X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=TRD%2FAliTRDseedV1.cxx;h=42670e4a5523ee814e3eaca316cacb7b587d4ee3;hb=fcbe44bff5d201f27d03627ac71e429d0abc3b1f;hp=0c3f02dea3feccadeefeead582de8aab506b9212;hpb=3ee48d6ea79d0a4169db46bc78e9be8207d5a443;p=u%2Fmrichter%2FAliRoot.git diff --git a/TRD/AliTRDseedV1.cxx b/TRD/AliTRDseedV1.cxx index 0c3f02dea3f..42670e4a552 100644 --- a/TRD/AliTRDseedV1.cxx +++ b/TRD/AliTRDseedV1.cxx @@ -16,9 +16,19 @@ /* $Id$ */ //////////////////////////////////////////////////////////////////////////// -// // -// The TRD track seed // -// // +//// +// The TRD offline tracklet +// +// The running horse of the TRD reconstruction. The following tasks are preformed: +// 1. Clusters attachment to tracks based on prior information stored at tracklet level (see AttachClusters) +// 2. Clusters position recalculation based on track information (see GetClusterXY and Fit) +// 3. Cluster error parametrization recalculation (see Fit) +// 4. Linear track approximation (Fit) +// 5. Optimal position (including z estimate for pad row cross tracklets) and covariance matrix of the track fit inside one TRD chamber (Fit) +// 6. Tilt pad correction and systematic effects (GetCovAt) +// 7. dEdx calculation (CookdEdx) +// 8. PID probabilities estimation (CookPID) +// // Authors: // // Alex Bercuci // // Markus Fasel // @@ -43,8 +53,8 @@ #include "AliTRDchamberTimeBin.h" #include "AliTRDtrackingChamber.h" #include "AliTRDtrackerV1.h" -#include "AliTRDReconstructor.h" #include "AliTRDrecoParam.h" +#include "AliTRDCommonParam.h" #include "Cal/AliTRDCalPID.h" #include "Cal/AliTRDCalROC.h" @@ -52,55 +62,88 @@ ClassImp(AliTRDseedV1) +TLinearFitter *AliTRDseedV1::fgFitterY = NULL; +TLinearFitter *AliTRDseedV1::fgFitterZ = NULL; + //____________________________________________________________________ AliTRDseedV1::AliTRDseedV1(Int_t det) - :AliTRDseed() - ,fReconstructor(0x0) - ,fClusterIter(0x0) + :AliTRDtrackletBase() + ,fkReconstructor(NULL) + ,fClusterIter(NULL) + ,fExB(0.) + ,fVD(0.) + ,fT0(0.) + ,fS2PRF(0.) + ,fDiffL(0.) + ,fDiffT(0.) ,fClusterIdx(0) + ,fN(0) ,fDet(det) - ,fMom(0.) - ,fSnp(0.) - ,fTgl(0.) + ,fPt(0.) ,fdX(0.) - ,fXref(0.) - ,fExB(0.) + ,fX0(0.) + ,fX(0.) + ,fY(0.) + ,fZ(0.) + ,fS2Y(0.) + ,fS2Z(0.) + ,fC(0.) + ,fChi2(0.) { // // Constructor // - for(int islice=0; islice < knSlices; islice++) fdEdx[islice] = 0.; + memset(fIndexes,0xFF,kNclusters*sizeof(fIndexes[0])); + memset(fClusters, 0, kNclusters*sizeof(AliTRDcluster*)); + memset(fPad, 0, 3*sizeof(Float_t)); + fYref[0] = 0.; fYref[1] = 0.; + fZref[0] = 0.; fZref[1] = 0.; + fYfit[0] = 0.; fYfit[1] = 0.; + fZfit[0] = 0.; fZfit[1] = 0.; + memset(fdEdx, 0, kNslices*sizeof(Float_t)); for(int ispec=0; ispecGetProlongation(fX0, y, z)) return kFALSE; - UpDate(track); + Update(track); return kTRUE; } +//_____________________________________________________________________________ +void AliTRDseedV1::Reset() +{ + // + // Reset seed + // + fExB=0.;fVD=0.;fT0=0.;fS2PRF=0.; + fDiffL=0.;fDiffT=0.; + fClusterIdx=0; + fN=0; + fDet=-1; + fPt=0.; + fdX=0.;fX0=0.; fX=0.; fY=0.; fZ=0.; + fS2Y=0.; fS2Z=0.; + fC=0.; fChi2 = 0.; + + for(Int_t ic=kNclusters; ic--;) fIndexes[ic] = -1; + memset(fClusters, 0, kNclusters*sizeof(AliTRDcluster*)); + memset(fPad, 0, 3*sizeof(Float_t)); + fYref[0] = 0.; fYref[1] = 0.; + fZref[0] = 0.; fZref[1] = 0.; + fYfit[0] = 0.; fYfit[1] = 0.; + fZfit[0] = 0.; fZfit[1] = 0.; + memset(fdEdx, 0, kNslices*sizeof(Float_t)); + for(int ispec=0; ispecGetSnp(); - fTgl = trk->GetTgl(); - fMom = trk->GetP(); - fYref[1] = fSnp/(1. - fSnp*fSnp); - fZref[1] = fTgl; + Double_t fSnp = trk->GetSnp(); + Double_t fTgl = trk->GetTgl(); + fPt = trk->Pt(); + Double_t norm =1./TMath::Sqrt(1. - fSnp*fSnp); + fYref[1] = fSnp*norm; + fZref[1] = fTgl*norm; SetCovRef(trk->GetCovariance()); Double_t dx = trk->GetX() - fX0; @@ -210,6 +305,65 @@ void AliTRDseedV1::UpDate(const AliTRDtrackV1 *trk) fZref[0] = trk->GetZ() - dx*fZref[1]; } +//_____________________________________________________________________________ +void AliTRDseedV1::UpdateUsed() +{ + // + // Calculate number of used clusers in the tracklet + // + + Int_t nused = 0, nshared = 0; + for (Int_t i = kNclusters; i--; ) { + if (!fClusters[i]) continue; + if(fClusters[i]->IsUsed()){ + nused++; + } else if(fClusters[i]->IsShared()){ + if(IsStandAlone()) nused++; + else nshared++; + } + } + SetNUsed(nused); + SetNShared(nshared); +} + +//_____________________________________________________________________________ +void AliTRDseedV1::UseClusters() +{ + // + // Use clusters + // + // In stand alone mode: + // Clusters which are marked as used or shared from another track are + // removed from the tracklet + // + // In barrel mode: + // - Clusters which are used by another track become shared + // - Clusters which are attached to a kink track become shared + // + AliTRDcluster **c = &fClusters[0]; + for (Int_t ic=kNclusters; ic--; c++) { + if(!(*c)) continue; + if(IsStandAlone()){ + if((*c)->IsShared() || (*c)->IsUsed()){ + if((*c)->IsShared()) SetNShared(GetNShared()-1); + else SetNUsed(GetNUsed()-1); + (*c) = NULL; + fIndexes[ic] = -1; + SetN(GetN()-1); + continue; + } + } else { + if((*c)->IsUsed() || IsKink()){ + (*c)->SetShared(); + continue; + } + } + (*c)->Use(); + } +} + + + //____________________________________________________________________ void AliTRDseedV1::CookdEdx(Int_t nslices) { @@ -232,27 +386,28 @@ void AliTRDseedV1::CookdEdx(Int_t nslices) // 3. cluster size // - Int_t nclusters[knSlices]; - for(int i=0; iGetX(); + if(!(c = fClusters[ic]) && !(c = fClusters[ic+kNtb])) continue; + Float_t dx = TMath::Abs(fX0 - c->GetX()); // Filter clusters for dE/dx calculation // 1.consider calibration effects for slice determination - Int_t slice; - if(c->IsInChamber()) slice = Int_t(TMath::Abs(fX0 - x) * nslices / pathLength); - else slice = x < fX0 ? 0 : nslices-1; - + Int_t slice; + if(dxIsInChamber() + slice = Int_t(dx * nslices / kDriftLength); + } else slice = c->GetX() < fX0 ? nslices-1 : 0; + + // 2. take sharing into account - Float_t w = c->IsShared() ? .5 : 1.; + Float_t w = /*c->IsShared() ? .5 :*/ 1.; // 3. take into account large clusters TODO //w *= c->GetNPads() > 3 ? .8 : 1.; @@ -262,8 +417,8 @@ void AliTRDseedV1::CookdEdx(Int_t nslices) nclusters[slice]++; } // End of loop over clusters - //if(fReconstructor->GetPIDMethod() == AliTRDReconstructor::kLQPID){ - if(nslices == AliTRDReconstructor::kLQslices){ + //if(fkReconstructor->GetPIDMethod() == AliTRDReconstructor::kLQPID){ + if(nslices == AliTRDpidUtil::kLQslices){ // calculate mean charge per slice (only LQ PID) for(int is=0; isGetDetector()); - x = c->GetX() - cx[c->GetLocalTimeBin()]; - y = c->GetY() + cy[ily][0] + cy[ily][1] * TMath::Sin(cy[ily][2] * c->GetCenter()); - return; + // + // Cook 2 labels for seed + // + + Int_t labels[200]; + Int_t out[200]; + Int_t nlab = 0; + for (Int_t i = 0; i < kNclusters; i++) { + if (!fClusters[i]) continue; + for (Int_t ilab = 0; ilab < 3; ilab++) { + if (fClusters[i]->GetLabel(ilab) >= 0) { + labels[nlab] = fClusters[i]->GetLabel(ilab); + nlab++; + } + } + } + + fLabels[2] = AliMathBase::Freq(nlab,labels,out,kTRUE); + fLabels[0] = out[0]; + if ((fLabels[2] > 1) && (out[3] > 1)) fLabels[1] = out[2]; } + //____________________________________________________________________ -Float_t AliTRDseedV1::GetdQdl(Int_t ic) const +Float_t AliTRDseedV1::GetdQdl(Int_t ic, Float_t *dl) const { // Using the linear approximation of the track inside one TRD chamber (TRD tracklet) // the charge per unit length can be written as: // BEGIN_LATEX -// #frac{dq}{dl} = #frac{q_{c}}{dx * #sqrt{1 + #(){#frac{dy}{dx}}^{2}_{fit} + #(){#frac{dy}{dx}}^{2}_{ref}}} +// #frac{dq}{dl} = #frac{q_{c}}{dx * #sqrt{1 + #(){#frac{dy}{dx}}^{2}_{fit} + #(){#frac{dz}{dx}}^{2}_{ref}}} // END_LATEX // where qc is the total charge collected in the current time bin and dx is the length -// of the time bin. For the moment (Jan 20 2009) only pad row cross corrections are -// considered for the charge but none are applied for drift velocity variations along -// the drift region or assymetry of the TRF +// of the time bin. +// The following correction are applied : +// - charge : pad row cross corrections +// [diffusion and TRF assymetry] TODO +// - dx : anisochronity, track inclination - see Fit and AliTRDcluster::GetXloc() +// and AliTRDcluster::GetYloc() for the effects taken into account // +//Begin_Html +// +//End_Html +// In the picture the energy loss measured on the tracklet as a function of drift time [left] and respectively +// drift length [right] for different particle species is displayed. // Author : Alex Bercuci // Float_t dq = 0.; - if(fClusters[ic]) dq += TMath::Abs(fClusters[ic]->GetQ()); - if(fClusters[knTimebins+ic]) dq += TMath::Abs(fClusters[knTimebins+ic]->GetQ()); + // check whether both clusters are inside the chamber + Bool_t hasClusterInChamber = kFALSE; + if(fClusters[ic] && fClusters[ic]->IsInChamber()){ + hasClusterInChamber = kTRUE; + dq += TMath::Abs(fClusters[ic]->GetQ()); + }else if(fClusters[ic+kNtb] && fClusters[ic+kNtb]->IsInChamber()){ + hasClusterInChamber = kTRUE; + dq += TMath::Abs(fClusters[ic+kNtb]->GetQ()); + } + if(!hasClusterInChamber) return 0.; + if(dq<1.e-3) return 0.; + + Double_t dx = fdX; + if(ic-1>=0 && ic+1IsInChamber()) x2 = fClusters[ic-1]->GetX(); + else if(fClusters[ic-1+kNtb] && fClusters[ic-1+kNtb]->IsInChamber()) x2 = fClusters[ic-1+kNtb]->GetX(); + else if(fClusters[ic] && fClusters[ic]->IsInChamber()) x2 = fClusters[ic]->GetX()+fdX; + else x2 = fClusters[ic+kNtb]->GetX()+fdX; + // try to estimate lower radial position (find the cluster which is inside the chamber) + if(fClusters[ic+1] && fClusters[ic+1]->IsInChamber()) x1 = fClusters[ic+1]->GetX(); + else if(fClusters[ic+1+kNtb] && fClusters[ic+1+kNtb]->IsInChamber()) x1 = fClusters[ic+1+kNtb]->GetX(); + else if(fClusters[ic] && fClusters[ic]->IsInChamber()) x1 = fClusters[ic]->GetX()-fdX; + else x1 = fClusters[ic+kNtb]->GetX()-fdX; + + dx = .5*(x2 - x1); + } + dx *= TMath::Sqrt(1. + fYfit[1]*fYfit[1] + fZref[1]*fZref[1]); + if(dl) (*dl) = dx; + return dq/dx; +} + +//____________________________________________________________ +Float_t AliTRDseedV1::GetMomentum(Float_t *err) const +{ +// Returns momentum of the track after update with the current tracklet as: +// BEGIN_LATEX +// p=#frac{1}{1/p_{t}} #sqrt{1+tgl^{2}} +// END_LATEX +// and optionally the momentum error (if err is not null). +// The estimated variance of the momentum is given by: +// BEGIN_LATEX +// #sigma_{p}^{2} = (#frac{dp}{dp_{t}})^{2} #sigma_{p_{t}}^{2}+(#frac{dp}{dtgl})^{2} #sigma_{tgl}^{2}+2#frac{dp}{dp_{t}}#frac{dp}{dtgl} cov(tgl,1/p_{t}) +// END_LATEX +// which can be simplified to +// BEGIN_LATEX +// #sigma_{p}^{2} = p^{2}p_{t}^{4}tgl^{2}#sigma_{tgl}^{2}-2p^{2}p_{t}^{3}tgl cov(tgl,1/p_{t})+p^{2}p_{t}^{2}#sigma_{1/p_{t}}^{2} +// END_LATEX +// - return dq/fdX/TMath::Sqrt(1. + fYfit[1]*fYfit[1] + fZref[1]*fZref[1]); + Double_t p = fPt*TMath::Sqrt(1.+fZref[1]*fZref[1]); + Double_t p2 = p*p; + Double_t tgl2 = fZref[1]*fZref[1]; + Double_t pt2 = fPt*fPt; + if(err){ + Double_t s2 = + p2*tgl2*pt2*pt2*fRefCov[4] + -2.*p2*fZref[1]*fPt*pt2*fRefCov[5] + +p2*pt2*fRefCov[6]; + (*err) = TMath::Sqrt(s2); + } + return p; } + //____________________________________________________________________ -Double_t* AliTRDseedV1::GetProbability() +Float_t* AliTRDseedV1::GetProbability(Bool_t force) { + if(!force) return &fProb[0]; + if(!CookPID()) return NULL; + return &fProb[0]; +} + +//____________________________________________________________ +Bool_t AliTRDseedV1::CookPID() +{ // Fill probability array for tracklet from the DB. // // Parameters // // Output -// returns pointer to the probability array and 0x0 if missing DB access +// returns pointer to the probability array and NULL if missing DB access // -// Detailed description +// Retrieve PID probabilities for e+-, mu+-, K+-, pi+- and p+- from the DB according to tracklet information: +// - estimated momentum at tracklet reference point +// - dE/dx measurements +// - tracklet length +// - TRD layer +// According to the steering settings specified in the reconstruction one of the following methods are used +// - Neural Network [default] - option "nn" +// - 2D Likelihood - option "!nn" - - // retrive calibration db AliTRDcalibDB *calibration = AliTRDcalibDB::Instance(); if (!calibration) { AliError("No access to calibration data"); - return 0x0; + return kFALSE; } - if (!fReconstructor) { + if (!fkReconstructor) { AliError("Reconstructor not set."); - return 0x0; + return kFALSE; } // Retrieve the CDB container class with the parametric detector response - const AliTRDCalPID *pd = calibration->GetPIDObject(fReconstructor->GetPIDMethod()); + const AliTRDCalPID *pd = calibration->GetPIDObject(fkReconstructor->GetPIDMethod()); if (!pd) { AliError("No access to AliTRDCalPID object"); - return 0x0; + return kFALSE; } - //AliInfo(Form("Method[%d] : %s", fReconstructor->GetRecoParam() ->GetPIDMethod(), pd->IsA()->GetName())); + //AliInfo(Form("Method[%d] : %s", fkReconstructor->GetRecoParam() ->GetPIDMethod(), pd->IsA()->GetName())); // calculate tracklet length TO DO Float_t length = (AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick()); /// TMath::Sqrt((1.0 - fSnp[iPlane]*fSnp[iPlane]) / (1.0 + fTgl[iPlane]*fTgl[iPlane])); //calculate dE/dx - CookdEdx(fReconstructor->GetNdEdxSlices()); + CookdEdx(fkReconstructor->GetNdEdxSlices()); // Sets the a priori probabilities - for(int ispec=0; ispecGetProbability(ispec, fMom, &fdEdx[0], length, GetPlane()); - } - - return &fProb[0]; + for(int ispec=0; ispecGetProbability(ispec, GetMomentum(), &fdEdx[0], length, GetPlane()); + + return kTRUE; } //____________________________________________________________________ @@ -381,12 +609,12 @@ Float_t AliTRDseedV1::GetQuality(Bool_t kZcorr) const // Returns a quality measurement of the current seed // - Float_t zcorr = kZcorr ? fTilt * (fZProb - fZref[0]) : 0.; + Float_t zcorr = kZcorr ? GetTilt() * (fZfit[0] - fZref[0]) : 0.; return - .5 * TMath::Abs(18.0 - fN2) + .5 * TMath::Abs(18.0 - GetN()) + 10.* TMath::Abs(fYfit[1] - fYref[1]) + 5. * TMath::Abs(fYfit[0] - fYref[0] + zcorr) - + 2. * TMath::Abs(fMeanz - fZref[0]) / fPadLength; + + 2. * TMath::Abs(fZfit[0] - fZref[0]) / GetPadLength(); } //____________________________________________________________________ @@ -439,32 +667,135 @@ void AliTRDseedV1::GetCovAt(Double_t x, Double_t *cov) const Double_t xr = fX0-x; Double_t sy2 = fCov[0] +2.*xr*fCov[1] + xr*xr*fCov[2]; - Double_t sz2 = fPadLength*fPadLength/12.; + Double_t sz2 = fS2Z; + //GetPadLength()*GetPadLength()/12.; // insert systematic uncertainties - Double_t sys[15]; - fReconstructor->GetRecoParam()->GetSysCovMatrix(sys); - sy2 += sys[0]; - sz2 += sys[1]; - + if(fkReconstructor){ + Double_t sys[15]; memset(sys, 0, 15*sizeof(Double_t)); + fkReconstructor->GetRecoParam()->GetSysCovMatrix(sys); + sy2 += sys[0]; + sz2 += sys[1]; + } // rotate covariance matrix - Double_t t2 = fTilt*fTilt; + Double_t t2 = GetTilt()*GetTilt(); Double_t correction = 1./(1. + t2); cov[0] = (sy2+t2*sz2)*correction; - cov[1] = fTilt*(sz2 - sy2)*correction; + cov[1] = GetTilt()*(sz2 - sy2)*correction; cov[2] = (t2*sy2+sz2)*correction; + + //printf("C(%6.1f %+6.3f %6.1f) [%s]\n", 1.e4*TMath::Sqrt(cov[0]), cov[1], 1.e4*TMath::Sqrt(cov[2]), IsRowCross()?" RC ":"-"); +} + +//____________________________________________________________ +Double_t AliTRDseedV1::GetCovSqrt(const Double_t * const c, Double_t *d) +{ +// Helper function to calculate the square root of the covariance matrix. +// The input matrix is stored in the vector c and the result in the vector d. +// Both arrays have to be initialized by the user with at least 3 elements. Return negative in case of failure. +// +// For calculating the square root of the symmetric matrix c +// the following relation is used: +// BEGIN_LATEX +// C^{1/2} = VD^{1/2}V^{-1} +// END_LATEX +// with V being the matrix with the n eigenvectors as columns. +// In case C is symmetric the followings are true: +// - matrix D is diagonal with the diagonal given by the eigenvalues of C +// - V = V^{-1} +// +// Author A.Bercuci +// Date Mar 19 2009 + + Double_t l[2], // eigenvalues + v[3]; // eigenvectors + // the secular equation and its solution : + // (c[0]-L)(c[2]-L)-c[1]^2 = 0 + // L^2 - L*Tr(c)+DET(c) = 0 + // L12 = [Tr(c) +- sqrt(Tr(c)^2-4*DET(c))]/2 + Double_t tr = c[0]+c[2], // trace + det = c[0]*c[2]-c[1]*c[1]; // determinant + if(TMath::Abs(det)<1.e-20) return -1.; + Double_t dd = TMath::Sqrt(tr*tr - 4*det); + l[0] = .5*(tr + dd); + l[1] = .5*(tr - dd); + if(l[0]<0. || l[1]<0.) return -1.; + + // the sym V matrix + // | v00 v10| + // | v10 v11| + Double_t tmp = (l[0]-c[0])/c[1]; + v[0] = TMath::Sqrt(1./(tmp*tmp+1)); + v[1] = tmp*v[0]; + v[2] = v[1]*c[1]/(l[1]-c[2]); + // the VD^{1/2}V is: + l[0] = TMath::Sqrt(l[0]); l[1] = TMath::Sqrt(l[1]); + d[0] = v[0]*v[0]*l[0]+v[1]*v[1]*l[1]; + d[1] = v[0]*v[1]*l[0]+v[1]*v[2]*l[1]; + d[2] = v[1]*v[1]*l[0]+v[2]*v[2]*l[1]; + + return 1.; +} + +//____________________________________________________________ +Double_t AliTRDseedV1::GetCovInv(const Double_t * const c, Double_t *d) +{ +// Helper function to calculate the inverse of the covariance matrix. +// The input matrix is stored in the vector c and the result in the vector d. +// Both arrays have to be initialized by the user with at least 3 elements +// The return value is the determinant or 0 in case of singularity. +// +// Author A.Bercuci +// Date Mar 19 2009 + + Double_t det = c[0]*c[2] - c[1]*c[1]; + if(TMath::Abs(det)<1.e-20) return 0.; + Double_t invDet = 1./det; + d[0] = c[2]*invDet; + d[1] =-c[1]*invDet; + d[2] = c[0]*invDet; + return det; } +//____________________________________________________________________ +UShort_t AliTRDseedV1::GetVolumeId() const +{ + Int_t ic=0; + while(icGetVolumeId() : 0; +} + +//____________________________________________________________________ +TLinearFitter* AliTRDseedV1::GetFitterY() +{ + if(!fgFitterY) fgFitterY = new TLinearFitter(1, "pol1"); + fgFitterY->ClearPoints(); + return fgFitterY; +} //____________________________________________________________________ -void AliTRDseedV1::SetExB() +TLinearFitter* AliTRDseedV1::GetFitterZ() { -// Retrive the tg(a_L) from OCDB. The following information are used + if(!fgFitterZ) fgFitterZ = new TLinearFitter(1, "pol1"); + fgFitterZ->ClearPoints(); + return fgFitterZ; +} + +//____________________________________________________________________ +void AliTRDseedV1::Calibrate() +{ +// Retrieve calibration and position parameters from OCDB. +// The following information are used // - detector index -// - column and row position of first attached cluster. -// -// If no clusters are attached to the tracklet a random central chamber -// position (c=70, r=7) will be used to retrieve the drift velocity. +// - column and row position of first attached cluster. If no clusters are attached +// to the tracklet a random central chamber position (c=70, r=7) will be used. +// +// The following information is cached in the tracklet +// t0 (trigger delay) +// drift velocity +// PRF width +// omega*tau = tg(a_L) +// diffusion coefficients (longitudinal and transversal) // // Author : // Alex Bercuci @@ -477,23 +808,30 @@ void AliTRDseedV1::SetExB() return; } - AliTRDcalibDB *fCalib = AliTRDcalibDB::Instance(); - AliTRDCalROC *fCalVdriftROC = fCalib->GetVdriftROC(fDet); - const AliTRDCalDet *fCalVdriftDet = fCalib->GetVdriftDet(); + AliTRDcalibDB *calib = AliTRDcalibDB::Instance(); + AliTRDCalROC *vdROC = calib->GetVdriftROC(fDet), + *t0ROC = calib->GetT0ROC(fDet);; + const AliTRDCalDet *vdDet = calib->GetVdriftDet(); + const AliTRDCalDet *t0Det = calib->GetT0Det(); Int_t col = 70, row = 7; AliTRDcluster **c = &fClusters[0]; - if(fN){ + if(GetN()){ Int_t ic = 0; - while (icGetPadCol(); row = (*c)->GetPadRow(); } } - Double_t vd = fCalVdriftDet->GetValue(fDet) * fCalVdriftROC->GetValue(col, row); - fExB = fCalib->GetOmegaTau(vd, -0.1*AliTracker::GetBz()); + fT0 = (t0Det->GetValue(fDet) + t0ROC->GetValue(col,row)) / AliTRDCommonParam::Instance()->GetSamplingFrequency(); + fVD = vdDet->GetValue(fDet) * vdROC->GetValue(col, row); + fS2PRF = calib->GetPRFWidth(fDet, col, row); fS2PRF *= fS2PRF; + fExB = AliTRDCommonParam::Instance()->GetOmegaTau(fVD); + AliTRDCommonParam::Instance()->GetDiffCoeff(fDiffL, + fDiffT, fVD); + SetBit(kCalib, kTRUE); } //____________________________________________________________________ @@ -502,199 +840,113 @@ void AliTRDseedV1::SetOwner() //AliInfo(Form("own [%s] fOwner[%s]", own?"YES":"NO", fOwner?"YES":"NO")); if(TestBit(kOwner)) return; - for(int ic=0; icGetRecoParam() ){ - AliError("Seed can not be used without a valid RecoParam."); - return kFALSE; - } - - AliTRDchamberTimeBin *layer = 0x0; - if(fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker)>=7){ - AliTRDtrackingChamber ch(*chamber); - ch.SetOwner(); - TTreeSRedirector &cstreamer = *fReconstructor->GetDebugStream(AliTRDReconstructor::kTracker); - cstreamer << "AttachClustersIter" - << "chamber.=" << &ch - << "tracklet.=" << this - << "\n"; - } - - Float_t tquality; - Double_t kroady = fReconstructor->GetRecoParam() ->GetRoad1y(); - Double_t kroadz = fPadLength * .5 + 1.; - - // initialize configuration parameters - Float_t zcorr = kZcorr ? fTilt * (fZProb - fZref[0]) : 0.; - Int_t niter = kZcorr ? 1 : 2; - - Double_t yexp, zexp; - Int_t ncl = 0; - // start seed update - for (Int_t iter = 0; iter < niter; iter++) { - ncl = 0; - for (Int_t iTime = 0; iTime < AliTRDtrackerV1::GetNTimeBins(); iTime++) { - if(!(layer = chamber->GetTB(iTime))) continue; - if(!Int_t(*layer)) continue; - - // define searching configuration - Double_t dxlayer = layer->GetX() - fX0; - if(c){ - zexp = c->GetZ(); - //Try 2 pad-rows in second iteration - if (iter > 0) { - zexp = fZref[0] + fZref[1] * dxlayer - zcorr; - if (zexp > c->GetZ()) zexp = c->GetZ() + fPadLength*0.5; - if (zexp < c->GetZ()) zexp = c->GetZ() - fPadLength*0.5; - } - } else zexp = fZref[0] + (kZcorr ? fZref[1] * dxlayer : 0.); - yexp = fYref[0] + fYref[1] * dxlayer - zcorr; - - // Get and register cluster - Int_t index = layer->SearchNearestCluster(yexp, zexp, kroady, kroadz); - if (index < 0) continue; - AliTRDcluster *cl = (*layer)[index]; - - fIndexes[iTime] = layer->GetGlobalIndex(index); - fClusters[iTime] = cl; - fY[iTime] = cl->GetY(); - fZ[iTime] = cl->GetZ(); - ncl++; - } - if(fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker)>=7) AliInfo(Form("iter = %d ncl [%d] = %d", iter, fDet, ncl)); - - if(ncl>1){ - // calculate length of the time bin (calibration aware) - Int_t irp = 0; Float_t x[2]; Int_t tb[2]; - for (Int_t iTime = 0; iTime < AliTRDtrackerV1::GetNTimeBins(); iTime++) { - if(!fClusters[iTime]) continue; - x[irp] = fClusters[iTime]->GetX(); - tb[irp] = iTime; - irp++; - if(irp==2) break; - } - fdX = (x[1] - x[0]) / (tb[0] - tb[1]); - - // update X0 from the clusters (calibration/alignment aware) - for (Int_t iTime = 0; iTime < AliTRDtrackerV1::GetNTimeBins(); iTime++) { - if(!(layer = chamber->GetTB(iTime))) continue; - if(!layer->IsT0()) continue; - if(fClusters[iTime]){ - fX0 = fClusters[iTime]->GetX(); - break; - } else { // we have to infere the position of the anode wire from the other clusters - for (Int_t jTime = iTime+1; jTime < AliTRDtrackerV1::GetNTimeBins(); jTime++) { - if(!fClusters[jTime]) continue; - fX0 = fClusters[jTime]->GetX() + fdX * (jTime - iTime); - break; - } - } - } - - // update YZ reference point - // TODO - - // update x reference positions (calibration/alignment aware) - for (Int_t iTime = 0; iTime < AliTRDtrackerV1::GetNTimeBins(); iTime++) { - if(!fClusters[iTime]) continue; - fX[iTime] = fX0 - fClusters[iTime]->GetX(); - } - - AliTRDseed::Update(); - } - if(fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker)>=7) AliInfo(Form("iter = %d nclFit [%d] = %d", iter, fDet, fN2)); - - if(IsOK()){ - tquality = GetQuality(kZcorr); - if(tquality < quality) break; - else quality = tquality; - } - kroadz *= 2.; - } // Loop: iter - if (!IsOK()) return kFALSE; - - if(fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker)>=1) CookLabels(); - - // set ExB angle - SetExB(); - UpdateUsed(); - return kTRUE; +// Shortcut method to initialize pad geometry. + if(!p) return; + SetTilt(TMath::Tan(TMath::DegToRad()*p->GetTiltingAngle())); + SetPadLength(p->GetLengthIPad()); + SetPadWidth(p->GetWidthIPad()); } + //____________________________________________________________________ -Bool_t AliTRDseedV1::AttachClusters(AliTRDtrackingChamber *chamber, Bool_t tilt) +Bool_t AliTRDseedV1::AttachClusters(AliTRDtrackingChamber *const chamber, Bool_t tilt) { - // - // Projective algorithm to attach clusters to seeding tracklets - // - // Parameters - // - // Output - // - // Detailed description - // 1. Collapse x coordinate for the full detector plane - // 2. truncated mean on y (r-phi) direction - // 3. purge clusters - // 4. truncated mean on z direction - // 5. purge clusters - // 6. fit tracklet - // +// +// Projective algorithm to attach clusters to seeding tracklets. The following steps are performed : +// 1. Collapse x coordinate for the full detector plane +// 2. truncated mean on y (r-phi) direction +// 3. purge clusters +// 4. truncated mean on z direction +// 5. purge clusters +// +// Parameters +// - chamber : pointer to tracking chamber container used to search the tracklet +// - tilt : switch for tilt correction during road building [default true] +// Output +// - true : if tracklet found successfully. Failure can happend because of the following: +// - +// Detailed description +// +// We start up by defining the track direction in the xy plane and roads. The roads are calculated based +// on tracking information (variance in the r-phi direction) and estimated variance of the standard +// clusters (see AliTRDcluster::SetSigmaY2()) corrected for tilt (see GetCovAt()). From this the road is +// BEGIN_LATEX +// r_{y} = 3*#sqrt{12*(#sigma^{2}_{Trk}(y) + #frac{#sigma^{2}_{cl}(y) + tg^{2}(#alpha_{L})#sigma^{2}_{cl}(z)}{1+tg^{2}(#alpha_{L})})} +// r_{z} = 1.5*L_{pad} +// END_LATEX +// +// Author : Alexandru Bercuci +// Debug : level >3 + Bool_t kPRINT = kFALSE; - if(!fReconstructor->GetRecoParam() ){ + if(!fkReconstructor->GetRecoParam() ){ AliError("Seed can not be used without a valid RecoParam."); return kFALSE; } // Initialize reco params for this tracklet // 1. first time bin in the drift region - Int_t t0 = 4; - Int_t kClmin = Int_t(fReconstructor->GetRecoParam() ->GetFindableClusters()*AliTRDtrackerV1::GetNTimeBins()); - - Double_t syRef = TMath::Sqrt(fRefCov[0]); + Int_t t0 = 14; + Int_t kClmin = Int_t(fkReconstructor->GetRecoParam() ->GetFindableClusters()*AliTRDtrackerV1::GetNTimeBins()); + + Double_t sysCov[5]; fkReconstructor->GetRecoParam()->GetSysCovMatrix(sysCov); + Double_t s2yTrk= fRefCov[0], + s2yCl = 0., + s2zCl = GetPadLength()*GetPadLength()/12., + syRef = TMath::Sqrt(s2yTrk), + t2 = GetTilt()*GetTilt(); //define roads - Double_t kroady = 1.; - //fReconstructor->GetRecoParam() ->GetRoad1y(); - Double_t kroadz = fPadLength * 1.5 + 1.; + Double_t kroady = 1., //fkReconstructor->GetRecoParam() ->GetRoad1y(); + kroadz = GetPadLength() * fkReconstructor->GetRecoParam()->GetRoadzMultiplicator() + 1.; + // define probing cluster (the perfect cluster) and default calibration + Short_t sig[] = {0, 0, 10, 30, 10, 0,0}; + AliTRDcluster cp(fDet, 6, 75, 0, sig, 0); + if(fkReconstructor->IsHLT())cp.SetRPhiMethod(AliTRDcluster::kCOG); + Calibrate(); + if(kPRINT) printf("AttachClusters() sy[%f] road[%f]\n", syRef, kroady); // working variables const Int_t kNrows = 16; - AliTRDcluster *clst[kNrows][knTimebins]; - Double_t cond[4], dx, dy, yt, zt, - yres[kNrows][knTimebins]; - Int_t idxs[kNrows][knTimebins], ncl[kNrows], ncls = 0; + const Int_t kNcls = 3*kNclusters; // buffer size + AliTRDcluster *clst[kNrows][kNcls]; + Bool_t blst[kNrows][kNcls]; + Double_t cond[4], dx, dy, yt, zt, yres[kNrows][kNcls]; + Int_t idxs[kNrows][kNcls], ncl[kNrows], ncls = 0; memset(ncl, 0, kNrows*sizeof(Int_t)); - memset(clst, 0, kNrows*knTimebins*sizeof(AliTRDcluster*)); + memset(yres, 0, kNrows*kNcls*sizeof(Double_t)); + memset(blst, 0, kNrows*kNcls*sizeof(Bool_t)); //this is 8 times faster to memset than "memset(clst, 0, kNrows*kNcls*sizeof(AliTRDcluster*))" // Do cluster projection - AliTRDcluster *c = 0x0; - AliTRDchamberTimeBin *layer = 0x0; + AliTRDcluster *c = NULL; + AliTRDchamberTimeBin *layer = NULL; Bool_t kBUFFER = kFALSE; - for (Int_t it = 0; it < AliTRDtrackerV1::GetNTimeBins(); it++) { + for (Int_t it = 0; it < kNtb; it++) { if(!(layer = chamber->GetTB(it))) continue; if(!Int_t(*layer)) continue; - + // get track projection at layers position dx = fX0 - layer->GetX(); yt = fYref[0] - fYref[1] * dx; zt = fZref[0] - fZref[1] * dx; - if(kPRINT) printf("\t%2d dx[%f] yt[%f] zt[%f]\n", it, dx, yt, zt); + // get standard cluster error corrected for tilt + cp.SetLocalTimeBin(it); + cp.SetSigmaY2(0.02, fDiffT, fExB, dx, -1./*zt*/, fYref[1]); + s2yCl = (cp.GetSigmaY2() + sysCov[0] + t2*s2zCl)/(1.+t2); + // get estimated road + kroady = 3.*TMath::Sqrt(12.*(s2yTrk + s2yCl)); + + if(kPRINT) printf(" %2d dx[%f] yt[%f] zt[%f] sT[um]=%6.2f sy[um]=%6.2f syTilt[um]=%6.2f yRoad[mm]=%f\n", it, dx, yt, zt, 1.e4*TMath::Sqrt(s2yTrk), 1.e4*TMath::Sqrt(cp.GetSigmaY2()), 1.e4*TMath::Sqrt(s2yCl), 1.e1*kroady); - // select clusters on a 5 sigmaKalman level + // select clusters cond[0] = yt; cond[2] = kroady; cond[1] = zt; cond[3] = kroadz; Int_t n=0, idx[6]; @@ -702,7 +954,7 @@ Bool_t AliTRDseedV1::AttachClusters(AliTRDtrackingChamber *chamber, Bool_t tilt) for(Int_t ic = n; ic--;){ c = (*layer)[idx[ic]]; dy = yt - c->GetY(); - dy += tilt ? fTilt * (c->GetZ() - zt) : 0.; + dy += tilt ? GetTilt() * (c->GetZ() - zt) : 0.; // select clusters on a 3 sigmaKalman level /* if(tilt && TMath::Abs(dy) > 3.*syRef){ printf("too large !!!\n"); @@ -711,12 +963,13 @@ Bool_t AliTRDseedV1::AttachClusters(AliTRDtrackingChamber *chamber, Bool_t tilt) Int_t r = c->GetPadRow(); if(kPRINT) printf("\t\t%d dy[%f] yc[%f] r[%d]\n", ic, TMath::Abs(dy), c->GetY(), r); clst[r][ncl[r]] = c; + blst[r][ncl[r]] = kTRUE; idxs[r][ncl[r]] = idx[ic]; yres[r][ncl[r]] = dy; ncl[r]++; ncls++; - if(ncl[r] >= knTimebins) { - AliWarning(Form("Cluster candidates reached limit %d. Some may be lost.", knTimebins)); + if(ncl[r] >= kNcls) { + AliWarning(Form("Cluster candidates reached buffer limit %d. Some may be lost.", kNcls)); kBUFFER = kTRUE; break; } @@ -739,15 +992,33 @@ Bool_t AliTRDseedV1::AttachClusters(AliTRDtrackingChamber *chamber, Bool_t tilt) if(ncl[ir] > 3) AliMathBase::EvaluateUni(ncl[ir], yres[ir], mean, syDis, Int_t(ncl[ir]*.8)); else { mean = 0.; syDis = 0.; + continue; } + if(fkReconstructor->GetRecoParam()->GetStreamLevel(AliTRDrecoParam::kTracker) > 3 && fkReconstructor->IsDebugStreaming()){ + TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); + TVectorD vdy(ncl[ir], yres[ir]); + UChar_t stat(0); + if(IsKink()) SETBIT(stat, 0); + if(IsStandAlone()) SETBIT(stat, 1); + cstreamer << "AttachClusters" + << "stat=" << stat + << "det=" << fDet + << "pt=" << fPt + << "s2y=" << s2yTrk + << "dy=" << &vdy + << "m=" << mean + << "s=" << syDis + << "\n"; + } + // TODO check mean and sigma agains cluster resolution !! - if(kPRINT) printf("\tr[%2d] m[%f %5.3fsigma] s[%f]\n", ir, mean, TMath::Abs(mean/syRef), syDis); + if(kPRINT) printf("\tr[%2d] m[%f %5.3fsigma] s[%f]\n", ir, mean, TMath::Abs(mean/syDis), syDis); // select clusters on a 3 sigmaDistr level Bool_t kFOUND = kFALSE; for(Int_t ic = ncl[ir]; ic--;){ if(yres[ir][ic] - mean > 3. * syDis){ - clst[ir][ic] = 0x0; continue; + blst[ir][ic] = kFALSE; continue; } nrow[nr]++; kFOUND = kTRUE; } @@ -784,72 +1055,44 @@ Bool_t AliTRDseedV1::AttachClusters(AliTRDtrackingChamber *chamber, Bool_t tilt) // We should consider here : // 1. How far is the chamber boundary // 2. How big is the mean - fN2 = 0; + Int_t n = 0; for (Int_t ir = 0; ir < nr; ir++) { Int_t jr = row + ir*lr; if(kPRINT) printf("\tattach %d clusters for row %d\n", ncl[jr], jr); for (Int_t ic = 0; ic < ncl[jr]; ic++) { - if(!(c = clst[jr][ic])) continue; + if(!blst[jr][ic])continue; + c = clst[jr][ic]; Int_t it = c->GetPadTime(); // TODO proper indexing of clusters !! - fIndexes[it+35*ir] = chamber->GetTB(it)->GetGlobalIndex(idxs[jr][ic]); - fClusters[it+35*ir] = c; + fIndexes[it+kNtb*ir] = chamber->GetTB(it)->GetGlobalIndex(idxs[jr][ic]); + fClusters[it+kNtb*ir] = c; //printf("\tid[%2d] it[%d] idx[%d]\n", ic, it, fIndexes[it]); - fN2++; + n++; } } // number of minimum numbers of clusters expected for the tracklet - if (fN2 < kClmin){ - AliWarning(Form("Not enough clusters to fit the tracklet %d [%d].", fN2, kClmin)); - fN2 = 0; + if (n < kClmin){ + //AliWarning(Form("Not enough clusters to fit the tracklet %d [%d].", n, kClmin)); return kFALSE; } + SetN(n); - // update used clusters and select - fNUsed = 0; - for (Int_t it = 0; it < AliTRDtrackerV1::GetNTimeBins(); it++) { - if(fClusters[it] && fClusters[it]->IsUsed()) fNUsed++; - if(fClusters[it+35] && fClusters[it+35]->IsUsed()) fNUsed++; - } - if (fN2-fNUsed < kClmin){ - //AliWarning(Form("Too many clusters already in use %d (from %d).", fNUsed, fN2)); - fN2 = 0; - return kFALSE; - } - - // set the Lorentz angle for this tracklet - SetExB(); + // Load calibration parameters for this tracklet + Calibrate(); // calculate dx for time bins in the drift region (calibration aware) - Int_t irp = 0; Float_t x[2]; Int_t tb[2]; - for (Int_t it = t0; it < AliTRDtrackerV1::GetNTimeBins(); it++) { + Float_t x[2] = {0.,0.}; Int_t tb[2]={0,0}; + for (Int_t it = t0, irp=0; irp<2 && it < AliTRDtrackerV1::GetNTimeBins(); it++) { if(!fClusters[it]) continue; x[irp] = fClusters[it]->GetX(); - tb[irp] = it; + tb[irp] = fClusters[it]->GetLocalTimeBin(); irp++; - if(irp==2) break; - } - fdX = (x[1] - x[0]) / (tb[0] - tb[1]); - - // update X0 from the clusters (calibration/alignment aware) TODO remove dependence on x0 !! - for (Int_t it = 0; it < AliTRDtrackerV1::GetNTimeBins(); it++) { - if(!(layer = chamber->GetTB(it))) continue; - if(!layer->IsT0()) continue; - if(fClusters[it]){ - fX0 = fClusters[it]->GetX(); - break; - } else { // we have to infere the position of the anode wire from the other clusters - for (Int_t jt = it+1; jt < AliTRDtrackerV1::GetNTimeBins(); jt++) { - if(!fClusters[jt]) continue; - fX0 = fClusters[jt]->GetX() + fdX * (jt - it); - break; - } - } - } - + } + Int_t dtb = tb[1] - tb[0]; + fdX = dtb ? (x[0] - x[1]) / dtb : 0.15; return kTRUE; } @@ -867,77 +1110,127 @@ void AliTRDseedV1::Bootstrap(const AliTRDReconstructor *rec) // // A.Bercuci Oct 30th 2008 // - fReconstructor = rec; + fkReconstructor = rec; AliTRDgeometry g; AliTRDpadPlane *pp = g.GetPadPlane(fDet); - fTilt = TMath::Tan(TMath::DegToRad()*pp->GetTiltingAngle()); - fPadLength = pp->GetLengthIPad(); - fSnp = fYref[1]/TMath::Sqrt(1+fYref[1]*fYref[1]); - fTgl = fZref[1]; - fN = 0; fN2 = 0; fMPads = 0.; + fPad[0] = pp->GetLengthIPad(); + fPad[1] = pp->GetWidthIPad(); + fPad[3] = TMath::Tan(TMath::DegToRad()*pp->GetTiltingAngle()); + //fSnp = fYref[1]/TMath::Sqrt(1+fYref[1]*fYref[1]); + //fTgl = fZref[1]; + Int_t n = 0, nshare = 0, nused = 0; AliTRDcluster **cit = &fClusters[0]; - for(Int_t ic = knTimebins; ic--; cit++){ + for(Int_t ic = kNclusters; ic--; cit++){ if(!(*cit)) return; - fN++; fN2++; - fX[ic] = (*cit)->GetX() - fX0; - fY[ic] = (*cit)->GetY(); - fZ[ic] = (*cit)->GetZ(); + n++; + if((*cit)->IsShared()) nshare++; + if((*cit)->IsUsed()) nused++; } - Update(); // Fit(); + SetN(n); SetNUsed(nused); SetNShared(nshare); + Fit(); CookLabels(); GetProbability(); } //____________________________________________________________________ -Bool_t AliTRDseedV1::Fit(Bool_t tilt, Int_t errors) +Bool_t AliTRDseedV1::Fit(Bool_t tilt, Bool_t zcorr) { - // - // Linear fit of the tracklet - // - // Parameters : - // - // Output : - // True if successful - // - // Detailed description - // 2. Check if tracklet crosses pad row boundary - // 1. Calculate residuals in the y (r-phi) direction - // 3. Do a Least Square Fit to the data - // - - const Int_t kClmin = 8; +// +// Linear fit of the clusters attached to the tracklet +// +// Parameters : +// - tilt : switch for tilt pad correction of cluster y position based on +// the z, dzdx info from outside [default false]. +// - zcorr : switch for using z information to correct for anisochronity +// and a finner error parameterization estimation [default false] +// Output : +// True if successful +// +// Detailed description +// +// Fit in the xy plane +// +// The fit is performed to estimate the y position of the tracklet and the track +// angle in the bending plane. The clusters are represented in the chamber coordinate +// system (with respect to the anode wire - see AliTRDtrackerV1::FollowBackProlongation() +// on how this is set). The x and y position of the cluster and also their variances +// are known from clusterizer level (see AliTRDcluster::GetXloc(), AliTRDcluster::GetYloc(), +// AliTRDcluster::GetSX() and AliTRDcluster::GetSY()). +// If gaussian approximation is used to calculate y coordinate of the cluster the position +// is recalculated taking into account the track angle. The general formula to calculate the +// error of cluster position in the gaussian approximation taking into account diffusion and track +// inclination is given for TRD by: +// BEGIN_LATEX +// #sigma^{2}_{y} = #sigma^{2}_{PRF} + #frac{x#delta_{t}^{2}}{(1+tg(#alpha_{L}))^{2}} + #frac{x^{2}tg^{2}(#phi-#alpha_{L})tg^{2}(#alpha_{L})}{12} +// END_LATEX +// +// Since errors are calculated only in the y directions, radial errors (x direction) are mapped to y +// by projection i.e. +// BEGIN_LATEX +// #sigma_{x|y} = tg(#phi) #sigma_{x} +// END_LATEX +// and also by the lorentz angle correction +// +// Fit in the xz plane +// +// The "fit" is performed to estimate the radial position (x direction) where pad row cross happens. +// If no pad row crossing the z position is taken from geometry and radial position is taken from the xy +// fit (see below). +// +// There are two methods to estimate the radial position of the pad row cross: +// 1. leading cluster radial position : Here the lower part of the tracklet is considered and the last +// cluster registered (at radial x0) on this segment is chosen to mark the pad row crossing. The error +// of the z estimate is given by : +// BEGIN_LATEX +// #sigma_{z} = tg(#theta) #Delta x_{x_{0}}/12 +// END_LATEX +// The systematic errors for this estimation are generated by the following sources: +// - no charge sharing between pad rows is considered (sharp cross) +// - missing cluster at row cross (noise peak-up, under-threshold signal etc.). +// +// 2. charge fit over the crossing point : Here the full energy deposit along the tracklet is considered +// to estimate the position of the crossing by a fit in the qx plane. The errors in the q directions are +// parameterized as s_q = q^2. The systematic errors for this estimation are generated by the following sources: +// - no general model for the qx dependence +// - physical fluctuations of the charge deposit +// - gain calibration dependence +// +// Estimation of the radial position of the tracklet +// +// For pad row cross the radial position is taken from the xz fit (see above). Otherwise it is taken as the +// interpolation point of the tracklet i.e. the point where the error in y of the fit is minimum. The error +// in the y direction of the tracklet is (see AliTRDseedV1::GetCovAt()): +// BEGIN_LATEX +// #sigma_{y} = #sigma^{2}_{y_{0}} + 2xcov(y_{0}, dy/dx) + #sigma^{2}_{dy/dx} +// END_LATEX +// and thus the radial position is: +// BEGIN_LATEX +// x = - cov(y_{0}, dy/dx)/#sigma^{2}_{dy/dx} +// END_LATEX +// +// Estimation of tracklet position error +// +// The error in y direction is the error of the linear fit at the radial position of the tracklet while in the z +// direction is given by the cluster error or pad row cross error. In case of no pad row cross this is given by: +// BEGIN_LATEX +// #sigma_{y} = #sigma^{2}_{y_{0}} - 2cov^{2}(y_{0}, dy/dx)/#sigma^{2}_{dy/dx} + #sigma^{2}_{dy/dx} +// #sigma_{z} = Pad_{length}/12 +// END_LATEX +// For pad row cross the full error is calculated at the radial position of the crossing (see above) and the error +// in z by the width of the crossing region - being a matter of parameterization. +// BEGIN_LATEX +// #sigma_{z} = tg(#theta) #Delta x_{x_{0}}/12 +// END_LATEX +// In case of no tilt correction (default in the barrel tracking) the tilt is taken into account by the rotation of +// the covariance matrix. See AliTRDseedV1::GetCovAt() for details. +// +// Author +// A.Bercuci + if(!IsCalibrated()) Calibrate(); - // cluster error parametrization parameters - // 1. sy total charge - const Float_t sq0inv = 0.019962; // [1/q0] - const Float_t sqb = 1.0281564; //[cm] - // 2. sy for the PRF - const Float_t scy[AliTRDgeometry::kNlayer][4] = { - {2.827e-02, 9.600e-04, 4.296e-01, 2.271e-02}, - {2.952e-02,-2.198e-04, 4.146e-01, 2.339e-02}, - {3.090e-02, 1.514e-03, 4.020e-01, 2.402e-02}, - {3.260e-02,-2.037e-03, 3.946e-01, 2.509e-02}, - {3.439e-02,-3.601e-04, 3.883e-01, 2.623e-02}, - {3.510e-02, 2.066e-03, 3.651e-01, 2.588e-02}, - }; - // 3. sy parallel to the track - const Float_t sy0 = 2.649e-02; // [cm] - const Float_t sya = -8.864e-04; // [cm] - const Float_t syb = -2.435e-01; // [cm] - - // 4. sx parallel to the track - const Float_t sxgc = 5.427e-02; - const Float_t sxgm = 7.783e-01; - const Float_t sxgs = 2.743e-01; - const Float_t sxe0 =-2.065e+00; - const Float_t sxe1 =-2.978e-02; - - // 5. sx perpendicular to the track -// const Float_t sxd0 = 1.881e-02; -// const Float_t sxd1 =-4.101e-01; -// const Float_t sxd2 = 1.572e+00; + const Int_t kClmin = 8; // get track direction Double_t y0 = fYref[0]; @@ -946,26 +1239,20 @@ Bool_t AliTRDseedV1::Fit(Bool_t tilt, Int_t errors) Double_t dzdx = fZref[1]; Double_t yt, zt; - const Int_t kNtb = AliTRDtrackerV1::GetNTimeBins(); //AliTRDtrackerV1::AliTRDLeastSquare fitterZ; - TLinearFitter fitterY(1, "pol1"); - // convertion factor from square to gauss distribution for sigma - //Double_t convert = 1./TMath::Sqrt(12.); - + TLinearFitter& fitterY=*GetFitterY(); + TLinearFitter& fitterZ=*GetFitterZ(); + // book cluster information - Double_t q, xc[knTimebins], yc[knTimebins], zc[knTimebins], sy[knTimebins]/*, sz[knTimebins]*/; -// Int_t zRow[knTimebins]; - - Int_t ily = AliTRDgeometry::GetLayer(fDet); - fN = 0; //fXref = 0.; Double_t ssx = 0.; - AliTRDcluster *c=0x0, **jc = &fClusters[0]; + Double_t qc[kNclusters], xc[kNclusters], yc[kNclusters], zc[kNclusters], sy[kNclusters]; + + Int_t n = 0; + AliTRDcluster *c=NULL, **jc = &fClusters[0]; for (Int_t ic=0; icIsInChamber()) continue; @@ -973,64 +1260,36 @@ Bool_t AliTRDseedV1::Fit(Bool_t tilt, Int_t errors) if(c->GetNPads()>4) w = .5; if(c->GetNPads()>5) w = .2; - //zRow[fN] = c->GetPadRow(); - // correct cluster position for PRF and v drift - Double_t x, y; GetClusterXY(c, x, y); - xc[fN] = fX0 - x; - yc[fN] = y; - zc[fN] = c->GetZ(); - - // extrapolated y value for the track - yt = y0 - xc[fN]*dydx; - // extrapolated z value for the track - zt = z0 - xc[fN]*dzdx; - // tilt correction - if(tilt) yc[fN] -= fTilt*(zc[fN] - zt); - - // ELABORATE CLUSTER ERROR - // TODO to be moved to AliTRDcluster - q = TMath::Abs(c->GetQ()); - Double_t tgg = (dydx-fExB)/(1.+dydx*fExB); tgg *= tgg; - // basic y error (|| to track). - sy[fN] = xc[fN] < AliTRDgeometry::CamHght() ? 2. : sy0 + sya*TMath::Exp(1./(xc[fN]+syb)); - //printf("cluster[%d]\n\tsy[0] = %5.3e [um]\n", fN, sy[fN]*1.e4); - // y error due to total charge - sy[fN] += sqb*(1./q - sq0inv); - //printf("\tsy[1] = %5.3e [um]\n", sy[fN]*1.e4); - // y error due to PRF - sy[fN] += scy[ily][0]*TMath::Gaus(c->GetCenter(), scy[ily][1], scy[ily][2]) - scy[ily][3]; - //printf("\tsy[2] = %5.3e [um]\n", sy[fN]*1.e4); - - sy[fN] *= sy[fN]; - - // ADD ERROR ON x - // error of drift length parallel to the track - Double_t sx = sxgc*TMath::Gaus(xc[fN], sxgm, sxgs) + TMath::Exp(sxe0+sxe1*xc[fN]); // [cm] - //printf("\tsx[0] = %5.3e [um]\n", sx*1.e4); - // error of drift length perpendicular to the track - //sx += sxd0 + sxd1*d + sxd2*d*d; - sx *= sx; // square sx - // update xref - //fXref += xc[fN]/sx; ssx+=1./sx; - - // add error from ExB - if(errors>0) sy[fN] += fExB*fExB*sx; - //printf("\tsy[3] = %5.3e [um^2]\n", sy[fN]*1.e8); - - // global radial error due to misalignment/miscalibration - Double_t sx0 = 0.; sx0 *= sx0; - // add sx contribution to sy due to track angle - if(errors>1) sy[fN] += tgg*(sx+sx0); - // TODO we should add tilt pad correction here - //printf("\tsy[4] = %5.3e [um^2]\n", sy[fN]*1.e8); - c->SetSigmaY2(sy[fN]); - - sy[fN] = TMath::Sqrt(sy[fN]); - fitterY.AddPoint(&xc[fN], yc[fN]/*-yt*/, sy[fN]); - fN++; + // cluster charge + qc[n] = TMath::Abs(c->GetQ()); + // pad row of leading + + // Radial cluster position + //Int_t jc = TMath::Max(fN-3, 0); + //xc[fN] = c->GetXloc(fT0, fVD, &qc[jc], &xc[jc]/*, z0 - c->GetX()*dzdx*/); + xc[n] = fX0 - c->GetX(); + + // extrapolated track to cluster position + yt = y0 - xc[n]*dydx; + zt = z0 - xc[n]*dzdx; + + // Recalculate cluster error based on tracking information + c->SetSigmaY2(fS2PRF, fDiffT, fExB, xc[n], zcorr?zt:-1., dydx); + sy[n] = TMath::Sqrt(c->GetSigmaY2()); + + yc[n] = fkReconstructor->GetRecoParam()->UseGAUS() ? + c->GetYloc(y0, sy[n], GetPadWidth()): c->GetY(); + zc[n] = c->GetZ(); + //optional tilt correction + if(tilt) yc[n] -= (GetTilt()*(zc[n] - zt)); + + fitterY.AddPoint(&xc[n], yc[n], TMath::Sqrt(sy[n])); + if(IsRowCross())fitterZ.AddPoint(&xc[n], qc[n], 1.); + n++; } + // to few clusters - if (fN < kClmin) return kFALSE; + if (n < kClmin) return kFALSE; // fit XY fitterY.Eval(); @@ -1043,62 +1302,312 @@ Bool_t AliTRDseedV1::Fit(Bool_t tilt, Int_t errors) fCov[2] = p[3]; // variance of dydx // the ref radial position is set at the minimum of // the y variance of the tracklet - fXref = -fCov[1]/fCov[2]; //fXref = fX0 - fXref; + fX = -fCov[1]/fCov[2]; // fit XZ - if(IsRowCross()){ - // TODO pad row cross position estimation !!! - //AliInfo(Form("Padrow cross in detector %d", fDet)); - fZfit[0] = .5*(zc[0]+zc[fN-1]); fZfit[1] = 0.; + if(IsRowCross()){ +/* // THE LEADING CLUSTER METHOD + Float_t xMin = fX0; + Int_t ic=n=kNclusters-1; jc = &fClusters[ic]; + AliTRDcluster *c0 =0x0, **kc = &fClusters[kNtb-1]; + for(; ic>kNtb; ic--, --jc, --kc){ + if((c0 = (*kc)) && c0->IsInChamber() && (xMin>c0->GetX())) xMin = c0->GetX(); + if(!(c = (*jc))) continue; + if(!c->IsInChamber()) continue; + zc[kNclusters-1] = c->GetZ(); + fX = fX0 - c->GetX(); + } + fZfit[0] = .5*(zc[0]+zc[kNclusters-1]); fZfit[1] = 0.; + // Error parameterization + fS2Z = fdX*fZref[1]; + fS2Z *= fS2Z; fS2Z *= 0.2887; // 1/sqrt(12)*/ + + // THE FIT X-Q PLANE METHOD + Int_t ic=n=kNclusters-1; jc = &fClusters[ic]; + for(; ic>kNtb; ic--, --jc){ + if(!(c = (*jc))) continue; + if(!c->IsInChamber()) continue; + qc[n] = TMath::Abs(c->GetQ()); + xc[n] = fX0 - c->GetX(); + zc[n] = c->GetZ(); + fitterZ.AddPoint(&xc[n], -qc[n], 1.); + n--; + } + // fit XZ + fitterZ.Eval(); + if(fitterZ.GetParameter(1)!=0.){ + fX = -fitterZ.GetParameter(0)/fitterZ.GetParameter(1); + fX=(fX<0.)?0.:fX; + Float_t dl = .5*AliTRDgeometry::CamHght()+AliTRDgeometry::CdrHght(); + fX=(fX> dl)?dl:fX; + fX-=.055; // TODO to be understood + } + + fZfit[0] = .5*(zc[0]+zc[kNclusters-1]); fZfit[1] = 0.; + // temporary external error parameterization + fS2Z = 0.05+0.4*TMath::Abs(fZref[1]); fS2Z *= fS2Z; + // TODO correct formula + //fS2Z = sigma_x*TMath::Abs(fZref[1]); } else { fZfit[0] = zc[0]; fZfit[1] = 0.; + fS2Z = GetPadLength()*GetPadLength()/12.; } + fS2Y = fCov[0] +2.*fX*fCov[1] + fX*fX*fCov[2]; + return kTRUE; +} -// // determine z offset of the fit -// Float_t zslope = 0.; -// Int_t nchanges = 0, nCross = 0; -// if(nz==2){ // tracklet is crossing pad row -// // Find the break time allowing one chage on pad-rows -// // with maximal number of accepted clusters -// Int_t padRef = zRow[0]; -// for (Int_t ic=1; ic zc[ic] ? 1. : -1.; -// padRef = zRow[ic]; -// nCross = ic; -// nchanges++; -// } -// } -// -// // condition on nCross and reset nchanges TODO -// -// if(nchanges==1){ -// if(dzdx * zslope < 0.){ -// AliInfo("Tracklet-Track mismatch in dzdx. TODO."); -// } -// -// -// //zc[nc] = fitterZ.GetFunctionParameter(0); -// fCross[1] = fYfit[0] - fCross[0] * fYfit[1]; -// fCross[0] = fX0 - fCross[0]; -// } +/* +//_____________________________________________________________________________ +void AliTRDseedV1::FitMI() +{ +// +// Fit the seed. +// Marian Ivanov's version +// +// linear fit on the y direction with respect to the reference direction. +// The residuals for each x (x = xc - x0) are deduced from: +// dy = y - yt (1) +// the tilting correction is written : +// y = yc + h*(zc-zt) (2) +// yt = y0+dy/dx*x (3) +// zt = z0+dz/dx*x (4) +// from (1),(2),(3) and (4) +// dy = yc - y0 - (dy/dx + h*dz/dx)*x + h*(zc-z0) +// the last term introduces the correction on y direction due to tilting pads. There are 2 ways to account for this: +// 1. use tilting correction for calculating the y +// 2. neglect tilting correction here and account for it in the error parametrization of the tracklet. + const Float_t kRatio = 0.8; + const Int_t kClmin = 5; + const Float_t kmaxtan = 2; + + if (TMath::Abs(fYref[1]) > kmaxtan){ + //printf("Exit: Abs(fYref[1]) = %3.3f, kmaxtan = %3.3f\n", TMath::Abs(fYref[1]), kmaxtan); + return; // Track inclined too much + } + + Float_t sigmaexp = 0.05 + TMath::Abs(fYref[1] * 0.25); // Expected r.m.s in y direction + Float_t ycrosscor = GetPadLength() * GetTilt() * 0.5; // Y correction for crossing + Int_t fNChange = 0; + + Double_t sumw; + Double_t sumwx; + Double_t sumwx2; + Double_t sumwy; + Double_t sumwxy; + Double_t sumwz; + Double_t sumwxz; + + // Buffering: Leave it constant fot Performance issues + Int_t zints[kNtb]; // Histograming of the z coordinate + // Get 1 and second max probable coodinates in z + Int_t zouts[2*kNtb]; + Float_t allowedz[kNtb]; // Allowed z for given time bin + Float_t yres[kNtb]; // Residuals from reference + //Float_t anglecor = GetTilt() * fZref[1]; // Correction to the angle + + Float_t pos[3*kNtb]; memset(pos, 0, 3*kNtb*sizeof(Float_t)); + Float_t *fX = &pos[0], *fY = &pos[kNtb], *fZ = &pos[2*kNtb]; + + Int_t fN = 0; AliTRDcluster *c = 0x0; + fN2 = 0; + for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) { + yres[i] = 10000.0; + if (!(c = fClusters[i])) continue; + if(!c->IsInChamber()) continue; + // Residual y + //yres[i] = fY[i] - fYref[0] - (fYref[1] + anglecor) * fX[i] + GetTilt()*(fZ[i] - fZref[0]); + fX[i] = fX0 - c->GetX(); + fY[i] = c->GetY(); + fZ[i] = c->GetZ(); + yres[i] = fY[i] - GetTilt()*(fZ[i] - (fZref[0] - fX[i]*fZref[1])); + zints[fN] = Int_t(fZ[i]); + fN++; + } - UpdateUsed(); - return kTRUE; -} + if (fN < kClmin){ + //printf("Exit fN < kClmin: fN = %d\n", fN); + return; + } + Int_t nz = AliTRDtrackerV1::Freq(fN, zints, zouts, kFALSE); + Float_t fZProb = zouts[0]; + if (nz <= 1) zouts[3] = 0; + if (zouts[1] + zouts[3] < kClmin) { + //printf("Exit zouts[1] = %d, zouts[3] = %d\n",zouts[1],zouts[3]); + return; + } + + // Z distance bigger than pad - length + if (TMath::Abs(zouts[0]-zouts[2]) > 12.0) zouts[3] = 0; + + Int_t breaktime = -1; + Bool_t mbefore = kFALSE; + Int_t cumul[kNtb][2]; + Int_t counts[2] = { 0, 0 }; + + if (zouts[3] >= 3) { + + // + // Find the break time allowing one chage on pad-rows + // with maximal number of accepted clusters + // + fNChange = 1; + for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) { + cumul[i][0] = counts[0]; + cumul[i][1] = counts[1]; + if (TMath::Abs(fZ[i]-zouts[0]) < 2) counts[0]++; + if (TMath::Abs(fZ[i]-zouts[2]) < 2) counts[1]++; + } + Int_t maxcount = 0; + for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) { + Int_t after = cumul[AliTRDtrackerV1::GetNTimeBins()][0] - cumul[i][0]; + Int_t before = cumul[i][1]; + if (after + before > maxcount) { + maxcount = after + before; + breaktime = i; + mbefore = kFALSE; + } + after = cumul[AliTRDtrackerV1::GetNTimeBins()-1][1] - cumul[i][1]; + before = cumul[i][0]; + if (after + before > maxcount) { + maxcount = after + before; + breaktime = i; + mbefore = kTRUE; + } + } + breaktime -= 1; + } + for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { + if (i > breaktime) allowedz[i] = mbefore ? zouts[2] : zouts[0]; + if (i <= breaktime) allowedz[i] = (!mbefore) ? zouts[2] : zouts[0]; + } + + if (((allowedz[0] > allowedz[AliTRDtrackerV1::GetNTimeBins()]) && (fZref[1] < 0)) || + ((allowedz[0] < allowedz[AliTRDtrackerV1::GetNTimeBins()]) && (fZref[1] > 0))) { + // + // Tracklet z-direction not in correspondance with track z direction + // + fNChange = 0; + for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { + allowedz[i] = zouts[0]; // Only longest taken + } + } + + if (fNChange > 0) { + // + // Cross pad -row tracklet - take the step change into account + // + for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { + if (!fClusters[i]) continue; + if(!fClusters[i]->IsInChamber()) continue; + if (TMath::Abs(fZ[i] - allowedz[i]) > 2) continue; + // Residual y + //yres[i] = fY[i] - fYref[0] - (fYref[1] + anglecor) * fX[i] + GetTilt()*(fZ[i] - fZref[0]); + yres[i] = fY[i] - GetTilt()*(fZ[i] - (fZref[0] - fX[i]*fZref[1])); +// if (TMath::Abs(fZ[i] - fZProb) > 2) { +// if (fZ[i] > fZProb) yres[i] += GetTilt() * GetPadLength(); +// if (fZ[i] < fZProb) yres[i] -= GetTilt() * GetPadLength(); + } + } + } + + Double_t yres2[kNtb]; + Double_t mean; + Double_t sigma; + for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { + if (!fClusters[i]) continue; + if(!fClusters[i]->IsInChamber()) continue; + if (TMath::Abs(fZ[i] - allowedz[i]) > 2) continue; + yres2[fN2] = yres[i]; + fN2++; + } + if (fN2 < kClmin) { + //printf("Exit fN2 < kClmin: fN2 = %d\n", fN2); + fN2 = 0; + return; + } + AliMathBase::EvaluateUni(fN2,yres2,mean,sigma, Int_t(fN2*kRatio-2.)); + if (sigma < sigmaexp * 0.8) { + sigma = sigmaexp; + } + //Float_t fSigmaY = sigma; + + // Reset sums + sumw = 0; + sumwx = 0; + sumwx2 = 0; + sumwy = 0; + sumwxy = 0; + sumwz = 0; + sumwxz = 0; + + fN2 = 0; + Float_t fMeanz = 0; + Float_t fMPads = 0; + fUsable = 0; + for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { + if (!fClusters[i]) continue; + if (!fClusters[i]->IsInChamber()) continue; + if (TMath::Abs(fZ[i] - allowedz[i]) > 2){fClusters[i] = 0x0; continue;} + if (TMath::Abs(yres[i] - mean) > 4.0 * sigma){fClusters[i] = 0x0; continue;} + SETBIT(fUsable,i); + fN2++; + fMPads += fClusters[i]->GetNPads(); + Float_t weight = 1.0; + if (fClusters[i]->GetNPads() > 4) weight = 0.5; + if (fClusters[i]->GetNPads() > 5) weight = 0.2; + + + Double_t x = fX[i]; + //printf("x = %7.3f dy = %7.3f fit %7.3f\n", x, yres[i], fY[i]-yres[i]); + + sumw += weight; + sumwx += x * weight; + sumwx2 += x*x * weight; + sumwy += weight * yres[i]; + sumwxy += weight * (yres[i]) * x; + sumwz += weight * fZ[i]; + sumwxz += weight * fZ[i] * x; + + } + + if (fN2 < kClmin){ + //printf("Exit fN2 < kClmin(2): fN2 = %d\n",fN2); + fN2 = 0; + return; + } + fMeanz = sumwz / sumw; + Float_t correction = 0; + if (fNChange > 0) { + // Tracklet on boundary + if (fMeanz < fZProb) correction = ycrosscor; + if (fMeanz > fZProb) correction = -ycrosscor; + } + + Double_t det = sumw * sumwx2 - sumwx * sumwx; + fYfit[0] = (sumwx2 * sumwy - sumwx * sumwxy) / det; + fYfit[1] = (sumw * sumwxy - sumwx * sumwy) / det; + + fS2Y = 0; + for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { + if (!TESTBIT(fUsable,i)) continue; + Float_t delta = yres[i] - fYfit[0] - fYfit[1] * fX[i]; + fS2Y += delta*delta; + } + fS2Y = TMath::Sqrt(fS2Y / Float_t(fN2-2)); + // TEMPORARY UNTIL covariance properly calculated + fS2Y = TMath::Max(fS2Y, Float_t(.1)); + + fZfit[0] = (sumwx2 * sumwz - sumwx * sumwxz) / det; + fZfit[1] = (sumw * sumwxz - sumwx * sumwz) / det; +// fYfitR[0] += fYref[0] + correction; +// fYfitR[1] += fYref[1]; +// fYfit[0] = fYfitR[0]; + fYfit[1] = -fYfit[1]; + + UpdateUsed(); +}*/ //___________________________________________________________________ void AliTRDseedV1::Print(Option_t *o) const @@ -1107,16 +1616,21 @@ void AliTRDseedV1::Print(Option_t *o) const // Printing the seedstatus // - AliInfo(Form("Det[%3d] Tilt[%+6.2f] Pad[%5.2f]", fDet, fTilt, fPadLength)); - AliInfo(Form("Nattach[%2d] Nfit[%2d] Nuse[%2d] pads[%f]", fN, fN2, fNUsed, fMPads)); - AliInfo(Form("x[%7.2f] y[%7.2f] z[%7.2f] dydx[%5.2f] dzdx[%5.2f]", fX0, fYfit[0], fZfit[0], fYfit[1], fZfit[1])); - AliInfo(Form("Ref y[%7.2f] z[%7.2f] dydx[%5.2f] dzdx[%5.2f]", fYref[0], fZref[0], fYref[1], fZref[1])) + AliInfo(Form("Det[%3d] X0[%7.2f] Pad{L[%5.2f] W[%5.2f] Tilt[%+6.2f]}", fDet, fX0, GetPadLength(), GetPadWidth(), GetTilt())); + AliInfo(Form("N[%2d] Nused[%2d] Nshared[%2d] [%d]", GetN(), GetNUsed(), GetNShared(), fN)); + AliInfo(Form("FLAGS : RC[%c] Kink[%c] SA[%c]", IsRowCross()?'y':'n', IsKink()?'y':'n', IsStandAlone()?'y':'n')); + + Double_t cov[3], x=GetX(); + GetCovAt(x, cov); + AliInfo(" | x[cm] | y[cm] | z[cm] | dydx | dzdx |"); + AliInfo(Form("Fit | %7.2f | %7.2f+-%7.2f | %7.2f+-%7.2f| %5.2f | ----- |", x, GetY(), TMath::Sqrt(cov[0]), GetZ(), TMath::Sqrt(cov[2]), fYfit[1])); + AliInfo(Form("Ref | %7.2f | %7.2f+-%7.2f | %7.2f+-%7.2f| %5.2f | %5.2f |", x, fYref[0]-fX*fYref[1], TMath::Sqrt(fRefCov[0]), fZref[0]-fX*fYref[1], TMath::Sqrt(fRefCov[2]), fYref[1], fZref[1])) if(strcmp(o, "a")!=0) return; AliTRDcluster* const* jc = &fClusters[0]; - for(int ic=0; icPrint(o); } @@ -1134,51 +1648,47 @@ Bool_t AliTRDseedV1::IsEqual(const TObject *o) const if(!inTracklet) return kFALSE; for (Int_t i = 0; i < 2; i++){ - if ( fYref[i] != inTracklet->GetYref(i) ) return kFALSE; - if ( fZref[i] != inTracklet->GetZref(i) ) return kFALSE; + if ( fYref[i] != inTracklet->fYref[i] ) return kFALSE; + if ( fZref[i] != inTracklet->fZref[i] ) return kFALSE; } - if ( fSigmaY != inTracklet->GetSigmaY() ) return kFALSE; - if ( fSigmaY2 != inTracklet->GetSigmaY2() ) return kFALSE; - if ( fTilt != inTracklet->GetTilt() ) return kFALSE; - if ( fPadLength != inTracklet->GetPadLength() ) return kFALSE; + if ( fS2Y != inTracklet->fS2Y ) return kFALSE; + if ( GetTilt() != inTracklet->GetTilt() ) return kFALSE; + if ( GetPadLength() != inTracklet->GetPadLength() ) return kFALSE; - for (Int_t i = 0; i < knTimebins; i++){ - if ( fX[i] != inTracklet->GetX(i) ) return kFALSE; - if ( fY[i] != inTracklet->GetY(i) ) return kFALSE; - if ( fZ[i] != inTracklet->GetZ(i) ) return kFALSE; - if ( fIndexes[i] != inTracklet->GetIndexes(i) ) return kFALSE; - if ( fUsable[i] != inTracklet->IsUsable(i) ) return kFALSE; + for (Int_t i = 0; i < kNclusters; i++){ +// if ( fX[i] != inTracklet->GetX(i) ) return kFALSE; +// if ( fY[i] != inTracklet->GetY(i) ) return kFALSE; +// if ( fZ[i] != inTracklet->GetZ(i) ) return kFALSE; + if ( fIndexes[i] != inTracklet->fIndexes[i] ) return kFALSE; } +// if ( fUsable != inTracklet->fUsable ) return kFALSE; for (Int_t i=0; i < 2; i++){ - if ( fYfit[i] != inTracklet->GetYfit(i) ) return kFALSE; - if ( fZfit[i] != inTracklet->GetZfit(i) ) return kFALSE; - if ( fYfitR[i] != inTracklet->GetYfitR(i) ) return kFALSE; - if ( fZfitR[i] != inTracklet->GetZfitR(i) ) return kFALSE; - if ( fLabels[i] != inTracklet->GetLabels(i) ) return kFALSE; + if ( fYfit[i] != inTracklet->fYfit[i] ) return kFALSE; + if ( fZfit[i] != inTracklet->fZfit[i] ) return kFALSE; + if ( fLabels[i] != inTracklet->fLabels[i] ) return kFALSE; } - if ( fMeanz != inTracklet->GetMeanz() ) return kFALSE; - if ( fZProb != inTracklet->GetZProb() ) return kFALSE; - if ( fN2 != inTracklet->GetN2() ) return kFALSE; - if ( fNUsed != inTracklet->GetNUsed() ) return kFALSE; - if ( fFreq != inTracklet->GetFreq() ) return kFALSE; - if ( fNChange != inTracklet->GetNChange() ) return kFALSE; - if ( fNChange != inTracklet->GetNChange() ) return kFALSE; +/* if ( fMeanz != inTracklet->GetMeanz() ) return kFALSE; + if ( fZProb != inTracklet->GetZProb() ) return kFALSE;*/ + if ( fN != inTracklet->fN ) return kFALSE; + //if ( fNUsed != inTracklet->fNUsed ) return kFALSE; + //if ( fFreq != inTracklet->GetFreq() ) return kFALSE; + //if ( fNChange != inTracklet->GetNChange() ) return kFALSE; - if ( fC != inTracklet->GetC() ) return kFALSE; - if ( fCC != inTracklet->GetCC() ) return kFALSE; - if ( fChi2 != inTracklet->GetChi2() ) return kFALSE; + if ( fC != inTracklet->fC ) return kFALSE; + //if ( fCC != inTracklet->GetCC() ) return kFALSE; + if ( fChi2 != inTracklet->fChi2 ) return kFALSE; // if ( fChi2Z != inTracklet->GetChi2Z() ) return kFALSE; - if ( fDet != inTracklet->GetDetector() ) return kFALSE; - if ( fMom != inTracklet->GetMomentum() ) return kFALSE; - if ( fdX != inTracklet->GetdX() ) return kFALSE; + if ( fDet != inTracklet->fDet ) return kFALSE; + if ( fPt != inTracklet->fPt ) return kFALSE; + if ( fdX != inTracklet->fdX ) return kFALSE; - for (Int_t iCluster = 0; iCluster < knTimebins; iCluster++){ + for (Int_t iCluster = 0; iCluster < kNclusters; iCluster++){ AliTRDcluster *curCluster = fClusters[iCluster]; - AliTRDcluster *inCluster = inTracklet->GetClusters(iCluster); + AliTRDcluster *inCluster = inTracklet->fClusters[iCluster]; if (curCluster && inCluster){ if (! curCluster->IsEqual(inCluster) ) { curCluster->Print(); @@ -1193,3 +1703,4 @@ Bool_t AliTRDseedV1::IsEqual(const TObject *o) const } return kTRUE; } +