X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=TFluka%2FTFluka.cxx;h=b25cc8bd39b4bfdc84facc9c99cf91332881699e;hb=fbf0810080d65739d2b79701ead4e046daeca471;hp=2d6cd10ee2f408e889d91308e1c69f9f4e0d35fa;hpb=27b2f7fe10b56aad9c239ea5b48dffda549c5645;p=u%2Fmrichter%2FAliRoot.git diff --git a/TFluka/TFluka.cxx b/TFluka/TFluka.cxx index 2d6cd10ee2f..b25cc8bd39b 100644 --- a/TFluka/TFluka.cxx +++ b/TFluka/TFluka.cxx @@ -13,65 +13,30 @@ * provided "as is" without express or implied warranty. * **************************************************************************/ -/* -$Log$ -Revision 1.5 2002/11/07 17:59:10 iglez2 -Included the geometry through geant4_vmc/FLUGG - -Revision 1.4 2002/11/04 16:00:46 iglez2 -The conversion between ID and PDG now uses Fluka routines and arrays which is more consistent. - -Revision 1.3 2002/10/22 15:12:14 alibrary -Introducing Riostream.h - -Revision 1.2 2002/10/14 14:57:40 hristov -Merging the VirtualMC branch to the main development branch (HEAD) - -Revision 1.1.2.8 2002/10/08 16:33:17 iglez2 -LSOUIT is set to true before the second call to flukam. - -Revision 1.1.2.7 2002/10/08 09:30:37 iglez2 -Solved stupid missing ; - -Revision 1.1.2.6 2002/10/07 13:40:22 iglez2 -First implementations of the PDG <--> Fluka Id conversion routines - -Revision 1.1.2.5 2002/09/26 16:26:03 iglez2 -Added verbosity -Call to gAlice->Generator()->Generate() - -Revision 1.1.2.4 2002/09/26 13:22:23 iglez2 -Naive implementation of ProcessRun and ProcessEvent -Opening/Closing of input file (fInputFileName) with FORTRAN unit 5 before/after the first call to flukam inside Init() - -Revision 1.1.2.3 2002/09/20 15:35:51 iglez2 -Modification of LFDRTR. Value is passed to FLUKA !!! - -Revision 1.1.2.2 2002/09/18 14:34:44 iglez2 -Revised version with all pure virtual methods implemented - -Revision 1.1.2.1 2002/07/24 08:49:41 alibrary -Adding TFluka to VirtualMC - -Revision 1.1 2002/07/05 13:10:07 morsch -First commit of Fluka interface. - -*/ +/* $Id$ */ #include +#include "TClonesArray.h" #include "TFluka.h" #include "TCallf77.h" //For the fortran calls #include "Fdblprc.h" //(DBLPRC) fluka common -#include "Fiounit.h" //(IOUNIT) fluka common #include "Fepisor.h" //(EPISOR) fluka common +#include "Ffinuc.h" //(FINUC) fluka common +#include "Fiounit.h" //(IOUNIT) fluka common +#include "Fpaprop.h" //(PAPROP) fluka common #include "Fpart.h" //(PART) fluka common -#include "TVirtualMC.h" +#include "Ftrackr.h" //(TRACKR) fluka common +#include "Fpaprop.h" //(PAPROP) fluka common +#include "Ffheavy.h" //(FHEAVY) fluka common +#include "TVirtualMC.h" #include "TG4GeometryManager.h" //For the geometry management #include "TG4DetConstruction.h" //For the detector construction #include "FGeometryInit.hh" +#include "TLorentzVector.h" +#include "FlukaVolume.h" // Fluka methods that may be needed. #ifndef WIN32 @@ -112,7 +77,7 @@ ClassImp(TFluka) TFluka::TFluka() :TVirtualMC(), fVerbosityLevel(0), - fInputFileName(""), + sInputFileName(""), fDetector(0), fCurrentFlukaRegion(-1) { @@ -121,10 +86,13 @@ TFluka::TFluka() // } -TFluka::TFluka(const char *title, Int_t verbosity) - :TVirtualMC("TFluka",title), +TFluka::TFluka(const char *title, Int_t verbosity, Bool_t isRootGeometrySupported) + :TVirtualMC("TFluka",title, isRootGeometrySupported), fVerbosityLevel(verbosity), - fInputFileName(""), + sInputFileName(""), + fTrackIsEntering(0), + fTrackIsExiting(0), + fTrackIsNew(0), fDetector(0), fCurrentFlukaRegion(-1) { @@ -150,6 +118,10 @@ TFluka::TFluka(const char *title, Int_t verbosity) if (fVerbosityLevel >=3) cout << "<== TFluka::TFluka(" << title << ") constructor called." << endl; + + fVolumeMediaMap = new TClonesArray("FlukaVolume",1000); + fNVolumes = 0; + fMediaByRegion = 0; } TFluka::~TFluka() { @@ -157,6 +129,9 @@ TFluka::~TFluka() { cout << "==> TFluka::~TFluka() destructor called." << endl; delete fGeometryManager; + fVolumeMediaMap->Delete(); + delete fVolumeMediaMap; + if (fVerbosityLevel >=3) cout << "<== TFluka::~TFluka() destructor called." << endl; @@ -167,17 +142,26 @@ TFluka::~TFluka() { // TFluka control methods //____________________________________________________________________________ void TFluka::Init() { + + FGeometryInit* geominit = FGeometryInit::GetInstance(); if (fVerbosityLevel >=3) cout << "==> TFluka::Init() called." << endl; + cout << "\t* InitPhysics() - Prepare input file to be called" << endl; + geominit->Init(); + // now we have G4 geometry created and we have to patch alice.inp + // with the material mapping file FlukaMat.inp + InitPhysics(); // prepare input file with the current physics settings + cout << "\t* InitPhysics() - Prepare input file was called" << endl; + if (fVerbosityLevel >=2) cout << "\t* Changing lfdrtr = (" << (GLOBAL.lfdrtr?'T':'F') << ") in fluka..." << endl; GLOBAL.lfdrtr = true; if (fVerbosityLevel >=2) - cout << "\t* Opening file " << fInputFileName << endl; - const char* fname = fInputFileName; + cout << "\t* Opening file " << sInputFileName << endl; + const char* fname = sInputFileName; fluka_openinp(lunin, PASSCHARA(fname)); if (fVerbosityLevel >=2) @@ -185,27 +169,44 @@ void TFluka::Init() { flukam(1); if (fVerbosityLevel >=2) - cout << "\t* Closing file " << fInputFileName << endl; + cout << "\t* Closing file " << sInputFileName << endl; fluka_closeinp(lunin); + FinishGeometry(); + if (fVerbosityLevel >=3) cout << "<== TFluka::Init() called." << endl; + } void TFluka::FinishGeometry() { +// +// Build-up table with region to medium correspondance +// + char tmp[5]; + if (fVerbosityLevel >=3) cout << "==> TFluka::FinishGeometry() called." << endl; - fGeometryManager->Ggclos(); +// fGeometryManager->Ggclos(); - FGeometryInit* flugg = FGeometryInit::GetInstance(); - map >::iterator i; - for (fVolumeMediaMap.begin(); i != fVolumeMediaMap.end(); i++) { - TString volName = (*i).first; - Int_t media = (*i).second; - Int_t region = flugg->GetRegionFromName(volName); - fMediaByRegion[region] = media; + FGeometryInit* flugg = FGeometryInit::GetInstance(); + + fMediaByRegion = new Int_t[fNVolumes+2]; + for (Int_t i = 0; i < fNVolumes; i++) + { + FlukaVolume* vol = dynamic_cast((*fVolumeMediaMap)[i]); + TString volName = vol->GetName(); + Int_t media = vol->GetMedium(); + if (fVerbosityLevel >= 3) + printf("Finish Geometry: volName, media %d %s %d \n", i, volName.Data(), media); + strcpy(tmp, volName.Data()); + tmp[4] = '\0'; + flugg->SetMediumFromName(tmp, media, i+1); + fMediaByRegion[i] = media; } + + flugg->BuildMediaMap(); if (fVerbosityLevel >=3) cout << "<== TFluka::FinishGeometry() called." << endl; @@ -223,7 +224,9 @@ void TFluka::BuildPhysics() { void TFluka::ProcessEvent() { if (fVerbosityLevel >=3) cout << "==> TFluka::ProcessEvent() called." << endl; - + fApplication->GeneratePrimaries(); + EPISOR.lsouit = true; + flukam(1); if (fVerbosityLevel >=3) cout << "<== TFluka::ProcessEvent() called." << endl; } @@ -238,13 +241,14 @@ void TFluka::ProcessRun(Int_t nevent) { cout << "\t* GLOBAL.fdrtr = " << (GLOBAL.lfdrtr?'T':'F') << endl; cout << "\t* Calling flukam again..." << endl; } - fApplication->GeneratePrimaries(); - EPISOR.lsouit = true; - flukam(1); - + fApplication->InitGeometry(); + fApplication->BeginEvent(); + ProcessEvent(); + fApplication->FinishEvent(); if (fVerbosityLevel >=3) cout << "<== TFluka::ProcessRun(" << nevent << ") called." << endl; + } //_____________________________________________________________________________ @@ -330,37 +334,62 @@ void TFluka::Gstpar(Int_t itmed, const char *param, Double_t parval) { Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed, Float_t *upar, Int_t np) { // - fVolumeMediaMap[TString(name)] = nmed; - return fGeometryManager->Gsvolu(name, shape, nmed, upar, np); +// fVolumeMediaMap[TString(name)] = nmed; + if (fVerbosityLevel >= 3) + printf("TFluka::Gsvolu() name = %s, nmed = %d\n", name, nmed); + + TClonesArray &lvols = *fVolumeMediaMap; + new(lvols[fNVolumes++]) + FlukaVolume(name, nmed); + return fGeometryManager->Gsvolu(name, shape, nmed, upar, np); } Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed, Double_t *upar, Int_t np) { // - return fGeometryManager->Gsvolu(name, shape, nmed, upar, np); + TClonesArray &lvols = *fVolumeMediaMap; + new(lvols[fNVolumes++]) + FlukaVolume(name, nmed); + + return fGeometryManager->Gsvolu(name, shape, nmed, upar, np); } void TFluka::Gsdvn(const char *name, const char *mother, Int_t ndiv, Int_t iaxis) { // - fGeometryManager->Gsdvn(name, mother, ndiv, iaxis); +// The medium of the daughter is the one of the mother + Int_t volid = TFluka::VolId(mother); + Int_t med = TFluka::VolId2Mate(volid); + TClonesArray &lvols = *fVolumeMediaMap; + new(lvols[fNVolumes++]) + FlukaVolume(name, med); + fGeometryManager->Gsdvn(name, mother, ndiv, iaxis); } void TFluka::Gsdvn2(const char *name, const char *mother, Int_t ndiv, Int_t iaxis, Double_t c0i, Int_t numed) { // - fGeometryManager->Gsdvn2(name, mother, ndiv, iaxis, c0i, numed); + TClonesArray &lvols = *fVolumeMediaMap; + new(lvols[fNVolumes++]) + FlukaVolume(name, numed); + fGeometryManager->Gsdvn2(name, mother, ndiv, iaxis, c0i, numed); } void TFluka::Gsdvt(const char *name, const char *mother, Double_t step, Int_t iaxis, Int_t numed, Int_t ndvmx) { -// - fGeometryManager->Gsdvt(name, mother, step, iaxis, numed, ndvmx); +// + TClonesArray &lvols = *fVolumeMediaMap; + new(lvols[fNVolumes++]) + FlukaVolume(name, numed); + fGeometryManager->Gsdvt(name, mother, step, iaxis, numed, ndvmx); } void TFluka::Gsdvt2(const char *name, const char *mother, Double_t step, Int_t iaxis, Double_t c0, Int_t numed, Int_t ndvmx) { // - fGeometryManager->Gsdvt2(name, mother, step, iaxis, c0, numed, ndvmx); + TClonesArray &lvols = *fVolumeMediaMap; + new(lvols[fNVolumes++]) + FlukaVolume(name, numed); + fGeometryManager->Gsdvt2(name, mother, step, iaxis, c0, numed, ndvmx); } void TFluka::Gsord(const char *name, Int_t iax) { @@ -416,24 +445,32 @@ void TFluka::WriteEuclid(const char* fileName, const char* topVol, //_____________________________________________________________________________ // methods needed by the stepping //____________________________________________________________________________ + Int_t TFluka::GetMedium() const { - return fMediaByRegion[fCurrentFlukaRegion]; +// +// Get the medium number for the current fluka region +// + FGeometryInit* flugg = FGeometryInit::GetInstance(); + return flugg->GetMedium(fCurrentFlukaRegion); } //____________________________________________________________________________ +// particle table usage // ID <--> PDG transformations //_____________________________________________________________________________ Int_t TFluka::IdFromPDG(Int_t pdg) const { - // - // Return Fluka code from PDG and pseudo ENDF code - - // MCIHAD() goes from pdg to fluka internal. - Int_t intfluka = mcihad(pdg); - // KPTOIP array goes from internal to official - return GetFlukaKPTOIP(intfluka); + // + // Return Fluka code from PDG and pseudo ENDF code + + // Catch the feedback photons + if (pdg == 50000051) return (-1); + // MCIHAD() goes from pdg to fluka internal. + Int_t intfluka = mcihad(pdg); + // KPTOIP array goes from internal to official + return GetFlukaKPTOIP(intfluka); } Int_t TFluka::PDGFromId(Int_t id) const @@ -441,9 +478,2331 @@ Int_t TFluka::PDGFromId(Int_t id) const // // Return PDG code and pseudo ENDF code from Fluka code - //IPTOKP array goes from official to internal - Int_t intfluka = GetFlukaIPTOKP(id); - //MPKDHA() goes from internal to PDG - return mpdgha(intfluka); - + // IPTOKP array goes from official to internal + + if (id == -1) { +// Cerenkov photon + if (fVerbosityLevel >= 1) + printf("\n PDGFromId: Cerenkov Photon \n"); + return 50000050; + } +// Error id + if (id == 0) { + if (fVerbosityLevel >= 1) + printf("PDGFromId: Error id = 0\n"); + return -1; + } +// Good id + Int_t intfluka = GetFlukaIPTOKP(id); + if (intfluka == 0) { + if (fVerbosityLevel >= 1) + printf("PDGFromId: Error intfluka = 0: %d\n", id); + return -1; + } else if (intfluka < 0) { + if (fVerbosityLevel >= 1) + printf("PDGFromId: Error intfluka < 0: %d\n", id); + return -1; + } + if (fVerbosityLevel >= 3) + printf("mpdgha called with %d %d \n", id, intfluka); + // MPDGHA() goes from fluka internal to pdg. + return mpdgha(intfluka); +} + +//_____________________________________________________________________________ +// methods for physics management +//____________________________________________________________________________ +// +// set methods +// + +void TFluka::SetProcess(const char* flagName, Int_t flagValue) +{ + Int_t i; + if (iNbOfProc < 100) { + for (i=0; iGetLastMaterialIndex(); + printf(" last FLUKA material is %g\n", fLastMaterial); + +// construct file names + TString sAliceCoreInp = getenv("ALICE_ROOT"); + sAliceCoreInp +="/TFluka/input/"; + TString sAliceTmp = "flukaMat.inp"; + TString sAliceInp = GetInputFileName(); + sAliceCoreInp += GetCoreInputFileName(); + ifstream AliceCoreInp(sAliceCoreInp.Data()); + ifstream AliceFlukaMat(sAliceTmp.Data()); + ofstream AliceInp(sAliceInp.Data()); + +// copy core input file + Char_t sLine[255]; + Float_t fEventsPerRun; + + while (AliceCoreInp.getline(sLine,255)) { + if (strncmp(sLine,"GEOEND",6) != 0) + AliceInp << sLine << endl; // copy until GEOEND card + else { + AliceInp << "GEOEND" << endl; // add GEOEND card + goto flukamat; + } + } // end of while until GEOEND card + +flukamat: + while (AliceFlukaMat.getline(sLine,255)) { // copy flukaMat.inp file + AliceInp << sLine << endl; + } + + while (AliceCoreInp.getline(sLine,255)) { + if (strncmp(sLine,"START",5) != 0) + AliceInp << sLine << endl; + else { + sscanf(sLine+10,"%10f",&fEventsPerRun); + goto fin; + } + } //end of while until START card + +fin: +// in G3 the process control values meaning can be different for +// different processes, but for most of them is: +// 0 process is not activated +// 1 process is activated WITH generation of secondaries +// 2 process is activated WITHOUT generation of secondaries +// if process does not generate secondaries => 1 same as 2 +// +// Exceptions: +// MULS: also 3 +// LOSS: also 3, 4 +// RAYL: only 0,1 +// HADR: may be > 2 +// + +// Loop over number of SetProcess calls + AliceInp << "*----------------------------------------------------------------------------- "; + AliceInp << endl; + AliceInp << "*----- The following data are generated from SetProcess and SetCut calls ----- "; + AliceInp << endl; + AliceInp << "*----------------------------------------------------------------------------- "; + AliceInp << endl; + for (i=0; iSetProcess("ANNI",1); // EMFCUT -1. 0. 0. 3. lastmat 0. ANNH-THR + if (strncmp(&sProcessFlag[i][0],"ANNI",4) == 0) { + if (iProcessValue[i] == 1 || iProcessValue[i] == 2) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Kinetic energy threshold (GeV) for e+ annihilation - resets to default=0."; + AliceInp << endl; + AliceInp << "*Generated from call: SetProcess('ANNI',1) or SetProcess('ANNI',2)"; + AliceInp << endl; + AliceInp << setw(10) << "EMFCUT "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); + AliceInp << setw(10) << -1.0; // kinetic energy threshold (GeV) for e+ annihilation (resets to default=0) + AliceInp << setw(10) << 0.0; // not used + AliceInp << setw(10) << 0.0; // not used + AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply + AliceInp << setw(10) << setprecision(2); + AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply + AliceInp << setprecision(1); + AliceInp << setw(10) << 1.0; // step length in assigning indices + AliceInp << setw(8) << "ANNH-THR"; + AliceInp << endl; + } + else if (iProcessValue[i] == 0) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*No annihilation - no FLUKA card generated"; + AliceInp << endl; + AliceInp << "*Generated from call: SetProcess('ANNI',0)"; + AliceInp << endl; + } + else { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Illegal flag value in SetProcess('ANNI',?) call."; + AliceInp << endl; + AliceInp << "*No FLUKA card generated"; + AliceInp << endl; + } + } + + // bremsstrahlung and pair production are both activated + // G3 default value: 1 + // G4 processes: G4eBremsstrahlung/G4IeBremsstrahlung, + // G4MuBremsstrahlung/G4IMuBremsstrahlung, + // G4LowEnergyBremstrahlung + // Particles: e-/e+; mu+/mu- + // Physics: EM + // flag = 0 no bremsstrahlung + // flag = 1 bremsstrahlung, photon processed + // flag = 2 bremsstrahlung, no photon stored + // gMC ->SetProcess("BREM",1); // PAIRBREM 2. 0. 0. 3. lastmat + // EMFCUT -1. 0. 0. 3. lastmat 0. ELPO-THR + // G3 default value: 1 + // G4 processes: G4GammaConversion, + // G4MuPairProduction/G4IMuPairProduction + // G4LowEnergyGammaConversion + // Particles: gamma, mu + // Physics: EM + // flag = 0 no delta rays + // flag = 1 delta rays, secondaries processed + // flag = 2 delta rays, no secondaries stored + // gMC ->SetProcess("PAIR",1); // PAIRBREM 1. 0. 0. 3. lastmat + // EMFCUT 0. 0. -1. 3. lastmat 0. PHOT-THR + else if ((strncmp(&sProcessFlag[i][0],"PAIR",4) == 0) && (iProcessValue[i] == 1 || iProcessValue[i] == 2)) { + for (j=0; jSetCut("PPCUTM",cut); // total energy cut for direct pair prod. by muons + fCut = 0.0; + for (k=0; kSetCut("BCUTM",cut); // cut for muon and hadron bremsstrahlung + fCut = 0.0; + for (k=0; kSetCut("PPCUTM",cut); // total energy cut for direct pair prod. by muons + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); + AliceInp << setw(10) << 0.0; // e+, e- kinetic energy threshold (in GeV) for explicit pair production. + AliceInp << setw(10) << 0.0; // no explicit bremsstrahlung production is simulated + AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply + AliceInp << setprecision(2); + AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply + AliceInp << endl; + + // for e+ and e- + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Pair production by electrons is activated"; + AliceInp << endl; + AliceInp << "*Generated from call: SetProcess('PAIR',1) or SetProcess('PAIR',2)"; + AliceInp << endl; + AliceInp << setw(10) << "EMFCUT "; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); + AliceInp << setw(10) << 0.0; // energy threshold (GeV) for Compton scattering (= 0.0 : ignored) + AliceInp << setw(10) << 0.0; // energy threshold (GeV) for Photoelectric (= 0.0 : ignored) + + fCut = -1.0; + for (j=0; jSetProcess("BREM",1); // PAIRBREM 2. 0. 0. 3. lastmat + // EMFCUT -1. 0. 0. 3. lastmat 0. ELPO-THR + else if (strncmp(&sProcessFlag[i][0],"BREM",4) == 0) { + for (j=0; jSetCut("BCUTM",cut); // cut for muon and hadron bremsstrahlung + fCut = 0.0; + for (j=0; jSetProcess("CKOV",1); // ??? Cerenkov photon generation + else if (strncmp(&sProcessFlag[i][0],"CKOV",4) == 0) { + if (iProcessValue[i] == 1 || iProcessValue[i] == 2) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Cerenkov photon generation"; + AliceInp << endl; + AliceInp << "*Generated from call: SetProcess('CKOV',1) or SetProcess('CKOV',2)"; + AliceInp << endl; + AliceInp << setw(10) << "OPT-PROD "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setw(10) << 2.07e-9 ; // minimum Cerenkov photon emission energy (in GeV!). Default: 2.07E-9 GeV (corresponding to 600 nm) + AliceInp << setw(10) << 4.96e-9; // maximum Cerenkov photon emission energy (in GeV!). Default: 4.96E-9 GeV (corresponding to 250 nm) + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); + AliceInp << setw(10) << 0.0; // not used + AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply + AliceInp << setprecision(2); + AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply + AliceInp << setprecision(1); + AliceInp << setw(10) << 1.0; // step length in assigning indices + AliceInp << setw(8) << "CERENKOV"; + AliceInp << endl; + } + else if (iProcessValue[i] == 0) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*No Cerenkov photon generation"; + AliceInp << endl; + AliceInp << "*Generated from call: SetProcess('CKOV',0)"; + AliceInp << endl; + AliceInp << setw(10) << "OPT-PROD "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); + AliceInp << setw(10) << 0.0; // not used + AliceInp << setw(10) << 0.0; // not used + AliceInp << setw(10) << 0.0; // not used + AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply + AliceInp << setprecision(2); + AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply + AliceInp << setprecision(1); + AliceInp << setw(10) << 1.0; // step length in assigning indices + AliceInp << setw(8) << "CERE-OFF"; + AliceInp << endl; + } + else { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Illegal flag value in SetProcess('CKOV',?) call."; + AliceInp << endl; + AliceInp << "*No FLUKA card generated"; + AliceInp << endl; + } + } // end of else if (strncmp(&sProcessFlag[i][0],"CKOV",4) == 0) + + + // Compton scattering + // G3 default value: 1 + // G4 processes: G4ComptonScattering, + // G4LowEnergyCompton, + // G4PolarizedComptonScattering + // Particles: gamma + // Physics: EM + // flag = 0 no Compton scattering + // flag = 1 Compton scattering, electron processed + // flag = 2 Compton scattering, no electron stored + // gMC ->SetProcess("COMP",1); // EMFCUT -1. 0. 0. 3. lastmat 0. PHOT-THR + else if (strncmp(&sProcessFlag[i][0],"COMP",4) == 0) { + if (iProcessValue[i] == 1 || iProcessValue[i] == 2) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Energy threshold (GeV) for Compton scattering - resets to default=0."; + AliceInp << endl; + AliceInp << "*Generated from call: SetProcess('COMP',1);"; + AliceInp << endl; + AliceInp << setw(10) << "EMFCUT "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); + AliceInp << setw(10) << -1.0; // energy threshold (GeV) for Compton scattering - resets to default=0. + AliceInp << setw(10) << 0.0; // not used + AliceInp << setw(10) << 0.0; // not used + AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply + AliceInp << setprecision(2); + AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply + AliceInp << setprecision(1); + AliceInp << setw(10) << 1.0; // step length in assigning indices + AliceInp << setw(8) << "PHOT-THR"; + AliceInp << endl; + } + else if (iProcessValue[i] == 0) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*No Compton scattering - no FLUKA card generated"; + AliceInp << endl; + AliceInp << "*Generated from call: SetProcess('COMP',0)"; + AliceInp << endl; + } + else { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Illegal flag value in SetProcess('COMP',?) call."; + AliceInp << endl; + AliceInp << "*No FLUKA card generated"; + AliceInp << endl; + } + } // end of else if (strncmp(&sProcessFlag[i][0],"COMP",4) == 0) + + // decay + // G3 default value: 1 + // G4 process: G4Decay + // + // Particles: all which decay is applicable for + // Physics: General + // flag = 0 no decays + // flag = 1 decays, secondaries processed + // flag = 2 decays, no secondaries stored + //gMC ->SetProcess("DCAY",1); // not available + else if ((strncmp(&sProcessFlag[i][0],"DCAY",4) == 0) && iProcessValue[i] == 1) + cout << "SetProcess for flag=" << &sProcessFlag[i][0] << " value=" << iProcessValue[i] << " not avaliable!" << endl; + + // delta-ray + // G3 default value: 2 + // !! G4 treats delta rays in different way + // G4 processes: G4eIonisation/G4IeIonization, + // G4MuIonisation/G4IMuIonization, + // G4hIonisation/G4IhIonisation + // Particles: charged + // Physics: EM + // flag = 0 no energy loss + // flag = 1 restricted energy loss fluctuations + // flag = 2 complete energy loss fluctuations + // flag = 3 same as 1 + // flag = 4 no energy loss fluctuations + // gMC ->SetProcess("DRAY",0); // DELTARAY 1.E+6 0. 0. 3. lastmat 0. + else if (strncmp(&sProcessFlag[i][0],"DRAY",4) == 0) { + if (iProcessValue[i] == 0 || iProcessValue[i] == 4) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Kinetic energy threshold (GeV) for delta ray production"; + AliceInp << endl; + AliceInp << "*Generated from call: SetProcess('DRAY',0) or SetProcess('DRAY',4)"; + AliceInp << endl; + AliceInp << "*No delta ray production by muons - threshold set artificially high"; + AliceInp << endl; + AliceInp << setw(10) << "DELTARAY "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setw(10) << 1.0e+6; // kinetic energy threshold (GeV) for delta ray production (discrete energy transfer) + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); + AliceInp << setw(10) << 0.0; // ignored + AliceInp << setw(10) << 0.0; // ignored + AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply + AliceInp << setw(10) << setprecision(2); + AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply + AliceInp << setprecision(1); + AliceInp << setw(10) << 1.0; // step length in assigning indices + AliceInp << endl; + } + else if (iProcessValue[i] == 1 || iProcessValue[i] == 2 || iProcessValue[i] == 3) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Kinetic energy threshold (GeV) for delta ray production"; + AliceInp << endl; + AliceInp << "*Generated from call: SetProcess('DRAY',flag), flag=1,2,3"; + AliceInp << endl; + AliceInp << "*Delta ray production by muons switched on"; + AliceInp << endl; + AliceInp << "*Energy threshold set by call SetCut('DCUTM',cut) or set to 0."; + AliceInp << endl; + AliceInp << setw(10) << "DELTARAY "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + fCut = 1.0e+6; + for (j=0; jSetProcess("HADR",1); // ??? hadronic process + //Select pure GEANH (HADR 1) or GEANH/NUCRIN (HADR 3) ????? + else if (strncmp(&sProcessFlag[i][0],"HADR",4) == 0) { + if (iProcessValue[i] == 1 || iProcessValue[i] == 2) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Hadronic interaction is ON by default in FLUKA"; + AliceInp << endl; + AliceInp << "*No FLUKA card generated"; + AliceInp << endl; + } + else if (iProcessValue[i] == 0) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Hadronic interaction is set OFF"; + AliceInp << endl; + AliceInp << "*Generated from call: SetProcess('HADR',0);"; + AliceInp << endl; + AliceInp << setw(10) << "MULSOPT "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); + AliceInp << setw(10) << 0.0; // ignored + AliceInp << setw(10) << 3.0; // multiple scattering for hadrons and muons is completely suppressed + AliceInp << setw(10) << 0.0; // no spin-relativistic corrections + AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply + AliceInp << setprecision(2); + AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply + AliceInp << endl; + + } + else { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Illegal flag value in SetProcess('HADR',?) call."; + AliceInp << endl; + AliceInp << "*No FLUKA card generated"; + AliceInp << endl; + } + } // end of else if (strncmp(&sProcessFlag[i][0],"HADR",4) == 0) + + + // energy loss + // G3 default value: 2 + // G4 processes: G4eIonisation/G4IeIonization, + // G4MuIonisation/G4IMuIonization, + // G4hIonisation/G4IhIonisation + // + // Particles: charged + // Physics: EM + // flag=0 no energy loss + // flag=1 restricted energy loss fluctuations + // flag=2 complete energy loss fluctuations + // flag=3 same as 1 + // flag=4 no energy loss fluctuations + // If the value ILOSS is changed, then (in G3) cross-sections and energy + // loss tables must be recomputed via the command 'PHYSI' + // gMC ->SetProcess("LOSS",2); // ??? IONFLUCT ? energy loss + else if (strncmp(&sProcessFlag[i][0],"LOSS",4) == 0) { + if (iProcessValue[i] == 2) { // complete energy loss fluctuations + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Complete energy loss fluctuations do not exist in FLUKA"; + AliceInp << endl; + AliceInp << "*Generated from call: SetProcess('LOSS',2);"; + AliceInp << endl; + AliceInp << "*flag=2=complete energy loss fluctuations"; + AliceInp << endl; + AliceInp << "*No input card generated"; + AliceInp << endl; + } + else if (iProcessValue[i] == 1 || iProcessValue[i] == 3) { // restricted energy loss fluctuations + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Restricted energy loss fluctuations"; + AliceInp << endl; + AliceInp << "*Generated from call: SetProcess('LOSS',1) or SetProcess('LOSS',3)"; + AliceInp << endl; + AliceInp << setw(10) << "IONFLUCT "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); + AliceInp << setw(10) << 1.0; // restricted energy loss fluctuations (for hadrons and muons) switched on + AliceInp << setw(10) << 1.0; // restricted energy loss fluctuations (for e+ and e-) switched on + AliceInp << setw(10) << 1.0; // minimal accuracy + AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply + AliceInp << setprecision(2); + AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply + AliceInp << endl; + } + else if (iProcessValue[i] == 4) { // no energy loss fluctuations + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*No energy loss fluctuations"; + AliceInp << endl; + AliceInp << "*Generated from call: SetProcess('LOSS',4)"; + AliceInp << endl; + AliceInp << setw(10) << -1.0; // restricted energy loss fluctuations (for hadrons and muons) switched off + AliceInp << setw(10) << -1.0; // restricted energy loss fluctuations (for e+ and e-) switched off + AliceInp << setw(10) << 1.0; // minimal accuracy + AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply + AliceInp << setprecision(2); + AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply + AliceInp << endl; + } + else { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Illegal flag value in SetProcess('LOSS',?) call."; + AliceInp << endl; + AliceInp << "*No FLUKA card generated"; + AliceInp << endl; + } + } // end of else if (strncmp(&sProcessFlag[i][0],"LOSS",4) == 0) + + + // multiple scattering + // G3 default value: 1 + // G4 process: G4MultipleScattering/G4IMultipleScattering + // + // Particles: charged + // Physics: EM + // flag = 0 no multiple scattering + // flag = 1 Moliere or Coulomb scattering + // flag = 2 Moliere or Coulomb scattering + // flag = 3 Gaussian scattering + // gMC ->SetProcess("MULS",1); // MULSOPT multiple scattering + else if (strncmp(&sProcessFlag[i][0],"MULS",4) == 0) { + if (iProcessValue[i] == 1 || iProcessValue[i] == 2 || iProcessValue[i] == 3) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Multiple scattering is ON by default for e+e- and for hadrons/muons"; + AliceInp << endl; + AliceInp << "*No FLUKA card generated"; + AliceInp << endl; + } + else if (iProcessValue[i] == 0) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Multiple scattering is set OFF"; + AliceInp << endl; + AliceInp << "*Generated from call: SetProcess('MULS',0);"; + AliceInp << endl; + AliceInp << setw(10) << "MULSOPT "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); + AliceInp << setw(10) << 0.0; // ignored + AliceInp << setw(10) << 3.0; // multiple scattering for hadrons and muons is completely suppressed + AliceInp << setw(10) << 3.0; // multiple scattering for e+ and e- is completely suppressed + AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply + AliceInp << setprecision(2); + AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply + AliceInp << endl; + } + else { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Illegal flag value in SetProcess('MULS',?) call."; + AliceInp << endl; + AliceInp << "*No FLUKA card generated"; + AliceInp << endl; + } + } // end of else if (strncmp(&sProcessFlag[i][0],"MULS",4) == 0) + + + // muon nuclear interaction + // G3 default value: 0 + // G4 processes: G4MuNuclearInteraction, + // G4MuonMinusCaptureAtRest + // + // Particles: mu + // Physics: Not set + // flag = 0 no muon-nuclear interaction + // flag = 1 nuclear interaction, secondaries processed + // flag = 2 nuclear interaction, secondaries not processed + // gMC ->SetProcess("MUNU",1); // MUPHOTON 1. 0. 0. 3. lastmat + else if (strncmp(&sProcessFlag[i][0],"MUNU",4) == 0) { + if (iProcessValue[i] == 1) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Muon nuclear interactions with production of secondary hadrons"; + AliceInp << endl; + AliceInp << "*Generated from call: SetProcess('MUNU',1);"; + AliceInp << endl; + AliceInp << setw(10) << "MUPHOTON "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); + AliceInp << setw(10) << 1.0; // full simulation of muon nuclear interactions and production of secondary hadrons + AliceInp << setw(10) << 0.0; // ratio of longitudinal to transverse virtual photon cross-section - Default = 0.25. + AliceInp << setw(10) << 0.0; // fraction of rho-like interactions ( must be < 1) - Default = 0.75. + AliceInp << setprecision(1); + AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply + AliceInp << setprecision(2); + AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply + AliceInp << endl; + } + else if (iProcessValue[i] == 2) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Muon nuclear interactions without production of secondary hadrons"; + AliceInp << endl; + AliceInp << "*Generated from call: SetProcess('MUNU',2);"; + AliceInp << endl; + AliceInp << setw(10) << "MUPHOTON "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); + AliceInp << setw(10) << 2.0; // full simulation of muon nuclear interactions and production of secondary hadrons + AliceInp << setw(10) << 0.0; // ratio of longitudinal to transverse virtual photon cross-section - Default = 0.25. + AliceInp << setw(10) << 0.0; // fraction of rho-like interactions ( must be < 1) - Default = 0.75. + AliceInp << setprecision(1); + AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply + AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply + AliceInp << endl; + } + else if (iProcessValue[i] == 0) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*No muon nuclear interaction - no FLUKA card generated"; + AliceInp << endl; + AliceInp << "*Generated from call: SetProcess('MUNU',0)"; + AliceInp << endl; + } + else { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Illegal flag value in SetProcess('MUNU',?) call."; + AliceInp << endl; + AliceInp << "*No FLUKA card generated"; + AliceInp << endl; + } + } // end of else if (strncmp(&sProcessFlag[i][0],"MUNU",4) == 0) + + + // photofission + // G3 default value: 0 + // G4 process: ?? + // + // Particles: gamma + // Physics: ?? + // gMC ->SetProcess("PFIS",0); // PHOTONUC -1. 0. 0. 3. lastmat 0. + // flag = 0 no photon fission + // flag = 1 photon fission, secondaries processed + // flag = 2 photon fission, no secondaries stored + else if (strncmp(&sProcessFlag[i][0],"PFIS",4) == 0) { + if (iProcessValue[i] == 0) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*No photonuclear interactions"; + AliceInp << endl; + AliceInp << "*Generated from call: SetProcess('PFIS',0);"; + AliceInp << endl; + AliceInp << setw(10) << "PHOTONUC "; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); + AliceInp << setw(10) << -1.0; // no photonuclear interactions + AliceInp << setw(10) << 0.0; // not used + AliceInp << setw(10) << 0.0; // not used + AliceInp << setw(10) << 3.0; // upper bound of the material indices in which the respective thresholds apply + AliceInp << setprecision(2); + AliceInp << setw(10) << fLastMaterial; + AliceInp << setprecision(1); // upper bound of the material indices in which the respective thresholds apply + AliceInp << setprecision(1); + AliceInp << setw(10) << 1.0; // step length in assigning indices + AliceInp << endl; + } + else if (iProcessValue[i] == 1) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Photon nuclear interactions are activated at all energies"; + AliceInp << endl; + AliceInp << "*Generated from call: SetProcess('PFIS',1);"; + AliceInp << endl; + AliceInp << setw(10) << "PHOTONUC "; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); + AliceInp << setw(10) << 1.0; // photonuclear interactions are activated at all energies + AliceInp << setw(10) << 0.0; // not used + AliceInp << setw(10) << 0.0; // not used + AliceInp << setprecision(2); + AliceInp << setw(10) << 3.0; // upper bound of the material indices in which the respective thresholds apply + AliceInp << setw(10) << fLastMaterial; + AliceInp << setprecision(1); // upper bound of the material indices in which the respective thresholds apply + AliceInp << setprecision(1); + AliceInp << setw(10) << 1.0; // step length in assigning indices + AliceInp << endl; + } + else if (iProcessValue[i] == 0) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*No photofission - no FLUKA card generated"; + AliceInp << endl; + AliceInp << "*Generated from call: SetProcess('PFIS',0)"; + AliceInp << endl; + } + else { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Illegal flag value in SetProcess('PFIS',?) call."; + AliceInp << endl; + AliceInp << "*No FLUKA card generated"; + AliceInp << endl; + } + } + + + // photo electric effect + // G3 default value: 1 + // G4 processes: G4PhotoElectricEffect + // G4LowEnergyPhotoElectric + // Particles: gamma + // Physics: EM + // flag = 0 no photo electric effect + // flag = 1 photo electric effect, electron processed + // flag = 2 photo electric effect, no electron stored + // gMC ->SetProcess("PHOT",1); // EMFCUT 0. -1. 0. 3. lastmat 0. PHOT-THR + else if (strncmp(&sProcessFlag[i][0],"PHOT",4) == 0) { + if (iProcessValue[i] == 1 || iProcessValue[i] == 2) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Photo electric effect is activated"; + AliceInp << endl; + AliceInp << "*Generated from call: SetProcess('PHOT',1);"; + AliceInp << endl; + AliceInp << setw(10) << "EMFCUT "; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); + AliceInp << setw(10) << 0.0; // ignored + AliceInp << setw(10) << -1.0; // resets to default=0. + AliceInp << setw(10) << 0.0; // ignored + AliceInp << setw(10) << 3.0; // upper bound of the material indices in which the respective thresholds apply + AliceInp << setprecision(2); + AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply + AliceInp << setprecision(1); + AliceInp << setw(10) << 1.0; // step length in assigning indices + AliceInp << setw(8) << "PHOT-THR"; + AliceInp << endl; + } + else if (iProcessValue[i] == 0) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*No photo electric effect - no FLUKA card generated"; + AliceInp << endl; + AliceInp << "*Generated from call: SetProcess('PHOT',0)"; + AliceInp << endl; + } + else { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Illegal flag value in SetProcess('PHOT',?) call."; + AliceInp << endl; + AliceInp << "*No FLUKA card generated"; + AliceInp << endl; + } + } // else if (strncmp(&sProcessFlag[i][0],"PHOT",4) == 0) + + + // Rayleigh scattering + // G3 default value: 0 + // G4 process: G4OpRayleigh + // + // Particles: optical photon + // Physics: Optical + // flag = 0 Rayleigh scattering off + // flag = 1 Rayleigh scattering on + //xx gMC ->SetProcess("RAYL",1); + else if (strncmp(&sProcessFlag[i][0],"RAYL",4) == 0) { + if (iProcessValue[i] == 1) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Rayleigh scattering is ON by default in FLUKA"; + AliceInp << endl; + AliceInp << "*No FLUKA card generated"; + AliceInp << endl; + } + else if (iProcessValue[i] == 0) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Rayleigh scattering is set OFF"; + AliceInp << endl; + AliceInp << "*Generated from call: SetProcess('RAYL',0);"; + AliceInp << endl; + AliceInp << setw(10) << "EMFRAY "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); + AliceInp << setw(10) << -1.0; // no Rayleigh scattering and no binding corrections for Compton + AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply + AliceInp << setprecision(2); + AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply + AliceInp << endl; + } + else { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Illegal flag value in SetProcess('RAYL',?) call."; + AliceInp << endl; + AliceInp << "*No FLUKA card generated"; + AliceInp << endl; + } + } // end of else if (strncmp(&sProcessFlag[i][0],"RAYL",4) == 0) + + + // synchrotron radiation in magnetic field + // G3 default value: 0 + // G4 process: G4SynchrotronRadiation + // + // Particles: ?? + // Physics: Not set + // flag = 0 no synchrotron radiation + // flag = 1 synchrotron radiation + //xx gMC ->SetProcess("SYNC",1); // synchrotron radiation generation + else if (strncmp(&sProcessFlag[i][0],"SYNC",4) == 0) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Synchrotron radiation generation is NOT implemented in FLUKA"; + AliceInp << endl; + AliceInp << "*No FLUKA card generated"; + AliceInp << endl; + } + + + // Automatic calculation of tracking medium parameters + // flag = 0 no automatic calculation + // flag = 1 automatic calculation + //xx gMC ->SetProcess("AUTO",1); // ??? automatic computation of the tracking medium parameters + else if (strncmp(&sProcessFlag[i][0],"AUTO",4) == 0) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Automatic calculation of tracking medium parameters is always ON in FLUKA"; + AliceInp << endl; + AliceInp << "*No FLUKA card generated"; + AliceInp << endl; + } + + + // To control energy loss fluctuation model + // flag = 0 Urban model + // flag = 1 PAI model + // flag = 2 PAI+ASHO model (not active at the moment) + //xx gMC ->SetProcess("STRA",1); // ??? energy fluctuation model + else if (strncmp(&sProcessFlag[i][0],"STRA",4) == 0) { + if (iProcessValue[i] == 0 || iProcessValue[i] == 2 || iProcessValue[i] == 3) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Ionization energy losses calculation is activated"; + AliceInp << endl; + AliceInp << "*Generated from call: SetProcess('STRA',n);, n=0,1,2"; + AliceInp << endl; + AliceInp << setw(10) << "IONFLUCT "; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); + AliceInp << setw(10) << 1.0; // restricted energy loss fluctuations + // (for hadrons and muons) switched on + AliceInp << setw(10) << 1.0; // restricted energy loss fluctuations + // (for e+ and e-) switched on + AliceInp << setw(10) << 1.0; // minimal accuracy + AliceInp << setw(10) << 3.0; // upper bound of the material indices in + // which the respective thresholds apply + AliceInp << setprecision(2); + AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply + AliceInp << setprecision(1); + AliceInp << setw(10) << 1.0; // step length in assigning indices + AliceInp << endl; + } + else { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Illegal flag value in SetProcess('STRA',?) call."; + AliceInp << endl; + AliceInp << "*No FLUKA card generated"; + AliceInp << endl; + } + } // else if (strncmp(&sProcessFlag[i][0],"STRA",4) == 0) + + + + + else { // processes not yet treated + + // light photon absorption (Cerenkov photons) + // it is turned on when Cerenkov process is turned on + // G3 default value: 0 + // G4 process: G4OpAbsorption, G4OpBoundaryProcess + // + // Particles: optical photon + // Physics: Optical + // flag = 0 no absorption of Cerenkov photons + // flag = 1 absorption of Cerenkov photons + // gMC ->SetProcess("LABS",2); // ??? Cerenkov light absorption + + + + cout << "SetProcess for flag=" << &sProcessFlag[i][0] << " value=" << iProcessValue[i] << " not yet implemented!" << endl; + } + } //end of loop number of SetProcess calls + + +// Loop over number of SetCut calls + for (Int_t i=0; iSetCut("CUTGAM",cut); // cut for gammas + else if (strncmp(&sCutFlag[i][0],"CUTGAM",6) == 0) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Cut for gamma"; + AliceInp << endl; + AliceInp << "*Generated from call: SetCut('CUTGAM',cut);"; + AliceInp << endl; + AliceInp << setw(10) << "PART-THR "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setw(10) << -fCutValue[i]; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); + AliceInp << setw(10) << 7.0; + AliceInp << endl; + } + + // electrons + // G4 particles: "e-" + // ?? positrons + // G3 default value: 0.001 GeV + //gMC ->SetCut("CUTELE",cut); // cut for e+,e- + else if (strncmp(&sCutFlag[i][0],"CUTELE",6) == 0) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Cut for electrons"; + AliceInp << endl; + AliceInp << "*Generated from call: SetCut('CUTELE',cut);"; + AliceInp << endl; + AliceInp << setw(10) << "PART-THR "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setw(10) << -fCutValue[i]; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); + AliceInp << setw(10) << 3.0; + AliceInp << setw(10) << 4.0; + AliceInp << setw(10) << 1.0; + AliceInp << endl; + } + + // neutral hadrons + // G4 particles: of type "baryon", "meson", "nucleus" with zero charge + // G3 default value: 0.01 GeV + //gMC ->SetCut("CUTNEU",cut); // cut for neutral hadrons + else if (strncmp(&sCutFlag[i][0],"CUTNEU",6) == 0) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Cut for neutral hadrons"; + AliceInp << endl; + AliceInp << "*Generated from call: SetCut('CUTNEU',cut);"; + AliceInp << endl; + AliceInp << setw(10) << "PART-THR "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setw(10) << -fCutValue[i]; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); + AliceInp << setw(10) << 8.0; // Neutron + AliceInp << setw(10) << 9.0; // Antineutron + AliceInp << endl; + AliceInp << setw(10) << "PART-THR "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setw(10) << -fCutValue[i]; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); + AliceInp << setw(10) << 12.0; // Kaon zero long + AliceInp << setw(10) << 12.0; // Kaon zero long + AliceInp << endl; + AliceInp << setw(10) << "PART-THR "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setw(10) << -fCutValue[i]; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); + AliceInp << setw(10) << 17.0; // Lambda, 18=Antilambda + AliceInp << setw(10) << 19.0; // Kaon zero short + AliceInp << endl; + AliceInp << setw(10) << "PART-THR "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setw(10) << -fCutValue[i]; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); + AliceInp << setw(10) << 22.0; // Sigma zero, Pion zero, Kaon zero + AliceInp << setw(10) << 25.0; // Antikaon zero + AliceInp << endl; + AliceInp << setw(10) << "PART-THR "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setw(10) << -fCutValue[i]; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); + AliceInp << setw(10) << 32.0; // Antisigma zero + AliceInp << setw(10) << 32.0; // Antisigma zero + AliceInp << endl; + AliceInp << setw(10) << "PART-THR "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setw(10) << -fCutValue[i]; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); + AliceInp << setw(10) << 34.0; // Xi zero + AliceInp << setw(10) << 35.0; // AntiXi zero + AliceInp << endl; + AliceInp << setw(10) << "PART-THR "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setw(10) << -fCutValue[i]; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); + AliceInp << setw(10) << 47.0; // D zero + AliceInp << setw(10) << 48.0; // AntiD zero + AliceInp << endl; + AliceInp << setw(10) << "PART-THR "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setw(10) << -fCutValue[i]; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); + AliceInp << setw(10) << 53.0; // Xi_c zero + AliceInp << setw(10) << 53.0; // Xi_c zero + AliceInp << endl; + AliceInp << setw(10) << "PART-THR "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setw(10) << -fCutValue[i]; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); + AliceInp << setw(10) << 55.0; // Xi'_c zero + AliceInp << setw(10) << 56.0; // Omega_c zero + AliceInp << endl; + AliceInp << setw(10) << "PART-THR "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setw(10) << -fCutValue[i]; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); + AliceInp << setw(10) << 59.0; // AntiXi_c zero + AliceInp << setw(10) << 59.0; // AntiXi_c zero + AliceInp << endl; + AliceInp << setw(10) << "PART-THR "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setw(10) << -fCutValue[i]; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); + AliceInp << setw(10) << 61.0; // AntiXi'_c zero + AliceInp << setw(10) << 62.0; // AntiOmega_c zero + AliceInp << endl; + } + + // charged hadrons + // G4 particles: of type "baryon", "meson", "nucleus" with non-zero charge + // G3 default value: 0.01 GeV + //gMC ->SetCut("CUTHAD",cut); // cut for charged hadrons + else if (strncmp(&sCutFlag[i][0],"CUTHAD",6) == 0) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Cut for charged hadrons"; + AliceInp << endl; + AliceInp << "*Generated from call: SetCut('CUTHAD',cut);"; + AliceInp << endl; + AliceInp << setw(10) << "PART-THR "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setw(10) << -fCutValue[i]; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); + AliceInp << setw(10) << 1.0; // Proton + AliceInp << setw(10) << 2.0; // Antiproton + AliceInp << endl; + AliceInp << setw(10) << "PART-THR "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setw(10) << -fCutValue[i]; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); + AliceInp << setw(10) << 13.0; // Positive Pion, Negative Pion, Positive Kaon + AliceInp << setw(10) << 16.0; // Negative Kaon + AliceInp << endl; + AliceInp << setw(10) << "PART-THR "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setw(10) << -fCutValue[i]; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); + AliceInp << setw(10) << 20.0; // Negative Sigma + AliceInp << setw(10) << 16.0; // Positive Sigma + AliceInp << endl; + AliceInp << setw(10) << "PART-THR "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setw(10) << -fCutValue[i]; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); + AliceInp << setw(10) << 31.0; // Antisigma minus + AliceInp << setw(10) << 33.0; // Antisigma plus + AliceInp << setprecision(1); + AliceInp << setw(10) << 2.0; // step length + AliceInp << endl; + AliceInp << setw(10) << "PART-THR "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setw(10) << -fCutValue[i]; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); + AliceInp << setw(10) << 36.0; // Negative Xi, Positive Xi, Omega minus + AliceInp << setw(10) << 39.0; // Antiomega + AliceInp << endl; + AliceInp << setw(10) << "PART-THR "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setw(10) << -fCutValue[i]; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); + AliceInp << setw(10) << 45.0; // D plus + AliceInp << setw(10) << 46.0; // D minus + AliceInp << endl; + AliceInp << setw(10) << "PART-THR "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setw(10) << -fCutValue[i]; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); + AliceInp << setw(10) << 49.0; // D_s plus, D_s minus, Lambda_c plus + AliceInp << setw(10) << 52.0; // Xi_c plus + AliceInp << endl; + AliceInp << setw(10) << "PART-THR "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setw(10) << -fCutValue[i]; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); + AliceInp << setw(10) << 54.0; // Xi'_c plus + AliceInp << setw(10) << 60.0; // AntiXi'_c minus + AliceInp << setprecision(1); + AliceInp << setw(10) << 6.0; // step length + AliceInp << endl; + AliceInp << setw(10) << "PART-THR "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setw(10) << -fCutValue[i]; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2); + AliceInp << setw(10) << 57.0; // Antilambda_c minus + AliceInp << setw(10) << 58.0; // AntiXi_c minus + AliceInp << endl; + } + + // muons + // G4 particles: "mu+", "mu-" + // G3 default value: 0.01 GeV + //gMC ->SetCut("CUTMUO",cut); // cut for mu+, mu- + else if (strncmp(&sCutFlag[i][0],"CUTMUO",6) == 0) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Cut for muons"; + AliceInp << endl; + AliceInp << "*Generated from call: SetCut('CUTMUO',cut);"; + AliceInp << endl; + AliceInp << setw(10) << "PART-THR "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setw(10) << -fCutValue[i]; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); + AliceInp << setprecision(2); + AliceInp << setw(10) << 10.0; + AliceInp << setw(10) << 11.0; + AliceInp << endl; + } + // delta-rays by electrons + // G4 particles: "e-" + // G3 default value: 10**4 GeV + // gMC ->SetCut("DCUTE",cut); // cut for deltarays by electrons ??????????????? + else if (strncmp(&sCutFlag[i][0],"DCUTE",5) == 0) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Cut for delta rays by electrons ????????????"; + AliceInp << endl; + AliceInp << "*Generated from call: SetCut('DCUTE',cut);"; + AliceInp << endl; + AliceInp << setw(10) << "EMFCUT "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setw(10) << -fCutValue[i]; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); + AliceInp << setw(10) << 0.0; + AliceInp << setw(10) << 0.0; + AliceInp << setw(10) << 3.0; + AliceInp << setprecision(2); + AliceInp << setw(10) << fLastMaterial; + AliceInp << setprecision(1); + AliceInp << setw(10) << 1.0; + AliceInp << endl; + } + + // + // time of flight cut in seconds + // G4 particles: all + // G3 default value: 0.01 GeV + //gMC ->SetCut("TOFMAX",tofmax); // time of flight cuts in seconds + else if (strncmp(&sCutFlag[i][0],"TOFMAX",6) == 0) { + AliceInp << "*"; + AliceInp << endl; + AliceInp << "*Time of flight cuts in seconds"; + AliceInp << endl; + AliceInp << "*Generated from call: SetCut('TOFMAX',tofmax);"; + AliceInp << endl; + AliceInp << setw(10) << "TIME-CUT "; + AliceInp << setiosflags(ios::scientific) << setprecision(5); + AliceInp << setw(10) << fCutValue[i]*1.e9; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1); + AliceInp << setw(10) << 0.0; + AliceInp << setw(10) << 0.0; + AliceInp << setw(10) << -6.0; // lower bound of the particle numbers for which the transport time cut-off and/or the start signal is to be applied + AliceInp << setprecision(2); + AliceInp << setw(10) << 64.0; // upper bound of the particle numbers for which the transport time cut-off and/or the start signal is to be applied + AliceInp << setprecision(1); + AliceInp << setw(10) << 1.0; // step length in assigning numbers + AliceInp << endl; + } + + else { + cout << "SetCut for flag=" << &sCutFlag[i][0] << " value=" << fCutValue[i] << " not yet implemented!" << endl; + } + } //end of loop over SeCut calls + +// Add START and STOP card + AliceInp << setw(10) << "START "; + AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint); + AliceInp << setw(10) << fEventsPerRun; + AliceInp << endl; + AliceInp << setw(10) << "STOP "; + AliceInp << endl; + +} // end of InitPhysics + + +void TFluka::SetMaxStep(Double_t) +{ +// SetMaxStep is dummy procedure in TFluka ! + if (fVerbosityLevel >=3) + cout << "SetMaxStep is dummy procedure in TFluka !" << endl; +} + +void TFluka::SetMaxNStep(Int_t) +{ +// SetMaxNStep is dummy procedure in TFluka ! + if (fVerbosityLevel >=3) + cout << "SetMaxNStep is dummy procedure in TFluka !" << endl; +} + +void TFluka::SetUserDecay(Int_t) +{ +// SetUserDecay is dummy procedure in TFluka ! + if (fVerbosityLevel >=3) + cout << "SetUserDecay is dummy procedure in TFluka !" << endl; +} + +// +// dynamic properties +// +void TFluka::TrackPosition(TLorentzVector& position) const +{ +// Return the current position in the master reference frame of the +// track being transported +// TRACKR.atrack = age of the particle +// TRACKR.xtrack = x-position of the last point +// TRACKR.ytrack = y-position of the last point +// TRACKR.ztrack = z-position of the last point + Int_t caller = GetCaller(); + if (caller == 3 || caller == 6 || caller == 11 || caller == 12) { //bxdraw,endraw,usdraw + position.SetX(GetXsco()); + position.SetY(GetYsco()); + position.SetZ(GetZsco()); + position.SetT(TRACKR.atrack); + } + else if (caller == 4) { // mgdraw + position.SetX(TRACKR.xtrack[TRACKR.ntrack]); + position.SetY(TRACKR.ytrack[TRACKR.ntrack]); + position.SetZ(TRACKR.ztrack[TRACKR.ntrack]); + position.SetT(TRACKR.atrack); + } + else if (caller == 5) { // sodraw + position.SetX(TRACKR.xtrack[TRACKR.ntrack]); + position.SetY(TRACKR.ytrack[TRACKR.ntrack]); + position.SetZ(TRACKR.ztrack[TRACKR.ntrack]); + position.SetT(0); + } + else + Warning("TrackPosition","position not available"); +} + +// +void TFluka::TrackPosition(Double_t& x, Double_t& y, Double_t& z) const +{ +// Return the current position in the master reference frame of the +// track being transported +// TRACKR.atrack = age of the particle +// TRACKR.xtrack = x-position of the last point +// TRACKR.ytrack = y-position of the last point +// TRACKR.ztrack = z-position of the last point + Int_t caller = GetCaller(); + if (caller == 3 || caller == 6 || caller == 11 || caller == 12) { //bxdraw,endraw,usdraw + x = GetXsco(); + y = GetYsco(); + z = GetZsco(); + } + else if (caller == 4) { // mgdraw + x = TRACKR.xtrack[TRACKR.ntrack]; + y = TRACKR.ytrack[TRACKR.ntrack]; + z = TRACKR.ztrack[TRACKR.ntrack]; + } + else if (caller == 5) { // sodraw + x = TRACKR.xtrack[TRACKR.ntrack]; + y = TRACKR.ytrack[TRACKR.ntrack]; + z = TRACKR.ztrack[TRACKR.ntrack]; + } + else + Warning("TrackPosition","position not available"); +} + +void TFluka::TrackMomentum(TLorentzVector& momentum) const +{ +// Return the direction and the momentum (GeV/c) of the track +// currently being transported +// TRACKR.ptrack = momentum of the particle (not always defined, if +// < 0 must be obtained from etrack) +// TRACKR.cx,y,ztrck = direction cosines of the current particle +// TRACKR.etrack = total energy of the particle +// TRACKR.jtrack = identity number of the particle +// PAPROP.am[TRACKR.jtrack] = particle mass in gev + Int_t caller = GetCaller(); + if (caller != 2) { // not eedraw + if (TRACKR.ptrack >= 0) { + momentum.SetPx(TRACKR.ptrack*TRACKR.cxtrck); + momentum.SetPy(TRACKR.ptrack*TRACKR.cytrck); + momentum.SetPz(TRACKR.ptrack*TRACKR.cztrck); + momentum.SetE(TRACKR.etrack); + return; + } + else { + Double_t p = sqrt(TRACKR.etrack*TRACKR.etrack - PAPROP.am[TRACKR.jtrack+6]*PAPROP.am[TRACKR.jtrack+6]); + momentum.SetPx(p*TRACKR.cxtrck); + momentum.SetPy(p*TRACKR.cytrck); + momentum.SetPz(p*TRACKR.cztrck); + momentum.SetE(TRACKR.etrack); + return; + } + } + else + Warning("TrackMomentum","momentum not available"); +} + +void TFluka::TrackMomentum(Double_t& px, Double_t& py, Double_t& pz, Double_t& e) const +{ +// Return the direction and the momentum (GeV/c) of the track +// currently being transported +// TRACKR.ptrack = momentum of the particle (not always defined, if +// < 0 must be obtained from etrack) +// TRACKR.cx,y,ztrck = direction cosines of the current particle +// TRACKR.etrack = total energy of the particle +// TRACKR.jtrack = identity number of the particle +// PAPROP.am[TRACKR.jtrack] = particle mass in gev + Int_t caller = GetCaller(); + if (caller != 2) { // not eedraw + if (TRACKR.ptrack >= 0) { + px = TRACKR.ptrack*TRACKR.cxtrck; + py = TRACKR.ptrack*TRACKR.cytrck; + pz = TRACKR.ptrack*TRACKR.cztrck; + e = TRACKR.etrack; + return; + } + else { + Double_t p = sqrt(TRACKR.etrack*TRACKR.etrack - PAPROP.am[TRACKR.jtrack+6]*PAPROP.am[TRACKR.jtrack+6]); + px = p*TRACKR.cxtrck; + py = p*TRACKR.cytrck; + pz = p*TRACKR.cztrck; + e = TRACKR.etrack; + return; + } + } + else + Warning("TrackMomentum","momentum not available"); +} + +Double_t TFluka::TrackStep() const +{ +// Return the length in centimeters of the current step +// TRACKR.ctrack = total curved path + Int_t caller = GetCaller(); + if (caller == 11 || caller==12 || caller == 3 || caller == 6) //bxdraw,endraw,usdraw + return 0.0; + else if (caller == 4) //mgdraw + return TRACKR.ctrack; + else + return -1.0; +} + +Double_t TFluka::TrackLength() const +{ +// TRACKR.cmtrck = cumulative curved path since particle birth + Int_t caller = GetCaller(); + if (caller == 111 || caller==12 || caller == 3 || caller == 4 || caller == 6) //bxdraw,endraw,mgdraw,usdraw + return TRACKR.cmtrck; + else + return -1.0; +} + +Double_t TFluka::TrackTime() const +{ +// Return the current time of flight of the track being transported +// TRACKR.atrack = age of the particle + Int_t caller = GetCaller(); + if (caller == 11 || caller==12 || caller == 3 || caller == 4 || caller == 6) //bxdraw,endraw,mgdraw,usdraw + return TRACKR.atrack; + else + return -1; +} + +Double_t TFluka::Edep() const +{ +// Energy deposition +// if TRACKR.ntrack = 0, TRACKR.mtrack = 0: +// -->local energy deposition (the value and the point are not recorded in TRACKR) +// but in the variable "rull" of the procedure "endraw.cxx" +// if TRACKR.ntrack > 0, TRACKR.mtrack = 0: +// -->no energy loss along the track +// if TRACKR.ntrack > 0, TRACKR.mtrack > 0: +// -->energy loss distributed along the track +// TRACKR.dtrack = energy deposition of the jth deposition even + + // If coming from bxdraw we have 2 steps of 0 length and 0 edep + Int_t caller = GetCaller(); + if (caller == 11 || caller==12) return 0.0; + Double_t sum = 0; + for ( Int_t j=0;j= 3) + printf("VolId2Mate %d %d\n", id, fMediaByRegion[id-1]); + return fMediaByRegion[id-1]; +} + +const char* TFluka::VolName(Int_t id) const +{ +// +// Returns the volume name for a given volume ID +// + FlukaVolume* vol = dynamic_cast((*fVolumeMediaMap)[id-1]); + const char* name = vol->GetName(); + if (fVerbosityLevel >= 3) + printf("VolName %d %s \n", id, name); + return name; +} + +Int_t TFluka::VolId(const Text_t* volName) const +{ +// +// Converts from volume name to volume ID. +// Time consuming. (Only used during set-up) +// Could be replaced by hash-table +// + char tmp[5]; + Int_t i =0; + for (i = 0; i < fNVolumes; i++) + { + FlukaVolume* vol = dynamic_cast((*fVolumeMediaMap)[i]); + TString name = vol->GetName(); + strcpy(tmp, name.Data()); + tmp[4] = '\0'; + if (!strcmp(tmp, volName)) break; + } + i++; + + return i; +} + + +Int_t TFluka::CurrentVolID(Int_t& copyNo) const +{ +// +// Return the logical id and copy number corresponding to the current fluka region +// + int ir = fCurrentFlukaRegion; + int id = (FGeometryInit::GetInstance())->CurrentVolID(ir, copyNo); + copyNo++; + if (fVerbosityLevel >= 3) + printf("CurrentVolID: %d %d %d \n", ir, id, copyNo); + return id; +} + +Int_t TFluka::CurrentVolOffID(Int_t off, Int_t& copyNo) const +{ +// +// Return the logical id and copy number of off'th mother +// corresponding to the current fluka region +// + if (off == 0) + return CurrentVolID(copyNo); + + int ir = fCurrentFlukaRegion; + int id = (FGeometryInit::GetInstance())->CurrentVolOffID(ir, off, copyNo); + copyNo++; + if (fVerbosityLevel >= 3) + printf("CurrentVolOffID: %d %d %d \n", ir, id, copyNo); + if (id == -1) + if (fVerbosityLevel >= 0) + printf("CurrentVolOffID: Warning Mother not found !!!\n"); + return id; +} + + +const char* TFluka::CurrentVolName() const +{ +// +// Return the current volume name +// + Int_t copy; + Int_t id = TFluka::CurrentVolID(copy); + const char* name = TFluka::VolName(id); + if (fVerbosityLevel >= 3) + printf("CurrentVolumeName: %d %s \n", fCurrentFlukaRegion, name); + return name; +} + +const char* TFluka::CurrentVolOffName(Int_t off) const +{ +// +// Return the volume name of the off'th mother of the current volume +// + Int_t copy; + Int_t id = TFluka::CurrentVolOffID(off, copy); + const char* name = TFluka::VolName(id); + if (fVerbosityLevel >= 3) + printf("CurrentVolumeOffName: %d %s \n", fCurrentFlukaRegion, name); + return name; +} + +Int_t TFluka::CurrentMaterial(Float_t & /*a*/, Float_t & /*z*/, + Float_t & /*dens*/, Float_t & /*radl*/, Float_t & /*absl*/) const +{ +// +// Return the current medium number +// + Int_t copy; + Int_t id = TFluka::CurrentVolID(copy); + Int_t med = TFluka::VolId2Mate(id); + if (fVerbosityLevel >= 3) + printf("CurrentMaterial: %d %d \n", fCurrentFlukaRegion, med); + return med; +} + +void TFluka::Gmtod(Float_t* xm, Float_t* xd, Int_t iflag) + { +// Transforms a position from the world reference frame +// to the current volume reference frame. +// +// Geant3 desription: +// ================== +// Computes coordinates XD (in DRS) +// from known coordinates XM in MRS +// The local reference system can be initialized by +// - the tracking routines and GMTOD used in GUSTEP +// - a call to GMEDIA(XM,NUMED) +// - a call to GLVOLU(NLEVEL,NAMES,NUMBER,IER) +// (inverse routine is GDTOM) +// +// If IFLAG=1 convert coordinates +// IFLAG=2 convert direction cosinus +// +// --- + Double_t xmD[3], xdD[3]; + xmD[0] = xm[0]; xmD[1] = xm[1]; xmD[2] = xm[2]; + (FGeometryInit::GetInstance())->Gmtod(xmD, xdD, iflag); + xd[0] = xdD[0]; xd[1] = xdD[1]; xd[2] = xdD[2]; + } + + +void TFluka::Gmtod(Double_t* xm, Double_t* xd, Int_t iflag) + { +// Transforms a position from the world reference frame +// to the current volume reference frame. +// +// Geant3 desription: +// ================== +// Computes coordinates XD (in DRS) +// from known coordinates XM in MRS +// The local reference system can be initialized by +// - the tracking routines and GMTOD used in GUSTEP +// - a call to GMEDIA(XM,NUMED) +// - a call to GLVOLU(NLEVEL,NAMES,NUMBER,IER) +// (inverse routine is GDTOM) +// +// If IFLAG=1 convert coordinates +// IFLAG=2 convert direction cosinus +// +// --- + (FGeometryInit::GetInstance())->Gmtod(xm, xd, iflag); + } + +void TFluka::Gdtom(Float_t* xd, Float_t* xm, Int_t iflag) + { +// Transforms a position from the current volume reference frame +// to the world reference frame. +// +// Geant3 desription: +// ================== +// Computes coordinates XM (Master Reference System +// knowing the coordinates XD (Detector Ref System) +// The local reference system can be initialized by +// - the tracking routines and GDTOM used in GUSTEP +// - a call to GSCMED(NLEVEL,NAMES,NUMBER) +// (inverse routine is GMTOD) +// +// If IFLAG=1 convert coordinates +// IFLAG=2 convert direction cosinus +// +// --- + Double_t xmD[3], xdD[3]; + xdD[0] = xd[0]; xdD[1] = xd[1]; xdD[2] = xd[2]; + (FGeometryInit::GetInstance())->Gdtom(xdD, xmD, iflag); + xm[0] = xmD[0]; xm[1] = xmD[1]; xm[2] = xmD[2]; + } +void TFluka::Gdtom(Double_t* xd, Double_t* xm, Int_t iflag) + { +// Transforms a position from the current volume reference frame +// to the world reference frame. +// +// Geant3 desription: +// ================== +// Computes coordinates XM (Master Reference System +// knowing the coordinates XD (Detector Ref System) +// The local reference system can be initialized by +// - the tracking routines and GDTOM used in GUSTEP +// - a call to GSCMED(NLEVEL,NAMES,NUMBER) +// (inverse routine is GMTOD) +// +// If IFLAG=1 convert coordinates +// IFLAG=2 convert direction cosinus +// +// --- + + (FGeometryInit::GetInstance())->Gdtom(xd, xm, iflag); + } + +// =============================================================== +void TFluka::FutoTest() +{ + Int_t icode, mreg, newreg, particleId; + Double_t rull, xsco, ysco, zsco; + TLorentzVector position, momentum; + icode = GetIcode(); + if (icode == 0) { + if (fVerbosityLevel >=3) + cout << " icode=" << icode << endl; + } else if (icode > 0 && icode <= 5) { +// mgdraw + mreg = GetMreg(); + if (fVerbosityLevel >=3) + cout << " icode=" << icode + << " mreg=" << mreg + << endl; + TrackPosition(position); + TrackMomentum(momentum); + if (fVerbosityLevel >=3) { + cout << "TLorentzVector positionX=" << position.X() + << "positionY=" << position.Y() + << "positionZ=" << position.Z() + << "timeT=" << position.T() << endl; + cout << "TLorentzVector momentumX=" << momentum.X() + << "momentumY=" << momentum.Y() + << "momentumZ=" << momentum.Z() + << "energyE=" << momentum.E() << endl; + cout << "TrackStep=" << TrackStep() << endl; + cout << "TrackLength=" << TrackLength() << endl; + cout << "TrackTime=" << TrackTime() << endl; + cout << "Edep=" << Edep() << endl; + cout << "TrackPid=" << TrackPid() << endl; + cout << "TrackCharge=" << TrackCharge() << endl; + cout << "TrackMass=" << TrackMass() << endl; + cout << "Etot=" << Etot() << endl; + cout << "IsNewTrack=" << IsNewTrack() << endl; + cout << "IsTrackInside=" << IsTrackInside() << endl; + cout << "IsTrackEntering=" << IsTrackEntering() << endl; + cout << "IsTrackExiting=" << IsTrackExiting() << endl; + cout << "IsTrackOut=" << IsTrackOut() << endl; + cout << "IsTrackDisappeared=" << IsTrackDisappeared() << endl; + cout << "IsTrackAlive=" << IsTrackAlive() << endl; + } + + Float_t x = position.X(); + Float_t y = position.Y(); + Float_t z = position.Z(); + Float_t xm[3]; + Float_t xd[3]; + xm[0] = x; xm[1] = y; xm[2] = z; + if (fVerbosityLevel >= 3) + printf("Global trackPosition: %f %f %f \n", x, y, z); + Gmtod(xm, xd, 1); + if (fVerbosityLevel >= 3) + printf("Local trackPosition: %f %f %f \n", xd[0], xd[1], xd[2]); + Gdtom(xd, xm, 1); + if (fVerbosityLevel >= 3) + printf("New trackPosition: %f %f %f \n", xm[0], xm[1], xm[2]); + } else if((icode >= 10 && icode <= 15) || + (icode >= 20 && icode <= 24) || + (icode >= 30 && icode <= 33) || + (icode >= 40 && icode <= 41) || + (icode >= 50 && icode <= 52)) { +// endraw + mreg = GetMreg(); + rull = GetRull(); + xsco = GetXsco(); + ysco = GetYsco(); + zsco = GetZsco(); + + if (fVerbosityLevel >=3) { + cout << " icode=" << icode + << " mreg=" << mreg + << " rull=" << rull + << " xsco=" << xsco + << " ysco=" << ysco + << " zsco=" << zsco << endl; + } + TrackPosition(position); + TrackMomentum(momentum); + if (fVerbosityLevel >=3) { + cout << "Edep=" << Edep() << endl; + cout << "Etot=" << Etot() << endl; + cout << "TrackPid=" << TrackPid() << endl; + cout << "TrackCharge=" << TrackCharge() << endl; + cout << "TrackMass=" << TrackMass() << endl; + cout << "IsTrackOut=" << IsTrackOut() << endl; + cout << "IsTrackDisappeared=" << IsTrackDisappeared() << endl; + cout << "IsTrackStop=" << IsTrackStop() << endl; + cout << "IsTrackAlive=" << IsTrackAlive() << endl; + } + } else if((icode >= 100 && icode <= 105) || + (icode == 208) || + (icode == 210) || + (icode == 212) || + (icode >= 214 && icode <= 215) || + (icode == 217) || + (icode == 219) || + (icode == 221) || + (icode == 225) || + (icode == 300) || + (icode == 400)) { +// usdraw + mreg = GetMreg(); + xsco = GetXsco(); + ysco = GetYsco(); + zsco = GetZsco(); + + if (fVerbosityLevel >=3) { + cout << " icode=" << icode + << " mreg=" << mreg + << " xsco=" << xsco + << " ysco=" << ysco + << " zsco=" << zsco << endl; + cout << "TrackPid=" << TrackPid() << endl; + cout << "NSecondaries=" << NSecondaries() << endl; + } + + for (Int_t isec=0; isec< NSecondaries(); isec++) { + TFluka::GetSecondary(isec, particleId, position, momentum); + if (fVerbosityLevel >=3) { + cout << "TLorentzVector positionX=" << position.X() + << "positionY=" << position.Y() + << "positionZ=" << position.Z() + << "timeT=" << position.T() << endl; + cout << "TLorentzVector momentumX=" << momentum.X() + << "momentumY=" << momentum.Y() + << "momentumZ=" << momentum.Z() + << "energyE=" << momentum.E() << endl; + cout << "TrackPid=" << particleId << endl; + } + } + } else if((icode == 19) || + (icode == 29) || + (icode == 39) || + (icode == 49) || + (icode == 59)) { + mreg = GetMreg(); + newreg = GetNewreg(); + xsco = GetXsco(); + ysco = GetYsco(); + zsco = GetZsco(); + if (fVerbosityLevel >=3) { + cout << " icode=" << icode + << " mreg=" << mreg + << " newreg=" << newreg + << " xsco=" << xsco + << " ysco=" << ysco + << " zsco=" << zsco << endl; + } + } +} // end of FutoTest +