X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=TOF%2FAliTOFv4.cxx;h=777a6aaf449a38f95d02da446f5b957a2e66f905;hb=b94fa26cbe4d8014e34a625e3924d35d0abdad4b;hp=17eb7199f8a16379f50043d05c05290f561b72ec;hpb=60c37015ed442265b01120b52530cbc74bda542a;p=u%2Fmrichter%2FAliRoot.git diff --git a/TOF/AliTOFv4.cxx b/TOF/AliTOFv4.cxx index 17eb7199f8a..777a6aaf449 100644 --- a/TOF/AliTOFv4.cxx +++ b/TOF/AliTOFv4.cxx @@ -15,6 +15,9 @@ /* $Log$ +Revision 1.8 2000/12/04 08:48:20 alibrary +Fixing problems in the HEAD + Revision 1.7 2000/10/02 21:28:17 fca Removal of useless dependecies via forward declarations @@ -65,6 +68,9 @@ Introduction of the Copyright and cvs Log // // University of Salerno - Italy // +// Fabrizio Pierella +// University of Bologna - Italy +// // //Begin_Html /* @@ -108,97 +114,122 @@ AliTOFv4::AliTOFv4(const char *name, const char *title) // // Check that FRAME is there otherwise we have no place where to // put TOF - AliModule* FRAME=gAlice->GetModule("FRAME"); - if(!FRAME) { + AliModule* frame=gAlice->GetModule("FRAME"); + if(!frame) { Error("Ctor","TOF needs FRAME to be present\n"); exit(1); } else - if(FRAME->IsVersion()!=1) { + if(frame->IsVersion()!=1) { Error("Ctor","FRAME version 1 needed with this version of TOF\n"); exit(1); } } +//____________________________________________________________________________ +AliTOFv4::~AliTOFv4() +{ + // destructor + + if ( fHits) { + fHits->Delete() ; + delete fHits ; + fHits = 0 ; + } +/* + if ( fSDigits) { + fSDigits->Delete() ; + delete fSDigits ; + fSDigits = 0 ; + } +*/ + if ( fDigits) { + fDigits->Delete() ; + delete fDigits ; + fDigits = 0 ; + } + +} + //_____________________________________________________________________________ void AliTOFv4::BuildGeometry() { // // Build TOF ROOT geometry for the ALICE event display // - TNode *Node, *Top; + TNode *node, *top; const int kColorTOF = 27; // Find top TNODE - Top = gAlice->GetGeometry()->GetNode("alice"); + top = gAlice->GetGeometry()->GetNode("alice"); // Position the different copies - const Float_t rTof =(fRmax+fRmin)/2; - const Float_t hTof = fRmax-fRmin; - const Int_t fNTof = 18; + const Float_t krTof =(fRmax+fRmin)/2; + const Float_t khTof = fRmax-fRmin; + const Int_t kNTof = fNTof; const Float_t kPi = TMath::Pi(); - const Float_t angle = 2*kPi/fNTof; + const Float_t kangle = 2*kPi/kNTof; Float_t ang; // Define TOF basic volume - char NodeName0[6], NodeName1[6], NodeName2[6]; - char NodeName3[6], NodeName4[6], RotMatNum[6]; + char nodeName0[7], nodeName1[7], nodeName2[7]; + char nodeName3[7], nodeName4[7], rotMatNum[7]; new TBRIK("S_TOF_C","TOF box","void", - 120*0.5,hTof*0.5,fZlenC*0.5); + 120*0.5,khTof*0.5,fZlenC*0.5); new TBRIK("S_TOF_B","TOF box","void", - 120*0.5,hTof*0.5,fZlenB*0.5); + 120*0.5,khTof*0.5,fZlenB*0.5); new TBRIK("S_TOF_A","TOF box","void", - 120*0.5,hTof*0.5,fZlenA*0.5); + 120*0.5,khTof*0.5,fZlenA*0.5); - for (Int_t NodeNum=1;NodeNum<19;NodeNum++){ + for (Int_t nodeNum=1;nodeNum<19;nodeNum++){ - if (NodeNum<10) { - sprintf(RotMatNum,"rot50%i",NodeNum); - sprintf(NodeName0,"FTO00%i",NodeNum); - sprintf(NodeName1,"FTO10%i",NodeNum); - sprintf(NodeName2,"FTO20%i",NodeNum); - sprintf(NodeName3,"FTO30%i",NodeNum); - sprintf(NodeName4,"FTO40%i",NodeNum); + if (nodeNum<10) { + sprintf(rotMatNum,"rot50%i",nodeNum); + sprintf(nodeName0,"FTO00%i",nodeNum); + sprintf(nodeName1,"FTO10%i",nodeNum); + sprintf(nodeName2,"FTO20%i",nodeNum); + sprintf(nodeName3,"FTO30%i",nodeNum); + sprintf(nodeName4,"FTO40%i",nodeNum); } - if (NodeNum>9) { - sprintf(RotMatNum,"rot5%i",NodeNum); - sprintf(NodeName0,"FTO0%i",NodeNum); - sprintf(NodeName1,"FTO1%i",NodeNum); - sprintf(NodeName2,"FTO2%i",NodeNum); - sprintf(NodeName3,"FTO3%i",NodeNum); - sprintf(NodeName4,"FTO4%i",NodeNum); + if (nodeNum>9) { + sprintf(rotMatNum,"rot5%i",nodeNum); + sprintf(nodeName0,"FTO0%i",nodeNum); + sprintf(nodeName1,"FTO1%i",nodeNum); + sprintf(nodeName2,"FTO2%i",nodeNum); + sprintf(nodeName3,"FTO3%i",nodeNum); + sprintf(nodeName4,"FTO4%i",nodeNum); } - new TRotMatrix(RotMatNum,RotMatNum,90,-20*NodeNum,90,90-20*NodeNum,0,0); - ang = (4.5-NodeNum) * angle; - - Top->cd(); - Node = new TNode(NodeName0,NodeName0,"S_TOF_C",rTof*TMath::Cos(ang),rTof*TMath::Sin(ang),299.15,RotMatNum); - Node->SetLineColor(kColorTOF); - fNodes->Add(Node); - - Top->cd(); - Node = new TNode(NodeName1,NodeName1,"S_TOF_C",rTof*TMath::Cos(ang),rTof*TMath::Sin(ang),-299.15,RotMatNum); - Node->SetLineColor(kColorTOF); - fNodes->Add(Node); - - Top->cd(); - Node = new TNode(NodeName2,NodeName2,"S_TOF_B",rTof*TMath::Cos(ang),rTof*TMath::Sin(ang),146.45,RotMatNum); - Node->SetLineColor(kColorTOF); - fNodes->Add(Node); - - Top->cd(); - Node = new TNode(NodeName3,NodeName3,"S_TOF_B",rTof*TMath::Cos(ang),rTof*TMath::Sin(ang),-146.45,RotMatNum); - Node->SetLineColor(kColorTOF); - fNodes->Add(Node); - - Top->cd(); - Node = new TNode(NodeName4,NodeName4,"S_TOF_A",rTof*TMath::Cos(ang),rTof*TMath::Sin(ang),0.,RotMatNum); - Node->SetLineColor(kColorTOF); - fNodes->Add(Node); - } + new TRotMatrix(rotMatNum,rotMatNum,90,-20*nodeNum,90,90-20*nodeNum,0,0); + ang = (4.5-nodeNum) * kangle; + + top->cd(); + node = new TNode(nodeName0,nodeName0,"S_TOF_C",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),299.15,rotMatNum); + node->SetLineColor(kColorTOF); + fNodes->Add(node); + + top->cd(); + node = new TNode(nodeName1,nodeName1,"S_TOF_C",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),-299.15,rotMatNum); + node->SetLineColor(kColorTOF); + fNodes->Add(node); + + top->cd(); + node = new TNode(nodeName2,nodeName2,"S_TOF_B",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),146.45,rotMatNum); + node->SetLineColor(kColorTOF); + fNodes->Add(node); + + top->cd(); + node = new TNode(nodeName3,nodeName3,"S_TOF_B",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),-146.45,rotMatNum); + node->SetLineColor(kColorTOF); + fNodes->Add(node); + + top->cd(); + node = new TNode(nodeName4,nodeName4,"S_TOF_A",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),0.,rotMatNum); + node->SetLineColor(kColorTOF); + fNodes->Add(node); + } // end loop on nodeNum } @@ -229,13 +260,13 @@ void AliTOFv4::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, // xFLT, yFLT, zFLT - sizes of TOF modules (large) Float_t ycoor, zcoor; - Float_t par[10]; + Float_t par[3]; Int_t *idtmed = fIdtmed->GetArray()-499; Int_t idrotm[100]; Int_t nrot = 0; Float_t hTof = fRmax-fRmin; - Float_t Radius = fRmin+2.;//cm + Float_t radius = fRmin+2.;//cm par[0] = xtof * 0.5; par[1] = ytof * 0.5; @@ -288,127 +319,161 @@ void AliTOFv4::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, Float_t yPad = 0.505;//cm -// Large not sensitive volumes with CO2 +// Large not sensitive volumes with Insensitive Freon par[0] = xFLT*0.5; par[1] = yFLT*0.5; - + cout <<"************************* TOF geometry **************************"<Gsvolu("FLTA", "BOX ", idtmed[506], par, 3); // CO2 + gMC->Gsvolu("FLTA", "BOX ", idtmed[512], par, 3); // Insensitive Freon gMC->Gspos ("FLTA", 0, "FTOA", 0., 0., 0., 0, "ONLY"); par[2] = (zFLTB * 0.5); - gMC->Gsvolu("FLTB", "BOX ", idtmed[506], par, 3); // CO2 + gMC->Gsvolu("FLTB", "BOX ", idtmed[512], par, 3); // Insensitive Freon gMC->Gspos ("FLTB", 0, "FTOB", 0., 0., 0., 0, "ONLY"); - par[2] = (zFLTC * 0.5); - gMC->Gsvolu("FLTC", "BOX ", idtmed[506], par, 3); // CO2 + par[2] = (zFLTC * 0.5); + gMC->Gsvolu("FLTC", "BOX ", idtmed[512], par, 3); // Insensitive Freon gMC->Gspos ("FLTC", 0, "FTOC", 0., 0., 0., 0, "ONLY"); - -////////// Layers before detector //////////////////// - -// MYlar layer in front 1.0 mm thick at the beginning - par[0] = -1; + +////////// Layers of Aluminum before and after detector ////////// +////////// Aluminum Box for Modules (2.0 mm thickness) ///////// +////////// lateral walls not simulated + par[0] = xFLT*0.5; par[1] = 0.1;//cm - par[2] = -1; ycoor = -yFLT/2 + par[1]; - gMC->Gsvolu("FMYA", "BOX ", idtmed[508], par, 3); // Alluminium - gMC->Gspos ("FMYA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); - gMC->Gsvolu("FMYB", "BOX ", idtmed[508], par, 3); // Alluminium - gMC->Gspos ("FMYB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); - gMC->Gsvolu("FMYC", "BOX ", idtmed[508], par, 3); // Alluminium - gMC->Gspos ("FMYC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); - -// honeycomb (special Polyethilene Layer of 1cm) - ycoor = ycoor + par[1]; - par[0] = -1; - par[1] = 0.5;//cm - par[2] = -1; - ycoor = ycoor + par[1]; - gMC->Gsvolu("FPLA", "BOX ", idtmed[503], par, 3); // Hony - gMC->Gspos ("FPLA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); - gMC->Gsvolu("FPLB", "BOX ", idtmed[503], par, 3); // Hony - gMC->Gspos ("FPLB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); - gMC->Gsvolu("FPLC", "BOX ", idtmed[503], par, 3); // Hony - gMC->Gspos ("FPLC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); - + par[2] = (zFLTA *0.5); + gMC->Gsvolu("FALA", "BOX ", idtmed[508], par, 3); // Alluminium + gMC->Gspos ("FALA", 1, "FLTA", 0., ycoor, 0., 0, "ONLY"); + gMC->Gspos ("FALA", 2, "FLTA", 0.,-ycoor, 0., 0, "ONLY"); + par[2] = (zFLTB *0.5); + gMC->Gsvolu("FALB", "BOX ", idtmed[508], par, 3); // Alluminium + gMC->Gspos ("FALB", 1, "FLTB", 0., ycoor, 0., 0, "ONLY"); + gMC->Gspos ("FALB", 2, "FLTB", 0.,-ycoor, 0., 0, "ONLY"); + par[2] = (zFLTC *0.5); + gMC->Gsvolu("FALC", "BOX ", idtmed[508], par, 3); // Alluminium + gMC->Gspos ("FALC", 1, "FLTC", 0., ycoor, 0., 0, "ONLY"); + gMC->Gspos ("FALC", 2, "FLTC", 0.,-ycoor, 0., 0, "ONLY"); + ///////////////// Detector itself ////////////////////// - const Float_t DeadBound = fDeadBndZ; //cm non-sensitive between the pad edge + const Float_t kdeadBound = fDeadBndZ; //cm non-sensitive between the pad edge //and the boundary of the strip - const Int_t nx = fNpadX; // number of pads along x - const Int_t nz = fNpadZ; // number of pads along z - const Float_t Space = fSpace; //cm distance from the front plate of the box + const Int_t knx = fNpadX; // number of pads along x + const Int_t knz = fNpadZ; // number of pads along z + const Float_t kspace = fSpace; //cm distance from the front plate of the box Float_t zSenStrip = fZpad*fNpadZ;//cm - Float_t StripWidth = zSenStrip + 2*DeadBound; + Float_t stripWidth = zSenStrip + 2*kdeadBound; par[0] = xFLT*0.5; par[1] = yPad*0.5; - par[2] = StripWidth*0.5; + par[2] = stripWidth*0.5; - // glass layer of detector STRip - gMC->Gsvolu("FSTR","BOX",idtmed[514],par,3); - - // Non-Sesitive Freon boundaries - par[0] = xFLT*0.5; - par[1] = 0.110*0.5;//cm - par[2] = -1; - gMC->Gsvolu("FNSF","BOX",idtmed[512],par,3); - gMC->Gspos ("FNSF",0,"FSTR",0.,0.,0.,0,"ONLY"); - - // MYlar for Internal non-sesitive boundaries -// par[1] = 0.025;//cm -// gMC->Gsvolu("FMYI","BOX",idtmed[510],par,3); -// gMC->Gspos ("FMYI",0,"FNSF",0.,0.,0.,0,"MANY"); - - // MYlar eXternal layers - par[1] = 0.035*0.5;//cm - ycoor = -yPad*0.5+par[1]; - gMC->Gsvolu("FMYX","BOX",idtmed[510],par,3); - gMC->Gspos ("FMYX",1,"FSTR",0.,ycoor,0.,0,"ONLY"); - gMC->Gspos ("FMYX",2,"FSTR",0.,-ycoor,0.,0,"ONLY"); - ycoor += par[1]; - - // GRaphyte Layers - par[1] = 0.003*0.5; - ycoor += par[1]; - gMC->Gsvolu("FGRL","BOX",idtmed[502],par,3); - gMC->Gspos ("FGRL",1,"FSTR",0.,ycoor,0.,0,"ONLY"); - gMC->Gspos ("FGRL",2,"FSTR",0.,-ycoor,0.,0,"ONLY"); - - // freon sensitive layer (Chlorine-Fluorine-Carbon) - par[0] = xFST*0.5; - par[1] = 0.110*0.5; - par[2] = zSenStrip*0.5; - gMC->Gsvolu("FCFC","BOX",idtmed[513],par,3); - gMC->Gspos ("FCFC",0,"FNSF",0.,0.,0.,0,"ONLY"); +// new description for strip volume +// -- all constants are expressed in cm +// heigth of different layers + const Float_t khhony = 1. ; // heigth of HONY Layer + const Float_t khpcby = 0.15 ; // heigth of PCB Layer + const Float_t khmyly = 0.035 ; // heigth of MYLAR Layer + const Float_t khgraphy = 0.02 ; // heigth of GRAPHITE Layer + const Float_t khglasseiy = 0.32; // 2.2 Ext. Glass + 1. Semi Int. Glass (mm) + const Float_t khsensmy = 0.11 ; // heigth of Sensitive Freon Mixture + const Float_t kwsensmz = 2*3.5 ; // cm + const Float_t klsensmx = 48*2.5; // cm + const Float_t kwpadz = 3.5; // cm z dimension of the FPAD volume + const Float_t klpadx = 2.5; // cm x dimension of the FPAD volume + + // heigth of the FSTR Volume (the strip volume) + const Float_t khstripy = 2*(khhony+khpcby+khmyly+khgraphy+khglasseiy)+khsensmy; + // width of the FSTR Volume (the strip volume) + const Float_t kwstripz = 10.; + // length of the FSTR Volume (the strip volume) + const Float_t klstripx = 122.; + + Float_t parfp[3]={klstripx*0.5,khstripy*0.5,kwstripz*0.5}; +// coordinates of the strip center in the strip reference frame; used for positioning +// internal strip volumes + Float_t posfp[3]={0.,0.,0.}; + + // FSTR volume definition and filling this volume with non sensitive Gas Mixture + gMC->Gsvolu("FSTR","BOX",idtmed[512],parfp,3); + //-- HONY Layer definition +// parfp[0] = -1; + parfp[1] = khhony*0.5; +// parfp[2] = -1; + gMC->Gsvolu("FHON","BOX",idtmed[503],parfp,3); + // positioning 2 HONY Layers on FSTR volume + posfp[1]=-khstripy*0.5+parfp[1]; + gMC->Gspos("FHON",1,"FSTR",0., posfp[1],0.,0,"ONLY"); + gMC->Gspos("FHON",2,"FSTR",0.,-posfp[1],0.,0,"ONLY"); + + //-- PCB Layer definition + parfp[1] = khpcby*0.5; + gMC->Gsvolu("FPCB","BOX",idtmed[504],parfp,3); + // positioning 2 PCB Layers on FSTR volume + posfp[1]=-khstripy*0.5+khhony+parfp[1]; + gMC->Gspos("FPCB",1,"FSTR",0., posfp[1],0.,0,"ONLY"); + gMC->Gspos("FPCB",2,"FSTR",0.,-posfp[1],0.,0,"ONLY"); + + //-- MYLAR Layer definition + parfp[1] = khmyly*0.5; + gMC->Gsvolu("FMYL","BOX",idtmed[511],parfp,3); + // positioning 2 MYLAR Layers on FSTR volume + posfp[1] = -khstripy*0.5+khhony+khpcby+parfp[1]; + gMC->Gspos("FMYL",1,"FSTR",0., posfp[1],0.,0,"ONLY"); + gMC->Gspos("FMYL",2,"FSTR",0.,-posfp[1],0.,0,"ONLY"); + + //-- Graphite Layer definition + parfp[1] = khgraphy*0.5; + gMC->Gsvolu("FGRP","BOX",idtmed[502],parfp,3); + // positioning 2 Graphite Layers on FSTR volume + posfp[1] = -khstripy*0.5+khhony+khpcby+khmyly+parfp[1]; + gMC->Gspos("FGRP",1,"FSTR",0., posfp[1],0.,0,"ONLY"); + gMC->Gspos("FGRP",2,"FSTR",0.,-posfp[1],0.,0,"ONLY"); + + //-- Glass (EXT. +Semi INT.) Layer definition + parfp[1] = khglasseiy*0.5; + gMC->Gsvolu("FGLA","BOX",idtmed[514],parfp,3); + // positioning 2 Glass Layers on FSTR volume + posfp[1] = -khstripy*0.5+khhony+khpcby+khmyly+khgraphy+parfp[1]; + gMC->Gspos("FGLA",1,"FSTR",0., posfp[1],0.,0,"ONLY"); + gMC->Gspos("FGLA",2,"FSTR",0.,-posfp[1],0.,0,"ONLY"); + + //-- Sensitive Mixture Layer definition + parfp[0] = klsensmx*0.5; + parfp[1] = khsensmy*0.5; + parfp[2] = kwsensmz*0.5; + gMC->Gsvolu("FSEN","BOX",idtmed[513],parfp,3); + // positioning the sensitive gas Layer on FSTR volume + gMC->Gspos("FSEN",0,"FSTR",0.,0.,0.,0,"ONLY"); + + // dividing FSEN along z in knz=2 and along x in knx=48 + gMC->Gsdvn("FSEZ","FSEN",knz,3); + gMC->Gsdvn("FSEX","FSEZ",knx,1); + + // FPAD volume definition + parfp[0] = klpadx*0.5; + parfp[1] = khsensmy*0.5; + parfp[2] = kwpadz*0.5; + gMC->Gsvolu("FPAD","BOX",idtmed[513],parfp,3); + // positioning the FPAD volumes on previous divisions + gMC->Gspos("FPAD",0,"FSEX",0.,0.,0.,0,"ONLY"); - // Pad definition x & z - gMC->Gsdvn("FLZ","FCFC", nz, 3); - gMC->Gsdvn("FLX","FLZ" , nx, 1); - - // MRPC PAD itself - par[0] = -1; - par[1] = -1; - par[2] = -1; - gMC->Gsvolu("FPAD", "BOX ", idtmed[513], par, 3); - gMC->Gspos ("FPAD", 0, "FLX", 0., 0., 0., 0, "ONLY"); - //// Positioning the Strips (FSTR) in the FLT volumes ///// // Plate A (Central) Float_t t = zFLTC+zFLTB+zFLTA*0.5+ 2*db;//Half Width of Barrel - Float_t Gap = fGapA; //cm distance between the strip axis + Float_t gap = fGapA; //cm distance between the strip axis Float_t zpos = 0; Float_t ang = 0; Int_t i=1,j=1; nrot = 0; zcoor = 0; - ycoor = -14.5 + Space ; //2 cm over front plate + ycoor = -14.5 + kspace ; //2 cm over front plate AliMatrix (idrotm[0], 90., 0.,90.,90.,0., 90.); gMC->Gspos("FSTR",j,"FLTA",0.,ycoor, 0.,idrotm[0],"ONLY"); @@ -418,16 +483,16 @@ void AliTOFv4::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, zcoor -= zSenStrip; j++; - Int_t UpDown = -1; // UpDown=-1 -> Upper strip - // UpDown=+1 -> Lower strip + Int_t upDown = -1; // upDown=-1 -> Upper strip + // upDown=+1 -> Lower strip do{ - ang = atan(zcoor/Radius); + ang = atan(zcoor/radius); ang *= kRaddeg; AliMatrix (idrotm[nrot], 90., 0.,90.-ang,90.,-ang, 90.); AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang, 90.); ang /= kRaddeg; - ycoor = -14.5+ Space; //2 cm over front plate - ycoor += (1-(UpDown+1)/2)*Gap; + ycoor = -14.5+ kspace; //2 cm over front plate + ycoor += (1-(upDown+1)/2)*gap; gMC->Gspos("FSTR",j ,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY"); gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY"); @@ -435,55 +500,55 @@ void AliTOFv4::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos); j += 2; - UpDown*= -1; // Alternate strips + upDown*= -1; // Alternate strips zcoor = zcoor-(zSenStrip/2)/TMath::Cos(ang)- - UpDown*Gap*TMath::Tan(ang)- + upDown*gap*TMath::Tan(ang)- (zSenStrip/2)/TMath::Cos(ang); - } while (zcoor-(StripWidth/2)*TMath::Cos(ang)>-t+zFLTC+zFLTB+db*2); + } while (zcoor-(stripWidth/2)*TMath::Cos(ang)>-t+zFLTC+zFLTB+db*2); zcoor = zcoor+(zSenStrip/2)/TMath::Cos(ang)+ - UpDown*Gap*TMath::Tan(ang)+ + upDown*gap*TMath::Tan(ang)+ (zSenStrip/2)/TMath::Cos(ang); - Gap = fGapB; + gap = fGapB; zcoor = zcoor-(zSenStrip/2)/TMath::Cos(ang)- - UpDown*Gap*TMath::Tan(ang)- + upDown*gap*TMath::Tan(ang)- (zSenStrip/2)/TMath::Cos(ang); - ang = atan(zcoor/Radius); + ang = atan(zcoor/radius); ang *= kRaddeg; AliMatrix (idrotm[nrot], 90., 0.,90.-ang,90.,-ang, 90.); AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang, 90.); ang /= kRaddeg; - ycoor = -14.5+ Space; //2 cm over front plate - ycoor += (1-(UpDown+1)/2)*Gap; + ycoor = -14.5+ kspace; //2 cm over front plate + ycoor += (1-(upDown+1)/2)*gap; gMC->Gspos("FSTR",j ,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY"); gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY"); printf("%f, St. %2i, Pl.3 ",ang*kRaddeg,i); printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos); - ycoor = -hTof/2.+ Space;//2 cm over front plate + ycoor = -hTof/2.+ kspace;//2 cm over front plate // Plate B nrot = 0; i=1; - UpDown = 1; - Float_t DeadRegion = 1.0;//cm + upDown = 1; + Float_t deadRegion = 1.0;//cm zpos = zcoor - (zSenStrip/2)/TMath::Cos(ang)- - UpDown*Gap*TMath::Tan(ang)- + upDown*gap*TMath::Tan(ang)- (zSenStrip/2)/TMath::Cos(ang)- - DeadRegion/TMath::Cos(ang); + deadRegion/TMath::Cos(ang); - ang = atan(zpos/Radius); + ang = atan(zpos/radius); ang *= kRaddeg; AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.); ang /= kRaddeg; - ycoor = -hTof*0.5+ Space ; //2 cm over front plate - ycoor += (1-(UpDown+1)/2)*Gap; + ycoor = -hTof*0.5+ kspace ; //2 cm over front plate + ycoor += (1-(upDown+1)/2)*gap; zcoor = zpos+(zFLTA*0.5+zFLTB*0.5+db); // Moves to the system of the modulus FLTB gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY"); @@ -491,34 +556,34 @@ void AliTOFv4::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos); i++; - UpDown*=-1; + upDown*=-1; do { zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)- - UpDown*Gap*TMath::Tan(ang)- + upDown*gap*TMath::Tan(ang)- (zSenStrip/2)/TMath::Cos(ang); - ang = atan(zpos/Radius); + ang = atan(zpos/radius); ang *= kRaddeg; AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.); ang /= kRaddeg; - ycoor = -hTof*0.5+ Space ; //2 cm over front plate - ycoor += (1-(UpDown+1)/2)*Gap; + ycoor = -hTof*0.5+ kspace ; //2 cm over front plate + ycoor += (1-(upDown+1)/2)*gap; zcoor = zpos+(zFLTA*0.5+zFLTB*0.5+db); // Moves to the system of the modulus FLTB gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY"); printf("%f, St. %2i, Pl.4 ",ang*kRaddeg,i); printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos); - UpDown*=-1; + upDown*=-1; i++; } while (TMath::Abs(ang*kRaddeg)<22.5); //till we reach a tilting angle of 22.5 degrees - ycoor = -hTof*0.5+ Space ; //2 cm over front plate + ycoor = -hTof*0.5+ kspace ; //2 cm over front plate zpos = zpos - zSenStrip/TMath::Cos(ang); do { - ang = atan(zpos/Radius); + ang = atan(zpos/radius); ang *= kRaddeg; AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.); ang /= kRaddeg; @@ -529,23 +594,23 @@ void AliTOFv4::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos); i++; - } while (zpos-StripWidth*0.5/TMath::Cos(ang)>-t+zFLTC+db); + } while (zpos-stripWidth*0.5/TMath::Cos(ang)>-t+zFLTC+db); // Plate C zpos = zpos + zSenStrip/TMath::Cos(ang); zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)+ - Gap*TMath::Tan(ang)- + gap*TMath::Tan(ang)- (zSenStrip/2)/TMath::Cos(ang); nrot = 0; i=0; - ycoor= -hTof*0.5+Space+Gap; + ycoor= -hTof*0.5+kspace+gap; do { i++; - ang = atan(zpos/Radius); + ang = atan(zpos/radius); ang *= kRaddeg; AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.); ang /= kRaddeg; @@ -556,52 +621,72 @@ void AliTOFv4::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos); zpos = zpos - zSenStrip/TMath::Cos(ang); - } while (zpos-StripWidth*TMath::Cos(ang)*0.5>-t); - + } while (zpos-stripWidth*TMath::Cos(ang)*0.5>-t); -////////// Layers after detector ///////////////// -// honeycomb (Polyethilene) Layer after (3cm) +////////// Layers after strips ///////////////// +// honeycomb (Polyethilene) Layer after (1.2cm) - Float_t OverSpace = fOverSpc;//cm + Float_t overSpace = fOverSpc;//cm - par[0] = -1; + par[0] = xFLT*0.5; par[1] = 0.6; - par[2] = -1; - ycoor = -yFLT/2 + OverSpace + par[1]; + par[2] = (zFLTA *0.5); + ycoor = -yFLT/2 + overSpace + par[1]; gMC->Gsvolu("FPEA", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos ("FPEA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); + par[2] = (zFLTB *0.5); gMC->Gsvolu("FPEB", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos ("FPEB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); + par[2] = (zFLTC *0.5); gMC->Gsvolu("FPEC", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos ("FPEC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); // Electronics (Cu) after ycoor += par[1]; - par[0] = -1; + par[0] = xFLT*0.5; par[1] = 1.43*0.05*0.5; // 5% of X0 - par[2] = -1; + par[2] = (zFLTA *0.5); ycoor += par[1]; gMC->Gsvolu("FECA", "BOX ", idtmed[501], par, 3); // Cu gMC->Gspos ("FECA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); + par[2] = (zFLTB *0.5); gMC->Gsvolu("FECB", "BOX ", idtmed[501], par, 3); // Cu gMC->Gspos ("FECB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); + par[2] = (zFLTC *0.5); gMC->Gsvolu("FECC", "BOX ", idtmed[501], par, 3); // Cu gMC->Gspos ("FECC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); // cooling WAter after ycoor += par[1]; - par[0] = -1; + par[0] = xFLT*0.5; par[1] = 36.1*0.02*0.5; // 2% of X0 - par[2] = -1; + par[2] = (zFLTA *0.5); ycoor += par[1]; gMC->Gsvolu("FWAA", "BOX ", idtmed[515], par, 3); // Water gMC->Gspos ("FWAA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); + par[2] = (zFLTB *0.5); gMC->Gsvolu("FWAB", "BOX ", idtmed[515], par, 3); // Water gMC->Gspos ("FWAB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); + par[2] = (zFLTC *0.5); gMC->Gsvolu("FWAC", "BOX ", idtmed[515], par, 3); // Water gMC->Gspos ("FWAC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); +// frame of Air + ycoor += par[1]; + par[0] = xFLT*0.5; + par[1] = (yFLT/2-ycoor-0.2)*0.5; // Aluminum layer considered (0.2 cm) + par[2] = (zFLTA *0.5); + ycoor += par[1]; + gMC->Gsvolu("FAIA", "BOX ", idtmed[500], par, 3); // Air + gMC->Gspos ("FAIA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); + par[2] = (zFLTB *0.5); + gMC->Gsvolu("FAIB", "BOX ", idtmed[500], par, 3); // Air + gMC->Gspos ("FAIB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); + par[2] = (zFLTC *0.5); + gMC->Gsvolu("FAIC", "BOX ", idtmed[500], par, 3); // Air + gMC->Gspos ("FAIC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); +/* fp //Back Plate honycomb (2cm) par[0] = -1; par[1] = 2 *0.5; @@ -613,6 +698,7 @@ void AliTOFv4::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, gMC->Gspos ("FBPB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); gMC->Gsvolu("FBPC", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos ("FBPC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); +fp */ } //_____________________________________________________________________________ @@ -709,10 +795,10 @@ void AliTOFv4::StepManager() Float_t xm[3],pm[3],xpad[3],ppad[3]; Float_t hits[13],phi,phid,z; Int_t vol[5]; - Int_t sector, plate, pad_x, pad_z, strip; - Int_t copy, pad_z_id, pad_x_id, strip_id, i; + Int_t sector, plate, padx, padz, strip; + Int_t copy, padzid, padxid, stripid, i; Int_t *idtmed = fIdtmed->GetArray()-499; - Float_t IncidenceAngle; + Float_t incidenceAngle; if(gMC->GetMedium()==idtmed[513] && gMC->IsTrackEntering() && gMC->TrackCharge() @@ -720,34 +806,34 @@ void AliTOFv4::StepManager() { // getting information about hit volumes - pad_z_id=gMC->CurrentVolOffID(2,copy); - pad_z=copy; + padzid=gMC->CurrentVolOffID(2,copy); + padz=copy; - pad_x_id=gMC->CurrentVolOffID(1,copy); - pad_x=copy; + padxid=gMC->CurrentVolOffID(1,copy); + padx=copy; - strip_id=gMC->CurrentVolOffID(5,copy); + stripid=gMC->CurrentVolOffID(4,copy); strip=copy; gMC->TrackPosition(pos); gMC->TrackMomentum(mom); // Double_t NormPos=1./pos.Rho(); - Double_t NormMom=1./mom.Rho(); + Double_t normMom=1./mom.Rho(); // getting the cohordinates in pad ref system xm[0] = (Float_t)pos.X(); xm[1] = (Float_t)pos.Y(); xm[2] = (Float_t)pos.Z(); - pm[0] = (Float_t)mom.X()*NormMom; - pm[1] = (Float_t)mom.Y()*NormMom; - pm[2] = (Float_t)mom.Z()*NormMom; + pm[0] = (Float_t)mom.X()*normMom; + pm[1] = (Float_t)mom.Y()*normMom; + pm[2] = (Float_t)mom.Z()*normMom; gMC->Gmtod(xm,xpad,1); gMC->Gmtod(pm,ppad,2); - IncidenceAngle = TMath::ACos(ppad[1])*kRaddeg; + incidenceAngle = TMath::ACos(ppad[1])*kRaddeg; z = pos[2]; @@ -775,14 +861,14 @@ void AliTOFv4::StepManager() hits[8] = xpad[0]; hits[9] = xpad[1]; hits[10]= xpad[2]; - hits[11]= IncidenceAngle; + hits[11]= incidenceAngle; hits[12]= gMC->Edep(); vol[0]= sector; vol[1]= plate; vol[2]= strip; - vol[3]= pad_x; - vol[4]= pad_z; + vol[3]= padx; + vol[4]= padz; AddHit(gAlice->CurrentTrack(),vol, hits); }