name, a, z, dens, radl, absl, dbuf, nwbuf); + delete [] dbuf; } + +//______________________________________________________________________________ void TFluka::Material(Int_t& kmat, const char* name, Double_t a, Double_t z, Double_t dens, Double_t radl, Double_t absl, - Double_t* buf, Int_t nwbuf) { + Double_t* /*buf*/, Int_t /*nwbuf*/) { // - fGeometryManager - ->Material(kmat, name, a, z, dens, radl, absl, buf, nwbuf); + TGeoMaterial *mat; + kmat = gGeoManager->GetListOfMaterials()->GetSize(); + if ((z-Int_t(z)) > 1E-3) { + mat = fGeom->GetMakeWrongMaterial(z); + if (mat) { + mat->SetRadLen(radl,absl); + mat->SetUniqueID(kmat); + return; + } + } + gGeoManager->Material(name, a, z, dens, kmat, radl, absl); } +//______________________________________________________________________________ void TFluka::Mixture(Int_t& kmat, const char *name, Float_t *a, Float_t *z, Double_t dens, Int_t nlmat, Float_t *wmat) { // - fGeometryManager - ->Mixture(kmat, name, a, z, dens, nlmat, wmat); + Double_t* da = fGeom->CreateDoubleArray(a, TMath::Abs(nlmat)); + Double_t* dz = fGeom->CreateDoubleArray(z, TMath::Abs(nlmat)); + Double_t* dwmat = fGeom->CreateDoubleArray(wmat, TMath::Abs(nlmat)); + + Mixture(kmat, name, da, dz, dens, nlmat, dwmat); + for (Int_t i=0; iMixture(kmat, name, a, z, dens, nlmat, wmat); + // Defines mixture OR COMPOUND IMAT as composed by + // THE BASIC NLMAT materials defined by arrays A,Z and WMAT + // + // If NLMAT > 0 then wmat contains the proportion by + // weights of each basic material in the mixture. + // + // If nlmat < 0 then WMAT contains the number of atoms + // of a given kind into the molecule of the COMPOUND + // In this case, WMAT in output is changed to relative + // weigths. + // + Int_t i,j; + if (nlmat < 0) { + nlmat = - nlmat; + Double_t amol = 0; + for (i=0;iGetListOfMaterials()->GetSize(); + // Check if we have elements with fractional Z + TGeoMaterial *mat = 0; + TGeoMixture *mix = 0; + Bool_t mixnew = kFALSE; + for (i=0; i loop mixtures to look for it + for (j=0; jGetListOfMaterials()->At(j); + if (!mat) break; + if (!mat->IsMixture()) continue; + mix = (TGeoMixture*)mat; + if (TMath::Abs(z[i]-mix->GetZ()) >1E-3) continue; +// printf(" FOUND component %i as mixture %s\n", i, mat->GetName()); + mixnew = kTRUE; + break; + } + if (!mixnew) Warning("Mixture","%s : cannot find component %i with fractional Z=%f\n", name, i, z[i]); + break; + } + if (mixnew) { + Int_t nlmatnew = nlmat+mix->GetNelements()-1; + Double_t *anew = new Double_t[nlmatnew]; + Double_t *znew = new Double_t[nlmatnew]; + Double_t *wmatnew = new Double_t[nlmatnew]; + Int_t ind=0; + for (j=0; jGetNelements(); j++) { + anew[ind] = mix->GetAmixt()[j]; + znew[ind] = mix->GetZmixt()[j]; + wmatnew[ind] = wmat[i]*mix->GetWmixt()[j]; + ind++; + } + Mixture(kmat, name, anew, znew, dens, nlmatnew, wmatnew); + delete [] anew; + delete [] znew; + delete [] wmatnew; + return; + } + // Now we need to compact identical elements within the mixture + // First check if this happens + mixnew = kFALSE; + for (i=0; iMixture(name, a, z, dens, nlmat, wmat, kmat); } +//______________________________________________________________________________ void TFluka::Medium(Int_t& kmed, const char *name, Int_t nmat, Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd, Double_t stemax, Double_t deemax, Double_t epsil, Double_t stmin, Float_t* ubuf, Int_t nbuf) { // - fGeometryManager - ->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax, + kmed = gGeoManager->GetListOfMedia()->GetSize()+1; + fMCGeo->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax, epsil, stmin, ubuf, nbuf); } + +//______________________________________________________________________________ void TFluka::Medium(Int_t& kmed, const char *name, Int_t nmat, Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd, Double_t stemax, Double_t deemax, Double_t epsil, Double_t stmin, Double_t* ubuf, Int_t nbuf) { // - fGeometryManager - ->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax, + kmed = gGeoManager->GetListOfMedia()->GetSize()+1; + fMCGeo->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax, epsil, stmin, ubuf, nbuf); } +//______________________________________________________________________________ void TFluka::Matrix(Int_t& krot, Double_t thetaX, Double_t phiX, Double_t thetaY, Double_t phiY, Double_t thetaZ, Double_t phiZ) { // - fGeometryManager - ->Matrix(krot, thetaX, phiX, thetaY, phiY, thetaZ, phiZ); + krot = gGeoManager->GetListOfMatrices()->GetEntriesFast(); + fMCGeo->Matrix(krot, thetaX, phiX, thetaY, phiY, thetaZ, phiZ); } -void TFluka::Gstpar(Int_t itmed, const char *param, Double_t parval) { +//______________________________________________________________________________ +void TFluka::Gstpar(Int_t itmed, const char* param, Double_t parval) { // - fGeometryManager->Gstpar(itmed, param, parval); +// + + if (fVerbosityLevel >=3) printf("Gstpar called with %6d %5s %12.4e %6d\n", itmed, param, parval, fGeom->GetFlukaMaterial(itmed)); + + Bool_t process = kFALSE; + if (strncmp(param, "DCAY", 4) == 0 || + strncmp(param, "PAIR", 4) == 0 || + strncmp(param, "COMP", 4) == 0 || + strncmp(param, "PHOT", 4) == 0 || + strncmp(param, "PFIS", 4) == 0 || + strncmp(param, "DRAY", 4) == 0 || + strncmp(param, "ANNI", 4) == 0 || + strncmp(param, "BREM", 4) == 0 || + strncmp(param, "MUNU", 4) == 0 || + strncmp(param, "CKOV", 4) == 0 || + strncmp(param, "HADR", 4) == 0 || + strncmp(param, "LOSS", 4) == 0 || + strncmp(param, "MULS", 4) == 0 || + strncmp(param, "RAYL", 4) == 0) + { + process = kTRUE; + } + if (process) { + SetProcess(param, Int_t (parval), fGeom->GetFlukaMaterial(itmed)); + } else { + SetCut(param, parval, fGeom->GetFlukaMaterial(itmed)); + } } // functions from GGEOM +//_____________________________________________________________________________ +void TFluka::Gsatt(const char *name, const char *att, Int_t val) +{ + // Set visualisation attributes for one volume + char vname[5]; + fGeom->Vname(name,vname); + char vatt[5]; + fGeom->Vname(att,vatt); + gGeoManager->SetVolumeAttribute(vname, vatt, val); +} + +//______________________________________________________________________________ Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed, Float_t *upar, Int_t np) { // -// fVolumeMediaMap[TString(name)] = nmed; - if (fVerbosityLevel >= 3) - printf("TFluka::Gsvolu() name = %s, nmed = %d\n", name, nmed); - - TClonesArray &lvols = *fVolumeMediaMap; - new(lvols[fNVolumes++]) - FlukaVolume(name, nmed); - return fGeometryManager->Gsvolu(name, shape, nmed, upar, np); + return fMCGeo->Gsvolu(name, shape, nmed, upar, np); } + +//______________________________________________________________________________ Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed, Double_t *upar, Int_t np) { // - TClonesArray &lvols = *fVolumeMediaMap; - new(lvols[fNVolumes++]) - FlukaVolume(name, nmed); - - return fGeometryManager->Gsvolu(name, shape, nmed, upar, np); + return fMCGeo->Gsvolu(name, shape, nmed, upar, np); } +//______________________________________________________________________________ void TFluka::Gsdvn(const char *name, const char *mother, Int_t ndiv, Int_t iaxis) { // -// The medium of the daughter is the one of the mother - Int_t volid = TFluka::VolId(mother); - Int_t med = TFluka::VolId2Mate(volid); - TClonesArray &lvols = *fVolumeMediaMap; - new(lvols[fNVolumes++]) - FlukaVolume(name, med); - fGeometryManager->Gsdvn(name, mother, ndiv, iaxis); + fMCGeo->Gsdvn(name, mother, ndiv, iaxis); } +//______________________________________________________________________________ void TFluka::Gsdvn2(const char *name, const char *mother, Int_t ndiv, Int_t iaxis, Double_t c0i, Int_t numed) { // - TClonesArray &lvols = *fVolumeMediaMap; - new(lvols[fNVolumes++]) - FlukaVolume(name, numed); - fGeometryManager->Gsdvn2(name, mother, ndiv, iaxis, c0i, numed); + fMCGeo->Gsdvn2(name, mother, ndiv, iaxis, c0i, numed); } +//______________________________________________________________________________ void TFluka::Gsdvt(const char *name, const char *mother, Double_t step, Int_t iaxis, Int_t numed, Int_t ndvmx) { // - TClonesArray &lvols = *fVolumeMediaMap; - new(lvols[fNVolumes++]) - FlukaVolume(name, numed); - fGeometryManager->Gsdvt(name, mother, step, iaxis, numed, ndvmx); + fMCGeo->Gsdvt(name, mother, step, iaxis, numed, ndvmx); } +//______________________________________________________________________________ void TFluka::Gsdvt2(const char *name, const char *mother, Double_t step, Int_t iaxis, Double_t c0, Int_t numed, Int_t ndvmx) { // - TClonesArray &lvols = *fVolumeMediaMap; - new(lvols[fNVolumes++]) - FlukaVolume(name, numed); - fGeometryManager->Gsdvt2(name, mother, step, iaxis, c0, numed, ndvmx); + fMCGeo->Gsdvt2(name, mother, step, iaxis, c0, numed, ndvmx); } -void TFluka::Gsord(const char *name, Int_t iax) { +//______________________________________________________________________________ +void TFluka::Gsord(const char * /*name*/, Int_t /*iax*/) { // - fGeometryManager->Gsord(name, iax); +// Nothing to do with TGeo } +//______________________________________________________________________________ void TFluka::Gspos(const char *name, Int_t nr, const char *mother, Double_t x, Double_t y, Double_t z, Int_t irot, const char *konly) { // - fGeometryManager->Gspos(name, nr, mother, x, y, z, irot, konly); + fMCGeo->Gspos(name, nr, mother, x, y, z, irot, konly); } +//______________________________________________________________________________ void TFluka::Gsposp(const char *name, Int_t nr, const char *mother, Double_t x, Double_t y, Double_t z, Int_t irot, const char *konly, Float_t *upar, Int_t np) { // - fGeometryManager->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np); + fMCGeo->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np); } + +//______________________________________________________________________________ void TFluka::Gsposp(const char *name, Int_t nr, const char *mother, Double_t x, Double_t y, Double_t z, Int_t irot, const char *konly, Double_t *upar, Int_t np) { // - fGeometryManager->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np); + fMCGeo->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np); } -void TFluka::Gsbool(const char* onlyVolName, const char* manyVolName) { +//______________________________________________________________________________ +void TFluka::Gsbool(const char* /*onlyVolName*/, const char* /*manyVolName*/) { // - fGeometryManager->Gsbool(onlyVolName, manyVolName); +// Nothing to do with TGeo } -void TFluka::SetCerenkov(Int_t itmed, Int_t npckov, Float_t *ppckov, - Float_t *absco, Float_t *effic, Float_t *rindex) { +//______________________________________________________________________________ +void TFluka::SetCerenkov(Int_t itmed, Int_t npckov, Float_t* ppckov, + Float_t* absco, Float_t* effic, Float_t* rindex) { +// +// Set Cerenkov properties for medium itmed // - fGeometryManager->SetCerenkov(itmed, npckov, ppckov, absco, effic, rindex); +// npckov: number of sampling points +// ppckov: energy values +// absco: absorption length +// effic: quantum efficiency +// rindex: refraction index +// +// +// +// Create object holding Cerenkov properties +// + TFlukaCerenkov* cerenkovProperties = new TFlukaCerenkov(npckov, ppckov, absco, effic, rindex); +// +// Pass object to medium + TGeoMedium* medium = gGeoManager->GetMedium(itmed); + medium->SetCerenkovProperties(cerenkovProperties); } -void TFluka::SetCerenkov(Int_t itmed, Int_t npckov, Double_t *ppckov, - Double_t *absco, Double_t *effic, Double_t *rindex) { + +//______________________________________________________________________________ +void TFluka::SetCerenkov(Int_t /*itmed*/, Int_t /*npckov*/, Double_t * /*ppckov*/, + Double_t * /*absco*/, Double_t * /*effic*/, Double_t * /*rindex*/) { // - fGeometryManager->SetCerenkov(itmed, npckov, ppckov, absco, effic, rindex); +// Not implemented with TGeo - what G4 did ? Any FLUKA card generated? + Warning("SetCerenkov", "Not implemented with TGeo"); } // Euclid -void TFluka::WriteEuclid(const char* fileName, const char* topVol, - Int_t number, Int_t nlevel) { +//______________________________________________________________________________ +void TFluka::WriteEuclid(const char* /*fileName*/, const char* /*topVol*/, + Int_t /*number*/, Int_t /*nlevel*/) { // - fGeometryManager->WriteEuclid(fileName, topVol, number, nlevel); +// Not with TGeo + Warning("WriteEuclid", "Not implemented with TGeo"); } @@ -445,8 +701,7 @@ Int_t TFluka::GetMedium() const { // // Get the medium number for the current fluka region // - FGeometryInit* flugg = FGeometryInit::GetInstance(); - return flugg->GetMedium(fCurrentFlukaRegion); + return fGeom->GetMedium(); // this I need to check due to remapping !!! } @@ -468,42 +723,56 @@ Int_t TFluka::IdFromPDG(Int_t pdg) const return GetFlukaKPTOIP(intfluka); } +//______________________________________________________________________________ Int_t TFluka::PDGFromId(Int_t id) const { // // Return PDG code and pseudo ENDF code from Fluka code - + // Alpha He3 Triton Deuteron gen. ion opt. photon + Int_t idSpecial[6] = {10020040, 10020030, 10010030, 10010020, 10000000, 50000050}; // IPTOKP array goes from official to internal if (id == -1) { // Cerenkov photon - if (fVerbosityLevel >= 1) + if (fVerbosityLevel >= 3) printf("\n PDGFromId: Cerenkov Photon \n"); return 50000050; } // Error id - if (id == 0) { - if (fVerbosityLevel >= 1) + if (id == 0 || id < -6 || id > 250) { + if (fVerbosityLevel >= 3) printf("PDGFromId: Error id = 0\n"); return -1; } // Good id - Int_t intfluka = GetFlukaIPTOKP(id); - if (intfluka == 0) { - if (fVerbosityLevel >= 1) - printf("PDGFromId: Error intfluka = 0: %d\n", id); - return -1; - } else if (intfluka < 0) { - if (fVerbosityLevel >= 1) - printf("PDGFromId: Error intfluka < 0: %d\n", id); - return -1; + if (id > 0) { + Int_t intfluka = GetFlukaIPTOKP(id); + if (intfluka == 0) { + if (fVerbosityLevel >= 3) + printf("PDGFromId: Error intfluka = 0: %d\n", id); + return -1; + } else if (intfluka < 0) { + if (fVerbosityLevel >= 3) + printf("PDGFromId: Error intfluka < 0: %d\n", id); + return -1; + } + if (fVerbosityLevel >= 3) + printf("mpdgha called with %d %d \n", id, intfluka); + // MPDGHA() goes from fluka internal to pdg. + return mpdgha(intfluka); + } else { + // ions and optical photons + return idSpecial[id + 6]; } - if (fVerbosityLevel >= 3) - printf("mpdgha called with %d %d \n", id, intfluka); - // MPDGHA() goes from fluka internal to pdg. - return mpdgha(intfluka); } +void TFluka::StopTrack() +{ + // Set stopping conditions + // Works for photons and charged particles + fStopped = kTRUE; +} + //_____________________________________________________________________________ // methods for physics management //____________________________________________________________________________ @@ -511,79 +780,163 @@ Int_t TFluka::PDGFromId(Int_t id) const // set methods // -void TFluka::SetProcess(const char* flagName, Int_t flagValue) +void TFluka::SetProcess(const char* flagName, Int_t flagValue, Int_t imed) { - Int_t i; - if (iNbOfProc < 100) { - for (i=0; iAdd(proc); +} + +//______________________________________________________________________________ +Bool_t TFluka::SetProcess(const char* flagName, Int_t flagValue) +{ +// Set process user flag +// +// +// Update if already in the list +// + + TIter next(fProcesses); + TFlukaConfigOption* proc; + while((proc = (TFlukaConfigOption*)next())) + { + if (strcmp(proc->GetName(), flagName) == 0) { + proc->SetFlag(flagValue); + proc->SetMedium(-1); + return kTRUE; + } } - strcpy(&sProcessFlag[iNbOfProc][0],flagName); - iProcessValue[iNbOfProc++] = flagValue; - } - else - cout << "Nb of SetProcess calls exceeds 100 - ignored" << endl; -fin: - iNbOfProc = iNbOfProc; +// +// If not create a new process +// + + proc = new TFlukaConfigOption(flagName, flagValue); + fProcesses->Add(proc); + + return kTRUE; } -void TFluka::SetCut(const char* cutName, Double_t cutValue) +//______________________________________________________________________________ +void TFluka::SetCut(const char* cutName, Double_t cutValue, Int_t imed) { - Int_t i; - if (iNbOfCut < 100) { - for (i=0; iAdd(cut); +} + +//______________________________________________________________________________ +Bool_t TFluka::SetCut(const char* cutName, Double_t cutValue) +{ +// Set user cut value +// +// +// Update if already in the list +// + + TIter next(fCuts); + TFlukaConfigOption* cut; + while((cut = (TFlukaConfigOption*)next())) + { + if (strcmp(cut->GetName(), cutName) == 0) { + cut->SetCut(cutValue); + return kTRUE; + } } - strcpy(&sCutFlag[iNbOfCut][0],cutName); - fCutValue[iNbOfCut++] = cutValue; - } - else - cout << "Nb of SetCut calls exceeds 100 - ignored" << endl; -fin: - iNbOfCut = iNbOfCut; +// +// If not create a new process +// + + cut = new TFlukaConfigOption(cutName, cutValue); + fCuts->Add(cut); + + return kTRUE; } +//______________________________________________________________________________ Double_t TFluka::Xsec(char*, Double_t, Int_t, Int_t) { printf("WARNING: Xsec not yet implemented !\n"); return -1.; } +//______________________________________________________________________________ void TFluka::InitPhysics() { -// Last material number taken from the "corealice.inp" file, presently 31 -// !!! it should be available from Flugg !!! - Int_t i, j, k; +// +// Physics initialisation with preparation of FLUKA input cards +// + printf("=>InitPhysics\n"); + Int_t j, k; Double_t fCut; - Float_t fLastMaterial = 31.0; - + + FILE *pAliceCoreInp, *pAliceFlukaMat, *pAliceInp; + + Double_t zero = 0.0; + Double_t one = 1.0; + Double_t two = 2.0; + Double_t three = 3.0; + + Float_t fLastMaterial = fGeom->GetLastMaterialIndex(); + if (fVerbosityLevel >= 3) printf(" last FLUKA material is %g\n", fLastMaterial); + + // Prepare Cerenkov + TObjArray *matList = GetFlukaMaterials(); + Int_t nmaterial = matList->GetEntriesFast(); + fMaterials = new Int_t[nmaterial+3]; + // construct file names - TString sAliceInp = getenv("ALICE_ROOT"); - sAliceInp +="/TFluka/input/"; - TString sAliceCoreInp = sAliceInp; - sAliceInp += GetInputFileName(); + + TString sAliceCoreInp = getenv("ALICE_ROOT"); + sAliceCoreInp +="/TFluka/input/"; + TString sAliceTmp = "flukaMat.inp"; + TString sAliceInp = GetInputFileName(); sAliceCoreInp += GetCoreInputFileName(); - ifstream AliceCoreInp(sAliceCoreInp.Data()); - ofstream AliceInp(sAliceInp.Data()); -// copy core input file until (not included) START card +// open files + + if ((pAliceCoreInp = fopen(sAliceCoreInp.Data(),"r")) == NULL) { + printf("\nCannot open file %s\n",sAliceCoreInp.Data()); + exit(1); + } + if ((pAliceFlukaMat = fopen(sAliceTmp.Data(),"r")) == NULL) { + printf("\nCannot open file %s\n",sAliceTmp.Data()); + exit(1); + } + if ((pAliceInp = fopen(sAliceInp.Data(),"w")) == NULL) { + printf("\nCannot open file %s\n",sAliceInp.Data()); + exit(1); + } + +// copy core input file Char_t sLine[255]; Float_t fEventsPerRun; - while (AliceCoreInp.getline(sLine,255)) { - if (strncmp(sLine,"START",5) != 0) - AliceInp << sLine << endl; - else { - sscanf(sLine+10,"%10f",&fEventsPerRun); - goto fin; - } - } //end of while + + while ((fgets(sLine,255,pAliceCoreInp)) != NULL) { + if (strncmp(sLine,"GEOEND",6) != 0) + fprintf(pAliceInp,"%s",sLine); // copy until GEOEND card + else { + fprintf(pAliceInp,"GEOEND\n"); // add GEOEND card + goto flukamat; + } + } // end of while until GEOEND card + + flukamat: + while ((fgets(sLine,255,pAliceFlukaMat)) != NULL) { // copy flukaMat.inp file + fprintf(pAliceInp,"%s\n",sLine); + } + + while ((fgets(sLine,255,pAliceCoreInp)) != NULL) { + if (strncmp(sLine,"START",5) != 0) + fprintf(pAliceInp,"%s\n",sLine); + else { + sscanf(sLine+10,"%10f",&fEventsPerRun); + goto fin; + } + } //end of while until START card + fin: // in G3 the process control values meaning can be different for // different processes, but for most of them is: @@ -599,15 +952,31 @@ fin: // HADR: may be > 2 // -// Loop over number of SetProcess calls - AliceInp << "*----------------------------------------------------------------------------- "; - AliceInp << endl; - AliceInp << "*----- The following data are generated from SetProcess and SetCut calls ----- "; - AliceInp << endl; - AliceInp << "*----------------------------------------------------------------------------- "; - AliceInp << endl; - for (i=0; iMedium() != -1) { + matMin = Float_t(proc->Medium()); + matMax = matMin; + global = kFALSE; + } + // annihilation // G3 default value: 1 // G4 processes: G4eplusAnnihilation/G4IeplusAnnihilation @@ -617,45 +986,28 @@ fin: // flag = 1 annihilation, decays processed // flag = 2 annihilation, no decay product stored // gMC ->SetProcess("ANNI",1); // EMFCUT -1. 0. 0. 3. lastmat 0. ANNH-THR - if (strncmp(&sProcessFlag[i][0],"ANNI",4) == 0) { - if (iProcessValue[i] == 1 || iProcessValue[i] == 2) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Kinetic energy threshold (GeV) for e+ annihilation - resets to default=0."; - AliceInp << endl; - AliceInp << "*Generated from call: SetProcess('ANNI',1) or SetProcess('ANNI',2)"; - AliceInp << endl; - AliceInp << setw(10) << "EMFCUT "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); - AliceInp << setw(10) << -1.0; // kinetic energy threshold (GeV) for e+ annihilation (resets to default=0) - AliceInp << setw(10) << 0.0; // not used - AliceInp << setw(10) << 0.0; // not used - AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply - AliceInp << setw(10) << setprecision(2); - AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply - AliceInp << setprecision(1); - AliceInp << setw(10) << 1.0; // step length in assigning indices - AliceInp << setw(8) << "ANNH-THR"; - AliceInp << endl; - } - else if (iProcessValue[i] == 0) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*No annihilation - no FLUKA card generated"; - AliceInp << endl; - AliceInp << "*Generated from call: SetProcess('ANNI',0)"; - AliceInp << endl; - } - else { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Illegal flag value in SetProcess('ANNI',?) call."; - AliceInp << endl; - AliceInp << "*No FLUKA card generated"; - AliceInp << endl; + if (strncmp(proc->GetName(),"ANNI",4) == 0) { + if (proc->Flag() == 1 || proc->Flag() == 2) { + fprintf(pAliceInp,"*\n*Kinetic energy threshold (GeV) for e+ annihilation - resets to default=0.\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('ANNI',1) or SetProcess('ANNI',2)\n"); + // -one = kinetic energy threshold (GeV) for e+ annihilation (resets to default=0) + // zero = not used + // zero = not used + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + // one = step length in assigning indices + // "ANNH-THR"; + fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fANNH-THR\n",-one,zero,zero,matMin,matMax,one); + } + else if (proc->Flag() == 0) { + fprintf(pAliceInp,"*\n*No annihilation - no FLUKA card generated\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('ANNI',0)\n"); + } + else { + fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('ANNI',?) call.\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } } - } // bremsstrahlung and pair production are both activated // G3 default value: 1 @@ -680,1256 +1032,970 @@ fin: // flag = 2 delta rays, no secondaries stored // gMC ->SetProcess("PAIR",1); // PAIRBREM 1. 0. 0. 3. lastmat // EMFCUT 0. 0. -1. 3. lastmat 0. PHOT-THR - else if ((strncmp(&sProcessFlag[i][0],"PAIR",4) == 0) && (iProcessValue[i] == 1 || iProcessValue[i] == 2)) { - for (j=0; jSetCut("PPCUTM",cut); // total energy cut for direct pair prod. by muons - fCut = 0.0; - for (k=0; kSetCut("BCUTM",cut); // cut for muon and hadron bremsstrahlung - fCut = 0.0; - for (k=0; kGetName(),"PAIR",4) == 0) && (proc->Flag() == 1 || proc->Flag() == 2)) { + + nextp.Reset(); + + while ((procp = (TFlukaConfigOption*)nextp())) { + if ((strncmp(procp->GetName(),"BREM",4) == 0) && + (proc->Flag() == 1 || procp->Flag() == 2) && + (procp->Medium() == proc->Medium())) { + fprintf(pAliceInp,"*\n*Bremsstrahlung and pair production by muons and charged hadrons both activated\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('BREM',1) and SetProcess('PAIR',1)\n"); + fprintf(pAliceInp,"*Energy threshold set by call SetCut('BCUTM',cut) or set to 0.\n"); + fprintf(pAliceInp,"*Energy threshold set by call SetCut('PPCUTM',cut) or set to 0.\n"); + // three = bremsstrahlung and pair production by muons and charged hadrons both are activated + fprintf(pAliceInp,"PAIRBREM %10.1f",three); + // direct pair production by muons + // G4 particles: "e-", "e+" + // G3 default value: 0.01 GeV + //gMC ->SetCut("PPCUTM",cut); // total energy cut for direct pair prod. by muons + fCut = 0.0; + nextc.Reset(); + while ((cut = (TFlukaConfigOption*)nextc())) { + if (strncmp(cut->GetName(), "PPCUTM", 6) == 0 && + (cut->Medium() == proc->Medium())) fCut = cut->Cut(); + } + fprintf(pAliceInp,"%10.4g",fCut); + // fCut; = e+, e- kinetic energy threshold (in GeV) for explicit pair production. + // muon and hadron bremsstrahlung + // G4 particles: "gamma" + // G3 default value: CUTGAM=0.001 GeV + //gMC ->SetCut("BCUTM",cut); // cut for muon and hadron bremsstrahlung + fCut = 0.0; + nextc.Reset(); + while ((cut = (TFlukaConfigOption*)nextc())) { + if (strncmp(cut->GetName(), "BCUTM", 5) == 0 && + (cut->Medium() == proc->Medium())) fCut = cut->Cut(); + } + fprintf(pAliceInp,"%10.4g%10.1f%10.1f\n",fCut,matMin,matMax); + // fCut = photon energy threshold (GeV) for explicit bremsstrahlung production + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + + // for e+ and e- + fprintf(pAliceInp,"*\n*Kinetic energy threshold (GeV) for e+/e- bremsstrahlung - resets to default=0.\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('BREM',1);\n"); + fCut = -1.0; + nextc.Reset(); + while ((cut = (TFlukaConfigOption*)nextc())) { + if (strncmp(cut->GetName(), "BCUTE", 5) == 0 && + (cut->Medium() == proc->Medium())) fCut = cut->Cut(); + } + //fCut = kinetic energy threshold (GeV) for e+/e- bremsstrahlung (resets to default=0) + // zero = not used + // zero = not used + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + // one = step length in assigning indices + // "ELPO-THR"; + fprintf(pAliceInp,"EMFCUT %10.4g%10.1f%10.1f%10.1f%10.1f%10.1fELPO-THR\n",fCut,zero,zero,matMin,matMax,one); + // for e+ and e- - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Pair production by electrons is activated"; - AliceInp << endl; - AliceInp << "*Generated from call: SetProcess('PAIR',1);"; - AliceInp << endl; - AliceInp << setw(10) << "EMFCUT "; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); - AliceInp << setw(10) << 0.0; // energy threshold (GeV) for Compton scattering (= 0.0 : ignored) - AliceInp << setw(10) << 0.0; // energy threshold (GeV) for Photoelectric (= 0.0 : ignored) - fCut = -1.0; - for (j=0; jSetCut("PPCUTM",cut); // total energy cut for direct pair prod. by muons - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); - AliceInp << setw(10) << 0.0; // e+, e- kinetic energy threshold (in GeV) for explicit pair production. - AliceInp << setw(10) << 0.0; // no explicit bremsstrahlung production is simulated - AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply - AliceInp << setprecision(2); - AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply - AliceInp << endl; + fprintf(pAliceInp,"*\n*Pair production by electrons is activated\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('PAIR',1);\n"); + fCut = -1.0; + nextc.Reset(); + while ((cut = (TFlukaConfigOption*)nextc())) { + if (strncmp(cut->GetName(), "CUTGAM", 6) == 0 && + (cut->Medium() == proc->Medium())) fCut = cut->Cut(); + } + // fCut = energy threshold (GeV) for gamma pair production (< 0.0 : resets to default, = 0.0 : ignored) + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + // one = step length in assigning indices + fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.4g%10.1f%10.1f%10.1fPHOT-THR\n",zero,zero,fCut,matMin,matMax,one); + goto BOTH; + } // end of if for BREM + } // end of loop for BREM + + // only pair production by muons and charged hadrons is activated + fprintf(pAliceInp,"*\n*Pair production by muons and charged hadrons is activated\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('PAIR',1) or SetProcess('PAIR',2)\n"); + fprintf(pAliceInp,"*Energy threshold set by call SetCut('PPCUTM',cut) or set to 0.\n"); + // direct pair production by muons + // G4 particles: "e-", "e+" + // G3 default value: 0.01 GeV + //gMC ->SetCut("PPCUTM",cut); // total energy cut for direct pair prod. by muons + // one = pair production by muons and charged hadrons is activated + // zero = e+, e- kinetic energy threshold (in GeV) for explicit pair production. + // zero = no explicit bremsstrahlung production is simulated + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + fprintf(pAliceInp,"PAIRBREM %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,zero,zero,matMin,matMax); + + // for e+ and e- + fprintf(pAliceInp,"*\n*Pair production by electrons is activated\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('PAIR',1) or SetProcess('PAIR',2)\n"); + fCut = -1.0; + nextc.Reset(); + while ((cut = (TFlukaConfigOption*)nextc())) { + if (strncmp(cut->GetName(), "CUTGAM", 6) == 0 && + (cut->Medium() == proc->Medium())) fCut = cut->Cut(); + } + // zero = energy threshold (GeV) for Compton scattering (= 0.0 : ignored) + // zero = energy threshold (GeV) for Photoelectric (= 0.0 : ignored) + // fCut = energy threshold (GeV) for gamma pair production (< 0.0 : resets to default, = 0.0 : ignored) + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + // one = step length in assigning indices + fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.4g%10.1f%10.1f%10.1fPHOT-THR\n",zero,zero,fCut,matMin,matMax,one); - // for e+ and e- - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Pair production by electrons is activated"; - AliceInp << endl; - AliceInp << "*Generated from call: SetProcess('PAIR',1) or SetProcess('PAIR',2)"; - AliceInp << endl; - AliceInp << setw(10) << "EMFCUT "; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); - AliceInp << setw(10) << 0.0; // energy threshold (GeV) for Compton scattering (= 0.0 : ignored) - AliceInp << setw(10) << 0.0; // energy threshold (GeV) for Photoelectric (= 0.0 : ignored) - - fCut = -1.0; - for (j=0; jSetProcess("BREM",1); // PAIRBREM 2. 0. 0. 3. lastmat - // EMFCUT -1. 0. 0. 3. lastmat 0. ELPO-THR - else if (strncmp(&sProcessFlag[i][0],"BREM",4) == 0) { - for (j=0; jSetCut("BCUTM",cut); // cut for muon and hadron bremsstrahlung - fCut = 0.0; - for (j=0; jSetProcess("CKOV",1); // ??? Cerenkov photon generation - else if (strncmp(&sProcessFlag[i][0],"CKOV",4) == 0) { - if (iProcessValue[i] == 1 || iProcessValue[i] == 2) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Cerenkov photon generation"; - AliceInp << endl; - AliceInp << "*Generated from call: SetProcess('CKOV',1) or SetProcess('CKOV',2)"; - AliceInp << endl; - AliceInp << setw(10) << "OPT-PROD "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setw(10) << 2.07e-9 ; // minimum Cerenkov photon emission energy (in GeV!). Default: 2.07E-9 GeV (corresponding to 600 nm) - AliceInp << setw(10) << 4.96e-9; // maximum Cerenkov photon emission energy (in GeV!). Default: 4.96E-9 GeV (corresponding to 250 nm) - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); - AliceInp << setw(10) << 0.0; // not used - AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply - AliceInp << setprecision(2); - AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply - AliceInp << setprecision(1); - AliceInp << setw(10) << 1.0; // step length in assigning indices - AliceInp << setw(8) << "CERENKOV"; - AliceInp << endl; - } - else if (iProcessValue[i] == 0) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*No Cerenkov photon generation"; - AliceInp << endl; - AliceInp << "*Generated from call: SetProcess('CKOV',0)"; - AliceInp << endl; - AliceInp << setw(10) << "OPT-PROD "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); - AliceInp << setw(10) << 0.0; // not used - AliceInp << setw(10) << 0.0; // not used - AliceInp << setw(10) << 0.0; // not used - AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply - AliceInp << setprecision(2); - AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply - AliceInp << setprecision(1); - AliceInp << setw(10) << 1.0; // step length in assigning indices - AliceInp << setw(8) << "CERE-OFF"; - AliceInp << endl; - } - else { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Illegal flag value in SetProcess('CKOV',?) call."; - AliceInp << endl; - AliceInp << "*No FLUKA card generated"; - AliceInp << endl; + + + + // bremsstrahlung + // G3 default value: 1 + // G4 processes: G4eBremsstrahlung/G4IeBremsstrahlung, + // G4MuBremsstrahlung/G4IMuBremsstrahlung, + // G4LowEnergyBremstrahlung + // Particles: e-/e+; mu+/mu- + // Physics: EM + // flag = 0 no bremsstrahlung + // flag = 1 bremsstrahlung, photon processed + // flag = 2 bremsstrahlung, no photon stored + // gMC ->SetProcess("BREM",1); // PAIRBREM 2. 0. 0. 3. lastmat + // EMFCUT -1. 0. 0. 3. lastmat 0. ELPO-THR + else if (strncmp(proc->GetName(),"BREM",4) == 0) { + nextp.Reset(); + while((procp = (TFlukaConfigOption*)nextp())) { + if ((strncmp(procp->GetName(),"PAIR",4) == 0) && + procp->Flag() == 1 && + (procp->Medium() == proc->Medium())) goto NOBREM; + } + if (proc->Flag() == 1 || proc->Flag() == 2) { + fprintf(pAliceInp,"*\n*Bremsstrahlung by muons and charged hadrons is activated\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('BREM',1) or SetProcess('BREM',2)\n"); + fprintf(pAliceInp,"*Energy threshold set by call SetCut('BCUTM',cut) or set to 0.\n"); + // two = bremsstrahlung by muons and charged hadrons is activated + // zero = no meaning + // muon and hadron bremsstrahlung + // G4 particles: "gamma" + // G3 default value: CUTGAM=0.001 GeV + //gMC ->SetCut("BCUTM",cut); // cut for muon and hadron bremsstrahlung + fCut = 0.0; + nextc.Reset(); + while ((cut = (TFlukaConfigOption*)nextc())) { + if (strncmp(cut->GetName(), "BCUTM", 5) == 0 && + (cut->Medium() == proc->Medium())) fCut = cut->Cut(); + } + // fCut = photon energy threshold (GeV) for explicit bremsstrahlung production + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + fprintf(pAliceInp,"PAIRBREM %10.1f%10.1f%10.4g%10.1f%10.1f\n",two,zero,fCut,matMin,matMax); + + // for e+ and e- + fprintf(pAliceInp,"*\n*Kinetic energy threshold (GeV) for e+/e- bremsstrahlung - resets to default=0.\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('BREM',1);"); + // - one = kinetic energy threshold (GeV) for e+/e- bremsstrahlung (resets to default=0) + // zero = not used + // zero = not used + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + // one = step length in assigning indices + //"ELPO-THR"; + fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fELPO-THR\n",-one,zero,zero,matMin,matMax,one); + } + else if (proc->Flag() == 0) { + fprintf(pAliceInp,"*\n*No bremsstrahlung - no FLUKA card generated\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('BREM',0)\n"); + } + else { + fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('BREM',?) call.\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + NOBREM: + j = 0; + } // end of else if (strncmp(proc->GetName(),"BREM",4) == 0) + + // Cerenkov photon generation + // G3 default value: 0 + // G4 process: G4Cerenkov + // + // Particles: charged + // Physics: Optical + // flag = 0 no Cerenkov photon generation + // flag = 1 Cerenkov photon generation + // flag = 2 Cerenkov photon generation with primary stopped at each step + //xx gMC ->SetProcess("CKOV",1); // ??? Cerenkov photon generation + + else if (strncmp(proc->GetName(),"CKOV",4) == 0) { + if ((proc->Flag() == 1 || proc->Flag() == 2) && global) { + // Write comments + fprintf(pAliceInp, "* \n"); + fprintf(pAliceInp, "*Cerenkov photon generation\n"); + fprintf(pAliceInp, "*Generated from call: SetProcess('CKOV',1) or SetProcess('CKOV',2)\n"); + // Loop over media + for (Int_t im = 0; im < nmaterial; im++) + { + TGeoMaterial* material = dynamic_cast (matList->At(im)); + Int_t idmat = material->GetIndex(); + + if (!global && idmat != proc->Medium()) continue; + + fMaterials[idmat] = im; + // Skip media with no Cerenkov properties + TFlukaCerenkov* cerenkovProp; + if (!(cerenkovProp = dynamic_cast(material->GetCerenkovProperties()))) continue; + // + // This medium has Cerenkov properties + // + // + // Write OPT-PROD card for each medium + Float_t emin = cerenkovProp->GetMinimumEnergy(); + Float_t emax = cerenkovProp->GetMaximumEnergy(); + fprintf(pAliceInp, "OPT-PROD %10.4g%10.4g%10.4g%10.4g%10.4g%10.4gCERENKOV\n", emin, emax, 0., + Float_t(idmat), Float_t(idmat), 0.); + // + // Write OPT-PROP card for each medium + // Forcing FLUKA to call user routines (queffc.cxx, rflctv.cxx, rfrndx.cxx) + // + fprintf(pAliceInp, "OPT-PROP %10.4g%10.4g%10.4g%10.1f%10.1f%10.1fWV-LIMIT\n", + cerenkovProp->GetMinimumWavelength(), + cerenkovProp->GetMaximumWavelength(), + cerenkovProp->GetMaximumWavelength(), + Float_t(idmat), Float_t(idmat), 0.0); + + if (cerenkovProp->IsMetal()) { + fprintf(pAliceInp, "OPT-PROP %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fMETAL\n", + -100., -100., -100., + Float_t(idmat), Float_t(idmat), 0.0); + } else { + fprintf(pAliceInp, "OPT-PROP %10.1f%10.1f%10.1f%10.1f%10.1f%10.1f\n", + -100., -100., -100., + Float_t(idmat), Float_t(idmat), 0.0); + } + + + for (Int_t j = 0; j < 3; j++) { + fprintf(pAliceInp, "OPT-PROP %10.1f%10.1f%10.1f%10.1f%10.1f%10.1f&\n", + -100., -100., -100., + Float_t(idmat), Float_t(idmat), 0.0); + } + // Photon detection efficiency user defined + + if (cerenkovProp->IsSensitive()) + fprintf(pAliceInp, "OPT-PROP %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fSENSITIV\n", + -100., -100., -100., + Float_t(idmat), Float_t(idmat), 0.0); + + } // materials + } else if (proc->Flag() == 0) { + fprintf(pAliceInp,"*\n*No Cerenkov photon generation\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('CKOV',0)\n"); + // zero = not used + // zero = not used + // zero = not used + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + // one = step length in assigning indices + //"CERE-OFF"; + fprintf(pAliceInp,"OPT-PROD %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fCERE-OFF\n",zero,zero,zero,matMin,matMax,one); + } + else { + fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('CKOV',?) call.\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + } // end of else if (strncmp(proc->GetName(),"CKOV",4) == 0) + + // Compton scattering + // G3 default value: 1 + // G4 processes: G4ComptonScattering, + // G4LowEnergyCompton, + // G4PolarizedComptonScattering + // Particles: gamma + // Physics: EM + // flag = 0 no Compton scattering + // flag = 1 Compton scattering, electron processed + // flag = 2 Compton scattering, no electron stored + // gMC ->SetProcess("COMP",1); // EMFCUT -1. 0. 0. 3. lastmat 0. PHOT-THR + else if (strncmp(proc->GetName(),"COMP",4) == 0) { + if (proc->Flag() == 1 || proc->Flag() == 2) { + fprintf(pAliceInp,"*\n*Energy threshold (GeV) for Compton scattering - resets to default=0.\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('COMP',1);\n"); + // - one = energy threshold (GeV) for Compton scattering - resets to default=0. + // zero = not used + // zero = not used + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + // one = step length in assigning indices + //"PHOT-THR"; + fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fPHOT-THR\n",-one,zero,zero,matMin,matMax,one); + } + else if (proc->Flag() == 0) { + fprintf(pAliceInp,"*\n*No Compton scattering - no FLUKA card generated\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('COMP',0)\n"); + } + else { + fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('COMP',?) call.\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + } // end of else if (strncmp(proc->GetName(),"COMP",4) == 0) + + // decay + // G3 default value: 1 + // G4 process: G4Decay + // + // Particles: all which decay is applicable for + // Physics: General + // flag = 0 no decays + // flag = 1 decays, secondaries processed + // flag = 2 decays, no secondaries stored + //gMC ->SetProcess("DCAY",0); // not available + else if ((strncmp(proc->GetName(),"DCAY",4) == 0) && proc->Flag() == 0) + cout << "SetProcess for flag =" << proc->GetName() << " value=" << proc->Flag() << " not avaliable!" << endl; + else if ((strncmp(proc->GetName(),"DCAY",4) == 0) && proc->Flag() == 1) { + // Nothing to do decays are switched on by default } - } // end of else if (strncmp(&sProcessFlag[i][0],"CKOV",4) == 0) - + + + // delta-ray + // G3 default value: 2 + // !! G4 treats delta rays in different way + // G4 processes: G4eIonisation/G4IeIonization, + // G4MuIonisation/G4IMuIonization, + // G4hIonisation/G4IhIonisation + // Particles: charged + // Physics: EM + // flag = 0 no energy loss + // flag = 1 restricted energy loss fluctuations + // flag = 2 complete energy loss fluctuations + // flag = 3 same as 1 + // flag = 4 no energy loss fluctuations + // gMC ->SetProcess("DRAY",0); // DELTARAY 1.E+6 0. 0. 3. lastmat 0. + else if (strncmp(proc->GetName(),"DRAY",4) == 0) { + if (proc->Flag() == 0 || proc->Flag() == 4) { + fprintf(pAliceInp,"*\n*Kinetic energy threshold (GeV) for delta ray production\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('DRAY',0) or SetProcess('DRAY',4)\n"); + fprintf(pAliceInp,"*No delta ray production by muons - threshold set artificially high\n"); + Double_t emin = 1.0e+6; // kinetic energy threshold (GeV) for delta ray production (discrete energy transfer) + // zero = ignored + // zero = ignored + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + // one = step length in assigning indices + fprintf(pAliceInp,"DELTARAY %10.4g%10.1f%10.1f%10.1f%10.1f%10.1f\n",emin,zero,zero,matMin,matMax,one); + } + else if (proc->Flag() == 1 || proc->Flag() == 2 || proc->Flag() == 3) { + fprintf(pAliceInp,"*\n*Kinetic energy threshold (GeV) for delta ray production\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('DRAY',flag), flag=1,2,3\n"); + fprintf(pAliceInp,"*Delta ray production by muons switched on\n"); + fprintf(pAliceInp,"*Energy threshold set by call SetCut('DCUTM',cut) or set to 1.0e+6.\n"); + fCut = 1.0e+6; + nextc.Reset(); + while ((cut = (TFlukaConfigOption*)nextc())) { + if (strncmp(cut->GetName(), "DCUTM", 5) == 0 && + cut->Medium() == proc->Medium()) fCut = cut->Cut(); + } + // fCut = kinetic energy threshold (GeV) for delta ray production (discrete energy transfer) + // zero = ignored + // zero = ignored + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + // one = step length in assigning indices + fprintf(pAliceInp,"DELTARAY %10.4g%10.1f%10.1f%10.1f%10.1f%10.1f\n",fCut,zero,zero,matMin,matMax,one); + } + else { + fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('DRAY',?) call.\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + } // end of else if (strncmp(proc->GetName(),"DRAY",4) == 0) + + // hadronic process + // G3 default value: 1 + // G4 processes: all defined by TG4PhysicsConstructorHadron + // + // Particles: hadrons + // Physics: Hadron + // flag = 0 no multiple scattering + // flag = 1 hadronic interactions, secondaries processed + // flag = 2 hadronic interactions, no secondaries stored + // gMC ->SetProcess("HADR",1); // ??? hadronic process + //Select pure GEANH (HADR 1) or GEANH/NUCRIN (HADR 3) ????? + else if (strncmp(proc->GetName(),"HADR",4) == 0) { + if (proc->Flag() == 1 || proc->Flag() == 2) { + fprintf(pAliceInp,"*\n*Hadronic interaction is ON by default in FLUKA\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + else if (proc->Flag() == 0) { + fprintf(pAliceInp,"*\n*Hadronic interaction is set OFF\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('HADR',0);\n"); + fprintf(pAliceInp,"*Switching off hadronic interactions not foreseen in FLUKA\n"); + fprintf(pAliceInp,"THRESHOL %10.1f%10.1f%10.1f%10.1e%10.1f\n",zero, zero, zero, 1.e10, zero); + } + else { + fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('HADR',?) call.\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + } // end of else if (strncmp(proc->GetName(),"HADR",4) == 0) + + + // energy loss + // G3 default value: 2 + // G4 processes: G4eIonisation/G4IeIonization, + // G4MuIonisation/G4IMuIonization, + // G4hIonisation/G4IhIonisation + // + // Particles: charged + // Physics: EM + // flag=0 no energy loss + // flag=1 restricted energy loss fluctuations + // flag=2 complete energy loss fluctuations + // flag=3 same as 1 + // flag=4 no energy loss fluctuations + // If the value ILOSS is changed, then (in G3) cross-sections and energy + // loss tables must be recomputed via the command 'PHYSI' + // gMC ->SetProcess("LOSS",2); // ??? IONFLUCT ? energy loss + else if (strncmp(proc->GetName(),"LOSS",4) == 0) { + if (proc->Flag() == 2) { // complete energy loss fluctuations + fprintf(pAliceInp,"*\n*Complete energy loss fluctuations do not exist in FLUKA\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('LOSS',2);\n"); + fprintf(pAliceInp,"*flag=2=complete energy loss fluctuations\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + else if (proc->Flag() == 1 || proc->Flag() == 3) { // restricted energy loss fluctuations + fprintf(pAliceInp,"*\n*Restricted energy loss fluctuations\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('LOSS',1) or SetProcess('LOSS',3)\n"); + // one = restricted energy loss fluctuations (for hadrons and muons) switched on + // one = restricted energy loss fluctuations (for e+ and e-) switched on + // one = minimal accuracy + // matMin = lower bound of the material indices in which the respective thresholds apply + // upper bound of the material indices in which the respective thresholds apply + fprintf(pAliceInp,"IONFLUCT %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,one,one,matMin,matMax); + } + else if (proc->Flag() == 4) { // no energy loss fluctuations + fprintf(pAliceInp,"*\n*No energy loss fluctuations\n"); + fprintf(pAliceInp,"*\n*Generated from call: SetProcess('LOSS',4)\n"); + // - one = restricted energy loss fluctuations (for hadrons and muons) switched off + // - one = restricted energy loss fluctuations (for e+ and e-) switched off + // one = minimal accuracy + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + fprintf(pAliceInp,"IONFLUCT %10.1f%10.1f%10.1f%10.1f%10.1f\n",-one,-one,one,matMin,matMax); + } + else { + fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('LOSS',?) call.\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + } // end of else if (strncmp(proc->GetName(),"LOSS",4) == 0) + + + // multiple scattering + // G3 default value: 1 + // G4 process: G4MultipleScattering/G4IMultipleScattering + // + // Particles: charged + // Physics: EM + // flag = 0 no multiple scattering + // flag = 1 Moliere or Coulomb scattering + // flag = 2 Moliere or Coulomb scattering + // flag = 3 Gaussian scattering + // gMC ->SetProcess("MULS",1); // MULSOPT multiple scattering + else if (strncmp(proc->GetName(),"MULS",4) == 0) { + if (proc->Flag() == 1 || proc->Flag() == 2 || proc->Flag() == 3) { + fprintf(pAliceInp,"*\n*Multiple scattering is ON by default for e+e- and for hadrons/muons\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + else if (proc->Flag() == 0) { + fprintf(pAliceInp,"*\n*Multiple scattering is set OFF\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('MULS',0);\n"); + // zero = ignored + // three = multiple scattering for hadrons and muons is completely suppressed + // three = multiple scattering for e+ and e- is completely suppressed + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + fprintf(pAliceInp,"MULSOPT %10.1f%10.1f%10.1f%10.1f%10.1f\n",zero,three,three,matMin,matMax); + } + else { + fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('MULS',?) call.\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + } // end of else if (strncmp(proc->GetName(),"MULS",4) == 0) + - // Compton scattering - // G3 default value: 1 - // G4 processes: G4ComptonScattering, - // G4LowEnergyCompton, - // G4PolarizedComptonScattering - // Particles: gamma - // Physics: EM - // flag = 0 no Compton scattering - // flag = 1 Compton scattering, electron processed - // flag = 2 Compton scattering, no electron stored - // gMC ->SetProcess("COMP",1); // EMFCUT -1. 0. 0. 3. lastmat 0. PHOT-THR - else if (strncmp(&sProcessFlag[i][0],"COMP",4) == 0) { - if (iProcessValue[i] == 1 || iProcessValue[i] == 2) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Energy threshold (GeV) for Compton scattering - resets to default=0."; - AliceInp << endl; - AliceInp << "*Generated from call: SetProcess('COMP',1);"; - AliceInp << endl; - AliceInp << setw(10) << "EMFCUT "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); - AliceInp << setw(10) << -1.0; // energy threshold (GeV) for Compton scattering - resets to default=0. - AliceInp << setw(10) << 0.0; // not used - AliceInp << setw(10) << 0.0; // not used - AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply - AliceInp << setprecision(2); - AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply - AliceInp << setprecision(1); - AliceInp << setw(10) << 1.0; // step length in assigning indices - AliceInp << setw(8) << "PHOT-THR"; - AliceInp << endl; - } - else if (iProcessValue[i] == 0) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*No Compton scattering - no FLUKA card generated"; - AliceInp << endl; - AliceInp << "*Generated from call: SetProcess('COMP',0)"; - AliceInp << endl; - } - else { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Illegal flag value in SetProcess('COMP',?) call."; - AliceInp << endl; - AliceInp << "*No FLUKA card generated"; - AliceInp << endl; + // muon nuclear interaction + // G3 default value: 0 + // G4 processes: G4MuNuclearInteraction, + // G4MuonMinusCaptureAtRest + // + // Particles: mu + // Physics: Not set + // flag = 0 no muon-nuclear interaction + // flag = 1 nuclear interaction, secondaries processed + // flag = 2 nuclear interaction, secondaries not processed + // gMC ->SetProcess("MUNU",1); // MUPHOTON 1. 0. 0. 3. lastmat + else if (strncmp(proc->GetName(),"MUNU",4) == 0) { + if (proc->Flag() == 1) { + fprintf(pAliceInp,"*\n*Muon nuclear interactions with production of secondary hadrons\n"); + fprintf(pAliceInp,"*\n*Generated from call: SetProcess('MUNU',1);\n"); + // one = full simulation of muon nuclear interactions and production of secondary hadrons + // zero = ratio of longitudinal to transverse virtual photon cross-section - Default = 0.25. + // zero = fraction of rho-like interactions ( must be < 1) - Default = 0.75. + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + fprintf(pAliceInp,"MUPHOTON %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,zero,zero,matMin,matMax); + } + else if (proc->Flag() == 2) { + fprintf(pAliceInp,"*\n*Muon nuclear interactions without production of secondary hadrons\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('MUNU',2);\n"); + // two = full simulation of muon nuclear interactions and production of secondary hadrons + // zero = ratio of longitudinal to transverse virtual photon cross-section - Default = 0.25. + // zero = fraction of rho-like interactions ( must be < 1) - Default = 0.75. + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + fprintf(pAliceInp,"MUPHOTON %10.1f%10.1f%10.1f%10.1f%10.1f\n",two,zero,zero,matMin,matMax); + } + else if (proc->Flag() == 0) { + fprintf(pAliceInp,"*\n*No muon nuclear interaction - no FLUKA card generated\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('MUNU',0)\n"); + } + else { + fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('MUNU',?) call.\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + } // end of else if (strncmp(proc->GetName(),"MUNU",4) == 0) + + + // photofission + // G3 default value: 0 + // G4 process: ?? + // + // Particles: gamma + // Physics: ?? + // gMC ->SetProcess("PFIS",0); // PHOTONUC -1. 0. 0. 3. lastmat 0. + // flag = 0 no photon fission + // flag = 1 photon fission, secondaries processed + // flag = 2 photon fission, no secondaries stored + else if (strncmp(proc->GetName(),"PFIS",4) == 0) { + if (proc->Flag() == 0) { + fprintf(pAliceInp,"*\n*No photonuclear interactions\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('PFIS',0);\n"); + // - one = no photonuclear interactions + // zero = not used + // zero = not used + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + fprintf(pAliceInp,"PHOTONUC %10.1f%10.1f%10.1f%10.1f%10.1f\n",-one,zero,zero,matMin,matMax); + } + else if (proc->Flag() == 1) { + fprintf(pAliceInp,"*\n*Photon nuclear interactions are activated at all energies\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('PFIS',1);\n"); + // one = photonuclear interactions are activated at all energies + // zero = not used + // zero = not used + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + fprintf(pAliceInp,"PHOTONUC %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,zero,zero,matMin,matMax); + } + else if (proc->Flag() == 0) { + fprintf(pAliceInp,"*\n*No photofission - no FLUKA card generated\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('PFIS',0)\n"); + } + else { + fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('PFIS',?) call.\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } } - } // end of else if (strncmp(&sProcessFlag[i][0],"COMP",4) == 0) - // decay - // G3 default value: 1 - // G4 process: G4Decay - // - // Particles: all which decay is applicable for - // Physics: General - // flag = 0 no decays - // flag = 1 decays, secondaries processed - // flag = 2 decays, no secondaries stored - //gMC ->SetProcess("DCAY",1); // not available - else if ((strncmp(&sProcessFlag[i][0],"DCAY",4) == 0) && iProcessValue[i] == 1) - cout << "SetProcess for flag=" << &sProcessFlag[i][0] << " value=" << iProcessValue[i] << " not avaliable!" << endl; + + // photo electric effect + // G3 default value: 1 + // G4 processes: G4PhotoElectricEffect + // G4LowEnergyPhotoElectric + // Particles: gamma + // Physics: EM + // flag = 0 no photo electric effect + // flag = 1 photo electric effect, electron processed + // flag = 2 photo electric effect, no electron stored + // gMC ->SetProcess("PHOT",1); // EMFCUT 0. -1. 0. 3. lastmat 0. PHOT-THR + else if (strncmp(proc->GetName(),"PHOT",4) == 0) { + if (proc->Flag() == 1 || proc->Flag() == 2) { + fprintf(pAliceInp,"*\n*Photo electric effect is activated\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('PHOT',1);\n"); + // zero = ignored + // - one = resets to default=0. + // zero = ignored + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + // one = step length in assigning indices + //"PHOT-THR"; + fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fPHOT-THR\n",zero,-one,zero,matMin,matMax,one); + } + else if (proc->Flag() == 0) { + fprintf(pAliceInp,"*\n*No photo electric effect - no FLUKA card generated\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('PHOT',0)\n"); + } + else { + fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('PHOT',?) call.\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + } // else if (strncmp(proc->GetName(),"PHOT",4) == 0) - // delta-ray - // G3 default value: 2 - // !! G4 treats delta rays in different way - // G4 processes: G4eIonisation/G4IeIonization, - // G4MuIonisation/G4IMuIonization, - // G4hIonisation/G4IhIonisation - // Particles: charged - // Physics: EM - // flag = 0 no energy loss - // flag = 1 restricted energy loss fluctuations - // flag = 2 complete energy loss fluctuations - // flag = 3 same as 1 - // flag = 4 no energy loss fluctuations - // gMC ->SetProcess("DRAY",0); // DELTARAY 1.E+6 0. 0. 3. lastmat 0. - else if (strncmp(&sProcessFlag[i][0],"DRAY",4) == 0) { - if (iProcessValue[i] == 0 || iProcessValue[i] == 4) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Kinetic energy threshold (GeV) for delta ray production"; - AliceInp << endl; - AliceInp << "*Generated from call: SetProcess('DRAY',0) or SetProcess('DRAY',4)"; - AliceInp << endl; - AliceInp << "*No delta ray production by muons - threshold set artificially high"; - AliceInp << endl; - AliceInp << setw(10) << "DELTARAY "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setw(10) << 1.0e+6; // kinetic energy threshold (GeV) for delta ray production (discrete energy transfer) - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); - AliceInp << setw(10) << 0.0; // ignored - AliceInp << setw(10) << 0.0; // ignored - AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply - AliceInp << setw(10) << setprecision(2); - AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply - AliceInp << setprecision(1); - AliceInp << setw(10) << 1.0; // step length in assigning indices - AliceInp << endl; - } - else if (iProcessValue[i] == 1 || iProcessValue[i] == 2 || iProcessValue[i] == 3) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Kinetic energy threshold (GeV) for delta ray production"; - AliceInp << endl; - AliceInp << "*Generated from call: SetProcess('DRAY',flag), flag=1,2,3"; - AliceInp << endl; - AliceInp << "*Delta ray production by muons switched on"; - AliceInp << endl; - AliceInp << "*Energy threshold set by call SetCut('DCUTM',cut) or set to 0."; - AliceInp << endl; - AliceInp << setw(10) << "DELTARAY "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - fCut = 1.0e+6; - for (j=0; jSetProcess("RAYL",1); + else if (strncmp(proc->GetName(),"RAYL",4) == 0) { + if (proc->Flag() == 1) { + fprintf(pAliceInp,"*\n*Rayleigh scattering is ON by default in FLUKA\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + else if (proc->Flag() == 0) { + fprintf(pAliceInp,"*\n*Rayleigh scattering is set OFF\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('RAYL',0);\n"); + // - one = no Rayleigh scattering and no binding corrections for Compton + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + fprintf(pAliceInp,"EMFRAY %10.1f%10.1f%10.1f%10.1f\n",-one,three,matMin,matMax); + } + else { + fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('RAYL',?) call.\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + } // end of else if (strncmp(proc->GetName(),"RAYL",4) == 0) + + + // synchrotron radiation in magnetic field + // G3 default value: 0 + // G4 process: G4SynchrotronRadiation + // + // Particles: ?? + // Physics: Not set + // flag = 0 no synchrotron radiation + // flag = 1 synchrotron radiation + //xx gMC ->SetProcess("SYNC",1); // synchrotron radiation generation + else if (strncmp(proc->GetName(),"SYNC",4) == 0) { + fprintf(pAliceInp,"*\n*Synchrotron radiation generation is NOT implemented in FLUKA\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); } - } // end of else if (strncmp(&sProcessFlag[i][0],"DRAY",4) == 0) - - // hadronic process - // G3 default value: 1 - // G4 processes: all defined by TG4PhysicsConstructorHadron - // - // Particles: hadrons - // Physics: Hadron - // flag = 0 no multiple scattering - // flag = 1 hadronic interactions, secondaries processed - // flag = 2 hadronic interactions, no secondaries stored - // gMC ->SetProcess("HADR",1); // ??? hadronic process - //Select pure GEANH (HADR 1) or GEANH/NUCRIN (HADR 3) ????? - else if (strncmp(&sProcessFlag[i][0],"HADR",4) == 0) { - if (iProcessValue[i] == 1 || iProcessValue[i] == 2) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Hadronic interaction is ON by default in FLUKA"; - AliceInp << endl; - AliceInp << "*No FLUKA card generated"; - AliceInp << endl; + + + // Automatic calculation of tracking medium parameters + // flag = 0 no automatic calculation + // flag = 1 automatic calculation + //xx gMC ->SetProcess("AUTO",1); // ??? automatic computation of the tracking medium parameters + else if (strncmp(proc->GetName(),"AUTO",4) == 0) { + fprintf(pAliceInp,"*\n*Automatic calculation of tracking medium parameters is always ON in FLUKA\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); } - else if (iProcessValue[i] == 0) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Hadronic interaction is set OFF"; - AliceInp << endl; - AliceInp << "*Generated from call: SetProcess('HADR',0);"; - AliceInp << endl; - AliceInp << setw(10) << "MULSOPT "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); - AliceInp << setw(10) << 0.0; // ignored - AliceInp << setw(10) << 3.0; // multiple scattering for hadrons and muons is completely suppressed - AliceInp << setw(10) << 0.0; // no spin-relativistic corrections - AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply - AliceInp << setprecision(2); - AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply - AliceInp << endl; + + + // To control energy loss fluctuation model + // flag = 0 Urban model + // flag = 1 PAI model + // flag = 2 PAI+ASHO model (not active at the moment) + //xx gMC ->SetProcess("STRA",1); // ??? energy fluctuation model + else if (strncmp(proc->GetName(),"STRA",4) == 0) { + if (proc->Flag() == 0 || proc->Flag() == 2 || proc->Flag() == 3) { + fprintf(pAliceInp,"*\n*Ionization energy losses calculation is activated\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('STRA',n);, n=0,1,2\n"); + // one = restricted energy loss fluctuations (for hadrons and muons) switched on + // one = restricted energy loss fluctuations (for e+ and e-) switched on + // one = minimal accuracy + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + fprintf(pAliceInp,"IONFLUCT %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,one,one,matMin,matMax); + } + else { + fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('STRA',?) call.\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + } // else if (strncmp(proc->GetName(),"STRA",4) == 0) + - } - else { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Illegal flag value in SetProcess('HADR',?) call."; - AliceInp << endl; - AliceInp << "*No FLUKA card generated"; - AliceInp << endl; - } - } // end of else if (strncmp(&sProcessFlag[i][0],"HADR",4) == 0) - // energy loss - // G3 default value: 2 - // G4 processes: G4eIonisation/G4IeIonization, - // G4MuIonisation/G4IMuIonization, - // G4hIonisation/G4IhIonisation - // - // Particles: charged - // Physics: EM - // flag=0 no energy loss - // flag=1 restricted energy loss fluctuations - // flag=2 complete energy loss fluctuations - // flag=3 same as 1 - // flag=4 no energy loss fluctuations - // If the value ILOSS is changed, then (in G3) cross-sections and energy - // loss tables must be recomputed via the command 'PHYSI' - // gMC ->SetProcess("LOSS",2); // ??? IONFLUCT ? energy loss - else if (strncmp(&sProcessFlag[i][0],"LOSS",4) == 0) { - if (iProcessValue[i] == 2) { // complete energy loss fluctuations - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Complete energy loss fluctuations do not exist in FLUKA"; - AliceInp << endl; - AliceInp << "*Generated from call: SetProcess('LOSS',2);"; - AliceInp << endl; - AliceInp << "*flag=2=complete energy loss fluctuations"; - AliceInp << endl; - AliceInp << "*No input card generated"; - AliceInp << endl; - } - else if (iProcessValue[i] == 1 || iProcessValue[i] == 3) { // restricted energy loss fluctuations - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Restricted energy loss fluctuations"; - AliceInp << endl; - AliceInp << "*Generated from call: SetProcess('LOSS',1) or SetProcess('LOSS',3)"; - AliceInp << endl; - AliceInp << setw(10) << "IONFLUCT "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); - AliceInp << setw(10) << 1.0; // restricted energy loss fluctuations (for hadrons and muons) switched on - AliceInp << setw(10) << 1.0; // restricted energy loss fluctuations (for e+ and e-) switched on - AliceInp << setw(10) << 1.0; // minimal accuracy - AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply - AliceInp << setprecision(2); - AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply - AliceInp << endl; - } - else if (iProcessValue[i] == 4) { // no energy loss fluctuations - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*No energy loss fluctuations"; - AliceInp << endl; - AliceInp << "*Generated from call: SetProcess('LOSS',4)"; - AliceInp << endl; - AliceInp << setw(10) << -1.0; // restricted energy loss fluctuations (for hadrons and muons) switched off - AliceInp << setw(10) << -1.0; // restricted energy loss fluctuations (for e+ and e-) switched off - AliceInp << setw(10) << 1.0; // minimal accuracy - AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply - AliceInp << setprecision(2); - AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply - AliceInp << endl; - } - else { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Illegal flag value in SetProcess('LOSS',?) call."; - AliceInp << endl; - AliceInp << "*No FLUKA card generated"; - AliceInp << endl; + else { // processes not yet treated + + // light photon absorption (Cerenkov photons) + // it is turned on when Cerenkov process is turned on + // G3 default value: 0 + // G4 process: G4OpAbsorption, G4OpBoundaryProcess + // + // Particles: optical photon + // Physics: Optical + // flag = 0 no absorption of Cerenkov photons + // flag = 1 absorption of Cerenkov photons + // gMC ->SetProcess("LABS",2); // ??? Cerenkov light absorption + + + + cout << "SetProcess for flag=" << proc->GetName() << " value=" << proc->Flag() << " not yet implemented!" << endl; } - } // end of else if (strncmp(&sProcessFlag[i][0],"LOSS",4) == 0) - + } //end of loop number of SetProcess calls + - // multiple scattering - // G3 default value: 1 - // G4 process: G4MultipleScattering/G4IMultipleScattering - // - // Particles: charged - // Physics: EM - // flag = 0 no multiple scattering - // flag = 1 Moliere or Coulomb scattering - // flag = 2 Moliere or Coulomb scattering - // flag = 3 Gaussian scattering - // gMC ->SetProcess("MULS",1); // MULSOPT multiple scattering - else if (strncmp(&sProcessFlag[i][0],"MULS",4) == 0) { - if (iProcessValue[i] == 1 || iProcessValue[i] == 2 || iProcessValue[i] == 3) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Multiple scattering is ON by default for e+e- and for hadrons/muons"; - AliceInp << endl; - AliceInp << "*No FLUKA card generated"; - AliceInp << endl; - } - else if (iProcessValue[i] == 0) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Multiple scattering is set OFF"; - AliceInp << endl; - AliceInp << "*Generated from call: SetProcess('MULS',0);"; - AliceInp << endl; - AliceInp << setw(10) << "MULSOPT "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); - AliceInp << setw(10) << 0.0; // ignored - AliceInp << setw(10) << 3.0; // multiple scattering for hadrons and muons is completely suppressed - AliceInp << setw(10) << 3.0; // multiple scattering for e+ and e- is completely suppressed - AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply - AliceInp << setprecision(2); - AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply - AliceInp << endl; - } - else { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Illegal flag value in SetProcess('MULS',?) call."; - AliceInp << endl; - AliceInp << "*No FLUKA card generated"; - AliceInp << endl; - } - } // end of else if (strncmp(&sProcessFlag[i][0],"MULS",4) == 0) - - - // muon nuclear interaction - // G3 default value: 0 - // G4 processes: G4MuNuclearInteraction, - // G4MuonMinusCaptureAtRest - // - // Particles: mu - // Physics: Not set - // flag = 0 no muon-nuclear interaction - // flag = 1 nuclear interaction, secondaries processed - // flag = 2 nuclear interaction, secondaries not processed - // gMC ->SetProcess("MUNU",1); // MUPHOTON 1. 0. 0. 3. lastmat - else if (strncmp(&sProcessFlag[i][0],"MUNU",4) == 0) { - if (iProcessValue[i] == 1) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Muon nuclear interactions with production of secondary hadrons"; - AliceInp << endl; - AliceInp << "*Generated from call: SetProcess('MUNU',1);"; - AliceInp << endl; - AliceInp << setw(10) << "MUPHOTON "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); - AliceInp << setw(10) << 1.0; // full simulation of muon nuclear interactions and production of secondary hadrons - AliceInp << setw(10) << 0.0; // ratio of longitudinal to transverse virtual photon cross-section - Default = 0.25. - AliceInp << setw(10) << 0.0; // fraction of rho-like interactions ( must be < 1) - Default = 0.75. - AliceInp << setprecision(1); - AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply - AliceInp << setprecision(2); - AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply - AliceInp << endl; - } - else if (iProcessValue[i] == 2) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Muon nuclear interactions without production of secondary hadrons"; - AliceInp << endl; - AliceInp << "*Generated from call: SetProcess('MUNU',2);"; - AliceInp << endl; - AliceInp << setw(10) << "MUPHOTON "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); - AliceInp << setw(10) << 2.0; // full simulation of muon nuclear interactions and production of secondary hadrons - AliceInp << setw(10) << 0.0; // ratio of longitudinal to transverse virtual photon cross-section - Default = 0.25. - AliceInp << setw(10) << 0.0; // fraction of rho-like interactions ( must be < 1) - Default = 0.75. - AliceInp << setprecision(1); - AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply - AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply - AliceInp << endl; - } - else if (iProcessValue[i] == 0) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*No muon nuclear interaction - no FLUKA card generated"; - AliceInp << endl; - AliceInp << "*Generated from call: SetProcess('MUNU',0)"; - AliceInp << endl; - } - else { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Illegal flag value in SetProcess('MUNU',?) call."; - AliceInp << endl; - AliceInp << "*No FLUKA card generated"; - AliceInp << endl; +// Loop over number of SetCut calls + + nextc.Reset(); + while ((cut = (TFlukaConfigOption*)nextc())) { + Float_t matMin = three; + Float_t matMax = fLastMaterial; + Bool_t global = kTRUE; + if (cut->Medium() != -1) { + matMin = Float_t(cut->Medium()); + matMax = matMin; + global = kFALSE; } - } // end of else if (strncmp(&sProcessFlag[i][0],"MUNU",4) == 0) + // cuts handled in SetProcess calls + if (strncmp(cut->GetName(),"BCUTM",5) == 0) continue; + else if (strncmp(cut->GetName(),"BCUTE",5) == 0) continue; + else if (strncmp(cut->GetName(),"DCUTM",5) == 0) continue; + else if (strncmp(cut->GetName(),"PPCUTM",6) == 0) continue; + + // delta-rays by electrons + // G4 particles: "e-" + // G3 default value: 10**4 GeV + // gMC ->SetCut("DCUTE",cut); // cut for deltarays by electrons + else if (strncmp(cut->GetName(),"DCUTE",5) == 0) { + fprintf(pAliceInp,"*\n*Cut for delta rays by electrons\n"); + fprintf(pAliceInp,"*Generated from call: SetCut('DCUTE',cut);\n"); + // -cut->Cut(); + // zero = ignored + // zero = ignored + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + // loop over materials for EMFCUT FLUKA cards + for (j=0; j < matMax-matMin+1; j++) { + Int_t nreg, imat, *reglist; + Float_t ireg; + imat = (Int_t) matMin + j; + reglist = fGeom->GetMaterialList(imat, nreg); + // loop over regions of a given material + for (k=0; kCut(),zero,zero,ireg,ireg); + } + } + fprintf(pAliceInp,"DELTARAY %10.4g%10.3f%10.3f%10.1f%10.1f%10.1f\n",cut->Cut(), 100., 1.03, matMin, matMax, 1.0); + } // end of if for delta-rays by electrons + - // photofission - // G3 default value: 0 - // G4 process: ?? - // - // Particles: gamma - // Physics: ?? - // gMC ->SetProcess("PFIS",0); // PHOTONUC -1. 0. 0. 3. lastmat 0. - // flag = 0 no photon fission - // flag = 1 photon fission, secondaries processed - // flag = 2 photon fission, no secondaries stored - else if (strncmp(&sProcessFlag[i][0],"PFIS",4) == 0) { - if (iProcessValue[i] == 0) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*No photonuclear interactions"; - AliceInp << endl; - AliceInp << "*Generated from call: SetProcess('PFIS',0);"; - AliceInp << endl; - AliceInp << setw(10) << "PHOTONUC "; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); - AliceInp << setw(10) << -1.0; // no photonuclear interactions - AliceInp << setw(10) << 0.0; // not used - AliceInp << setw(10) << 0.0; // not used - AliceInp << setw(10) << 3.0; // upper bound of the material indices in which the respective thresholds apply - AliceInp << setprecision(2); - AliceInp << setw(10) << fLastMaterial; - AliceInp << setprecision(1); // upper bound of the material indices in which the respective thresholds apply - AliceInp << setprecision(1); - AliceInp << setw(10) << 1.0; // step length in assigning indices - AliceInp << endl; - } - else if (iProcessValue[i] == 1) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Photon nuclear interactions are activated at all energies"; - AliceInp << endl; - AliceInp << "*Generated from call: SetProcess('PFIS',1);"; - AliceInp << endl; - AliceInp << setw(10) << "PHOTONUC "; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); - AliceInp << setw(10) << 1.0; // photonuclear interactions are activated at all energies - AliceInp << setw(10) << 0.0; // not used - AliceInp << setw(10) << 0.0; // not used - AliceInp << setprecision(2); - AliceInp << setw(10) << 3.0; // upper bound of the material indices in which the respective thresholds apply - AliceInp << setw(10) << fLastMaterial; - AliceInp << setprecision(1); // upper bound of the material indices in which the respective thresholds apply - AliceInp << setprecision(1); - AliceInp << setw(10) << 1.0; // step length in assigning indices - AliceInp << endl; - } - else if (iProcessValue[i] == 0) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*No photofission - no FLUKA card generated"; - AliceInp << endl; - AliceInp << "*Generated from call: SetProcess('PFIS',0)"; - AliceInp << endl; + // gammas + // G4 particles: "gamma" + // G3 default value: 0.001 GeV + // gMC ->SetCut("CUTGAM",cut); // cut for gammas + + else if (strncmp(cut->GetName(),"CUTGAM",6) == 0 && global) { + fprintf(pAliceInp,"*\n*Cut for gamma\n"); + fprintf(pAliceInp,"*Generated from call: SetCut('CUTGAM',cut);\n"); + // -cut->Cut(); + // 7.0 = lower bound of the particle id-numbers to which the cut-off + fprintf(pAliceInp,"PART-THR %10.4g%10.1f\n",-cut->Cut(),7.0); } - else { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Illegal flag value in SetProcess('PFIS',?) call."; - AliceInp << endl; - AliceInp << "*No FLUKA card generated"; - AliceInp << endl; + else if (strncmp(cut->GetName(),"CUTGAM",6) == 0 && !global) { + fprintf(pAliceInp,"*\n*Cut specific to material for gamma\n"); + fprintf(pAliceInp,"*Generated from call: SetCut('CUTGAM',cut);\n"); + // cut->Cut(); + // loop over materials for EMFCUT FLUKA cards + for (j=0; j < matMax-matMin+1; j++) { + Int_t nreg, imat, *reglist; + Float_t ireg; + imat = (Int_t) matMin + j; + reglist = fGeom->GetMaterialList(imat, nreg); + // loop over regions of a given material + for (Int_t k=0; kCut(), zero, ireg, ireg, one); + } + } + } // end of else if for gamma + + + // electrons + // G4 particles: "e-" + // ?? positrons + // G3 default value: 0.001 GeV + //gMC ->SetCut("CUTELE",cut); // cut for e+,e- + else if (strncmp(cut->GetName(),"CUTELE",6) == 0 && global) { + fprintf(pAliceInp,"*\n*Cut for electrons\n"); + fprintf(pAliceInp,"*Generated from call: SetCut('CUTELE',cut);\n"); + // -cut->Cut(); + // three = lower bound of the particle id-numbers to which the cut-off + // 4.0 = upper bound of the particle id-numbers to which the cut-off + // one = step length in assigning numbers + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f%10.1f\n",-cut->Cut(),three,4.0,one); } - } + else if (strncmp(cut->GetName(),"CUTELE",6) == 0 && !global) { + fprintf(pAliceInp,"*\n*Cut specific to material for electrons\n"); + fprintf(pAliceInp,"*Generated from call: SetCut('CUTELE',cut);\n"); + // -cut->Cut(); + // loop over materials for EMFCUT FLUKA cards + for (j=0; j < matMax-matMin+1; j++) { + Int_t nreg, imat, *reglist; + Float_t ireg; + imat = (Int_t) matMin + j; + reglist = fGeom->GetMaterialList(imat, nreg); + // loop over regions of a given material + for (k=0; kCut(), zero, zero, ireg, ireg, one); + } + } + } // end of else if for electrons - - // photo electric effect - // G3 default value: 1 - // G4 processes: G4PhotoElectricEffect - // G4LowEnergyPhotoElectric - // Particles: gamma - // Physics: EM - // flag = 0 no photo electric effect - // flag = 1 photo electric effect, electron processed - // flag = 2 photo electric effect, no electron stored - // gMC ->SetProcess("PHOT",1); // EMFCUT 0. -1. 0. 3. lastmat 0. PHOT-THR - else if (strncmp(&sProcessFlag[i][0],"PHOT",4) == 0) { - if (iProcessValue[i] == 1 || iProcessValue[i] == 2) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Photo electric effect is activated"; - AliceInp << endl; - AliceInp << "*Generated from call: SetProcess('PHOT',1);"; - AliceInp << endl; - AliceInp << setw(10) << "EMFCUT "; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); - AliceInp << setw(10) << 0.0; // ignored - AliceInp << setw(10) << -1.0; // resets to default=0. - AliceInp << setw(10) << 0.0; // ignored - AliceInp << setw(10) << 3.0; // upper bound of the material indices in which the respective thresholds apply - AliceInp << setprecision(2); - AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply - AliceInp << setprecision(1); - AliceInp << setw(10) << 1.0; // step length in assigning indices - AliceInp << setw(8) << "PHOT-THR"; - AliceInp << endl; - } - else if (iProcessValue[i] == 0) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*No photo electric effect - no FLUKA card generated"; - AliceInp << endl; - AliceInp << "*Generated from call: SetProcess('PHOT',0)"; - AliceInp << endl; - } - else { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Illegal flag value in SetProcess('PHOT',?) call."; - AliceInp << endl; - AliceInp << "*No FLUKA card generated"; - AliceInp << endl; + + // neutral hadrons + // G4 particles: of type "baryon", "meson", "nucleus" with zero charge + // G3 default value: 0.01 GeV + //gMC ->SetCut("CUTNEU",cut); // cut for neutral hadrons + else if (strncmp(cut->GetName(),"CUTNEU",6) == 0 && global) { + fprintf(pAliceInp,"*\n*Cut for neutral hadrons\n"); + fprintf(pAliceInp,"*Generated from call: SetCut('CUTNEU',cut);\n"); + + // 8.0 = Neutron + // 9.0 = Antineutron + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),8.0,9.0); + + // 12.0 = Kaon zero long + // 12.0 = Kaon zero long + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),12.0,12.0); + + // 17.0 = Lambda, 18.0 = Antilambda + // 19.0 = Kaon zero short + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),17.0,19.0); + + // 22.0 = Sigma zero, Pion zero, Kaon zero + // 25.0 = Antikaon zero + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),22.0,25.0); + + // 32.0 = Antisigma zero + // 32.0 = Antisigma zero + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),32.0,32.0); + + // 34.0 = Xi zero + // 35.0 = AntiXi zero + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),34.0,35.0); + + // 47.0 = D zero + // 48.0 = AntiD zero + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),47.0,48.0); + + // 53.0 = Xi_c zero + // 53.0 = Xi_c zero + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),53.0,53.0); + + // 55.0 = Xi'_c zero + // 56.0 = Omega_c zero + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),55.0,56.0); + + // 59.0 = AntiXi_c zero + // 59.0 = AntiXi_c zero + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),59.0,59.0); + + // 61.0 = AntiXi'_c zero + // 62.0 = AntiOmega_c zero + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),61.0,62.0); } - } // else if (strncmp(&sProcessFlag[i][0],"PHOT",4) == 0) - - - // Rayleigh scattering - // G3 default value: 0 - // G4 process: G4OpRayleigh - // - // Particles: optical photon - // Physics: Optical - // flag = 0 Rayleigh scattering off - // flag = 1 Rayleigh scattering on - //xx gMC ->SetProcess("RAYL",1); - else if (strncmp(&sProcessFlag[i][0],"RAYL",4) == 0) { - if (iProcessValue[i] == 1) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Rayleigh scattering is ON by default in FLUKA"; - AliceInp << endl; - AliceInp << "*No FLUKA card generated"; - AliceInp << endl; + + // charged hadrons + // G4 particles: of type "baryon", "meson", "nucleus" with non-zero charge + // G3 default value: 0.01 GeV + //gMC ->SetCut("CUTHAD",cut); // cut for charged hadrons + else if (strncmp(cut->GetName(),"CUTHAD",6) == 0 && global) { + fprintf(pAliceInp,"*\n*Cut for charged hadrons\n"); + fprintf(pAliceInp,"*Generated from call: SetCut('CUTHAD',cut);\n"); + + // 1.0 = Proton + // 2.0 = Antiproton + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),1.0,2.0); + + // 13.0 = Positive Pion, Negative Pion, Positive Kaon + // 16.0 = Negative Kaon + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),13.0,16.0); + + // 20.0 = Negative Sigma + // 21.0 = Positive Sigma + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),20.0,21.0); + + // 31.0 = Antisigma minus + // 33.0 = Antisigma plus + // 2.0 = step length + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f%10.1f\n",-cut->Cut(),31.0,33.0,2.0); + + // 36.0 = Negative Xi, Positive Xi, Omega minus + // 39.0 = Antiomega + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),36.0,39.0); + + // 45.0 = D plus + // 46.0 = D minus + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),45.0,46.0); + + // 49.0 = D_s plus, D_s minus, Lambda_c plus + // 52.0 = Xi_c plus + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),49.0,52.0); + + // 54.0 = Xi'_c plus + // 60.0 = AntiXi'_c minus + // 6.0 = step length + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f%10.1f\n",-cut->Cut(),54.0,60.0,6.0); + + // 57.0 = Antilambda_c minus + // 58.0 = AntiXi_c minus + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),57.0,58.0); } - else if (iProcessValue[i] == 0) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Rayleigh scattering is set OFF"; - AliceInp << endl; - AliceInp << "*Generated from call: SetProcess('RAYL',0);"; - AliceInp << endl; - AliceInp << setw(10) << "EMFRAY "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); - AliceInp << setw(10) << -1.0; // no Rayleigh scattering and no binding corrections for Compton - AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply - AliceInp << setprecision(2); - AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply - AliceInp << endl; + + // muons + // G4 particles: "mu+", "mu-" + // G3 default value: 0.01 GeV + //gMC ->SetCut("CUTMUO",cut); // cut for mu+, mu- + else if (strncmp(cut->GetName(),"CUTMUO",6)== 0 && global) { + fprintf(pAliceInp,"*\n*Cut for muons\n"); + fprintf(pAliceInp,"*Generated from call: SetCut('CUTMUO',cut);\n"); + // 10.0 = Muon+ + // 11.0 = Muon- + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),10.0,11.0); } - else { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Illegal flag value in SetProcess('RAYL',?) call."; - AliceInp << endl; - AliceInp << "*No FLUKA card generated"; - AliceInp << endl; + + // + // time of flight cut in seconds + // G4 particles: all + // G3 default value: 0.01 GeV + //gMC ->SetCut("TOFMAX",tofmax); // time of flight cuts in seconds + else if (strncmp(cut->GetName(),"TOFMAX",6) == 0) { + fprintf(pAliceInp,"*\n*Time of flight cuts in seconds\n"); + fprintf(pAliceInp,"*Generated from call: SetCut('TOFMAX',tofmax);\n"); + // zero = ignored + // zero = ignored + // -6.0 = lower bound of the particle numbers for which the transport time cut-off and/or the start signal is to be applied + // 64.0 = upper bound of the particle numbers for which the transport time cut-off and/or the start signal is to be applied + fprintf(pAliceInp,"TIME-CUT %10.4g%10.1f%10.1f%10.1f%10.1f\n",cut->Cut()*1.e9,zero,zero,-6.0,64.0); } - } // end of else if (strncmp(&sProcessFlag[i][0],"RAYL",4) == 0) - - - // synchrotron radiation in magnetic field - // G3 default value: 0 - // G4 process: G4SynchrotronRadiation - // - // Particles: ?? - // Physics: Not set - // flag = 0 no synchrotron radiation - // flag = 1 synchrotron radiation - //xx gMC ->SetProcess("SYNC",1); // synchrotron radiation generation - else if (strncmp(&sProcessFlag[i][0],"SYNC",4) == 0) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Synchrotron radiation generation is NOT implemented in FLUKA"; - AliceInp << endl; - AliceInp << "*No FLUKA card generated"; - AliceInp << endl; - } - - - // Automatic calculation of tracking medium parameters - // flag = 0 no automatic calculation - // flag = 1 automatic calculation - //xx gMC ->SetProcess("AUTO",1); // ??? automatic computation of the tracking medium parameters - else if (strncmp(&sProcessFlag[i][0],"AUTO",4) == 0) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Automatic calculation of tracking medium parameters is always ON in FLUKA"; - AliceInp << endl; - AliceInp << "*No FLUKA card generated"; - AliceInp << endl; - } - - - // To control energy loss fluctuation model - // flag = 0 Urban model - // flag = 1 PAI model - // flag = 2 PAI+ASHO model (not active at the moment) - //xx gMC ->SetProcess("STRA",1); // ??? energy fluctuation model - else if (strncmp(&sProcessFlag[i][0],"STRA",4) == 0) { - if (iProcessValue[i] == 0 || iProcessValue[i] == 2 || iProcessValue[i] == 3) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Ionization energy losses calculation is activated"; - AliceInp << endl; - AliceInp << "*Generated from call: SetProcess('STRA',n);, n=0,1,2"; - AliceInp << endl; - AliceInp << setw(10) << "IONFLUCT "; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); - AliceInp << setw(10) << 1.0; // restricted energy loss fluctuations - // (for hadrons and muons) switched on - AliceInp << setw(10) << 1.0; // restricted energy loss fluctuations - // (for e+ and e-) switched on - AliceInp << setw(10) << 1.0; // minimal accuracy - AliceInp << setw(10) << 3.0; // upper bound of the material indices in - // which the respective thresholds apply - AliceInp << setprecision(2); - AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply - AliceInp << setprecision(1); - AliceInp << setw(10) << 1.0; // step length in assigning indices - AliceInp << endl; + + else if (global){ + cout << "SetCut for flag=" << cut->GetName() << " value=" << cut->Cut() << " not yet implemented!" << endl; } else { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Illegal flag value in SetProcess('STRA',?) call."; - AliceInp << endl; - AliceInp << "*No FLUKA card generated"; - AliceInp << endl; + cout << "SetCut for flag=" << cut->GetName() << " value=" << cut->Cut() << " (material specific) not yet implemented!" << endl; } - } // else if (strncmp(&sProcessFlag[i][0],"STRA",4) == 0) - - - - - else { // processes not yet treated - - // light photon absorption (Cerenkov photons) - // it is turned on when Cerenkov process is turned on - // G3 default value: 0 - // G4 process: G4OpAbsorption, G4OpBoundaryProcess - // - // Particles: optical photon - // Physics: Optical - // flag = 0 no absorption of Cerenkov photons - // flag = 1 absorption of Cerenkov photons - // gMC ->SetProcess("LABS",2); // ??? Cerenkov light absorption - - - - cout << "SetProcess for flag=" << &sProcessFlag[i][0] << " value=" << iProcessValue[i] << " not yet implemented!" << endl; - } - } //end of loop number of SetProcess calls - - -// Loop over number of SetCut calls - for (Int_t i=0; iSetCut("CUTGAM",cut); // cut for gammas - else if (strncmp(&sCutFlag[i][0],"CUTGAM",6) == 0) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Cut for gamma"; - AliceInp << endl; - AliceInp << "*Generated from call: SetCut('CUTGAM',cut);"; - AliceInp << endl; - AliceInp << setw(10) << "PART-THR "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setw(10) << -fCutValue[i]; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); - AliceInp << setw(10) << 7.0; - AliceInp << endl; - } - - // electrons - // G4 particles: "e-" - // ?? positrons - // G3 default value: 0.001 GeV - //gMC ->SetCut("CUTELE",cut); // cut for e+,e- - else if (strncmp(&sCutFlag[i][0],"CUTELE",6) == 0) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Cut for electrons"; - AliceInp << endl; - AliceInp << "*Generated from call: SetCut('CUTELE',cut);"; - AliceInp << endl; - AliceInp << setw(10) << "PART-THR "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setw(10) << -fCutValue[i]; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); - AliceInp << setw(10) << 3.0; - AliceInp << setw(10) << 4.0; - AliceInp << setw(10) << 1.0; - AliceInp << endl; - } - - // neutral hadrons - // G4 particles: of type "baryon", "meson", "nucleus" with zero charge - // G3 default value: 0.01 GeV - //gMC ->SetCut("CUTNEU",cut); // cut for neutral hadrons - else if (strncmp(&sCutFlag[i][0],"CUTNEU",6) == 0) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Cut for neutral hadrons"; - AliceInp << endl; - AliceInp << "*Generated from call: SetCut('CUTNEU',cut);"; - AliceInp << endl; - AliceInp << setw(10) << "PART-THR "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setw(10) << -fCutValue[i]; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); - AliceInp << setw(10) << 8.0; // Neutron - AliceInp << setw(10) << 9.0; // Antineutron - AliceInp << endl; - AliceInp << setw(10) << "PART-THR "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setw(10) << -fCutValue[i]; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); - AliceInp << setw(10) << 12.0; // Kaon zero long - AliceInp << setw(10) << 12.0; // Kaon zero long - AliceInp << endl; - AliceInp << setw(10) << "PART-THR "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setw(10) << -fCutValue[i]; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); - AliceInp << setw(10) << 17.0; // Lambda, 18=Antilambda - AliceInp << setw(10) << 19.0; // Kaon zero short - AliceInp << endl; - AliceInp << setw(10) << "PART-THR "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setw(10) << -fCutValue[i]; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); - AliceInp << setw(10) << 22.0; // Sigma zero, Pion zero, Kaon zero - AliceInp << setw(10) << 25.0; // Antikaon zero - AliceInp << endl; - AliceInp << setw(10) << "PART-THR "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setw(10) << -fCutValue[i]; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); - AliceInp << setw(10) << 32.0; // Antisigma zero - AliceInp << setw(10) << 32.0; // Antisigma zero - AliceInp << endl; - AliceInp << setw(10) << "PART-THR "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setw(10) << -fCutValue[i]; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); - AliceInp << setw(10) << 34.0; // Xi zero - AliceInp << setw(10) << 35.0; // AntiXi zero - AliceInp << endl; - AliceInp << setw(10) << "PART-THR "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setw(10) << -fCutValue[i]; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); - AliceInp << setw(10) << 47.0; // D zero - AliceInp << setw(10) << 48.0; // AntiD zero - AliceInp << endl; - AliceInp << setw(10) << "PART-THR "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setw(10) << -fCutValue[i]; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); - AliceInp << setw(10) << 53.0; // Xi_c zero - AliceInp << setw(10) << 53.0; // Xi_c zero - AliceInp << endl; - AliceInp << setw(10) << "PART-THR "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setw(10) << -fCutValue[i]; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); - AliceInp << setw(10) << 55.0; // Xi'_c zero - AliceInp << setw(10) << 56.0; // Omega_c zero - AliceInp << endl; - AliceInp << setw(10) << "PART-THR "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setw(10) << -fCutValue[i]; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); - AliceInp << setw(10) << 59.0; // AntiXi_c zero - AliceInp << setw(10) << 59.0; // AntiXi_c zero - AliceInp << endl; - AliceInp << setw(10) << "PART-THR "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setw(10) << -fCutValue[i]; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); - AliceInp << setw(10) << 61.0; // AntiXi'_c zero - AliceInp << setw(10) << 62.0; // AntiOmega_c zero - AliceInp << endl; - } - - // charged hadrons - // G4 particles: of type "baryon", "meson", "nucleus" with non-zero charge - // G3 default value: 0.01 GeV - //gMC ->SetCut("CUTHAD",cut); // cut for charged hadrons - else if (strncmp(&sCutFlag[i][0],"CUTHAD",6) == 0) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Cut for charged hadrons"; - AliceInp << endl; - AliceInp << "*Generated from call: SetCut('CUTHAD',cut);"; - AliceInp << endl; - AliceInp << setw(10) << "PART-THR "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setw(10) << -fCutValue[i]; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); - AliceInp << setw(10) << 1.0; // Proton - AliceInp << setw(10) << 2.0; // Antiproton - AliceInp << endl; - AliceInp << setw(10) << "PART-THR "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setw(10) << -fCutValue[i]; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); - AliceInp << setw(10) << 13.0; // Positive Pion, Negative Pion, Positive Kaon - AliceInp << setw(10) << 16.0; // Negative Kaon - AliceInp << endl; - AliceInp << setw(10) << "PART-THR "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setw(10) << -fCutValue[i]; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); - AliceInp << setw(10) << 20.0; // Negative Sigma - AliceInp << setw(10) << 16.0; // Positive Sigma - AliceInp << endl; - AliceInp << setw(10) << "PART-THR "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setw(10) << -fCutValue[i]; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); - AliceInp << setw(10) << 31.0; // Antisigma minus - AliceInp << setw(10) << 33.0; // Antisigma plus - AliceInp << setprecision(1); - AliceInp << setw(10) << 2.0; // step length - AliceInp << endl; - AliceInp << setw(10) << "PART-THR "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setw(10) << -fCutValue[i]; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); - AliceInp << setw(10) << 36.0; // Negative Xi, Positive Xi, Omega minus - AliceInp << setw(10) << 39.0; // Antiomega - AliceInp << endl; - AliceInp << setw(10) << "PART-THR "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setw(10) << -fCutValue[i]; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); - AliceInp << setw(10) << 45.0; // D plus - AliceInp << setw(10) << 46.0; // D minus - AliceInp << endl; - AliceInp << setw(10) << "PART-THR "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setw(10) << -fCutValue[i]; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); - AliceInp << setw(10) << 49.0; // D_s plus, D_s minus, Lambda_c plus - AliceInp << setw(10) << 52.0; // Xi_c plus - AliceInp << endl; - AliceInp << setw(10) << "PART-THR "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setw(10) << -fCutValue[i]; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); - AliceInp << setw(10) << 54.0; // Xi'_c plus - AliceInp << setw(10) << 60.0; // AntiXi'_c minus - AliceInp << setprecision(1); - AliceInp << setw(10) << 6.0; // step length - AliceInp << endl; - AliceInp << setw(10) << "PART-THR "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setw(10) << -fCutValue[i]; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); - AliceInp << setw(10) << 57.0; // Antilambda_c minus - AliceInp << setw(10) << 58.0; // AntiXi_c minus - AliceInp << endl; - } - - // muons - // G4 particles: "mu+", "mu-" - // G3 default value: 0.01 GeV - //gMC ->SetCut("CUTMUO",cut); // cut for mu+, mu- - else if (strncmp(&sCutFlag[i][0],"CUTMUO",6) == 0) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Cut for muons"; - AliceInp << endl; - AliceInp << "*Generated from call: SetCut('CUTMUO',cut);"; - AliceInp << endl; - AliceInp << setw(10) << "PART-THR "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setw(10) << -fCutValue[i]; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); - AliceInp << setprecision(2); - AliceInp << setw(10) << 10.0; - AliceInp << setw(10) << 11.0; - AliceInp << endl; - } - // delta-rays by electrons - // G4 particles: "e-" - // G3 default value: 10**4 GeV - // gMC ->SetCut("DCUTE",cut); // cut for deltarays by electrons ??????????????? - else if (strncmp(&sCutFlag[i][0],"DCUTE",5) == 0) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Cut for delta rays by electrons ????????????"; - AliceInp << endl; - AliceInp << "*Generated from call: SetCut('DCUTE',cut);"; - AliceInp << endl; - AliceInp << setw(10) << "EMFCUT "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setw(10) << -fCutValue[i]; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); - AliceInp << setw(10) << 0.0; - AliceInp << setw(10) << 0.0; - AliceInp << setw(10) << 3.0; - AliceInp << setprecision(2); - AliceInp << setw(10) << fLastMaterial; - AliceInp << setprecision(1); - AliceInp << setw(10) << 1.0; - AliceInp << endl; - } - - // - // time of flight cut in seconds - // G4 particles: all - // G3 default value: 0.01 GeV - //gMC ->SetCut("TOFMAX",tofmax); // time of flight cuts in seconds - else if (strncmp(&sCutFlag[i][0],"TOFMAX",6) == 0) { - AliceInp << "*"; - AliceInp << endl; - AliceInp << "*Time of flight cuts in seconds"; - AliceInp << endl; - AliceInp << "*Generated from call: SetCut('TOFMAX',tofmax);"; - AliceInp << endl; - AliceInp << setw(10) << "TIME-CUT "; - AliceInp << setiosflags(ios::scientific) << setprecision(5); - AliceInp << setw(10) << fCutValue[i]*1.e9; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); - AliceInp << setw(10) << 0.0; - AliceInp << setw(10) << 0.0; - AliceInp << setw(10) << -6.0; // lower bound of the particle numbers for which the transport time cut-off and/or the start signal is to be applied - AliceInp << setprecision(2); - AliceInp << setw(10) << 64.0; // upper bound of the particle numbers for which the transport time cut-off and/or the start signal is to be applied - AliceInp << setprecision(1); - AliceInp << setw(10) << 1.0; // step length in assigning numbers - AliceInp << endl; - } - - else { - cout << "SetCut for flag=" << &sCutFlag[i][0] << " value=" << fCutValue[i] << " not yet implemented!" << endl; - } - } //end of loop over SeCut calls - + + } //end of loop over SetCut calls + // Add START and STOP card - AliceInp << setw(10) << "START "; - AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint); - AliceInp << setw(10) << fEventsPerRun; - AliceInp << endl; - AliceInp << setw(10) << "STOP "; - AliceInp << endl; - -} + fprintf(pAliceInp,"START %10.1f\n",fEventsPerRun); + fprintf(pAliceInp,"STOP \n"); + + +// Close files + + fclose(pAliceCoreInp); + fclose(pAliceFlukaMat); + fclose(pAliceInp); + +} // end of InitPhysics +//______________________________________________________________________________ void TFluka::SetMaxStep(Double_t) { // SetMaxStep is dummy procedure in TFluka ! @@ -1937,6 +2003,7 @@ void TFluka::SetMaxStep(Double_t) cout << "SetMaxStep is dummy procedure in TFluka !" << endl; } +//______________________________________________________________________________ void TFluka::SetMaxNStep(Int_t) { // SetMaxNStep is dummy procedure in TFluka ! @@ -1944,6 +2011,7 @@ void TFluka::SetMaxNStep(Int_t) cout << "SetMaxNStep is dummy procedure in TFluka !" << endl; } +//______________________________________________________________________________ void TFluka::SetUserDecay(Int_t) { // SetUserDecay is dummy procedure in TFluka ! @@ -1954,6 +2022,7 @@ void TFluka::SetUserDecay(Int_t) // // dynamic properties // +//______________________________________________________________________________ void TFluka::TrackPosition(TLorentzVector& position) const { // Return the current position in the master reference frame of the @@ -1963,7 +2032,7 @@ void TFluka::TrackPosition(TLorentzVector& position) const // TRACKR.ytrack = y-position of the last point // TRACKR.ztrack = z-position of the last point Int_t caller = GetCaller(); - if (caller == 1 || caller == 3 || caller == 6 || caller == 11 || caller == 12) { //bxdraw,endraw,usdraw + if (caller == 3 || caller == 6 || caller == 11 || caller == 12) { //bxdraw,endraw,usdraw position.SetX(GetXsco()); position.SetY(GetYsco()); position.SetZ(GetZsco()); @@ -1985,7 +2054,7 @@ void TFluka::TrackPosition(TLorentzVector& position) const Warning("TrackPosition","position not available"); } -// +//______________________________________________________________________________ void TFluka::TrackPosition(Double_t& x, Double_t& y, Double_t& z) const { // Return the current position in the master reference frame of the @@ -1995,17 +2064,12 @@ void TFluka::TrackPosition(Double_t& x, Double_t& y, Double_t& z) const // TRACKR.ytrack = y-position of the last point // TRACKR.ztrack = z-position of the last point Int_t caller = GetCaller(); - if (caller == 1 || caller == 3 || caller == 6 || caller == 11 || caller == 12) { //bxdraw,endraw,usdraw + if (caller == 3 || caller == 6 || caller == 11 || caller == 12) { //bxdraw,endraw,usdraw x = GetXsco(); y = GetYsco(); z = GetZsco(); } - else if (caller == 4) { // mgdraw - x = TRACKR.xtrack[TRACKR.ntrack]; - y = TRACKR.ytrack[TRACKR.ntrack]; - z = TRACKR.ztrack[TRACKR.ntrack]; - } - else if (caller == 5) { // sodraw + else if (caller == 4 || caller == 5) { // mgdraw, sodraw x = TRACKR.xtrack[TRACKR.ntrack]; y = TRACKR.ytrack[TRACKR.ntrack]; z = TRACKR.ztrack[TRACKR.ntrack]; @@ -2014,6 +2078,7 @@ void TFluka::TrackPosition(Double_t& x, Double_t& y, Double_t& z) const Warning("TrackPosition","position not available"); } +//______________________________________________________________________________ void TFluka::TrackMomentum(TLorentzVector& momentum) const { // Return the direction and the momentum (GeV/c) of the track @@ -2046,6 +2111,7 @@ void TFluka::TrackMomentum(TLorentzVector& momentum) const Warning("TrackMomentum","momentum not available"); } +//______________________________________________________________________________ void TFluka::TrackMomentum(Double_t& px, Double_t& py, Double_t& pz, Double_t& e) const { // Return the direction and the momentum (GeV/c) of the track @@ -2078,12 +2144,13 @@ void TFluka::TrackMomentum(Double_t& px, Double_t& py, Double_t& pz, Double_t& e Warning("TrackMomentum","momentum not available"); } +//______________________________________________________________________________ Double_t TFluka::TrackStep() const { // Return the length in centimeters of the current step // TRACKR.ctrack = total curved path Int_t caller = GetCaller(); - if (caller == 1 || caller == 3 || caller == 6) //bxdraw,endraw,usdraw + if (caller == 11 || caller==12 || caller == 3 || caller == 6) //bxdraw,endraw,usdraw return 0.0; else if (caller == 4) //mgdraw return TRACKR.ctrack; @@ -2091,27 +2158,30 @@ Double_t TFluka::TrackStep() const return -1.0; } +//______________________________________________________________________________ Double_t TFluka::TrackLength() const { // TRACKR.cmtrck = cumulative curved path since particle birth Int_t caller = GetCaller(); - if (caller == 1 || caller == 3 || caller == 4 || caller == 6) //bxdraw,endraw,mgdraw,usdraw + if (caller == 11 || caller==12 || caller == 3 || caller == 4 || caller == 6) //bxdraw,endraw,mgdraw,usdraw return TRACKR.cmtrck; else return -1.0; } +//______________________________________________________________________________ Double_t TFluka::TrackTime() const { // Return the current time of flight of the track being transported // TRACKR.atrack = age of the particle Int_t caller = GetCaller(); - if (caller == 1 || caller == 3 || caller == 4 || caller == 6) //bxdraw,endraw,mgdraw,usdraw + if (caller == 11 || caller==12 || caller == 3 || caller == 4 || caller == 6) //bxdraw,endraw,mgdraw,usdraw return TRACKR.atrack; else return -1; } +//______________________________________________________________________________ Double_t TFluka::Edep() const { // Energy deposition @@ -2123,6 +2193,10 @@ Double_t TFluka::Edep() const // if TRACKR.ntrack > 0, TRACKR.mtrack > 0: // -->energy loss distributed along the track // TRACKR.dtrack = energy deposition of the jth deposition even + + // If coming from bxdraw we have 2 steps of 0 length and 0 edep + Int_t caller = GetCaller(); + if (caller == 11 || caller==12) return 0.0; Double_t sum = 0; for ( Int_t j=0;j 0.0) - return 1; - else - return 0; - } - else - return 0; +// Return true for the first call of Stepping() + return fTrackIsNew; +} + +void TFluka::SetTrackIsNew(Bool_t flag) +{ +// Return true for the first call of Stepping() + fTrackIsNew = flag; + } + +//______________________________________________________________________________ Bool_t TFluka::IsTrackInside() const { // True if the track is not at the boundary of the current volume @@ -2203,12 +2284,13 @@ Bool_t TFluka::IsTrackInside() const // it will be shortened to reach only the boundary. // Therefore IsTrackInside() is always true. Int_t caller = GetCaller(); - if (caller == 1) // bxdraw + if (caller == 11 || caller==12) // bxdraw return 0; else return 1; } +//______________________________________________________________________________ Bool_t TFluka::IsTrackEntering() const { // True if this is the first step of the track in the current volume @@ -2219,14 +2301,18 @@ Bool_t TFluka::IsTrackEntering() const else return 0; } +//______________________________________________________________________________ Bool_t TFluka::IsTrackExiting() const { +// True if track is exiting volume +// Int_t caller = GetCaller(); if (caller == 12) // bxdraw exiting return 1; else return 0; } +//______________________________________________________________________________ Bool_t TFluka::IsTrackOut() const { // True if the track is out of the setup @@ -2244,19 +2330,29 @@ Bool_t TFluka::IsTrackOut() const else return 0; } +//______________________________________________________________________________ Bool_t TFluka::IsTrackDisappeared() const { // means all inelastic interactions and decays // fIcode from usdraw if (fIcode == 101 || // inelastic interaction fIcode == 102 || // particle decay + fIcode == 103 || // delta ray generation by hadron + fIcode == 104 || // direct pair production + fIcode == 105 || // bremsstrahlung (muon) + fIcode == 208 || // bremsstrahlung (electron) fIcode == 214 || // in-flight annihilation fIcode == 215 || // annihilation at rest fIcode == 217 || // pair production - fIcode == 221) return 1; + fIcode == 219 || // Compton scattering + fIcode == 221 || // Photoelectric effect + fIcode == 300 || // hadronic interaction + fIcode == 400 // delta-ray + ) return 1; else return 0; } +//______________________________________________________________________________ Bool_t TFluka::IsTrackStop() const { // True if the track energy has fallen below the threshold @@ -2282,6 +2378,7 @@ Bool_t TFluka::IsTrackStop() const else return 0; } +//______________________________________________________________________________ Bool_t TFluka::IsTrackAlive() const { // means not disappeared or not out @@ -2293,11 +2390,13 @@ Bool_t TFluka::IsTrackAlive() const // secondaries // +//______________________________________________________________________________ Int_t TFluka::NSecondaries() const + +{ // Number of secondary particles generated in the current step // FINUC.np = number of secondaries except light and heavy ions // FHEAVY.npheav = number of secondaries for light and heavy secondary ions -{ Int_t caller = GetCaller(); if (caller == 6) // valid only after usdraw return FINUC.np + FHEAVY.npheav; @@ -2305,9 +2404,13 @@ Int_t TFluka::NSecondaries() const return 0; } // end of NSecondaries -void TFluka::GetSecondary(Int_t isec, Int_t& particleId, +//______________________________________________________________________________ +void TFluka::GetSecondary(Int_t isec, Int_t& particleId, TLorentzVector& position, TLorentzVector& momentum) { +// Copy particles from secondary stack to vmc stack +// + Int_t caller = GetCaller(); if (caller == 6) { // valid only after usdraw if (isec >= 0 && isec < FINUC.np) { @@ -2316,7 +2419,6 @@ void TFluka::GetSecondary(Int_t isec, Int_t& particleId, position.SetY(fYsco); position.SetZ(fZsco); position.SetT(TRACKR.atrack); -// position.SetT(TRACKR.atrack+FINUC.agesec[isec]); //not yet implem. momentum.SetPx(FINUC.plr[isec]*FINUC.cxr[isec]); momentum.SetPy(FINUC.plr[isec]*FINUC.cyr[isec]); momentum.SetPz(FINUC.plr[isec]*FINUC.czr[isec]); @@ -2329,7 +2431,6 @@ void TFluka::GetSecondary(Int_t isec, Int_t& particleId, position.SetY(fYsco); position.SetZ(fZsco); position.SetT(TRACKR.atrack); -// position.SetT(TRACKR.atrack+FHEAVY.agheav[jsec]); //not yet implem. momentum.SetPx(FHEAVY.pheavy[jsec]*FHEAVY.cxheav[jsec]); momentum.SetPy(FHEAVY.pheavy[jsec]*FHEAVY.cyheav[jsec]); momentum.SetPz(FHEAVY.pheavy[jsec]*FHEAVY.czheav[jsec]); @@ -2345,90 +2446,54 @@ void TFluka::GetSecondary(Int_t isec, Int_t& particleId, Warning("GetSecondary","no secondaries available"); } // end of GetSecondary +//______________________________________________________________________________ TMCProcess TFluka::ProdProcess(Int_t) const + +{ // Name of the process that has produced the secondary particles // in the current step -{ - const TMCProcess kIpNoProc = kPNoProcess; - const TMCProcess kIpPDecay = kPDecay; - const TMCProcess kIpPPair = kPPair; -// const TMCProcess kIpPPairFromPhoton = kPPairFromPhoton; -// const TMCProcess kIpPPairFromVirtualPhoton = kPPairFromVirtualPhoton; - const TMCProcess kIpPCompton = kPCompton; - const TMCProcess kIpPPhotoelectric = kPPhotoelectric; - const TMCProcess kIpPBrem = kPBrem; -// const TMCProcess kIpPBremFromHeavy = kPBremFromHeavy; -// const TMCProcess kIpPBremFromElectronOrPositron = kPBremFromElectronOrPositron; - const TMCProcess kIpPDeltaRay = kPDeltaRay; -// const TMCProcess kIpPMoller = kPMoller; -// const TMCProcess kIpPBhabha = kPBhabha; - const TMCProcess kIpPAnnihilation = kPAnnihilation; -// const TMCProcess kIpPAnnihilInFlight = kPAnnihilInFlight; -// const TMCProcess kIpPAnnihilAtRest = kPAnnihilAtRest; - const TMCProcess kIpPHadronic = kPHadronic; - const TMCProcess kIpPMuonNuclear = kPMuonNuclear; - const TMCProcess kIpPPhotoFission = kPPhotoFission; - const TMCProcess kIpPRayleigh = kPRayleigh; -// const TMCProcess kIpPCerenkov = kPCerenkov; -// const TMCProcess kIpPSynchrotron = kPSynchrotron; - - Int_t mugamma = TRACKR.jtrack == 7 || TRACKR.jtrack == 10 || TRACKR.jtrack == 11; - if (fIcode == 102) return kIpPDecay; - else if (fIcode == 104 || fIcode == 217) return kIpPPair; -// else if (fIcode == 104) return kIpPairFromPhoton; -// else if (fIcode == 217) return kIpPPairFromVirtualPhoton; - else if (fIcode == 219) return kIpPCompton; - else if (fIcode == 221) return kIpPPhotoelectric; - else if (fIcode == 105 || fIcode == 208) return kIpPBrem; -// else if (fIcode == 105) return kIpPBremFromHeavy; -// else if (fIcode == 208) return kPBremFromElectronOrPositron; - else if (fIcode == 103 || fIcode == 400) return kIpPDeltaRay; - else if (fIcode == 210 || fIcode == 212) return kIpPDeltaRay; -// else if (fIcode == 210) return kIpPMoller; -// else if (fIcode == 212) return kIpPBhabha; - else if (fIcode == 214 || fIcode == 215) return kIpPAnnihilation; -// else if (fIcode == 214) return kIpPAnnihilInFlight; -// else if (fIcode == 215) return kIpPAnnihilAtRest; - else if (fIcode == 101) return kIpPHadronic; + + Int_t mugamma = (TRACKR.jtrack == 7 || TRACKR.jtrack == 10 || TRACKR.jtrack == 11); + + if (fIcode == 102) return kPDecay; + else if (fIcode == 104 || fIcode == 217) return kPPair; + else if (fIcode == 219) return kPCompton; + else if (fIcode == 221) return kPPhotoelectric; + else if (fIcode == 105 || fIcode == 208) return kPBrem; + else if (fIcode == 103 || fIcode == 400) return kPDeltaRay; + else if (fIcode == 210 || fIcode == 212) return kPDeltaRay; + else if (fIcode == 214 || fIcode == 215) return kPAnnihilation; + else if (fIcode == 101) return kPHadronic; else if (fIcode == 101) { - if (!mugamma) return kIpPHadronic; - else if (TRACKR.jtrack == 7) return kIpPPhotoFission; - else return kIpPMuonNuclear; + if (!mugamma) return kPHadronic; + else if (TRACKR.jtrack == 7) return kPPhotoFission; + else return kPMuonNuclear; } - else if (fIcode == 225) return kIpPRayleigh; + else if (fIcode == 225) return kPRayleigh; // Fluka codes 100, 300 and 400 still to be investigasted - else return kIpNoProc; + else return kPNoProcess; } -//Int_t StepProcesses(TArrayI &proc) const -// Return processes active in the current step -//{ -//ck = total energy of the particl ???????????????? -//} - +//______________________________________________________________________________ Int_t TFluka::VolId2Mate(Int_t id) const { // // Returns the material number for a given volume ID // - if (fVerbosityLevel >= 3) - printf("VolId2Mate %d %d\n", id, fMediaByRegion[id-1]); - return fMediaByRegion[id-1]; + return fMCGeo->VolId2Mate(id); } +//______________________________________________________________________________ const char* TFluka::VolName(Int_t id) const { // // Returns the volume name for a given volume ID // - FlukaVolume* vol = dynamic_cast((*fVolumeMediaMap)[id-1]); - const char* name = vol->GetName(); - if (fVerbosityLevel >= 3) - printf("VolName %d %s \n", id, name); - return name; + return fMCGeo->VolName(id); } +//______________________________________________________________________________ Int_t TFluka::VolId(const Text_t* volName) const { // @@ -2436,98 +2501,76 @@ Int_t TFluka::VolId(const Text_t* volName) const // Time consuming. (Only used during set-up) // Could be replaced by hash-table // - char tmp[5]; - Int_t i =0; - for (i = 0; i < fNVolumes; i++) - { - FlukaVolume* vol = dynamic_cast((*fVolumeMediaMap)[i]); - TString name = vol->GetName(); - strcpy(tmp, name.Data()); - tmp[4] = '\0'; - if (!strcmp(tmp, volName)) break; - } - i++; - - return i; + return fMCGeo->VolId(volName); } - +//______________________________________________________________________________ Int_t TFluka::CurrentVolID(Int_t& copyNo) const { // // Return the logical id and copy number corresponding to the current fluka region // - int ir = fCurrentFlukaRegion; - int id = (FGeometryInit::GetInstance())->CurrentVolID(ir, copyNo); - copyNo++; - if (fVerbosityLevel >= 3) - printf("CurrentVolID: %d %d %d \n", ir, id, copyNo); - return id; + if (gGeoManager->IsOutside()) return 0; + TGeoNode *node = gGeoManager->GetCurrentNode(); + copyNo = node->GetNumber(); + Int_t id = node->GetVolume()->GetNumber(); + return id; } +//______________________________________________________________________________ Int_t TFluka::CurrentVolOffID(Int_t off, Int_t& copyNo) const { // // Return the logical id and copy number of off'th mother // corresponding to the current fluka region // - if (off == 0) - return CurrentVolID(copyNo); - - int ir = fCurrentFlukaRegion; - int id = (FGeometryInit::GetInstance())->CurrentVolOffID(ir, off, copyNo); - copyNo++; - if (fVerbosityLevel >= 3) - printf("CurrentVolOffID: %d %d %d \n", ir, id, copyNo); - if (id == -1) - if (fVerbosityLevel >= 0) - printf("CurrentVolOffID: Warning Mother not found !!!\n"); - return id; + if (off<0 || off>gGeoManager->GetLevel()) return 0; + if (off==0) return CurrentVolID(copyNo); + TGeoNode *node = gGeoManager->GetMother(off); + if (!node) return 0; + copyNo = node->GetNumber(); + return node->GetVolume()->GetNumber(); } - +//______________________________________________________________________________ const char* TFluka::CurrentVolName() const { // // Return the current volume name // - Int_t copy; - Int_t id = TFluka::CurrentVolID(copy); - const char* name = TFluka::VolName(id); - if (fVerbosityLevel >= 3) - printf("CurrentVolumeName: %d %s \n", fCurrentFlukaRegion, name); - return name; + if (gGeoManager->IsOutside()) return 0; + return gGeoManager->GetCurrentVolume()->GetName(); } +//______________________________________________________________________________ const char* TFluka::CurrentVolOffName(Int_t off) const { // // Return the volume name of the off'th mother of the current volume // - Int_t copy; - Int_t id = TFluka::CurrentVolOffID(off, copy); - const char* name = TFluka::VolName(id); - if (fVerbosityLevel >= 3) - printf("CurrentVolumeOffName: %d %s \n", fCurrentFlukaRegion, name); - return name; + if (off<0 || off>gGeoManager->GetLevel()) return 0; + if (off==0) return CurrentVolName(); + TGeoNode *node = gGeoManager->GetMother(off); + if (!node) return 0; + return node->GetVolume()->GetName(); } -Int_t TFluka::CurrentMaterial(Float_t &a, Float_t &z, - Float_t &dens, Float_t &radl, Float_t &absl) const +//______________________________________________________________________________ +Int_t TFluka::CurrentMaterial(Float_t & /*a*/, Float_t & /*z*/, + Float_t & /*dens*/, Float_t & /*radl*/, Float_t & /*absl*/) const { // -// Return the current medium number +// Return the current medium number ??? what about material properties // - Int_t copy; - Int_t id = TFluka::CurrentVolID(copy); - Int_t med = TFluka::VolId2Mate(id); - if (fVerbosityLevel >= 3) - printf("CurrentMaterial: %d %d \n", fCurrentFlukaRegion, med); - return med; + Int_t copy; + Int_t id = TFluka::CurrentVolID(copy); + Int_t med = TFluka::VolId2Mate(id); + return med; } +//______________________________________________________________________________ void TFluka::Gmtod(Float_t* xm, Float_t* xd, Int_t iflag) - { +{ // Transforms a position from the world reference frame // to the current volume reference frame. // @@ -2545,37 +2588,24 @@ void TFluka::Gmtod(Float_t* xm, Float_t* xd, Int_t iflag) // IFLAG=2 convert direction cosinus // // --- - Double_t xmD[3], xdD[3]; - xmD[0] = xm[0]; xmD[1] = xm[1]; xmD[2] = xm[2]; - (FGeometryInit::GetInstance())->Gmtod(xmD, xdD, iflag); - xd[0] = xdD[0]; xd[1] = xdD[1]; xd[2] = xdD[2]; - } - + Double_t xmL[3], xdL[3]; + Int_t i; + for (i=0;i<3;i++) xmL[i]=xm[i]; + if (iflag == 1) gGeoManager->MasterToLocal(xmL,xdL); + else gGeoManager->MasterToLocalVect(xmL,xdL); + for (i=0;i<3;i++) xd[i] = xdL[i]; +} +//______________________________________________________________________________ void TFluka::Gmtod(Double_t* xm, Double_t* xd, Int_t iflag) - { -// Transforms a position from the world reference frame -// to the current volume reference frame. -// -// Geant3 desription: -// ================== -// Computes coordinates XD (in DRS) -// from known coordinates XM in MRS -// The local reference system can be initialized by -// - the tracking routines and GMTOD used in GUSTEP -// - a call to GMEDIA(XM,NUMED) -// - a call to GLVOLU(NLEVEL,NAMES,NUMBER,IER) -// (inverse routine is GDTOM) -// -// If IFLAG=1 convert coordinates -// IFLAG=2 convert direction cosinus -// -// --- - (FGeometryInit::GetInstance())->Gmtod(xm, xd, iflag); - } +{ + if (iflag == 1) gGeoManager->MasterToLocal(xm,xd); + else gGeoManager->MasterToLocalVect(xm,xd); +} +//______________________________________________________________________________ void TFluka::Gdtom(Float_t* xd, Float_t* xm, Int_t iflag) - { +{ // Transforms a position from the current volume reference frame // to the world reference frame. // @@ -2592,184 +2622,57 @@ void TFluka::Gdtom(Float_t* xd, Float_t* xm, Int_t iflag) // IFLAG=2 convert direction cosinus // // --- - Double_t xmD[3], xdD[3]; - xdD[0] = xd[0]; xdD[1] = xd[1]; xdD[2] = xd[2]; - (FGeometryInit::GetInstance())->Gdtom(xdD, xmD, iflag); - xm[0] = xmD[0]; xm[1] = xmD[1]; xm[2] = xmD[2]; - } + Double_t xmL[3], xdL[3]; + Int_t i; + for (i=0;i<3;i++) xdL[i] = xd[i]; + if (iflag == 1) gGeoManager->LocalToMaster(xdL,xmL); + else gGeoManager->LocalToMasterVect(xdL,xmL); + for (i=0;i<3;i++) xm[i]=xmL[i]; +} + +//______________________________________________________________________________ void TFluka::Gdtom(Double_t* xd, Double_t* xm, Int_t iflag) - { -// Transforms a position from the current volume reference frame -// to the world reference frame. -// -// Geant3 desription: -// ================== -// Computes coordinates XM (Master Reference System -// knowing the coordinates XD (Detector Ref System) -// The local reference system can be initialized by -// - the tracking routines and GDTOM used in GUSTEP -// - a call to GSCMED(NLEVEL,NAMES,NUMBER) -// (inverse routine is GMTOD) -// -// If IFLAG=1 convert coordinates -// IFLAG=2 convert direction cosinus -// -// --- +{ + if (iflag == 1) gGeoManager->LocalToMaster(xd,xm); + else gGeoManager->LocalToMasterVect(xd,xm); +} - (FGeometryInit::GetInstance())->Gdtom(xd, xm, iflag); - } +//______________________________________________________________________________ +TObjArray *TFluka::GetFlukaMaterials() +{ + return fGeom->GetMatList(); +} -// =============================================================== -void TFluka::FutoTest() +//______________________________________________________________________________ +void TFluka::SetMreg(Int_t l) { - Int_t icode, mreg, newreg, particleId; - Double_t rull, xsco, ysco, zsco; - TLorentzVector position, momentum; - icode = GetIcode(); - if (icode == 0) { - if (fVerbosityLevel >=3) - cout << " icode=" << icode << endl; - } else if (icode > 0 && icode <= 5) { -// mgdraw - mreg = GetMreg(); - if (fVerbosityLevel >=3) - cout << " icode=" << icode - << " mreg=" << mreg - << endl; - TrackPosition(position); - TrackMomentum(momentum); - if (fVerbosityLevel >=3) { - cout << "TLorentzVector positionX=" << position.X() - << "positionY=" << position.Y() - << "positionZ=" << position.Z() - << "timeT=" << position.T() << endl; - cout << "TLorentzVector momentumX=" << momentum.X() - << "momentumY=" << momentum.Y() - << "momentumZ=" << momentum.Z() - << "energyE=" << momentum.E() << endl; - cout << "TrackStep=" << TrackStep() << endl; - cout << "TrackLength=" << TrackLength() << endl; - cout << "TrackTime=" << TrackTime() << endl; - cout << "Edep=" << Edep() << endl; - cout << "TrackPid=" << TrackPid() << endl; - cout << "TrackCharge=" << TrackCharge() << endl; - cout << "TrackMass=" << TrackMass() << endl; - cout << "Etot=" << Etot() << endl; - cout << "IsNewTrack=" << IsNewTrack() << endl; - cout << "IsTrackInside=" << IsTrackInside() << endl; - cout << "IsTrackEntering=" << IsTrackEntering() << endl; - cout << "IsTrackExiting=" << IsTrackExiting() << endl; - cout << "IsTrackOut=" << IsTrackOut() << endl; - cout << "IsTrackDisappeared=" << IsTrackDisappeared() << endl; - cout << "IsTrackAlive=" << IsTrackAlive() << endl; - } - - Float_t x = position.X(); - Float_t y = position.Y(); - Float_t z = position.Z(); - Float_t xm[3]; - Float_t xd[3]; - xm[0] = x; xm[1] = y; xm[2] = z; - if (fVerbosityLevel >= 3) - printf("Global trackPosition: %f %f %f \n", x, y, z); - Gmtod(xm, xd, 1); - if (fVerbosityLevel >= 3) - printf("Local trackPosition: %f %f %f \n", xd[0], xd[1], xd[2]); - Gdtom(xd, xm, 1); - if (fVerbosityLevel >= 3) - printf("New trackPosition: %f %f %f \n", xm[0], xm[1], xm[2]); - } else if((icode >= 10 && icode <= 15) || - (icode >= 20 && icode <= 24) || - (icode >= 30 && icode <= 33) || - (icode >= 40 && icode <= 41) || - (icode >= 50 && icode <= 52)) { -// endraw - mreg = GetMreg(); - rull = GetRull(); - xsco = GetXsco(); - ysco = GetYsco(); - zsco = GetZsco(); +// Set current fluka region + fCurrentFlukaRegion = l; + fGeom->SetMreg(l); +} + + +#define pushcerenkovphoton pushcerenkovphoton_ + + +extern "C" { + void pushcerenkovphoton(Double_t & px, Double_t & py, Double_t & pz, Double_t & e, + Double_t & vx, Double_t & vy, Double_t & vz, Double_t & tof, + Double_t & polx, Double_t & poly, Double_t & polz, Double_t & wgt, Int_t& ntr) + { + // + // Pushes one cerenkov photon to the stack + // - if (fVerbosityLevel >=3) { - cout << " icode=" << icode - << " mreg=" << mreg - << " rull=" << rull - << " xsco=" << xsco - << " ysco=" << ysco - << " zsco=" << zsco << endl; - } - TrackPosition(position); - TrackMomentum(momentum); - if (fVerbosityLevel >=3) { - cout << "Edep=" << Edep() << endl; - cout << "Etot=" << Etot() << endl; - cout << "TrackPid=" << TrackPid() << endl; - cout << "TrackCharge=" << TrackCharge() << endl; - cout << "TrackMass=" << TrackMass() << endl; - cout << "IsTrackOut=" << IsTrackOut() << endl; - cout << "IsTrackDisappeared=" << IsTrackDisappeared() << endl; - cout << "IsTrackStop=" << IsTrackStop() << endl; - cout << "IsTrackAlive=" << IsTrackAlive() << endl; - } - } else if((icode >= 100 && icode <= 105) || - (icode == 208) || - (icode == 210) || - (icode == 212) || - (icode >= 214 && icode <= 215) || - (icode == 217) || - (icode == 219) || - (icode == 221) || - (icode == 225) || - (icode == 300) || - (icode == 400)) { -// usdraw - mreg = GetMreg(); - xsco = GetXsco(); - ysco = GetYsco(); - zsco = GetZsco(); - - if (fVerbosityLevel >=3) { - cout << " icode=" << icode - << " mreg=" << mreg - << " xsco=" << xsco - << " ysco=" << ysco - << " zsco=" << zsco << endl; - cout << "TrackPid=" << TrackPid() << endl; - cout << "NSecondaries=" << NSecondaries() << endl; - } - - for (Int_t isec=0; isec< NSecondaries(); isec++) { - TFluka::GetSecondary(isec, particleId, position, momentum); - if (fVerbosityLevel >=3) { - cout << "TLorentzVector positionX=" << position.X() - << "positionY=" << position.Y() - << "positionZ=" << position.Z() - << "timeT=" << position.T() << endl; - cout << "TLorentzVector momentumX=" << momentum.X() - << "momentumY=" << momentum.Y() - << "momentumZ=" << momentum.Z() - << "energyE=" << momentum.E() << endl; - cout << "TrackPid=" << particleId << endl; - } - } - } else if((icode == 19) || - (icode == 29) || - (icode == 39) || - (icode == 49) || - (icode == 59)) { - mreg = GetMreg(); - newreg = GetNewreg(); - xsco = GetXsco(); - ysco = GetYsco(); - zsco = GetZsco(); - if (fVerbosityLevel >=3) { - cout << " icode=" << icode - << " mreg=" << mreg - << " newreg=" << newreg - << " xsco=" << xsco - << " ysco=" << ysco - << " zsco=" << zsco << endl; - } + TFluka* fluka = (TFluka*) gMC; + TVirtualMCStack* cppstack = fluka->GetStack(); + Int_t parent = TRACKR.ispusr[mkbmx2-1]; + cppstack->PushTrack(0, parent, 50000050, + px, py, pz, e, + vx, vy, vz, tof, + polx, poly, polz, + kPCerenkov, ntr, wgt, 0); } -} // end of FutoTest +} +