X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=TOF%2FAliTOFv2FHoles.cxx;h=7dde1d8f51613c628a80801c71dd9c8ea2456425;hb=aa067d5f2f0f5606718d827fb8f6d4000843a022;hp=460d926ae1b4b203fd27c6f67155dafbe37f91b0;hpb=5919c40cf3be137f95f99feaae3dfe573e8806af;p=u%2Fmrichter%2FAliRoot.git diff --git a/TOF/AliTOFv2FHoles.cxx b/TOF/AliTOFv2FHoles.cxx index 460d926ae1b..7dde1d8f516 100644 --- a/TOF/AliTOFv2FHoles.cxx +++ b/TOF/AliTOFv2FHoles.cxx @@ -13,12 +13,10 @@ * provided "as is" without express or implied warranty. * **************************************************************************/ - +/* $Id$ */ /////////////////////////////////////////////////////////////////////////////// -// // -// Time Of Flight: design of C.Williams -// +// // This class contains the functions for version 2 of the Time Of Flight // // detector. // // @@ -45,20 +43,22 @@ // // /////////////////////////////////////////////////////////////////////////////// -#include +#include #include -#include "AliTOFv2FHoles.h" -#include "TBRIK.h" -#include "TGeometry.h" -#include "TNode.h" +#include +#include #include -#include "TObject.h" +#include +#include +#include + +#include "AliConst.h" +#include "AliMagF.h" #include "AliRun.h" +#include "AliTOFv2FHoles.h" +#include "AliTOFConstants.h" // AdC #include "AliMC.h" -#include "AliMagF.h" -#include "AliConst.h" - ClassImp(AliTOFv2FHoles) @@ -100,10 +100,10 @@ void AliTOFv2FHoles::BuildGeometry() // TNode *node, *top; const int kColorTOF = 27; - + // Find top TNODE top = gAlice->GetGeometry()->GetNode("alice"); - + // Position the different copies const Float_t krTof =(fRmax+fRmin)/2; const Float_t khTof = fRmax-fRmin; @@ -112,69 +112,79 @@ void AliTOFv2FHoles::BuildGeometry() const Float_t kangle = 2*kPi/kNTof; Float_t ang; + // fixing parameters as requested by FRAME v0 (Morsch 16-10-2001) + //Float_t zlenA = 124.; // cm (A module length) original size 106. enlarged + Float_t zlenB = 154.; // cm (B module length) original size 141. enlarged + Float_t zlenC = 159.5; // cm (C module length) original size 175.5 reduced + Float_t ztof0 = 375.5; // total half-length of a TOF sector original size 371.5cm + + Float_t zOffsetC = ztof0 - zlenC*0.5; + Float_t zOffsetB = ztof0 - zlenC - zlenB*0.5; + Float_t zOffsetA = 0.00; + // Define TOF basic volume char nodeName0[6], nodeName1[6], nodeName2[6]; char nodeName3[6], nodeName4[6], rotMatNum[6]; - + new TBRIK("S_TOF_C","TOF box","void", - 120*0.5,khTof*0.5,fZlenC*0.5); + fStripLn*0.5,khTof*0.5,fZlenC*0.5); new TBRIK("S_TOF_B","TOF box","void", - 120*0.5,khTof*0.5,fZlenB*0.5); + fStripLn*0.5,khTof*0.5,fZlenB*0.5); new TBRIK("S_TOF_A","TOF box","void", - 120*0.5,khTof*0.5,fZlenA*0.5); - + fStripLn*0.5,khTof*0.5,fZlenA*0.5); + for (Int_t nodeNum=1;nodeNum<19;nodeNum++){ - - if (nodeNum<10) { - sprintf(rotMatNum,"rot50%i",nodeNum); - sprintf(nodeName0,"FTO00%i",nodeNum); - sprintf(nodeName1,"FTO10%i",nodeNum); - sprintf(nodeName2,"FTO20%i",nodeNum); - sprintf(nodeName3,"FTO30%i",nodeNum); - sprintf(nodeName4,"FTO40%i",nodeNum); - } - if (nodeNum>9) { - sprintf(rotMatNum,"rot5%i",nodeNum); - sprintf(nodeName0,"FTO0%i",nodeNum); - sprintf(nodeName1,"FTO1%i",nodeNum); - sprintf(nodeName2,"FTO2%i",nodeNum); - sprintf(nodeName3,"FTO3%i",nodeNum); - sprintf(nodeName4,"FTO4%i",nodeNum); - } - - new TRotMatrix(rotMatNum,rotMatNum,90,-20*nodeNum,90,90-20*nodeNum,0,0); - ang = (4.5-nodeNum) * kangle; - - top->cd(); - node = new TNode(nodeName0,nodeName0,"S_TOF_C",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),299.15,rotMatNum); - node->SetLineColor(kColorTOF); - fNodes->Add(node); - - top->cd(); - node = new TNode(nodeName1,nodeName1,"S_TOF_C",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),-299.15,rotMatNum); - node->SetLineColor(kColorTOF); - fNodes->Add(node); -if (nodeNum !=1 && nodeNum!=2 && nodeNum !=18) - { - top->cd(); - node = new TNode(nodeName2,nodeName2,"S_TOF_B",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),146.45,rotMatNum); - node->SetLineColor(kColorTOF); - fNodes->Add(node); - - top->cd(); - node = new TNode(nodeName3,nodeName3,"S_TOF_B",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),-146.45,rotMatNum); - node->SetLineColor(kColorTOF); - fNodes->Add(node); - } // Holes for RICH detector - -if ((nodeNum<8 || nodeNum>12) && nodeNum !=1 && nodeNum!=2 && nodeNum !=18) - { - top->cd(); - node = new TNode(nodeName4,nodeName4,"S_TOF_A",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),0.,rotMatNum); - node->SetLineColor(kColorTOF); - fNodes->Add(node); - } // Holes for PHOS detector (+ Holes for RICH detector, central part) + + if (nodeNum<10) { + sprintf(rotMatNum,"rot50%i",nodeNum); + sprintf(nodeName0,"FTO00%i",nodeNum); + sprintf(nodeName1,"FTO10%i",nodeNum); + sprintf(nodeName2,"FTO20%i",nodeNum); + sprintf(nodeName3,"FTO30%i",nodeNum); + sprintf(nodeName4,"FTO40%i",nodeNum); + } + if (nodeNum>9) { + sprintf(rotMatNum,"rot5%i",nodeNum); + sprintf(nodeName0,"FTO0%i",nodeNum); + sprintf(nodeName1,"FTO1%i",nodeNum); + sprintf(nodeName2,"FTO2%i",nodeNum); + sprintf(nodeName3,"FTO3%i",nodeNum); + sprintf(nodeName4,"FTO4%i",nodeNum); + } + + new TRotMatrix(rotMatNum,rotMatNum,90,-20*nodeNum,90,90-20*nodeNum,0,0); + ang = (4.5-nodeNum) * kangle; + + top->cd(); + node = new TNode(nodeName0,nodeName0,"S_TOF_C",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),zOffsetC,rotMatNum); + node->SetLineColor(kColorTOF); + fNodes->Add(node); + + top->cd(); + node = new TNode(nodeName1,nodeName1,"S_TOF_C",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),-zOffsetC,rotMatNum); + node->SetLineColor(kColorTOF); + fNodes->Add(node); + if (nodeNum !=1 && nodeNum!=17 && nodeNum !=18) + { + top->cd(); + node = new TNode(nodeName2,nodeName2,"S_TOF_B",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),zOffsetB,rotMatNum); + node->SetLineColor(kColorTOF); + fNodes->Add(node); + + top->cd(); + node = new TNode(nodeName3,nodeName3,"S_TOF_B",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),-zOffsetB,rotMatNum); + node->SetLineColor(kColorTOF); + fNodes->Add(node); + } // Holes for RICH detector + + if ((nodeNum<7 || nodeNum>11) && nodeNum !=1 && nodeNum!=17 && nodeNum !=18) + { + top->cd(); + node = new TNode(nodeName4,nodeName4,"S_TOF_A",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),zOffsetA,rotMatNum); + node->SetLineColor(kColorTOF); + fNodes->Add(node); + } // Holes for PHOS detector (+ Holes for RICH detector, central part) } // end loop on nodeNum } @@ -230,43 +240,43 @@ void AliTOFv2FHoles::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, gMC->Gsvolu("FTOA", "BOX ", idtmed[506], par, 3); -// Positioning of modules - - Float_t zcor1 = ztof0 - zlenC*0.5; - Float_t zcor2 = ztof0 - zlenC - zlenB*0.5; - Float_t zcor3 = 0.00; - Float_t zcor4 = 156.75 - zlenC*0.5; - Float_t zcor5 = -156.75 + zlenB*0.5; - - AliMatrix(idrotm[0], 90., 0., 0., 0., 90,-90.); - AliMatrix(idrotm[1], 90.,180., 0., 0., 90, 90.); - gMC->Gspos("FTOC", 1, "BTO1", 0, zcor1, 0, idrotm[0], "ONLY"); - gMC->Gspos("FTOC", 2, "BTO1", 0, -zcor1, 0, idrotm[1], "ONLY"); - gMC->Gspos("FTOC", 1, "BTO2", 0, zcor4, 0, idrotm[0], "ONLY"); - gMC->Gspos("FTOC", 1, "BTO3", 0, 0., 0, idrotm[0], "ONLY"); - - gMC->Gspos("FTOB", 1, "BTO1", 0, zcor2, 0, idrotm[0], "ONLY"); - gMC->Gspos("FTOB", 2, "BTO1", 0, -zcor2, 0, idrotm[1], "ONLY"); - gMC->Gspos("FTOB", 1, "BTO2", 0, zcor5, 0, idrotm[0], "ONLY"); - - gMC->Gspos("FTOA", 0, "BTO1", 0, zcor3, 0, idrotm[0], "ONLY"); + // Positioning of modules + Float_t zcor1 = ztof0 - zlenC*0.5; + Float_t zcor2 = ztof0 - zlenC - zlenB*0.5; + Float_t zcor3 = 0.00; + Float_t zcor4 = 156.75 - zlenC*0.5; + Float_t zcor5 = -156.75 + zlenB*0.5; + + AliMatrix(idrotm[0], 90., 0., 0., 0., 90,-90.); + AliMatrix(idrotm[1], 90.,180., 0., 0., 90, 90.); + gMC->Gspos("FTOC", 1, "BTO1", 0, zcor1, 0, idrotm[0], "ONLY"); + gMC->Gspos("FTOC", 2, "BTO1", 0, -zcor1, 0, idrotm[1], "ONLY"); + gMC->Gspos("FTOC", 1, "BTO2", 0, zcor4, 0, idrotm[0], "ONLY"); + gMC->Gspos("FTOC", 1, "BTO3", 0, 0., 0, idrotm[0], "ONLY"); + + gMC->Gspos("FTOB", 1, "BTO1", 0, zcor2, 0, idrotm[0], "ONLY"); + gMC->Gspos("FTOB", 2, "BTO1", 0, -zcor2, 0, idrotm[1], "ONLY"); + gMC->Gspos("FTOB", 1, "BTO2", 0, zcor5, 0, idrotm[0], "ONLY"); + + gMC->Gspos("FTOA", 0, "BTO1", 0, zcor3, 0, idrotm[0], "ONLY"); + Float_t db = 0.5;//cm Float_t xFLT, xFST, yFLT, zFLTA, zFLTB, zFLTC; - + xFLT = fStripLn; yFLT = ytof; zFLTA = zlenA; zFLTB = zlenB; zFLTC = zlenC; - + xFST = xFLT-fDeadBndX*2; //cm - -// Sizes of MRPC pads - + + // Sizes of MRPC pads + Float_t yPad = 0.505; //cm -// Large not sensitive volumes with Insensitive Freon + // Large not sensitive volumes with Insensitive Freon par[0] = xFLT*0.5; par[1] = yFLT*0.5; @@ -274,24 +284,27 @@ void AliTOFv2FHoles::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, cout <Gsvolu("FLTA", "BOX ", idtmed[512], par, 3); // Insensitive Freon gMC->Gspos ("FLTA", 0, "FTOA", 0., 0., 0., 0, "ONLY"); - + par[2] = (zFLTB * 0.5); gMC->Gsvolu("FLTB", "BOX ", idtmed[512], par, 3); // Insensitive Freon gMC->Gspos ("FLTB", 0, "FTOB", 0., 0., 0., 0, "ONLY"); - + par[2] = (zFLTC * 0.5); gMC->Gsvolu("FLTC", "BOX ", idtmed[512], par, 3); // Insensitive Freon gMC->Gspos ("FLTC", 0, "FTOC", 0., 0., 0., 0, "ONLY"); -////////// Layers of Aluminum before and after detector ////////// -////////// Aluminum Box for Modules (2.0 mm thickness) ///////// -////////// lateral walls not simulated + ///// Layers of Aluminum before and after detector ///// + ///// Aluminum Box for Modules (1.8 mm thickness) ///// + ///// lateral walls not simulated for the time being + //const Float_t khAlWall = 0.18; + // fp to be checked + const Float_t khAlWall = 0.11; par[0] = xFLT*0.5; - par[1] = 0.1;//cm + par[1] = khAlWall/2.;//cm ycoor = -yFLT/2 + par[1]; par[2] = (zFLTA *0.5); gMC->Gsvolu("FALA", "BOX ", idtmed[508], par, 3); // Alluminium @@ -306,10 +319,10 @@ void AliTOFv2FHoles::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, gMC->Gspos ("FALC", 1, "FLTC", 0., ycoor, 0., 0, "ONLY"); gMC->Gspos ("FALC", 2, "FLTC", 0.,-ycoor, 0., 0, "ONLY"); -///////////////// Detector itself ////////////////////// - + ///////////////// Detector itself ////////////////////// + const Float_t kdeadBound = fDeadBndZ; //cm non-sensitive between the pad edge - //and the boundary of the strip + //and the boundary of the strip const Int_t knx = fNpadX; // number of pads along x const Int_t knz = fNpadZ; // number of pads along z const Float_t kspace = fSpace; //cm distance from the front plate of the box @@ -321,14 +334,14 @@ void AliTOFv2FHoles::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, par[1] = yPad*0.5; par[2] = stripWidth*0.5; -// new description for strip volume -double stack strip- -// -- all constants are expressed in cm -// heigth of different layers - const Float_t khhony = 1. ; // heigth of HONY Layer - const Float_t khpcby = 0.15 ; // heigth of PCB Layer + // new description for strip volume -double stack strip- + // -- all constants are expressed in cm + // heigth of different layers + const Float_t khhony = 0.8 ; // heigth of HONY Layer + const Float_t khpcby = 0.08 ; // heigth of PCB Layer const Float_t khmyly = 0.035 ; // heigth of MYLAR Layer const Float_t khgraphy = 0.02 ; // heigth of GRAPHITE Layer - const Float_t khglasseiy = 0.17; // 0.6 Ext. Glass + 1.1 i.e. (Int. Glass/2) (mm) + const Float_t khglasseiy = 0.135; // 0.6 Ext. Glass + 1.1 i.e. (Int. Glass/2) (mm) const Float_t khsensmy = 0.11 ; // heigth of Sensitive Freon Mixture const Float_t kwsensmz = 2*3.5 ; // cm const Float_t klsensmx = 48*2.5; // cm @@ -343,24 +356,24 @@ void AliTOFv2FHoles::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, const Float_t klstripx = 122.; Float_t parfp[3]={klstripx*0.5,khstripy*0.5,kwstripz*0.5}; -// coordinates of the strip center in the strip reference frame; used for positioning -// internal strip volumes + // coordinates of the strip center in the strip reference frame; used for positioning + // internal strip volumes Float_t posfp[3]={0.,0.,0.}; - + // FSTR volume definition and filling this volume with non sensitive Gas Mixture gMC->Gsvolu("FSTR","BOX",idtmed[512],parfp,3); //-- HONY Layer definition -// parfp[0] = -1; + // parfp[0] = -1; parfp[1] = khhony*0.5; -// parfp[2] = -1; + // parfp[2] = -1; gMC->Gsvolu("FHON","BOX",idtmed[503],parfp,3); // positioning 2 HONY Layers on FSTR volume - + posfp[1]=-khstripy*0.5+parfp[1]; gMC->Gspos("FHON",1,"FSTR",0., posfp[1],0.,0,"ONLY"); gMC->Gspos("FHON",2,"FSTR",0.,-posfp[1],0.,0,"ONLY"); - + //-- PCB Layer definition parfp[1] = khpcby*0.5; gMC->Gsvolu("FPCB","BOX",idtmed[504],parfp,3); @@ -371,8 +384,6 @@ void AliTOFv2FHoles::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, // positioning the central PCB layer gMC->Gspos("FPCB",3,"FSTR",0.,0.,0.,0,"ONLY"); - - //-- MYLAR Layer definition parfp[1] = khmyly*0.5; gMC->Gsvolu("FMYL","BOX",idtmed[511],parfp,3); @@ -384,8 +395,8 @@ void AliTOFv2FHoles::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, posfp[1] = khpcby*0.5+parfp[1]; gMC->Gspos("FMYL",3,"FSTR",0., posfp[1],0.,0,"ONLY"); gMC->Gspos("FMYL",4,"FSTR",0.,-posfp[1],0.,0,"ONLY"); - - + + //-- Graphite Layer definition parfp[1] = khgraphy*0.5; gMC->Gsvolu("FGRP","BOX",idtmed[502],parfp,3); @@ -397,8 +408,8 @@ void AliTOFv2FHoles::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, posfp[1] = khpcby*0.5+khmyly+parfp[1]; gMC->Gspos("FGRP",3,"FSTR",0., posfp[1],0.,0,"ONLY"); gMC->Gspos("FGRP",4,"FSTR",0.,-posfp[1],0.,0,"ONLY"); - - + + //-- Glass (EXT. +Semi INT.) Layer definition parfp[1] = khglasseiy*0.5; gMC->Gsvolu("FGLA","BOX",idtmed[514],parfp,3); @@ -410,7 +421,7 @@ void AliTOFv2FHoles::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, posfp[1] = khpcby*0.5+khmyly+khgraphy+parfp[1]; gMC->Gspos("FGLA",3,"FSTR",0., posfp[1],0.,0,"ONLY"); gMC->Gspos("FGLA",4,"FSTR",0.,-posfp[1],0.,0,"ONLY"); - + //-- Sensitive Mixture Layer definition parfp[0] = klsensmx*0.5; @@ -424,7 +435,7 @@ void AliTOFv2FHoles::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, posfp[1] = khpcby*0.5+khmyly+khgraphy+khglasseiy+parfp[1]; gMC->Gspos("FNSE",0,"FSTR", 0., posfp[1],0.,0,"ONLY"); gMC->Gspos("FSEN",0,"FSTR", 0.,-posfp[1],0.,0,"ONLY"); - + // dividing FSEN along z in knz=2 and along x in knx=48 gMC->Gsdvn("FSEZ","FSEN",knz,3); gMC->Gsdvn("FSEX","FSEZ",knx,1); @@ -437,99 +448,103 @@ void AliTOFv2FHoles::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, // positioning the FPAD volumes on previous divisions gMC->Gspos("FPAD",0,"FSEX",0.,0.,0.,0,"ONLY"); -//// Positioning the Strips (FSTR) in the FLT volumes ///// - + //// Positioning the Strips (FSTR) in the FLT volumes ///// + // Plate A (Central) Float_t t = zFLTC+zFLTB+zFLTA*0.5+ 2*db;//Half Width of Barrel - - // Float_t gap = fGapA; //cm distance between the strip axis - // to avoid overlaps - Float_t gap = fGapA+1.; //cm distance between the strip axis + + Float_t gap = fGapA+1.; //cm updated distance between the strip axis + // 1 cm is a special value exclusively for AliTOFv2FHoles geometry Float_t zpos = 0; Float_t ang = 0; - Int_t i=1,j=1; + Int_t j=1; // AdC nrot = 0; zcoor = 0; ycoor = -14.5 + kspace ; //2 cm over front plate - + AliMatrix (idrotm[0], 90., 0.,90.,90.,0., 90.); - gMC->Gspos("FSTR",j,"FLTA",0.,ycoor, 0.,idrotm[0],"ONLY"); - if(fDebug) { - printf("%s: %f, St. %2i, Pl.3 ",ClassName(),ang*kRaddeg,i); - printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos); - } + Int_t centerLoc= (Int_t)(fNStripA/2.) + 1; // AdC + //gMC->Gspos("FSTR",j,"FLTA",0.,ycoor, 0.,idrotm[0],"ONLY"); + gMC->Gspos("FSTR",centerLoc,"FLTA",0.,ycoor, 0.,idrotm[0],"ONLY"); // AdC + if(fDebug>=1) { + printf("%s: %f, St. %2i, Pl.3 ",ClassName(),ang*kRaddeg,j); // AdC + printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos); + } + zcoor -= zSenStrip; - j++; + //j++; // AdC Int_t upDown = -1; // upDown=-1 -> Upper strip // upDown=+1 -> Lower strip do{ - ang = atan(zcoor/radius); - ang *= kRaddeg; - AliMatrix (idrotm[nrot], 90., 0.,90.-ang,90.,-ang, 90.); - AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang, 90.); - ang /= kRaddeg; - ycoor = -14.5+ kspace; //2 cm over front plate - ycoor += (1-(upDown+1)/2)*gap; - gMC->Gspos("FSTR",j ,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY"); - gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY"); - - if(fDebug) { - printf("%s: %f, St. %2i, Pl.3 ",ClassName(),ang*kRaddeg,i); - printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos); - } - - j += 2; - upDown*= -1; // Alternate strips - zcoor = zcoor-(zSenStrip/2)/TMath::Cos(ang)- - upDown*gap*TMath::Tan(ang)- - (zSenStrip/2)/TMath::Cos(ang); + ang = atan(zcoor/radius); + ang *= kRaddeg; + AliMatrix (idrotm[nrot], 90., 0.,90.-ang,90.,-ang, 90.); + AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang, 90.); + ang /= kRaddeg; + ycoor = -14.5+ kspace; //2 cm over front plate + ycoor += (1-(upDown+1)/2)*gap; + //gMC->Gspos("FSTR",j ,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY"); + //gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY"); + gMC->Gspos("FSTR",centerLoc-j,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY"); // AdC + gMC->Gspos("FSTR",centerLoc+j,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY"); // AdC + if(fDebug>=1) { + printf("%s: %f, St. %2i, Pl.3 ",ClassName(),ang*kRaddeg,j); // AdC + printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos); + } + + j++; //j += 2; // AdC + upDown*= -1; // Alternate strips + zcoor = zcoor-(zSenStrip/2)/TMath::Cos(ang)- + upDown*gap*TMath::Tan(ang)- + (zSenStrip/2)/TMath::Cos(ang); } while (zcoor-(stripWidth/2)*TMath::Cos(ang)>-t+zFLTC+zFLTB+db*2); zcoor = zcoor+(zSenStrip/2)/TMath::Cos(ang)+ - upDown*gap*TMath::Tan(ang)+ - (zSenStrip/2)/TMath::Cos(ang); - + upDown*gap*TMath::Tan(ang)+ + (zSenStrip/2)/TMath::Cos(ang); + gap = fGapB; zcoor = zcoor-(zSenStrip/2)/TMath::Cos(ang)- - upDown*gap*TMath::Tan(ang)- - (zSenStrip/2)/TMath::Cos(ang); - + upDown*gap*TMath::Tan(ang)- + (zSenStrip/2)/TMath::Cos(ang); + ang = atan(zcoor/radius); ang *= kRaddeg; AliMatrix (idrotm[nrot], 90., 0.,90.-ang,90.,-ang, 90.); AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang, 90.); ang /= kRaddeg; - + ycoor = -14.5+ kspace; //2 cm over front plate ycoor += (1-(upDown+1)/2)*gap; - + /* for FRAME v0 - gMC->Gspos("FSTR",j ,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY"); - gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY"); + //gMC->Gspos("FSTR",j ,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY"); + //gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY"); + gMC->Gspos("FSTR",centerLoc-j,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY"); // AdC + gMC->Gspos("FSTR",centerLoc+j,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY"); // AdC + if(fDebug>=1) { + printf("%s: %f, St. %2i, Pl.3 ",ClassName(),ang*kRaddeg,j); // AdC + printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos); + } */ - - if(fDebug) { - printf("%s: %f, St. %2i, Pl.3 ",ClassName(),ang*kRaddeg,i); - printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos); - } - + ycoor = -hTof/2.+ kspace;//2 cm over front plate - + // Plate B - + nrot = 0; - i=1; + Int_t i=1; // AdC upDown = 1; Float_t deadRegion = 1.0;//cm zpos = zcoor - (zSenStrip/2)/TMath::Cos(ang)- - upDown*gap*TMath::Tan(ang)- - (zSenStrip/2)/TMath::Cos(ang)- - deadRegion/TMath::Cos(ang); - + upDown*gap*TMath::Tan(ang)- + (zSenStrip/2)/TMath::Cos(ang)- + deadRegion/TMath::Cos(ang); + ang = atan(zpos/radius); ang *= kRaddeg; AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.); @@ -538,142 +553,129 @@ void AliTOFv2FHoles::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, ycoor += (1-(upDown+1)/2)*gap; zcoor = zpos+(zFLTA*0.5+zFLTB*0.5+db); // Moves to the system of the modulus FLTB gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY"); - - if(fDebug) { - printf("%s: %f, St. %2i, Pl.4 ",ClassName(),ang*kRaddeg,i); - printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos); + + if(fDebug>=1) { + printf("%s: %f, St. %2i, Pl.4 ",ClassName(),ang*kRaddeg,i); + printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos); } - + i++; upDown*=-1; - + do { - zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)- - upDown*gap*TMath::Tan(ang)- - (zSenStrip/2)/TMath::Cos(ang); - ang = atan(zpos/radius); - ang *= kRaddeg; - AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.); - ang /= kRaddeg; - ycoor = -hTof*0.5+ kspace ; //2 cm over front plate - ycoor += (1-(upDown+1)/2)*gap; - zcoor = zpos+(zFLTA*0.5+zFLTB*0.5+db); // Moves to the system of the modulus FLTB - gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY"); - - if(fDebug) { - printf("%s: %f, St. %2i, Pl.4 ",ClassName(),ang*kRaddeg,i); - printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos); - } - - upDown*=-1; - i++; + zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)- + upDown*gap*TMath::Tan(ang)- + (zSenStrip/2)/TMath::Cos(ang); + ang = atan(zpos/radius); + ang *= kRaddeg; + AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.); + ang /= kRaddeg; + ycoor = -hTof*0.5+ kspace ; //2 cm over front plate + ycoor += (1-(upDown+1)/2)*gap; + zcoor = zpos+(zFLTA*0.5+zFLTB*0.5+db); // Moves to the system of the modulus FLTB + gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY"); + if(fDebug>=1) { + printf("%s: %f, St. %2i, Pl.4 ",ClassName(),ang*kRaddeg,i); + printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos); + } + + upDown*=-1; + i++; } while (TMath::Abs(ang*kRaddeg)<22.5); //till we reach a tilting angle of 22.5 degrees - + ycoor = -hTof*0.5+ kspace ; //2 cm over front plate zpos = zpos - zSenStrip/TMath::Cos(ang); - + // this avoid overlaps in between outer strips in plate B + Float_t deltaMovingUp=0.8; // [cm] + //Float_t deltaMovingDown=-0.0; // [cm] special value for AliTOFv2FHoles + do { - ycoor+=0.6; // fp to avoid overlaps - ang = atan(zpos/radius); - ang *= kRaddeg; - AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.); - ang /= kRaddeg; - // zcoor = zpos+(zFLTB/2+zFLTA/2+db)+1.; // fp to avoid overlaps - zcoor = zpos+(zFLTB/2+zFLTA/2+db); - gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY"); - zpos = zpos - zSenStrip/TMath::Cos(ang); - if(fDebug) { - printf("%s: %f, St. %2i, Pl.4 ",ClassName(),ang*kRaddeg,i); - printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos); - } - i++; - + ang = atan(zpos/radius); + ang *= kRaddeg; + AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.); + ang /= kRaddeg; + zcoor = zpos+(zFLTB/2+zFLTA/2+db); + gMC->Gspos("FSTR",i, "FLTB", 0., ycoor+deltaMovingUp, zcoor,idrotm[nrot], "ONLY"); + deltaMovingUp+=0.8; // update delta moving toward the end of the plate + zpos = zpos - zSenStrip/TMath::Cos(ang); + if(fDebug>=1) { + printf("%s: %f, St. %2i, Pl.4 ",ClassName(),ang*kRaddeg,i); + printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos); + } + i++; + } while (zpos-stripWidth*0.5/TMath::Cos(ang)>-t+zFLTC+db); - + // Plate C zpos = zpos + zSenStrip/TMath::Cos(ang); - + zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)+ - gap*TMath::Tan(ang)- - (zSenStrip/2)/TMath::Cos(ang); - + gap*TMath::Tan(ang)- + (zSenStrip/2)/TMath::Cos(ang); + nrot = 0; i=0; - ycoor= -hTof*0.5+kspace+gap; - + Float_t deltaGap=-2.5; // [cm] update distance from strip center and plate + ycoor= -hTof*0.5+kspace+gap+deltaGap; + do { - i++; - ang = atan(zpos/radius); - ang *= kRaddeg; - AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.); - ang /= kRaddeg; - zcoor = zpos+(zFLTC*0.5+zFLTB+zFLTA*0.5+db*2); - if (i!=1) - gMC->Gspos("FSTR",i, "FLTC", 0., ycoor, zcoor,idrotm[nrot], "ONLY"); - - if(fDebug) { - printf("%s: %f, St. %2i, Pl.5 ",ClassName(),ang*kRaddeg,i); - printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos); - } - - zpos = zpos - zSenStrip/TMath::Cos(ang); + i++; + ang = atan(zpos/radius); + ang *= kRaddeg; + AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.); + ang /= kRaddeg; + zcoor = zpos+(zFLTC*0.5+zFLTB+zFLTA*0.5+db*2); + if (i!=1) + gMC->Gspos("FSTR",i, "FLTC", 0., ycoor, zcoor,idrotm[nrot], "ONLY"); + if(fDebug>=1) { + printf("%s: %f, St. %2i, Pl.5 ",ClassName(),ang*kRaddeg,i); + printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos); + } + + zpos = zpos - zSenStrip/TMath::Cos(ang); } while (zpos-stripWidth*TMath::Cos(ang)*0.5>-t); - - -////////// Layers after strips ///////////////// -// honeycomb (Polyethilene) Layer after (1.2cm) - + + + ////////// Layers after strips ///////////////// + // Al Layer thickness (2.3mm) factor 0.7 + Float_t overSpace = fOverSpc;//cm - + par[0] = xFLT*0.5; - par[1] = 0.6; + par[1] = 0.115*0.7; // factor 0.7 par[2] = (zFLTA *0.5); ycoor = -yFLT/2 + overSpace + par[1]; - gMC->Gsvolu("FPEA", "BOX ", idtmed[503], par, 3); // Hony + gMC->Gsvolu("FPEA", "BOX ", idtmed[508], par, 3); // Al gMC->Gspos ("FPEA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); par[2] = (zFLTB *0.5); - gMC->Gsvolu("FPEB", "BOX ", idtmed[503], par, 3); // Hony + gMC->Gsvolu("FPEB", "BOX ", idtmed[508], par, 3); // Al gMC->Gspos ("FPEB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); par[2] = (zFLTC *0.5); - gMC->Gsvolu("FPEC", "BOX ", idtmed[503], par, 3); // Hony + gMC->Gsvolu("FPEC", "BOX ", idtmed[508], par, 3); // Al gMC->Gspos ("FPEC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); -// Electronics (Cu) after + + // plexiglass thickness: 1.5 mm ; factor 0.3 ycoor += par[1]; par[0] = xFLT*0.5; - par[1] = 1.43*0.05*0.5; // 5% of X0 + par[1] = 0.075*0.3; // factor 0.3 par[2] = (zFLTA *0.5); ycoor += par[1]; - gMC->Gsvolu("FECA", "BOX ", idtmed[501], par, 3); // Cu + gMC->Gsvolu("FECA", "BOX ", idtmed[505], par, 3); // Plexigl. gMC->Gspos ("FECA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); par[2] = (zFLTB *0.5); - gMC->Gsvolu("FECB", "BOX ", idtmed[501], par, 3); // Cu + gMC->Gsvolu("FECB", "BOX ", idtmed[505], par, 3); // Plexigl. gMC->Gspos ("FECB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); par[2] = (zFLTC *0.5); - gMC->Gsvolu("FECC", "BOX ", idtmed[501], par, 3); // Cu + gMC->Gsvolu("FECC", "BOX ", idtmed[505], par, 3); // Plexigl. gMC->Gspos ("FECC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); - -// cooling WAter after - ycoor += par[1]; - par[0] = xFLT*0.5; - par[1] = 36.1*0.02*0.5; // 2% of X0 - par[2] = (zFLTA *0.5); - ycoor += par[1]; - gMC->Gsvolu("FWAA", "BOX ", idtmed[515], par, 3); // Water - gMC->Gspos ("FWAA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); - par[2] = (zFLTB *0.5); - gMC->Gsvolu("FWAB", "BOX ", idtmed[515], par, 3); // Water - gMC->Gspos ("FWAB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); - par[2] = (zFLTC *0.5); - gMC->Gsvolu("FWAC", "BOX ", idtmed[515], par, 3); // Water - gMC->Gspos ("FWAC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); - -// frame of Air + + // frame of Air ycoor += par[1]; par[0] = xFLT*0.5; - par[1] = (yFLT/2-ycoor-0.2)*0.5; // Aluminum layer considered (0.2 cm) + par[1] = (yFLT/2-ycoor-khAlWall)*0.5; // Aluminum layer considered (0.18 cm) par[2] = (zFLTA *0.5); ycoor += par[1]; gMC->Gsvolu("FAIA", "BOX ", idtmed[500], par, 3); // Air @@ -684,19 +686,110 @@ void AliTOFv2FHoles::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, par[2] = (zFLTC *0.5); gMC->Gsvolu("FAIC", "BOX ", idtmed[500], par, 3); // Air gMC->Gspos ("FAIC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); -/* fp -//Back Plate honycomb (2cm) - par[0] = -1; - par[1] = 2 *0.5; - par[2] = -1; - ycoor = yFLT/2 - par[1]; - gMC->Gsvolu("FBPA", "BOX ", idtmed[503], par, 3); // Hony - gMC->Gspos ("FBPA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); - gMC->Gsvolu("FBPB", "BOX ", idtmed[503], par, 3); // Hony - gMC->Gspos ("FBPB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); - gMC->Gsvolu("FBPC", "BOX ", idtmed[503], par, 3); // Hony - gMC->Gspos ("FBPC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); -fp */ + + + // start with cards and cooling tubes + // finally, cards, cooling tubes and layer for thermal dispersion + // 3 volumes + // card volume definition + + // see GEOM200 in GEANT manual + AliMatrix(idrotm[98], 90., 0., 90., 90., 0., 0.); // 0 deg + + Float_t cardpar[3]; + cardpar[0]= 61.; + cardpar[1]= 5.; + cardpar[2]= 0.1; + gMC->Gsvolu("FCAR", "BOX ", idtmed[504], cardpar, 3); // PCB Card + //alu plate volume definition + cardpar[1]= 3.5; + cardpar[2]= 0.05; + gMC->Gsvolu("FALP", "BOX ", idtmed[508], cardpar, 3); // Alu Plate + + + // central module positioning (FAIA) + Float_t cardpos[3], aplpos2, stepforcardA=6.89; + cardpos[0]= 0.; + cardpos[1]= -0.5; + cardpos[2]= -62.; + Float_t aplpos1 = -2.; + Int_t icard; + for (icard=0; icard<17; ++icard) { + cardpos[2]= cardpos[2]+stepforcardA; + aplpos2 = cardpos[2]+0.15; + gMC->Gspos("FCAR",icard,"FAIA",cardpos[0],cardpos[1],cardpos[2],idrotm[98],"ONLY"); + gMC->Gspos("FALP",icard,"FAIA",cardpos[0],aplpos1,aplpos2,idrotm[98],"ONLY"); + + } + + + // intermediate module positioning (FAIB) + Float_t stepforcardB= 7.05; + cardpos[2]= -70.5; + for (icard=0; icard<19; ++icard) { + cardpos[2]= cardpos[2]+stepforcardB; + aplpos2 = cardpos[2]+0.15; + gMC->Gspos("FCAR",icard,"FAIB",cardpos[0],cardpos[1],cardpos[2],idrotm[98],"ONLY"); + gMC->Gspos("FALP",icard,"FAIB",cardpos[0],aplpos1,aplpos2,idrotm[98],"ONLY"); + } + + + // outer module positioning (FAIC) + Float_t stepforcardC= 8.45238; + cardpos[2]= -79.75; + for (icard=0; icard<17; ++icard) { + cardpos[2]= cardpos[2]+stepforcardC; + aplpos2 = cardpos[2]+0.15; + gMC->Gspos("FCAR",icard,"FAIC",cardpos[0],cardpos[1],cardpos[2],idrotm[98],"ONLY"); + gMC->Gspos("FALP",icard,"FAIC",cardpos[0],aplpos1,aplpos2,idrotm[98],"ONLY"); + } + + // tube volume definition + Float_t tubepar[3]; + tubepar[0]= 0.; + tubepar[1]= 0.4; + tubepar[2]= 61.; + gMC->Gsvolu("FTUB", "TUBE", idtmed[516], tubepar, 3); // cooling tubes (steel) + tubepar[0]= 0.; + tubepar[1]= 0.35; + tubepar[2]= 61.; + gMC->Gsvolu("FITU", "TUBE", idtmed[515], tubepar, 3); // cooling water + // positioning water tube into the steel one + gMC->Gspos("FITU",1,"FTUB",0.,0.,0.,0,"ONLY"); + + + // rotation matrix + AliMatrix(idrotm[99], 180., 90., 90., 90., 90., 0.); + // central module positioning (FAIA) + Float_t tubepos[3], tdis=0.6; + tubepos[0]= 0.; + tubepos[1]= cardpos[1]; + tubepos[2]= -62.+tdis; + // tub1pos = 5.; + Int_t itub; + for (itub=0; itub<17; ++itub) { + tubepos[2]= tubepos[2]+stepforcardA; + gMC->Gspos("FTUB",itub,"FAIA",tubepos[0],tubepos[1],tubepos[2],idrotm[99], + "ONLY"); + } + + + // intermediate module positioning (FAIB) + tubepos[2]= -70.5+tdis; + for (itub=0; itub<19; ++itub) { + tubepos[2]= tubepos[2]+stepforcardB; + gMC->Gspos("FTUB",itub,"FAIB",tubepos[0],tubepos[1],tubepos[2],idrotm[99], + "ONLY"); + } + + // outer module positioning (FAIC) + tubepos[2]= -79.75+tdis; + for (itub=0; itub<17; ++itub) { + tubepos[2]= tubepos[2]+stepforcardC; + gMC->Gspos("FTUB",itub,"FAIC",tubepos[0],tubepos[1],tubepos[2],idrotm[99], + "ONLY"); + } + } //_____________________________________________________________________________ @@ -754,10 +847,8 @@ void AliTOFv2FHoles::DrawDetectorModules() // Draw a shaded view of the TOF detector version 2 // - AliMC* pMC = AliMC::GetMC(); - //Set ALIC mother transparent - pMC->Gsatt("ALIC","SEEN",0); + gMC->Gsatt("ALIC","SEEN",0); // //Set volumes visible @@ -827,10 +918,8 @@ void AliTOFv2FHoles::DrawDetectorStrips() // Draw a shaded view of the TOF strips for version 2 // - AliMC* pMC = AliMC::GetMC(); - //Set ALIC mother transparent - pMC->Gsatt("ALIC","SEEN",0); + gMC->Gsatt("ALIC","SEEN",0); // //Set volumes visible @@ -1040,19 +1129,29 @@ void AliTOFv2FHoles::StepManager() if (z <-(fZlenA*0.5+fZlenB)) plate = 1; end to be changed */ - if (TMath::Abs(z) <= 124.*0.5) plate = 3; + if (TMath::Abs(z) <= 124.*0.5) plate = 2; //3; // AdC if (z < (124.*0.5+154.) && - z > 124.*0.5) plate = 4; + z > 124.*0.5) plate = 1; //4; // AdC if (z >-(124.*0.5+154.) && - z < -124.*0.5) plate = 2; - if (z > (124.*0.5+154.)) plate = 5; - if (z <-(124.*0.5+154.)) plate = 1; + z < -124.*0.5) plate = 3; //2; // AdC + if (z > (124.*0.5+154.)) plate = 0; //5; // AdC + if (z <-(124.*0.5+154.)) plate = 4; //1; // AdC + + if (plate==0) strip=AliTOFConstants::fgkNStripC-strip; // AdC + else if (plate==1) strip=AliTOFConstants::fgkNStripB-strip; // AdC + else strip--; // AdC + + if (z<=0.) padx=AliTOFConstants::fgkNpadX-padx; // AdC + else padx--; // AdC + if (plate==3 || plate==4) padz=AliTOFConstants::fgkNpadZ-padz; // AdC + else padz--; // AdC phi = pos.Phi(); - phid = phi*kRaddeg+180.; + if (phi>=0.) phid = phi*kRaddeg; //+180.; // AdC + else phid = phi*kRaddeg + 360.; // AdC sector = Int_t (phid/20.); - sector++; + //sector++; // AdC for(i=0;i<3;++i) { hits[i] = pos[i]; @@ -1073,6 +1172,6 @@ void AliTOFv2FHoles::StepManager() vol[3]= padx; vol[4]= padz; - AddHit(gAlice->CurrentTrack(),vol, hits); + AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(),vol, hits); } }