X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=TOF%2FAliTOFv4T0.cxx;h=7908962aafc9885f83bdca6a5baab81805f47b2b;hb=1584c57e1746ed52971e8e6b0c84771cc2c2fb0f;hp=248f3d441533996acef7741f0e859f49cd6706e5;hpb=b213b8bd38c61f2db7eab22bb561d30a38a6d2e2;p=u%2Fmrichter%2FAliRoot.git diff --git a/TOF/AliTOFv4T0.cxx b/TOF/AliTOFv4T0.cxx index 248f3d44153..7908962aafc 100644 --- a/TOF/AliTOFv4T0.cxx +++ b/TOF/AliTOFv4T0.cxx @@ -13,44 +13,45 @@ * provided "as is" without express or implied warranty. * **************************************************************************/ +/* $Id$ */ /////////////////////////////////////////////////////////////////////////////// // // -// Time Of Flight: design of C.Williams -// // This class contains the functions for version 4 of the Time Of Flight // // detector. // -// -// VERSION WITH 5 MODULES AND TILTED STRIPS -// -// FULL COVERAGE VERSION -// -// Author: -// Fabrizio Pierella -// University of Bologna - Italy -// -// -//Begin_Html -/* - -*/ -//End_Html +// // +// VERSION WITH 5 MODULES AND TILTED STRIPS // +// // +// FULL COVERAGE VERSION +OPTION for PHOS holes // +// // +// Author: // +// Fabrizio Pierella // +// University of Bologna - Italy // +// // +// // +//Begin_Html // +/* // + // +*/ // +//End_Html // // // /////////////////////////////////////////////////////////////////////////////// -#include +#include #include +#include "TVirtualMC.h" -#include "AliTOFv4T0.h" -#include "TBRIK.h" -#include "TGeometry.h" -#include "TNode.h" +#include +#include #include -#include "TObject.h" +#include +#include +#include + +#include "AliConst.h" #include "AliRun.h" +#include "AliTOFv4T0.h" #include "AliMC.h" -#include "AliConst.h" - ClassImp(AliTOFv4T0) @@ -72,20 +73,29 @@ AliTOFv4T0::AliTOFv4T0(const char *name, const char *title) // // Check that FRAME is there otherwise we have no place where to // put TOF + + AliModule* frame=gAlice->GetModule("FRAME"); if(!frame) { Error("Ctor","TOF needs FRAME to be present\n"); exit(1); - } else - if(frame->IsVersion()!=1) { - Error("Ctor","FRAME version 1 needed with this version of TOF\n"); - exit(1); - } - -} + } else{ + + if (fTOFGeometry) delete fTOFGeometry; + fTOFGeometry = new AliTOFGeometry(); + + if(frame->IsVersion()==1) { + cout << " Frame version " << frame->IsVersion() << endl; + cout << " Full Coverage for TOF" << endl; + fTOFHoles=false;} + else { + cout << " Frame version " << frame->IsVersion() << endl; + cout << " TOF with Holes for PHOS " << endl; + fTOFHoles=true;} + } +} //____________________________________________________________________________ - void AliTOFv4T0::BuildGeometry() { // @@ -93,10 +103,10 @@ void AliTOFv4T0::BuildGeometry() // TNode *node, *top; const int kColorTOF = 27; - + // Find top TNODE top = gAlice->GetGeometry()->GetNode("alice"); - + // Position the different copies const Float_t krTof =(fRmax+fRmin)/2; const Float_t khTof = fRmax-fRmin; @@ -104,65 +114,69 @@ void AliTOFv4T0::BuildGeometry() const Float_t kPi = TMath::Pi(); const Float_t kangle = 2*kPi/kNTof; Float_t ang; - + + // define offset for nodes + Float_t zOffsetC = fZtof - fZlenC*0.5; + Float_t zOffsetB = fZtof - fZlenC - fZlenB*0.5; + Float_t zOffsetA = 0.; // Define TOF basic volume - char nodeName0[7], nodeName1[7], nodeName2[7]; + char nodeName0[7], nodeName1[7], nodeName2[7]; char nodeName3[7], nodeName4[7], rotMatNum[7]; - + new TBRIK("S_TOF_C","TOF box","void", - 120*0.5,khTof*0.5,fZlenC*0.5); + fStripLn*0.5,khTof*0.5,fZlenC*0.5); new TBRIK("S_TOF_B","TOF box","void", - 120*0.5,khTof*0.5,fZlenB*0.5); + fStripLn*0.5,khTof*0.5,fZlenB*0.5); new TBRIK("S_TOF_A","TOF box","void", - 120*0.5,khTof*0.5,fZlenA*0.5); - + fStripLn*0.5,khTof*0.5,fZlenA*0.5); + for (Int_t nodeNum=1;nodeNum<19;nodeNum++){ - - if (nodeNum<10) { - sprintf(rotMatNum,"rot50%i",nodeNum); - sprintf(nodeName0,"FTO00%i",nodeNum); - sprintf(nodeName1,"FTO10%i",nodeNum); - sprintf(nodeName2,"FTO20%i",nodeNum); - sprintf(nodeName3,"FTO30%i",nodeNum); - sprintf(nodeName4,"FTO40%i",nodeNum); - } - if (nodeNum>9) { - sprintf(rotMatNum,"rot5%i",nodeNum); - sprintf(nodeName0,"FTO0%i",nodeNum); - sprintf(nodeName1,"FTO1%i",nodeNum); - sprintf(nodeName2,"FTO2%i",nodeNum); - sprintf(nodeName3,"FTO3%i",nodeNum); - sprintf(nodeName4,"FTO4%i",nodeNum); - } - - new TRotMatrix(rotMatNum,rotMatNum,90,-20*nodeNum,90,90-20*nodeNum,0,0); - ang = (4.5-nodeNum) * kangle; - - top->cd(); - node = new TNode(nodeName0,nodeName0,"S_TOF_C",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),299.15,rotMatNum); - node->SetLineColor(kColorTOF); - fNodes->Add(node); - - top->cd(); - node = new TNode(nodeName1,nodeName1,"S_TOF_C",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),-299.15,rotMatNum); - node->SetLineColor(kColorTOF); - fNodes->Add(node); - - top->cd(); - node = new TNode(nodeName2,nodeName2,"S_TOF_B",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),146.45,rotMatNum); - node->SetLineColor(kColorTOF); - fNodes->Add(node); - - top->cd(); - node = new TNode(nodeName3,nodeName3,"S_TOF_B",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),-146.45,rotMatNum); - node->SetLineColor(kColorTOF); - fNodes->Add(node); - - top->cd(); - node = new TNode(nodeName4,nodeName4,"S_TOF_A",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),0.,rotMatNum); - node->SetLineColor(kColorTOF); - fNodes->Add(node); + + if (nodeNum<10) { + sprintf(rotMatNum,"rot50%i",nodeNum); + sprintf(nodeName0,"FTO00%i",nodeNum); + sprintf(nodeName1,"FTO10%i",nodeNum); + sprintf(nodeName2,"FTO20%i",nodeNum); + sprintf(nodeName3,"FTO30%i",nodeNum); + sprintf(nodeName4,"FTO40%i",nodeNum); + } + if (nodeNum>9) { + sprintf(rotMatNum,"rot5%i",nodeNum); + sprintf(nodeName0,"FTO0%i",nodeNum); + sprintf(nodeName1,"FTO1%i",nodeNum); + sprintf(nodeName2,"FTO2%i",nodeNum); + sprintf(nodeName3,"FTO3%i",nodeNum); + sprintf(nodeName4,"FTO4%i",nodeNum); + } + + new TRotMatrix(rotMatNum,rotMatNum,90,-20*nodeNum,90,90-20*nodeNum,0,0); + ang = (4.5-nodeNum) * kangle; + + top->cd(); + node = new TNode(nodeName0,nodeName0,"S_TOF_C",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),zOffsetC,rotMatNum); + node->SetLineColor(kColorTOF); + fNodes->Add(node); + + top->cd(); + node = new TNode(nodeName1,nodeName1,"S_TOF_C",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),-zOffsetC,rotMatNum); + node->SetLineColor(kColorTOF); + fNodes->Add(node); + + top->cd(); + node = new TNode(nodeName2,nodeName2,"S_TOF_B",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),zOffsetB,rotMatNum); + node->SetLineColor(kColorTOF); + fNodes->Add(node); + + top->cd(); + node = new TNode(nodeName3,nodeName3,"S_TOF_B",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),-zOffsetB,rotMatNum); + node->SetLineColor(kColorTOF); + fNodes->Add(node); + + top->cd(); + node = new TNode(nodeName4,nodeName4,"S_TOF_A",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),zOffsetA,rotMatNum); + node->SetLineColor(kColorTOF); + fNodes->Add(node); } // end loop on nodeNum } @@ -185,6 +199,7 @@ void AliTOFv4T0::CreateGeometry() AliTOF::CreateGeometry(); } + //_____________________________________________________________________________ void AliTOFv4T0::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, Float_t zlenB, Float_t zlenA, Float_t ztof0) @@ -193,15 +208,15 @@ void AliTOFv4T0::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, // Definition of the Time Of Fligh Resistive Plate Chambers // xFLT, yFLT, zFLT - sizes of TOF modules (large) - Float_t ycoor, zcoor; + Float_t ycoor; Float_t par[3]; Int_t *idtmed = fIdtmed->GetArray()-499; Int_t idrotm[100]; Int_t nrot = 0; - Float_t hTof = fRmax-fRmin; - + Float_t radius = fRmin+2.;//cm + par[0] = xtof * 0.5; par[1] = ytof * 0.5; par[2] = zlenC * 0.5; @@ -210,73 +225,78 @@ void AliTOFv4T0::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, gMC->Gsvolu("FTOB", "BOX ", idtmed[506], par, 3); par[2] = zlenA * 0.5; gMC->Gsvolu("FTOA", "BOX ", idtmed[506], par, 3); - - -// Positioning of modules - - Float_t zcor1 = ztof0 - zlenC*0.5; - Float_t zcor2 = ztof0 - zlenC - zlenB*0.5; - Float_t zcor3 = 0.; - - AliMatrix(idrotm[0], 90., 0., 0., 0., 90,-90.); - AliMatrix(idrotm[1], 90.,180., 0., 0., 90, 90.); - gMC->Gspos("FTOC", 1, "BTO1", 0, zcor1, 0, idrotm[0], "ONLY"); - gMC->Gspos("FTOC", 2, "BTO1", 0, -zcor1, 0, idrotm[1], "ONLY"); - gMC->Gspos("FTOC", 1, "BTO2", 0, zcor1, 0, idrotm[0], "ONLY"); - gMC->Gspos("FTOC", 2, "BTO2", 0, -zcor1, 0, idrotm[1], "ONLY"); - gMC->Gspos("FTOC", 1, "BTO3", 0, zcor1, 0, idrotm[0], "ONLY"); - gMC->Gspos("FTOC", 2, "BTO3", 0, -zcor1, 0, idrotm[1], "ONLY"); - - gMC->Gspos("FTOB", 1, "BTO1", 0, zcor2, 0, idrotm[0], "ONLY"); - gMC->Gspos("FTOB", 2, "BTO1", 0, -zcor2, 0, idrotm[1], "ONLY"); - gMC->Gspos("FTOB", 1, "BTO2", 0, zcor2, 0, idrotm[0], "ONLY"); - gMC->Gspos("FTOB", 2, "BTO2", 0, -zcor2, 0, idrotm[1], "ONLY"); - gMC->Gspos("FTOB", 1, "BTO3", 0, zcor2, 0, idrotm[0], "ONLY"); - gMC->Gspos("FTOB", 2, "BTO3", 0, -zcor2, 0, idrotm[1], "ONLY"); - - gMC->Gspos("FTOA", 0, "BTO1", 0, zcor3, 0, idrotm[0], "ONLY"); - gMC->Gspos("FTOA", 0, "BTO2", 0, zcor3, 0, idrotm[0], "ONLY"); - gMC->Gspos("FTOA", 0, "BTO3", 0, zcor3, 0, idrotm[0], "ONLY"); + + + // Positioning of modules + + Float_t zcor1 = ztof0 - zlenC*0.5; + Float_t zcor2 = ztof0 - zlenC - zlenB*0.5; + Float_t zcor3 = 0.; + + AliMatrix(idrotm[0], 90., 0., 0., 0., 90,-90.); + AliMatrix(idrotm[1], 90.,180., 0., 0., 90, 90.); + + gMC->Gspos("FTOC", 1, "BTO1", 0, zcor1, 0, idrotm[0], "ONLY"); + gMC->Gspos("FTOC", 2, "BTO1", 0, -zcor1, 0, idrotm[1], "ONLY"); + gMC->Gspos("FTOC", 1, "BTO2", 0, zcor1, 0, idrotm[0], "ONLY"); + gMC->Gspos("FTOC", 2, "BTO2", 0, -zcor1, 0, idrotm[1], "ONLY"); + gMC->Gspos("FTOC", 1, "BTO3", 0, zcor1, 0, idrotm[0], "ONLY"); + gMC->Gspos("FTOC", 2, "BTO3", 0, -zcor1, 0, idrotm[1], "ONLY"); + + gMC->Gspos("FTOB", 1, "BTO1", 0, zcor2, 0, idrotm[0], "ONLY"); + gMC->Gspos("FTOB", 2, "BTO1", 0, -zcor2, 0, idrotm[1], "ONLY"); + gMC->Gspos("FTOB", 1, "BTO2", 0, zcor2, 0, idrotm[0], "ONLY"); + gMC->Gspos("FTOB", 2, "BTO2", 0, -zcor2, 0, idrotm[1], "ONLY"); + gMC->Gspos("FTOB", 1, "BTO3", 0, zcor2, 0, idrotm[0], "ONLY"); + gMC->Gspos("FTOB", 2, "BTO3", 0, -zcor2, 0, idrotm[1], "ONLY"); + + gMC->Gspos("FTOA", 0, "BTO1", 0, zcor3, 0, idrotm[0], "ONLY"); + if(!fTOFHoles)gMC->Gspos("FTOA", 0, "BTO2", 0, zcor3, 0, idrotm[0], "ONLY"); + gMC->Gspos("FTOA", 0, "BTO3", 0, zcor3, 0, idrotm[0], "ONLY"); + Float_t db = 0.5;//cm Float_t xFLT, xFST, yFLT, zFLTA, zFLTB, zFLTC; - + xFLT = fStripLn; yFLT = ytof; zFLTA = zlenA; zFLTB = zlenB; zFLTC = zlenC; - + xFST = xFLT-fDeadBndX*2;//cm - -// Sizes of MRPC pads - + + // Sizes of MRPC pads + Float_t yPad = 0.505;//cm -// Large not sensitive volumes with Insensitive Freon + // Large not sensitive volumes with Insensitive Freon par[0] = xFLT*0.5; par[1] = yFLT*0.5; if (fDebug) cout << ClassName() << - ": ************************* TOF geometry **************************"<Gsvolu("FLTA", "BOX ", idtmed[512], par, 3); // Insensitive Freon gMC->Gspos ("FLTA", 0, "FTOA", 0., 0., 0., 0, "ONLY"); - + par[2] = (zFLTB * 0.5); gMC->Gsvolu("FLTB", "BOX ", idtmed[512], par, 3); // Insensitive Freon gMC->Gspos ("FLTB", 0, "FTOB", 0., 0., 0., 0, "ONLY"); - + par[2] = (zFLTC * 0.5); gMC->Gsvolu("FLTC", "BOX ", idtmed[512], par, 3); // Insensitive Freon gMC->Gspos ("FLTC", 0, "FTOC", 0., 0., 0., 0, "ONLY"); - -////////// Layers of Aluminum before and after detector ////////// -////////// Aluminum Box for Modules (2.0 mm thickness) ///////// -////////// lateral walls not simulated + + ///// Layers of Aluminum before and after detector ///// + ///// Aluminum Box for Modules (1.8 mm thickness) ///// + ///// lateral walls not simulated for the time being + // const Float_t khAlWall = 0.18; + // fp to be checked + const Float_t khAlWall = 0.11; par[0] = xFLT*0.5; - par[1] = 0.1;//cm + par[1] = khAlWall/2.;//cm ycoor = -yFLT/2 + par[1]; par[2] = (zFLTA *0.5); gMC->Gsvolu("FALA", "BOX ", idtmed[508], par, 3); // Alluminium @@ -291,29 +311,28 @@ void AliTOFv4T0::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, gMC->Gspos ("FALC", 1, "FLTC", 0., ycoor, 0., 0, "ONLY"); gMC->Gspos ("FALC", 2, "FLTC", 0.,-ycoor, 0., 0, "ONLY"); -///////////////// Detector itself ////////////////////// - + ///////////////// Detector itself ////////////////////// + const Float_t kdeadBound = fDeadBndZ; //cm non-sensitive between the pad edge - //and the boundary of the strip + //and the boundary of the strip const Int_t knx = fNpadX; // number of pads along x const Int_t knz = fNpadZ; // number of pads along z - const Float_t kspace = fSpace; //cm distance from the front plate of the box - + Float_t zSenStrip = fZpad*fNpadZ;//cm Float_t stripWidth = zSenStrip + 2*kdeadBound; - + par[0] = xFLT*0.5; - par[1] = yPad*0.5; + par[1] = yPad*0.5; par[2] = stripWidth*0.5; -// new description for strip volume -double stack strip- -// -- all constants are expressed in cm -// heigth of different layers - const Float_t khhony = 1. ; // heigth of HONY Layer - const Float_t khpcby = 0.15 ; // heigth of PCB Layer + // new description for strip volume -double stack strip- + // -- all constants are expressed in cm + // heigth of different layers + const Float_t khhony = 0.8 ; // heigth of HONY Layer + const Float_t khpcby = 0.08 ; // heigth of PCB Layer const Float_t khmyly = 0.035 ; // heigth of MYLAR Layer const Float_t khgraphy = 0.02 ; // heigth of GRAPHITE Layer - const Float_t khglasseiy = 0.17; // 0.6 Ext. Glass + 1.1 i.e. (Int. Glass/2) (mm) + const Float_t khglasseiy = 0.135; // 0.6 Ext. Glass + 1.1 i.e. (Int. Glass/2) (mm) const Float_t khsensmy = 0.11 ; // heigth of Sensitive Freon Mixture const Float_t kwsensmz = 2*3.5 ; // cm const Float_t klsensmx = 48*2.5; // cm @@ -328,25 +347,26 @@ void AliTOFv4T0::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, const Float_t klstripx = 122.; Float_t parfp[3]={klstripx*0.5,khstripy*0.5,kwstripz*0.5}; -// coordinates of the strip center in the strip reference frame; used for positioning -// internal strip volumes - Float_t posfp[3]={0.,0.,0.}; - + // Coordinates of the strip center in the strip reference frame; + // used for positioninG internal strip volumes + Float_t posfp[3]={0.,0.,0.}; - // FSTR volume definition and filling this volume with non sensitive Gas Mixture + + // FSTR volume definition-filling this volume with non sensitive Gas Mixture gMC->Gsvolu("FSTR","BOX",idtmed[512],parfp,3); //-- HONY Layer definition -// parfp[0] = -1; + // parfp[0] = -1; parfp[1] = khhony*0.5; -// parfp[2] = -1; + // parfp[2] = -1; gMC->Gsvolu("FHON","BOX",idtmed[503],parfp,3); // positioning 2 HONY Layers on FSTR volume - + posfp[1]=-khstripy*0.5+parfp[1]; gMC->Gspos("FHON",1,"FSTR",0., posfp[1],0.,0,"ONLY"); gMC->Gspos("FHON",2,"FSTR",0.,-posfp[1],0.,0,"ONLY"); - + //-- PCB Layer definition + parfp[1] = khpcby*0.5; gMC->Gsvolu("FPCB","BOX",idtmed[504],parfp,3); // positioning 2 PCB Layers on FSTR volume @@ -355,23 +375,25 @@ void AliTOFv4T0::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, gMC->Gspos("FPCB",2,"FSTR",0.,-posfp[1],0.,0,"ONLY"); // positioning the central PCB layer gMC->Gspos("FPCB",3,"FSTR",0.,0.,0.,0,"ONLY"); - - - + + + //-- MYLAR Layer definition + parfp[1] = khmyly*0.5; gMC->Gsvolu("FMYL","BOX",idtmed[511],parfp,3); // positioning 2 MYLAR Layers on FSTR volume - posfp[1] = -khstripy*0.5+khhony+khpcby+parfp[1]; + posfp[1] = -khstripy*0.5+khhony+khpcby+parfp[1]; gMC->Gspos("FMYL",1,"FSTR",0., posfp[1],0.,0,"ONLY"); gMC->Gspos("FMYL",2,"FSTR",0.,-posfp[1],0.,0,"ONLY"); // adding further 2 MYLAR Layers on FSTR volume posfp[1] = khpcby*0.5+parfp[1]; gMC->Gspos("FMYL",3,"FSTR",0., posfp[1],0.,0,"ONLY"); gMC->Gspos("FMYL",4,"FSTR",0.,-posfp[1],0.,0,"ONLY"); - - + + //-- Graphite Layer definition + parfp[1] = khgraphy*0.5; gMC->Gsvolu("FGRP","BOX",idtmed[502],parfp,3); // positioning 2 Graphite Layers on FSTR volume @@ -382,9 +404,10 @@ void AliTOFv4T0::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, posfp[1] = khpcby*0.5+khmyly+parfp[1]; gMC->Gspos("FGRP",3,"FSTR",0., posfp[1],0.,0,"ONLY"); gMC->Gspos("FGRP",4,"FSTR",0.,-posfp[1],0.,0,"ONLY"); - - + + //-- Glass (EXT. +Semi INT.) Layer definition + parfp[1] = khglasseiy*0.5; gMC->Gsvolu("FGLA","BOX",idtmed[514],parfp,3); // positioning 2 Glass Layers on FSTR volume @@ -395,9 +418,10 @@ void AliTOFv4T0::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, posfp[1] = khpcby*0.5+khmyly+khgraphy+parfp[1]; gMC->Gspos("FGLA",3,"FSTR",0., posfp[1],0.,0,"ONLY"); gMC->Gspos("FGLA",4,"FSTR",0.,-posfp[1],0.,0,"ONLY"); - + //-- Sensitive Mixture Layer definition + parfp[0] = klsensmx*0.5; parfp[1] = khsensmy*0.5; parfp[2] = kwsensmz*0.5; @@ -409,243 +433,110 @@ void AliTOFv4T0::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, posfp[1] = khpcby*0.5+khmyly+khgraphy+khglasseiy+parfp[1]; gMC->Gspos("FNSE",0,"FSTR", 0., posfp[1],0.,0,"ONLY"); gMC->Gspos("FSEN",0,"FSTR", 0.,-posfp[1],0.,0,"ONLY"); - + // dividing FSEN along z in knz=2 and along x in knx=48 + gMC->Gsdvn("FSEZ","FSEN",knz,3); gMC->Gsdvn("FSEX","FSEZ",knx,1); // FPAD volume definition - parfp[0] = klpadx*0.5; + + parfp[0] = klpadx*0.5; parfp[1] = khsensmy*0.5; parfp[2] = kwpadz*0.5; gMC->Gsvolu("FPAD","BOX",idtmed[513],parfp,3); // positioning the FPAD volumes on previous divisions gMC->Gspos("FPAD",0,"FSEX",0.,0.,0.,0,"ONLY"); -//// Positioning the Strips (FSTR) in the FLT volumes ///// - // Plate A (Central) - - Float_t t = zFLTC+zFLTB+zFLTA*0.5+ 2*db;//Half Width of Barrel + ///////////////////Positioning A module////////////////////////// + - Float_t gap = fGapA+0.5; //cm updated distance between the strip axis - Float_t zpos = 0; - Float_t ang = 0; - Int_t i=1,j=1; - nrot = 0; - zcoor = 0; - ycoor = -14.5 + kspace ; //2 cm over front plate + for(Int_t istrip =0; istrip < fTOFGeometry->NStripA(); istrip++){ - AliMatrix (idrotm[0], 90., 0.,90.,90.,0., 90.); - gMC->Gspos("FSTR",j,"FLTA",0.,ycoor, 0.,idrotm[0],"ONLY"); - if(fDebug) { - printf("%s: %f, St. %2i, Pl.3 ",ClassName(),ang*kRaddeg,i); - printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos); + Float_t ang = fTOFGeometry->GetAngles(2,istrip); + AliMatrix (idrotm[0],90.,0.,90.-ang,90.,-ang, 90.); + ang /= kRaddeg; + Float_t zpos = tan(ang)*radius; + Float_t ypos= fTOFGeometry->GetHeights(2,istrip); + gMC->Gspos("FSTR",fNStripA-istrip,"FLTA",0.,ypos, zpos,idrotm[0], "ONLY"); + if(fDebug>=1) { + printf("y = %f, z = %f, , z coord = %f, Rot ang = %f, St. %2i \n",ypos,zpos,tan(ang)*radius ,ang*kRaddeg,istrip); + } } - zcoor -= zSenStrip; - j++; - Int_t upDown = -1; // upDown=-1 -> Upper strip - // upDown=+1 -> Lower strip - do{ - ang = atan(zcoor/radius); - ang *= kRaddeg; - AliMatrix (idrotm[nrot], 90., 0.,90.-ang,90.,-ang, 90.); - AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang, 90.); - ang /= kRaddeg; - ycoor = -14.5+ kspace; //2 cm over front plate - ycoor += (1-(upDown+1)/2)*gap; - gMC->Gspos("FSTR",j ,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY"); - gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY"); - if(fDebug) { - printf("%s: %f, St. %2i, Pl.3 ",ClassName(),ang*kRaddeg,i); - printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos); - } - j += 2; - upDown*= -1; // Alternate strips - zcoor = zcoor-(zSenStrip/2)/TMath::Cos(ang)- - upDown*gap*TMath::Tan(ang)- - (zSenStrip/2)/TMath::Cos(ang); - } while (zcoor-(stripWidth/2)*TMath::Cos(ang)>-t+zFLTC+zFLTB+db*2); - - zcoor = zcoor+(zSenStrip/2)/TMath::Cos(ang)+ - upDown*gap*TMath::Tan(ang)+ - (zSenStrip/2)/TMath::Cos(ang); - - gap = fGapB; - zcoor = zcoor-(zSenStrip/2)/TMath::Cos(ang)- - upDown*gap*TMath::Tan(ang)- - (zSenStrip/2)/TMath::Cos(ang); - - ang = atan(zcoor/radius); - ang *= kRaddeg; - AliMatrix (idrotm[nrot], 90., 0.,90.-ang,90.,-ang, 90.); - AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang, 90.); - ang /= kRaddeg; - - ycoor = -14.5+ kspace; //2 cm over front plate - ycoor += (1-(upDown+1)/2)*gap; - gMC->Gspos("FSTR",j ,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY"); - gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY"); - if(fDebug) { - printf("%s: %f, St. %2i, Pl.3 ",ClassName(),ang*kRaddeg,i); - printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos); - } - ycoor = -hTof/2.+ kspace;//2 cm over front plate - - // Plate B - - nrot = 0; - i=1; - upDown = 1; - Float_t deadRegion = 1.0;//cm - - zpos = zcoor - (zSenStrip/2)/TMath::Cos(ang)- - upDown*gap*TMath::Tan(ang)- - (zSenStrip/2)/TMath::Cos(ang)- - deadRegion/TMath::Cos(ang); - - ang = atan(zpos/radius); - ang *= kRaddeg; - AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.); - ang /= kRaddeg; - ycoor = -hTof*0.5+ kspace ; //2 cm over front plate - ycoor += (1-(upDown+1)/2)*gap; - zcoor = zpos+(zFLTA*0.5+zFLTB*0.5+db); // Moves to the system of the modulus FLTB - gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY"); - if(fDebug) { - printf("%s: %f, St. %2i, Pl.4 ",ClassName(),ang*kRaddeg,i); - printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos); - } - i++; - upDown*=-1; - - do { - zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)- - upDown*gap*TMath::Tan(ang)- - (zSenStrip/2)/TMath::Cos(ang); - ang = atan(zpos/radius); - ang *= kRaddeg; - AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.); - ang /= kRaddeg; - Float_t deltaSpaceinB=-0.5; // [cm] to avoid overlaps with the end of freon frame - Float_t deltaGapinB=0.5; // [cm] to avoid overlaps in between initial strips - ycoor = -hTof*0.5+ kspace+deltaSpaceinB ; //2 cm over front plate - ycoor += (1-(upDown+1)/2)*(gap+deltaGapinB); - zcoor = zpos+(zFLTA*0.5+zFLTB*0.5+db); // Moves to the system of the modulus FLTB - gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY"); - if(fDebug) { - printf("%s: %f, St. %2i, Pl.4 ",ClassName(),ang*kRaddeg,i); - printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos); - } - upDown*=-1; - i++; - } while (TMath::Abs(ang*kRaddeg)<22.5); - //till we reach a tilting angle of 22.5 degrees - - ycoor = -hTof*0.5+ kspace ; //2 cm over front plate - zpos = zpos - zSenStrip/TMath::Cos(ang); - // this avoid overlaps in between outer strips in plate B - Float_t deltaMovingUp=0.8; // [cm] - Float_t deltaMovingDown=-0.5; // [cm] - - do { - ang = atan(zpos/radius); - ang *= kRaddeg; - AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.); - ang /= kRaddeg; - zcoor = zpos+(zFLTB/2+zFLTA/2+db); - gMC->Gspos("FSTR",i, "FLTB", 0., ycoor+deltaMovingDown+deltaMovingUp, zcoor,idrotm[nrot], "ONLY"); - deltaMovingUp+=0.8; // update delta moving toward the end of the plate - zpos = zpos - zSenStrip/TMath::Cos(ang); - if(fDebug) { - printf("%s: %f, St. %2i, Pl.4 ",ClassName(),ang*kRaddeg,i); - printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos); - } - i++; - - } while (zpos-stripWidth*0.5/TMath::Cos(ang)>-t+zFLTC+db); - - // Plate C - - zpos = zpos + zSenStrip/TMath::Cos(ang); - - zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)+ - gap*TMath::Tan(ang)- - (zSenStrip/2)/TMath::Cos(ang); - - nrot = 0; - i=0; - Float_t deltaGap=-2.5; // [cm] update distance from strip center and plate - ycoor= -hTof*0.5+kspace+gap+deltaGap; - - do { - i++; - ang = atan(zpos/radius); - ang *= kRaddeg; - AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.); - ang /= kRaddeg; - zcoor = zpos+(zFLTC*0.5+zFLTB+zFLTA*0.5+db*2); - gMC->Gspos("FSTR",i, "FLTC", 0., ycoor, zcoor,idrotm[nrot], "ONLY"); - if(fDebug) { - printf("%s: %f, St. %2i, Pl.5 ",ClassName(),ang*kRaddeg,i); - printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos); - } - zpos = zpos - zSenStrip/TMath::Cos(ang); - } while (zpos-stripWidth*TMath::Cos(ang)*0.5>-t); - - -////////// Layers after strips ///////////////// -// honeycomb (Polyethilene) Layer after (1.2cm) - Float_t overSpace = fOverSpc;//cm + + ///////////////////Positioning B module////////////////////////// + + for(Int_t istrip =0; istrip < fTOFGeometry->NStripB(); istrip++){ + + Float_t ang = fTOFGeometry->GetAngles(3,istrip); + AliMatrix (idrotm[0],90.,0.,90.-ang,90.,-ang, 90.); + ang /= kRaddeg; + Float_t zpos = tan(ang)*radius+(zFLTA*0.5+zFLTB*0.5+db); + Float_t ypos= fTOFGeometry->GetHeights(3,istrip); + gMC->Gspos("FSTR",istrip+1,"FLTB",0.,ypos, zpos,idrotm[nrot], "ONLY"); + if(fDebug>=1) { + printf("y = %f, z = %f, , z coord = %f, Rot ang = %f, St. %2i \n",ypos,zpos,tan(ang)*radius,ang*kRaddeg,istrip); + } + } + + ///////////////////Positioning C module////////////////////////// + + for(Int_t istrip =0; istrip < fTOFGeometry->NStripC(); istrip++){ + + Float_t ang = fTOFGeometry->GetAngles(4,istrip); + AliMatrix (idrotm[0],90.,0.,90.-ang,90.,-ang, 90.); + ang /= kRaddeg; + Float_t zpos = tan(ang)*radius+(zFLTC*0.5+zFLTB+zFLTA*0.5+db*2); + Float_t ypos= fTOFGeometry->GetHeights(4,istrip); + gMC->Gspos("FSTR",istrip+1,"FLTC",0.,ypos, zpos,idrotm[nrot], "ONLY"); + if(fDebug>=1) { + printf("y = %f, z = %f, z coord = %f, Rot ang = %f, St. %2i \n",ypos,zpos,tan(ang)*radius,ang*kRaddeg,istrip); + } + } + + ////////// Layers after strips ///////////////// + // Al Layer thickness (2.3mm) factor 0.7 + + Float_t overSpace = fOverSpc;//cm + par[0] = xFLT*0.5; - par[1] = 0.6; + par[1] = 0.115*0.7; // factor 0.7 par[2] = (zFLTA *0.5); ycoor = -yFLT/2 + overSpace + par[1]; - gMC->Gsvolu("FPEA", "BOX ", idtmed[503], par, 3); // Hony + gMC->Gsvolu("FPEA", "BOX ", idtmed[508], par, 3); // Al gMC->Gspos ("FPEA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); par[2] = (zFLTB *0.5); - gMC->Gsvolu("FPEB", "BOX ", idtmed[503], par, 3); // Hony + gMC->Gsvolu("FPEB", "BOX ", idtmed[508], par, 3); // Al gMC->Gspos ("FPEB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); par[2] = (zFLTC *0.5); - gMC->Gsvolu("FPEC", "BOX ", idtmed[503], par, 3); // Hony + gMC->Gsvolu("FPEC", "BOX ", idtmed[508], par, 3); // Al gMC->Gspos ("FPEC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); + + + // plexiglass thickness: 1.5 mm ; factor 0.3 -// Electronics (Cu) after ycoor += par[1]; par[0] = xFLT*0.5; - par[1] = 1.43*0.05*0.5; // 5% of X0 + par[1] = 0.075*0.3; // factor 0.3 par[2] = (zFLTA *0.5); ycoor += par[1]; - gMC->Gsvolu("FECA", "BOX ", idtmed[501], par, 3); // Cu + gMC->Gsvolu("FECA", "BOX ", idtmed[505], par, 3); // Plexigl. gMC->Gspos ("FECA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); par[2] = (zFLTB *0.5); - gMC->Gsvolu("FECB", "BOX ", idtmed[501], par, 3); // Cu + gMC->Gsvolu("FECB", "BOX ", idtmed[505], par, 3); // Plexigl. gMC->Gspos ("FECB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); par[2] = (zFLTC *0.5); - gMC->Gsvolu("FECC", "BOX ", idtmed[501], par, 3); // Cu + gMC->Gsvolu("FECC", "BOX ", idtmed[505], par, 3); // Plexigl. gMC->Gspos ("FECC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); + + // frame of Air -// cooling WAter after - ycoor += par[1]; - par[0] = xFLT*0.5; - par[1] = 36.1*0.02*0.5; // 2% of X0 - par[2] = (zFLTA *0.5); - ycoor += par[1]; - gMC->Gsvolu("FWAA", "BOX ", idtmed[515], par, 3); // Water - gMC->Gspos ("FWAA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); - par[2] = (zFLTB *0.5); - gMC->Gsvolu("FWAB", "BOX ", idtmed[515], par, 3); // Water - gMC->Gspos ("FWAB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); - par[2] = (zFLTC *0.5); - gMC->Gsvolu("FWAC", "BOX ", idtmed[515], par, 3); // Water - gMC->Gspos ("FWAC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); - -// frame of Air ycoor += par[1]; par[0] = xFLT*0.5; - par[1] = (yFLT/2-ycoor-0.2)*0.5; // Aluminum layer considered (0.2 cm) + par[1] = (yFLT/2-ycoor-khAlWall)*0.5; // Aluminum layer considered (0.18 cm) par[2] = (zFLTA *0.5); ycoor += par[1]; gMC->Gsvolu("FAIA", "BOX ", idtmed[500], par, 3); // Air @@ -656,21 +547,114 @@ void AliTOFv4T0::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, par[2] = (zFLTC *0.5); gMC->Gsvolu("FAIC", "BOX ", idtmed[500], par, 3); // Air gMC->Gspos ("FAIC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); -/* fp -//Back Plate honycomb (2cm) - par[0] = -1; - par[1] = 2 *0.5; - par[2] = -1; - ycoor = yFLT/2 - par[1]; - gMC->Gsvolu("FBPA", "BOX ", idtmed[503], par, 3); // Hony - gMC->Gspos ("FBPA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); - gMC->Gsvolu("FBPB", "BOX ", idtmed[503], par, 3); // Hony - gMC->Gspos ("FBPB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); - gMC->Gsvolu("FBPC", "BOX ", idtmed[503], par, 3); // Hony - gMC->Gspos ("FBPC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); -fp */ -} + + + // start with cards and cooling tubes + // finally, cards, cooling tubes and layer for thermal dispersion + // 3 volumes + // card volume definition + + // see GEOM200 in GEANT manual + + + AliMatrix(idrotm[98], 90., 0., 90., 90., 0., 0.); // 0 deg + + Float_t cardpar[3]; + cardpar[0]= 61.; + cardpar[1]= 5.; + cardpar[2]= 0.1; + gMC->Gsvolu("FCAR", "BOX ", idtmed[504], cardpar, 3); // PCB Card + //alu plate volume definition + cardpar[1]= 3.5; + cardpar[2]= 0.05; + gMC->Gsvolu("FALP", "BOX ", idtmed[508], cardpar, 3); // Alu Plate + + + // central module positioning (FAIA) + Float_t cardpos[3], aplpos2, stepforcardA=6.625; + cardpos[0]= 0.; + cardpos[1]= -0.5; + cardpos[2]= -53.; + Float_t aplpos1 = -2.; + Int_t icard; + for (icard=0; icard < fTOFGeometry->NStripA(); ++icard) { + cardpos[2]= cardpos[2]+stepforcardA; + aplpos2 = cardpos[2]+0.15; + gMC->Gspos("FCAR",icard,"FAIA",cardpos[0],cardpos[1],cardpos[2],idrotm[98],"ONLY"); + gMC->Gspos("FALP",icard,"FAIA",cardpos[0],aplpos1,aplpos2,idrotm[98],"ONLY"); + + } + + + // intermediate module positioning (FAIB) + Float_t stepforcardB= 7.05; + cardpos[2]= -70.5; + for (icard=0; icard < fTOFGeometry->NStripB(); ++icard) { + cardpos[2]= cardpos[2]+stepforcardB; + aplpos2 = cardpos[2]+0.15; + gMC->Gspos("FCAR",icard,"FAIB",cardpos[0],cardpos[1],cardpos[2],idrotm[98],"ONLY"); + gMC->Gspos("FALP",icard,"FAIB",cardpos[0],aplpos1,aplpos2,idrotm[98],"ONLY"); + } + + + // outer module positioning (FAIC) + Float_t stepforcardC= 8.45238; + cardpos[2]= -88.75; + for (icard=0; icard < fTOFGeometry->NStripC(); ++icard) { + cardpos[2]= cardpos[2]+stepforcardC; + aplpos2 = cardpos[2]+0.15; + gMC->Gspos("FCAR",icard,"FAIC",cardpos[0],cardpos[1],cardpos[2],idrotm[98],"ONLY"); + gMC->Gspos("FALP",icard,"FAIC",cardpos[0],aplpos1,aplpos2,idrotm[98],"ONLY"); + } + + // tube volume definition + + Float_t tubepar[3]; + tubepar[0]= 0.; + tubepar[1]= 0.4; + tubepar[2]= 61.; + gMC->Gsvolu("FTUB", "TUBE", idtmed[516], tubepar, 3); // cooling tubes (steel) + tubepar[0]= 0.; + tubepar[1]= 0.35; + tubepar[2]= 61.; + gMC->Gsvolu("FITU", "TUBE", idtmed[515], tubepar, 3); // cooling water + // positioning water tube into the steel one + gMC->Gspos("FITU",1,"FTUB",0.,0.,0.,0,"ONLY"); + + + // rotation matrix + AliMatrix(idrotm[99], 180., 90., 90., 90., 90., 0.); + // central module positioning (FAIA) + Float_t tubepos[3], tdis=0.6; + tubepos[0]= 0.; + tubepos[1]= cardpos[1]; + tubepos[2]= -53.+tdis; + // tub1pos = 5.; + Int_t itub; + for (itub=0; itub < fTOFGeometry->NStripA(); ++itub) { + tubepos[2]= tubepos[2]+stepforcardA; + gMC->Gspos("FTUB",itub,"FAIA",tubepos[0],tubepos[1],tubepos[2],idrotm[99], + "ONLY"); + } + + + // intermediate module positioning (FAIB) + tubepos[2]= -70.5+tdis; + for (itub=0; itub < fTOFGeometry->NStripB(); ++itub) { + tubepos[2]= tubepos[2]+stepforcardB; + gMC->Gspos("FTUB",itub,"FAIB",tubepos[0],tubepos[1],tubepos[2],idrotm[99], + "ONLY"); + } + + // outer module positioning (FAIC) + tubepos[2]= -88.75+tdis; + for (itub=0; itub < fTOFGeometry->NStripC(); ++itub) { + tubepos[2]= tubepos[2]+stepforcardC; + gMC->Gspos("FTUB",itub,"FAIC",tubepos[0],tubepos[1],tubepos[2],idrotm[99], + "ONLY"); + } +} //_____________________________________________________________________________ void AliTOFv4T0::DrawModule() const { @@ -726,10 +710,9 @@ void AliTOFv4T0::DrawDetectorModules() // Draw a shaded view of the TOF detector version 4 // - AliMC* pMC = AliMC::GetMC(); //Set ALIC mother transparent - pMC->Gsatt("ALIC","SEEN",0); + gMC->Gsatt("ALIC","SEEN",0); // //Set volumes visible @@ -799,10 +782,8 @@ void AliTOFv4T0::DrawDetectorStrips() // Draw a shaded view of the TOF strips for version 4 // - AliMC* pMC = AliMC::GetMC(); - //Set ALIC mother transparent - pMC->Gsatt("ALIC","SEEN",0); + gMC->Gsatt("ALIC","SEEN",0); // //Set volumes visible @@ -951,9 +932,11 @@ void AliTOFv4T0::Init() //_____________________________________________________________________________ void AliTOFv4T0::StepManager() { + // // Procedure called at each step in the Time Of Flight // + TLorentzVector mom, pos; Float_t xm[3],pm[3],xpad[3],ppad[3]; Float_t hits[14],phi,phid,z; @@ -962,7 +945,7 @@ void AliTOFv4T0::StepManager() Int_t copy, padzid, padxid, stripid, i; Int_t *idtmed = fIdtmed->GetArray()-499; Float_t incidenceAngle; - + if(gMC->GetMedium()==idtmed[513] && gMC->IsTrackEntering() && gMC->TrackCharge() && gMC->CurrentVolID(copy)==fIdSens) @@ -970,21 +953,25 @@ void AliTOFv4T0::StepManager() // getting information about hit volumes padzid=gMC->CurrentVolOffID(2,copy); - padz=copy; + padz=copy; + padxid=gMC->CurrentVolOffID(1,copy); - padx=copy; + padx=copy; stripid=gMC->CurrentVolOffID(4,copy); - strip=copy; + strip=copy; gMC->TrackPosition(pos); gMC->TrackMomentum(mom); -// Double_t NormPos=1./pos.Rho(); + + // Double_t NormPos=1./pos.Rho(); + Double_t normMom=1./mom.Rho(); -// getting the cohordinates in pad ref system + // getting the cohordinates in pad ref system + xm[0] = (Float_t)pos.X(); xm[1] = (Float_t)pos.Y(); xm[2] = (Float_t)pos.Z(); @@ -998,21 +985,44 @@ void AliTOFv4T0::StepManager() incidenceAngle = TMath::ACos(ppad[1])*kRaddeg; + z = pos[2]; - plate = 0; - if (TMath::Abs(z) <= fZlenA*0.5) plate = 3; + plate = -1; + + if (TMath::Abs(z) <= fZlenA*0.5) plate = 2; //3; // AdC if (z < (fZlenA*0.5+fZlenB) && - z > fZlenA*0.5) plate = 4; + z > fZlenA*0.5) plate = 1; //4; // AdC if (z >-(fZlenA*0.5+fZlenB) && - z < -fZlenA*0.5) plate = 2; - if (z > (fZlenA*0.5+fZlenB)) plate = 5; - if (z <-(fZlenA*0.5+fZlenB)) plate = 1; + z < -fZlenA*0.5) plate = 3; //2; // AdC + if (z > (fZlenA*0.5+fZlenB)) plate = 0; //5; // AdC + if (z <-(fZlenA*0.5+fZlenB)) plate = 4; //1; // AdC + + + if (plate==0) strip=fTOFGeometry->NStripC()-strip; // AdC + else if (plate==1) strip=fTOFGeometry->NStripB()-strip; // AdC + else strip--; // AdC + + //Apply ALICE conventions for volume numbering increasing with theta, phi + + if (plate==3 || plate==4){ + padx=fTOFGeometry->NpadX()-padx; // SA + padz=fTOFGeometry->NpadZ()-padz; // AdC + xpad[0]=-xpad[0]; + xpad[2]=-xpad[2]; + } + else { + padx--; // AdC + padz--; // AdC + } + + phi = pos.Phi(); - phid = phi*kRaddeg+180.; + if (phi>=0.) phid = phi*kRaddeg; //+180.; // AdC + else phid = phi*kRaddeg + 360.; // AdC + sector = Int_t (phid/20.); - sector++; for(i=0;i<3;++i) { hits[i] = pos[i]; @@ -1032,8 +1042,8 @@ void AliTOFv4T0::StepManager() vol[1]= plate; vol[2]= strip; vol[3]= padx; - vol[4]= padz; - - AddT0Hit(gAlice->CurrentTrack(),vol, hits); + vol[4]= padz; + + AddT0Hit(gAlice->GetMCApp()->GetCurrentTrackNumber(),vol, hits); } }