X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=TRD%2FAliTRDseedV1.cxx;h=a1ab57695f78121fdf8832133c40eb397a865d01;hb=894840ad647b8b97bb9cd30fbf2c83590bc56f46;hp=f9b7a15387727c074322c58589fd949e0dbea2d8;hpb=203967fcdaf1d9e944fba7349639fffb85e3161b;p=u%2Fmrichter%2FAliRoot.git diff --git a/TRD/AliTRDseedV1.cxx b/TRD/AliTRDseedV1.cxx index f9b7a153877..a1ab57695f7 100644 --- a/TRD/AliTRDseedV1.cxx +++ b/TRD/AliTRDseedV1.cxx @@ -16,9 +16,19 @@ /* $Id$ */ //////////////////////////////////////////////////////////////////////////// -// // -// The TRD track seed // -// // +//// +// The TRD offline tracklet +// +// The running horse of the TRD reconstruction. The following tasks are preformed: +// 1. Clusters attachment to tracks based on prior information stored at tracklet level (see AttachClusters) +// 2. Clusters position recalculation based on track information (see GetClusterXY and Fit) +// 3. Cluster error parametrization recalculation (see Fit) +// 4. Linear track approximation (Fit) +// 5. Optimal position (including z estimate for pad row cross tracklets) and covariance matrix of the track fit inside one TRD chamber (Fit) +// 6. Tilt pad correction and systematic effects (GetCovAt) +// 7. dEdx calculation (CookdEdx) +// 8. PID probabilities estimation (CookPID) +// // Authors: // // Alex Bercuci // // Markus Fasel // @@ -26,12 +36,12 @@ //////////////////////////////////////////////////////////////////////////// #include "TMath.h" -#include "TLinearFitter.h" -#include "TClonesArray.h" // tmp #include #include "AliLog.h" #include "AliMathBase.h" +#include "AliCDBManager.h" +#include "AliTracker.h" #include "AliTRDpadPlane.h" #include "AliTRDcluster.h" @@ -41,53 +51,96 @@ #include "AliTRDchamberTimeBin.h" #include "AliTRDtrackingChamber.h" #include "AliTRDtrackerV1.h" -#include "AliTRDReconstructor.h" #include "AliTRDrecoParam.h" +#include "AliTRDCommonParam.h" + #include "Cal/AliTRDCalPID.h" +#include "Cal/AliTRDCalROC.h" +#include "Cal/AliTRDCalDet.h" ClassImp(AliTRDseedV1) //____________________________________________________________________ AliTRDseedV1::AliTRDseedV1(Int_t det) - :AliTRDseed() - ,fReconstructor(0x0) - ,fClusterIter(0x0) + :AliTRDtrackletBase() + ,fkReconstructor(NULL) + ,fClusterIter(NULL) + ,fExB(0.) + ,fVD(0.) + ,fT0(0.) + ,fS2PRF(0.) + ,fDiffL(0.) + ,fDiffT(0.) ,fClusterIdx(0) + ,fErrorMsg(0) + ,fN(0) ,fDet(det) - ,fMom(0.) - ,fSnp(0.) - ,fTgl(0.) + ,fPt(0.) ,fdX(0.) + ,fX0(0.) + ,fX(0.) + ,fY(0.) + ,fZ(0.) + ,fS2Y(0.) + ,fS2Z(0.) + ,fC(0.) + ,fChi2(0.) { // // Constructor // - //printf("AliTRDseedV1::AliTRDseedV1()\n"); - - for(int islice=0; islice < knSlices; islice++) fdEdx[islice] = 0.; + memset(fIndexes,0xFF,kNclusters*sizeof(fIndexes[0])); + memset(fClusters, 0, kNclusters*sizeof(AliTRDcluster*)); + memset(fPad, 0, 3*sizeof(Float_t)); + fYref[0] = 0.; fYref[1] = 0.; + fZref[0] = 0.; fZref[1] = 0.; + fYfit[0] = 0.; fYfit[1] = 0.; + fZfit[0] = 0.; fZfit[1] = 0.; + memset(fdEdx, 0, kNslices*sizeof(Float_t)); for(int ispec=0; ispecGetProlongation(fX0, y, z)) return kFALSE; - fYref[0] = y; - fYref[1] = track->GetSnp()/(1. - track->GetSnp()*track->GetSnp()); - fZref[0] = z; - fZref[1] = track->GetTgl(); - - //printf("Tracklet ref x[%7.3f] y[%7.3f] z[%7.3f], snp[%f] tgl[%f]\n", fX0, fYref[0], fZref[0], track->GetSnp(), track->GetTgl()); + Update(track); return kTRUE; } +//_____________________________________________________________________________ +void AliTRDseedV1::Reset(Option_t *opt) +{ +// +// Reset seed. If option opt="c" is given only cluster arrays are cleared. +// + for(Int_t ic=kNclusters; ic--;) fIndexes[ic] = -1; + memset(fClusters, 0, kNclusters*sizeof(AliTRDcluster*)); + fN=0; SetBit(kRowCross, kFALSE); + if(strcmp(opt, "c")==0) return; + + fExB=0.;fVD=0.;fT0=0.;fS2PRF=0.; + fDiffL=0.;fDiffT=0.; + fClusterIdx=0; + fErrorMsg = 0; + fDet=-1; + fPt=0.; + fdX=0.;fX0=0.; fX=0.; fY=0.; fZ=0.; + fS2Y=0.; fS2Z=0.; + fC=0.; fChi2 = 0.; + + memset(fPad, 0, 3*sizeof(Float_t)); + fYref[0] = 0.; fYref[1] = 0.; + fZref[0] = 0.; fZref[1] = 0.; + fYfit[0] = 0.; fYfit[1] = 0.; + fZfit[0] = 0.; fZfit[1] = 0.; + memset(fdEdx, 0, kNslices*sizeof(Float_t)); + for(int ispec=0; ispecGetSnp(); + Double_t fTgl = trk->GetTgl(); + fPt = trk->Pt(); + Double_t norm =1./TMath::Sqrt((1.-fSnp)*(1.+fSnp)); + fYref[1] = fSnp*norm; + fZref[1] = fTgl*norm; + SetCovRef(trk->GetCovariance()); + + Double_t dx = trk->GetX() - fX0; + fYref[0] = trk->GetY() - dx*fYref[1]; + fZref[0] = trk->GetZ() - dx*fZref[1]; +} + +//_____________________________________________________________________________ +void AliTRDseedV1::UpdateUsed() +{ + // + // Calculate number of used clusers in the tracklet + // + + Int_t nused = 0, nshared = 0; + for (Int_t i = kNclusters; i--; ) { + if (!fClusters[i]) continue; + if(fClusters[i]->IsUsed()){ + nused++; + } else if(fClusters[i]->IsShared()){ + if(IsStandAlone()) nused++; + else nshared++; + } + } + SetNUsed(nused); + SetNShared(nshared); +} + +//_____________________________________________________________________________ +void AliTRDseedV1::UseClusters() +{ + // + // Use clusters + // + // In stand alone mode: + // Clusters which are marked as used or shared from another track are + // removed from the tracklet + // + // In barrel mode: + // - Clusters which are used by another track become shared + // - Clusters which are attached to a kink track become shared + // + AliTRDcluster **c = &fClusters[0]; + for (Int_t ic=kNclusters; ic--; c++) { + if(!(*c)) continue; + if(IsStandAlone()){ + if((*c)->IsShared() || (*c)->IsUsed()){ + if((*c)->IsShared()) SetNShared(GetNShared()-1); + else SetNUsed(GetNUsed()-1); + (*c) = NULL; + fIndexes[ic] = -1; + SetN(GetN()-1); + continue; + } + } else { + if((*c)->IsUsed() || IsKink()){ + (*c)->SetShared(); + continue; + } + } + (*c)->Use(); + } +} + + + //____________________________________________________________________ void AliTRDseedV1::CookdEdx(Int_t nslices) { @@ -194,9 +379,7 @@ void AliTRDseedV1::CookdEdx(Int_t nslices) // Detailed description // Calculates average dE/dx for all slices. Depending on the PID methode // the number of slices can be 3 (LQ) or 8(NN). -// The calculation of dQ/dl are done using the tracklet fit results (see AliTRDseedV1::GetdQdl(Int_t)) i.e. -// -// dQ/dl = qc/(dx * sqrt(1 + dy/dx^2 + dz/dx^2)) +// The calculation of dQ/dl are done using the tracklet fit results (see AliTRDseedV1::GetdQdl(Int_t)) // // The following effects are included in the calculation: // 1. calibration values for t0 and vdrift (using x coordinate to calculate slice) @@ -204,27 +387,28 @@ void AliTRDseedV1::CookdEdx(Int_t nslices) // 3. cluster size // - Int_t nclusters[knSlices]; - for(int i=0; iGetX(); + if(!(c = fClusters[ic]) && !(c = fClusters[ic+kNtb])) continue; + Float_t dx = TMath::Abs(fX0 - c->GetX()); // Filter clusters for dE/dx calculation // 1.consider calibration effects for slice determination - Int_t slice; - if(cluster->IsInChamber()) slice = Int_t(TMath::Abs(fX0 - x) * nslices / clength); - else slice = x < fX0 ? 0 : nslices-1; - + Int_t slice; + if(dxIsInChamber() + slice = Int_t(dx * nslices / kDriftLength); + } else slice = c->GetX() < fX0 ? nslices-1 : 0; + + // 2. take sharing into account - Float_t w = cluster->IsShared() ? .5 : 1.; + Float_t w = /*c->IsShared() ? .5 :*/ 1.; // 3. take into account large clusters TODO //w *= c->GetNPads() > 3 ? .8 : 1.; @@ -234,8 +418,8 @@ void AliTRDseedV1::CookdEdx(Int_t nslices) nclusters[slice]++; } // End of loop over clusters - //if(fReconstructor->GetPIDMethod() == AliTRDReconstructor::kLQPID){ - if(nslices == AliTRDReconstructor::kLQslices){ + //if(fkReconstructor->GetPIDMethod() == AliTRDReconstructor::kLQPID){ + if(nslices == AliTRDpidUtil::kLQslices){ // calculate mean charge per slice (only LQ PID) for(int is=0; isGetLabel(ilab) >= 0) { + labels[nlab] = fClusters[i]->GetLabel(ilab); + nlab++; + } + } + } + + fLabels[2] = AliMathBase::Freq(nlab,labels,out,kTRUE); + fLabels[0] = out[0]; + if ((fLabels[2] > 1) && (out[3] > 1)) fLabels[1] = out[2]; +} + //____________________________________________________________________ -Float_t AliTRDseedV1::GetdQdl(Int_t ic) const +Float_t AliTRDseedV1::GetdQdl(Int_t ic, Float_t *dl) const { - return fClusters[ic] ? TMath::Abs(fClusters[ic]->GetQ()) /fdX / TMath::Sqrt(1. + fYfit[1]*fYfit[1] + fZref[1]*fZref[1]) : 0.; +// Using the linear approximation of the track inside one TRD chamber (TRD tracklet) +// the charge per unit length can be written as: +// BEGIN_LATEX +// #frac{dq}{dl} = #frac{q_{c}}{dx * #sqrt{1 + #(){#frac{dy}{dx}}^{2}_{fit} + #(){#frac{dz}{dx}}^{2}_{ref}}} +// END_LATEX +// where qc is the total charge collected in the current time bin and dx is the length +// of the time bin. +// The following correction are applied : +// - charge : pad row cross corrections +// [diffusion and TRF assymetry] TODO +// - dx : anisochronity, track inclination - see Fit and AliTRDcluster::GetXloc() +// and AliTRDcluster::GetYloc() for the effects taken into account +// +//Begin_Html +// +//End_Html +// In the picture the energy loss measured on the tracklet as a function of drift time [left] and respectively +// drift length [right] for different particle species is displayed. +// Author : Alex Bercuci +// + Float_t dq = 0.; + // check whether both clusters are inside the chamber + Bool_t hasClusterInChamber = kFALSE; + if(fClusters[ic] && fClusters[ic]->IsInChamber()){ + hasClusterInChamber = kTRUE; + dq += TMath::Abs(fClusters[ic]->GetQ()); + }else if(fClusters[ic+kNtb] && fClusters[ic+kNtb]->IsInChamber()){ + hasClusterInChamber = kTRUE; + dq += TMath::Abs(fClusters[ic+kNtb]->GetQ()); + } + if(!hasClusterInChamber) return 0.; + if(dq<1.e-3) return 0.; + + Double_t dx = fdX; + if(ic-1>=0 && ic+1IsInChamber()) x2 = fClusters[ic-1]->GetX(); + else if(fClusters[ic-1+kNtb] && fClusters[ic-1+kNtb]->IsInChamber()) x2 = fClusters[ic-1+kNtb]->GetX(); + else if(fClusters[ic] && fClusters[ic]->IsInChamber()) x2 = fClusters[ic]->GetX()+fdX; + else x2 = fClusters[ic+kNtb]->GetX()+fdX; + // try to estimate lower radial position (find the cluster which is inside the chamber) + if(fClusters[ic+1] && fClusters[ic+1]->IsInChamber()) x1 = fClusters[ic+1]->GetX(); + else if(fClusters[ic+1+kNtb] && fClusters[ic+1+kNtb]->IsInChamber()) x1 = fClusters[ic+1+kNtb]->GetX(); + else if(fClusters[ic] && fClusters[ic]->IsInChamber()) x1 = fClusters[ic]->GetX()-fdX; + else x1 = fClusters[ic+kNtb]->GetX()-fdX; + + dx = .5*(x2 - x1); + } + dx *= TMath::Sqrt(1. + fYfit[1]*fYfit[1] + fZref[1]*fZref[1]); + if(dl) (*dl) = dx; + if(dx>1.e-9) return dq/dx; + else return 0.; } +//____________________________________________________________ +Float_t AliTRDseedV1::GetMomentum(Float_t *err) const +{ +// Returns momentum of the track after update with the current tracklet as: +// BEGIN_LATEX +// p=#frac{1}{1/p_{t}} #sqrt{1+tgl^{2}} +// END_LATEX +// and optionally the momentum error (if err is not null). +// The estimated variance of the momentum is given by: +// BEGIN_LATEX +// #sigma_{p}^{2} = (#frac{dp}{dp_{t}})^{2} #sigma_{p_{t}}^{2}+(#frac{dp}{dtgl})^{2} #sigma_{tgl}^{2}+2#frac{dp}{dp_{t}}#frac{dp}{dtgl} cov(tgl,1/p_{t}) +// END_LATEX +// which can be simplified to +// BEGIN_LATEX +// #sigma_{p}^{2} = p^{2}p_{t}^{4}tgl^{2}#sigma_{tgl}^{2}-2p^{2}p_{t}^{3}tgl cov(tgl,1/p_{t})+p^{2}p_{t}^{2}#sigma_{1/p_{t}}^{2} +// END_LATEX +// + + Double_t p = fPt*TMath::Sqrt(1.+fZref[1]*fZref[1]); + Double_t p2 = p*p; + Double_t tgl2 = fZref[1]*fZref[1]; + Double_t pt2 = fPt*fPt; + if(err){ + Double_t s2 = + p2*tgl2*pt2*pt2*fRefCov[4] + -2.*p2*fZref[1]*fPt*pt2*fRefCov[5] + +p2*pt2*fRefCov[6]; + (*err) = TMath::Sqrt(s2); + } + return p; +} + + //____________________________________________________________________ -Double_t* AliTRDseedV1::GetProbability() +Float_t* AliTRDseedV1::GetProbability(Bool_t force) { + if(!force) return &fProb[0]; + if(!CookPID()) return NULL; + return &fProb[0]; +} + +//____________________________________________________________ +Bool_t AliTRDseedV1::CookPID() +{ // Fill probability array for tracklet from the DB. // // Parameters // // Output -// returns pointer to the probability array and 0x0 if missing DB access +// returns pointer to the probability array and NULL if missing DB access // -// Detailed description +// Retrieve PID probabilities for e+-, mu+-, K+-, pi+- and p+- from the DB according to tracklet information: +// - estimated momentum at tracklet reference point +// - dE/dx measurements +// - tracklet length +// - TRD layer +// According to the steering settings specified in the reconstruction one of the following methods are used +// - Neural Network [default] - option "nn" +// - 2D Likelihood - option "!nn" - - // retrive calibration db AliTRDcalibDB *calibration = AliTRDcalibDB::Instance(); if (!calibration) { AliError("No access to calibration data"); - return 0x0; + return kFALSE; } - if (!fReconstructor) { + if (!fkReconstructor) { AliError("Reconstructor not set."); - return 0x0; + return kFALSE; } // Retrieve the CDB container class with the parametric detector response - const AliTRDCalPID *pd = calibration->GetPIDObject(fReconstructor->GetPIDMethod()); + const AliTRDCalPID *pd = calibration->GetPIDObject(fkReconstructor->GetPIDMethod()); if (!pd) { AliError("No access to AliTRDCalPID object"); - return 0x0; + return kFALSE; } - //AliInfo(Form("Method[%d] : %s", fReconstructor->GetRecoParam() ->GetPIDMethod(), pd->IsA()->GetName())); // calculate tracklet length TO DO - Float_t length = (AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick()); - /// TMath::Sqrt((1.0 - fSnp[iPlane]*fSnp[iPlane]) / (1.0 + fTgl[iPlane]*fTgl[iPlane])); + Float_t length = (AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick())/ TMath::Sqrt((1.0 - GetSnp()*GetSnp()) / (1.0 + GetTgl()*GetTgl())); //calculate dE/dx - CookdEdx(fReconstructor->GetNdEdxSlices()); - - // Sets the a priori probabilities - for(int ispec=0; ispecGetProbability(ispec, fMom, &fdEdx[0], length, GetPlane()); - } + CookdEdx(fkReconstructor->GetNdEdxSlices()); + AliDebug(4, Form("PID p[%f] dEdx[%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f] l[%f]", GetMomentum(), fdEdx[0], fdEdx[1], fdEdx[2], fdEdx[3], fdEdx[4], fdEdx[5], fdEdx[6], fdEdx[7], length)); - return &fProb[0]; + // Sets the a priori probabilities + for(int ispec=0; ispecGetProbability(ispec, GetMomentum(), &fdEdx[0], length, GetPlane()); + + return kTRUE; } //____________________________________________________________________ @@ -305,318 +610,541 @@ Float_t AliTRDseedV1::GetQuality(Bool_t kZcorr) const // Returns a quality measurement of the current seed // - Float_t zcorr = kZcorr ? fTilt * (fZProb - fZref[0]) : 0.; + Float_t zcorr = kZcorr ? GetTilt() * (fZfit[0] - fZref[0]) : 0.; return - .5 * TMath::Abs(18.0 - fN2) + .5 * TMath::Abs(18.0 - GetN()) + 10.* TMath::Abs(fYfit[1] - fYref[1]) + 5. * TMath::Abs(fYfit[0] - fYref[0] + zcorr) - + 2. * TMath::Abs(fMeanz - fZref[0]) / fPadLength; + + 2. * TMath::Abs(fZfit[0] - fZref[0]) / GetPadLength(); } //____________________________________________________________________ -void AliTRDseedV1::GetCovAt(Double_t /*x*/, Double_t *cov) const +void AliTRDseedV1::GetCovAt(Double_t x, Double_t *cov) const { -// Computes covariance in the y-z plane at radial point x +// Computes covariance in the y-z plane at radial point x (in tracking coordinates) +// and returns the results in the preallocated array cov[3] as : +// cov[0] = Var(y) +// cov[1] = Cov(yz) +// cov[2] = Var(z) +// +// Details +// +// For the linear transformation +// BEGIN_LATEX +// Y = T_{x} X^{T} +// END_LATEX +// The error propagation has the general form +// BEGIN_LATEX +// C_{Y} = T_{x} C_{X} T_{x}^{T} +// END_LATEX +// We apply this formula 2 times. First to calculate the covariance of the tracklet +// at point x we consider: +// BEGIN_LATEX +// T_{x} = (1 x); X=(y0 dy/dx); C_{X}=#(){#splitline{Var(y0) Cov(y0, dy/dx)}{Cov(y0, dy/dx) Var(dy/dx)}} +// END_LATEX +// and secondly to take into account the tilt angle +// BEGIN_LATEX +// T_{#alpha} = #(){#splitline{cos(#alpha) __ sin(#alpha)}{-sin(#alpha) __ cos(#alpha)}}; X=(y z); C_{X}=#(){#splitline{Var(y) 0}{0 Var(z)}} +// END_LATEX +// +// using simple trigonometrics one can write for this last case +// BEGIN_LATEX +// C_{Y}=#frac{1}{1+tg^{2}#alpha} #(){#splitline{(#sigma_{y}^{2}+tg^{2}#alpha#sigma_{z}^{2}) __ tg#alpha(#sigma_{z}^{2}-#sigma_{y}^{2})}{tg#alpha(#sigma_{z}^{2}-#sigma_{y}^{2}) __ (#sigma_{z}^{2}+tg^{2}#alpha#sigma_{y}^{2})}} +// END_LATEX +// which can be aproximated for small alphas (2 deg) with +// BEGIN_LATEX +// C_{Y}=#(){#splitline{#sigma_{y}^{2} __ (#sigma_{z}^{2}-#sigma_{y}^{2})tg#alpha}{((#sigma_{z}^{2}-#sigma_{y}^{2})tg#alpha __ #sigma_{z}^{2}}} +// END_LATEX +// +// before applying the tilt rotation we also apply systematic uncertainties to the tracklet +// position which can be tunned from outside via the AliTRDrecoParam::SetSysCovMatrix(). They might +// account for extra misalignment/miscalibration uncertainties. +// +// Author : +// Alex Bercuci +// Date : Jan 8th 2009 +// - Int_t ic = 0; while (!fClusters[ic]) ic++; - AliTRDcalibDB *fCalib = AliTRDcalibDB::Instance(); - Double_t exB = fCalib->GetOmegaTau(fCalib->GetVdriftAverage(fClusters[ic]->GetDetector()), -AliTracker::GetBz()*0.1); - Double_t sy2 = fSigmaY2*fSigmaY2 + .2*(fYfit[1]-exB)*(fYfit[1]-exB); - Double_t sz2 = fPadLength/12.; + Double_t xr = fX0-x; + Double_t sy2 = fCov[0] +2.*xr*fCov[1] + xr*xr*fCov[2]; + Double_t sz2 = fS2Z; + //GetPadLength()*GetPadLength()/12.; + // insert systematic uncertainties + if(fkReconstructor){ + Double_t sys[15]; memset(sys, 0, 15*sizeof(Double_t)); + fkReconstructor->GetRecoParam()->GetSysCovMatrix(sys); + sy2 += sys[0]; + sz2 += sys[1]; + } + // rotate covariance matrix + Double_t t2 = GetTilt()*GetTilt(); + Double_t correction = 1./(1. + t2); + cov[0] = (sy2+t2*sz2)*correction; + cov[1] = GetTilt()*(sz2 - sy2)*correction; + cov[2] = (t2*sy2+sz2)*correction; + + //printf("C(%6.1f %+6.3f %6.1f) [%s]\n", 1.e4*TMath::Sqrt(cov[0]), cov[1], 1.e4*TMath::Sqrt(cov[2]), IsRowCross()?" RC ":"-"); +} - //printf("Yfit[1] %f sy20 %f SigmaY2 %f\n", fYfit[1], sy20, fSigmaY2); +//____________________________________________________________ +Double_t AliTRDseedV1::GetCovSqrt(const Double_t * const c, Double_t *d) +{ +// Helper function to calculate the square root of the covariance matrix. +// The input matrix is stored in the vector c and the result in the vector d. +// Both arrays have to be initialized by the user with at least 3 elements. Return negative in case of failure. +// +// For calculating the square root of the symmetric matrix c +// the following relation is used: +// BEGIN_LATEX +// C^{1/2} = VD^{1/2}V^{-1} +// END_LATEX +// with V being the matrix with the n eigenvectors as columns. +// In case C is symmetric the followings are true: +// - matrix D is diagonal with the diagonal given by the eigenvalues of C +// - V = V^{-1} +// +// Author A.Bercuci +// Date Mar 19 2009 + + Double_t l[2], // eigenvalues + v[3]; // eigenvectors + // the secular equation and its solution : + // (c[0]-L)(c[2]-L)-c[1]^2 = 0 + // L^2 - L*Tr(c)+DET(c) = 0 + // L12 = [Tr(c) +- sqrt(Tr(c)^2-4*DET(c))]/2 + Double_t tr = c[0]+c[2], // trace + det = c[0]*c[2]-c[1]*c[1]; // determinant + if(TMath::Abs(det)<1.e-20) return -1.; + Double_t dd = TMath::Sqrt(tr*tr - 4*det); + l[0] = .5*(tr + dd); + l[1] = .5*(tr - dd); + if(l[0]<0. || l[1]<0.) return -1.; + + // the sym V matrix + // | v00 v10| + // | v10 v11| + Double_t tmp = (l[0]-c[0])/c[1]; + v[0] = TMath::Sqrt(1./(tmp*tmp+1)); + v[1] = tmp*v[0]; + v[2] = v[1]*c[1]/(l[1]-c[2]); + // the VD^{1/2}V is: + l[0] = TMath::Sqrt(l[0]); l[1] = TMath::Sqrt(l[1]); + d[0] = v[0]*v[0]*l[0]+v[1]*v[1]*l[1]; + d[1] = v[0]*v[1]*l[0]+v[1]*v[2]*l[1]; + d[2] = v[1]*v[1]*l[0]+v[2]*v[2]*l[1]; + + return 1.; +} - cov[0] = sy2; - cov[1] = fTilt*(sy2-sz2); - cov[2] = sz2; +//____________________________________________________________ +Double_t AliTRDseedV1::GetCovInv(const Double_t * const c, Double_t *d) +{ +// Helper function to calculate the inverse of the covariance matrix. +// The input matrix is stored in the vector c and the result in the vector d. +// Both arrays have to be initialized by the user with at least 3 elements +// The return value is the determinant or 0 in case of singularity. +// +// Author A.Bercuci +// Date Mar 19 2009 + + Double_t det = c[0]*c[2] - c[1]*c[1]; + if(TMath::Abs(det)<1.e-20) return 0.; + Double_t invDet = 1./det; + d[0] = c[2]*invDet; + d[1] =-c[1]*invDet; + d[2] = c[0]*invDet; + return det; +} - // insert systematic uncertainties calibration and misalignment - Double_t sys[15]; - fReconstructor->GetRecoParam()->GetSysCovMatrix(sys); - cov[0] += (sys[0]*sys[0]); - cov[2] += (sys[1]*sys[1]); +//____________________________________________________________________ +UShort_t AliTRDseedV1::GetVolumeId() const +{ + Int_t ic=0; + while(icGetVolumeId() : 0; } +//____________________________________________________________________ +void AliTRDseedV1::Calibrate() +{ +// Retrieve calibration and position parameters from OCDB. +// The following information are used +// - detector index +// - column and row position of first attached cluster. If no clusters are attached +// to the tracklet a random central chamber position (c=70, r=7) will be used. +// +// The following information is cached in the tracklet +// t0 (trigger delay) +// drift velocity +// PRF width +// omega*tau = tg(a_L) +// diffusion coefficients (longitudinal and transversal) +// +// Author : +// Alex Bercuci +// Date : Jan 8th 2009 +// + + AliCDBManager *cdb = AliCDBManager::Instance(); + if(cdb->GetRun() < 0){ + AliError("OCDB manager not properly initialized"); + return; + } + + AliTRDcalibDB *calib = AliTRDcalibDB::Instance(); + AliTRDCalROC *vdROC = calib->GetVdriftROC(fDet), + *t0ROC = calib->GetT0ROC(fDet);; + const AliTRDCalDet *vdDet = calib->GetVdriftDet(); + const AliTRDCalDet *t0Det = calib->GetT0Det(); + + Int_t col = 70, row = 7; + AliTRDcluster **c = &fClusters[0]; + if(GetN()){ + Int_t ic = 0; + while (icGetPadCol(); + row = (*c)->GetPadRow(); + } + } + + fT0 = (t0Det->GetValue(fDet) + t0ROC->GetValue(col,row)) / AliTRDCommonParam::Instance()->GetSamplingFrequency(); + fVD = vdDet->GetValue(fDet) * vdROC->GetValue(col, row); + fS2PRF = calib->GetPRFWidth(fDet, col, row); fS2PRF *= fS2PRF; + fExB = AliTRDCommonParam::Instance()->GetOmegaTau(fVD); + AliTRDCommonParam::Instance()->GetDiffCoeff(fDiffL, + fDiffT, fVD); + AliDebug(4, Form("Calibration params for Det[%3d] Col[%3d] Row[%2d]\n t0[%f] vd[%f] s2PRF[%f] ExB[%f] Dl[%f] Dt[%f]", fDet, col, row, fT0, fVD, fS2PRF, fExB, fDiffL, fDiffT)); + + + SetBit(kCalib, kTRUE); +} + //____________________________________________________________________ void AliTRDseedV1::SetOwner() { //AliInfo(Form("own [%s] fOwner[%s]", own?"YES":"NO", fOwner?"YES":"NO")); if(TestBit(kOwner)) return; - for(int ic=0; icGetRecoParam() ){ - AliError("Seed can not be used without a valid RecoParam."); - return kFALSE; - } - - AliTRDchamberTimeBin *layer = 0x0; - if(fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker)>=7){ - AliTRDtrackingChamber ch(*chamber); - ch.SetOwner(); - (*AliTRDtrackerV1::DebugStreamer()) << "AttachClustersIter" - << "chamber.=" << &ch - << "tracklet.=" << this - << "\n"; - } - - Float_t tquality; - Double_t kroady = fReconstructor->GetRecoParam() ->GetRoad1y(); - Double_t kroadz = fPadLength * .5 + 1.; - - // initialize configuration parameters - Float_t zcorr = kZcorr ? fTilt * (fZProb - fZref[0]) : 0.; - Int_t niter = kZcorr ? 1 : 2; - - Double_t yexp, zexp; - Int_t ncl = 0; - // start seed update - for (Int_t iter = 0; iter < niter; iter++) { - ncl = 0; - for (Int_t iTime = 0; iTime < AliTRDtrackerV1::GetNTimeBins(); iTime++) { - if(!(layer = chamber->GetTB(iTime))) continue; - if(!Int_t(*layer)) continue; - - // define searching configuration - Double_t dxlayer = layer->GetX() - fX0; - if(c){ - zexp = c->GetZ(); - //Try 2 pad-rows in second iteration - if (iter > 0) { - zexp = fZref[0] + fZref[1] * dxlayer - zcorr; - if (zexp > c->GetZ()) zexp = c->GetZ() + fPadLength*0.5; - if (zexp < c->GetZ()) zexp = c->GetZ() - fPadLength*0.5; - } - } else zexp = fZref[0] + (kZcorr ? fZref[1] * dxlayer : 0.); - yexp = fYref[0] + fYref[1] * dxlayer - zcorr; - - // Get and register cluster - Int_t index = layer->SearchNearestCluster(yexp, zexp, kroady, kroadz); - if (index < 0) continue; - AliTRDcluster *cl = (*layer)[index]; - - fIndexes[iTime] = layer->GetGlobalIndex(index); - fClusters[iTime] = cl; - fY[iTime] = cl->GetY(); - fZ[iTime] = cl->GetZ(); - ncl++; - } - if(fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker)>=7) AliInfo(Form("iter = %d ncl [%d] = %d", iter, fDet, ncl)); - - if(ncl>1){ - // calculate length of the time bin (calibration aware) - Int_t irp = 0; Float_t x[2]; Int_t tb[2]; - for (Int_t iTime = 0; iTime < AliTRDtrackerV1::GetNTimeBins(); iTime++) { - if(!fClusters[iTime]) continue; - x[irp] = fClusters[iTime]->GetX(); - tb[irp] = iTime; - irp++; - if(irp==2) break; - } - fdX = (x[1] - x[0]) / (tb[0] - tb[1]); - - // update X0 from the clusters (calibration/alignment aware) - for (Int_t iTime = 0; iTime < AliTRDtrackerV1::GetNTimeBins(); iTime++) { - if(!(layer = chamber->GetTB(iTime))) continue; - if(!layer->IsT0()) continue; - if(fClusters[iTime]){ - fX0 = fClusters[iTime]->GetX(); - break; - } else { // we have to infere the position of the anode wire from the other clusters - for (Int_t jTime = iTime+1; jTime < AliTRDtrackerV1::GetNTimeBins(); jTime++) { - if(!fClusters[jTime]) continue; - fX0 = fClusters[jTime]->GetX() + fdX * (jTime - iTime); - } - break; - } - } - - // update YZ reference point - // TODO - - // update x reference positions (calibration/alignment aware) - for (Int_t iTime = 0; iTime < AliTRDtrackerV1::GetNTimeBins(); iTime++) { - if(!fClusters[iTime]) continue; - fX[iTime] = fClusters[iTime]->GetX() - fX0; - } - - AliTRDseed::Update(); - } - if(fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker)>=7) AliInfo(Form("iter = %d nclFit [%d] = %d", iter, fDet, fN2)); - - if(IsOK()){ - tquality = GetQuality(kZcorr); - if(tquality < quality) break; - else quality = tquality; - } - kroadz *= 2.; - } // Loop: iter - if (!IsOK()) return kFALSE; - - if(fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker)>=1) CookLabels(); - UpdateUsed(); - return kTRUE; +// Shortcut method to initialize pad geometry. + if(!p) return; + SetTilt(TMath::Tan(TMath::DegToRad()*p->GetTiltingAngle())); + SetPadLength(p->GetLengthIPad()); + SetPadWidth(p->GetWidthIPad()); } + //____________________________________________________________________ -Bool_t AliTRDseedV1::AttachClusters(AliTRDtrackingChamber *chamber - ,Bool_t kZcorr) +Bool_t AliTRDseedV1::AttachClusters(AliTRDtrackingChamber *const chamber, Bool_t tilt) { - // - // Projective algorithm to attach clusters to seeding tracklets - // - // Parameters - // - // Output - // - // Detailed description - // 1. Collapse x coordinate for the full detector plane - // 2. truncated mean on y (r-phi) direction - // 3. purge clusters - // 4. truncated mean on z direction - // 5. purge clusters - // 6. fit tracklet - // - - if(!fReconstructor->GetRecoParam() ){ - AliError("Seed can not be used without a valid RecoParam."); +// +// Projective algorithm to attach clusters to seeding tracklets. The following steps are performed : +// 1. Collapse x coordinate for the full detector plane +// 2. truncated mean on y (r-phi) direction +// 3. purge clusters +// 4. truncated mean on z direction +// 5. purge clusters +// +// Parameters +// - chamber : pointer to tracking chamber container used to search the tracklet +// - tilt : switch for tilt correction during road building [default true] +// Output +// - true : if tracklet found successfully. Failure can happend because of the following: +// - +// Detailed description +// +// We start up by defining the track direction in the xy plane and roads. The roads are calculated based +// on tracking information (variance in the r-phi direction) and estimated variance of the standard +// clusters (see AliTRDcluster::SetSigmaY2()) corrected for tilt (see GetCovAt()). From this the road is +// BEGIN_LATEX +// r_{y} = 3*#sqrt{12*(#sigma^{2}_{Trk}(y) + #frac{#sigma^{2}_{cl}(y) + tg^{2}(#alpha_{L})#sigma^{2}_{cl}(z)}{1+tg^{2}(#alpha_{L})})} +// r_{z} = 1.5*L_{pad} +// END_LATEX +// +// Author : Alexandru Bercuci +// Debug : level >3 + + if(!fkReconstructor->GetRecoParam() ){ + AliError("Tracklets can not be used without a valid RecoParam."); return kFALSE; } - - const Int_t kClusterCandidates = 2 * knTimebins; - + // Initialize reco params for this tracklet + // 1. first time bin in the drift region + Int_t t0 = 14; + Int_t kClmin = Int_t(fkReconstructor->GetRecoParam() ->GetFindableClusters()*AliTRDtrackerV1::GetNTimeBins()); + + Double_t sysCov[5]; fkReconstructor->GetRecoParam()->GetSysCovMatrix(sysCov); + Double_t s2yTrk= fRefCov[0], + s2yCl = 0., + s2zCl = GetPadLength()*GetPadLength()/12., + syRef = TMath::Sqrt(s2yTrk), + t2 = GetTilt()*GetTilt(); //define roads - Double_t kroady = fReconstructor->GetRecoParam() ->GetRoad1y(); - Double_t kroadz = fPadLength * 1.5 + 1.; - // correction to y for the tilting angle - Float_t zcorr = kZcorr ? fTilt * (fZProb - fZref[0]) : 0.; + Double_t kroady = 1., //fkReconstructor->GetRecoParam() ->GetRoad1y(); + kroadz = GetPadLength() * fkReconstructor->GetRecoParam()->GetRoadzMultiplicator() + 1.; + // define probing cluster (the perfect cluster) and default calibration + Short_t sig[] = {0, 0, 10, 30, 10, 0,0}; + AliTRDcluster cp(fDet, 6, 75, 0, sig, 0); + if(fkReconstructor->IsHLT()) cp.SetRPhiMethod(AliTRDcluster::kCOG); + if(!IsCalibrated()) Calibrate(); + + AliDebug(4, ""); + AliDebug(4, Form("syKalman[%f] rY[%f] rZ[%f]", syRef, kroady, kroadz)); // working variables - AliTRDcluster *clusters[kClusterCandidates]; - Double_t cond[4], yexp[knTimebins], zexp[knTimebins], - yres[kClusterCandidates], zres[kClusterCandidates]; - Int_t ncl, *index = 0x0, tboundary[knTimebins]; - + const Int_t kNrows = 16; + const Int_t kNcls = 3*kNclusters; // buffer size + AliTRDcluster *clst[kNrows][kNcls]; + Bool_t blst[kNrows][kNcls]; + Double_t cond[4], dx, dy, yt, zt, yres[kNrows][kNcls]; + Int_t idxs[kNrows][kNcls], ncl[kNrows], ncls = 0; + memset(ncl, 0, kNrows*sizeof(Int_t)); + memset(yres, 0, kNrows*kNcls*sizeof(Double_t)); + memset(blst, 0, kNrows*kNcls*sizeof(Bool_t)); //this is 8 times faster to memset than "memset(clst, 0, kNrows*kNcls*sizeof(AliTRDcluster*))" + // Do cluster projection - AliTRDchamberTimeBin *layer = 0x0; - Int_t nYclusters = 0; Bool_t kEXIT = kFALSE; - for (Int_t iTime = 0; iTime < AliTRDtrackerV1::GetNTimeBins(); iTime++) { - if(!(layer = chamber->GetTB(iTime))) continue; + AliTRDcluster *c = NULL; + AliTRDchamberTimeBin *layer = NULL; + Bool_t kBUFFER = kFALSE; + for (Int_t it = 0; it < kNtb; it++) { + if(!(layer = chamber->GetTB(it))) continue; if(!Int_t(*layer)) continue; - - fX[iTime] = layer->GetX() - fX0; - zexp[iTime] = fZref[0] + fZref[1] * fX[iTime]; - yexp[iTime] = fYref[0] + fYref[1] * fX[iTime] - zcorr; - - // build condition and process clusters - cond[0] = yexp[iTime] - kroady; cond[1] = yexp[iTime] + kroady; - cond[2] = zexp[iTime] - kroadz; cond[3] = zexp[iTime] + kroadz; - layer->GetClusters(cond, index, ncl); - for(Int_t ic = 0; icGetCluster(index[ic]); - clusters[nYclusters] = c; - yres[nYclusters++] = c->GetY() - yexp[iTime]; - if(nYclusters >= kClusterCandidates) { - AliWarning(Form("Cluster candidates reached limit %d. Some may be lost.", kClusterCandidates)); - kEXIT = kTRUE; + // get track projection at layers position + dx = fX0 - layer->GetX(); + yt = fYref[0] - fYref[1] * dx; + zt = fZref[0] - fZref[1] * dx; + // get standard cluster error corrected for tilt + cp.SetLocalTimeBin(it); + cp.SetSigmaY2(0.02, fDiffT, fExB, dx, -1./*zt*/, fYref[1]); + s2yCl = (cp.GetSigmaY2() + sysCov[0] + t2*s2zCl)/(1.+t2); + // get estimated road + kroady = 3.*TMath::Sqrt(12.*(s2yTrk + s2yCl)); + + AliDebug(5, Form(" %2d x[%f] yt[%f] zt[%f]", it, dx, yt, zt)); + + AliDebug(5, Form(" syTrk[um]=%6.2f syCl[um]=%6.2f syClTlt[um]=%6.2f Ry[mm]=%f", 1.e4*TMath::Sqrt(s2yTrk), 1.e4*TMath::Sqrt(cp.GetSigmaY2()), 1.e4*TMath::Sqrt(s2yCl), 1.e1*kroady)); + + // select clusters + cond[0] = yt; cond[2] = kroady; + cond[1] = zt; cond[3] = kroadz; + Int_t n=0, idx[6]; + layer->GetClusters(cond, idx, n, 6); + for(Int_t ic = n; ic--;){ + c = (*layer)[idx[ic]]; + dy = yt - c->GetY(); + dy += tilt ? GetTilt() * (c->GetZ() - zt) : 0.; + // select clusters on a 3 sigmaKalman level +/* if(tilt && TMath::Abs(dy) > 3.*syRef){ + printf("too large !!!\n"); + continue; + }*/ + Int_t r = c->GetPadRow(); + AliDebug(5, Form(" -> dy[%f] yc[%f] r[%d]", TMath::Abs(dy), c->GetY(), r)); + clst[r][ncl[r]] = c; + blst[r][ncl[r]] = kTRUE; + idxs[r][ncl[r]] = idx[ic]; + yres[r][ncl[r]] = dy; + ncl[r]++; ncls++; + + if(ncl[r] >= kNcls) { + AliWarning(Form("Cluster candidates row[%d] reached buffer limit[%d]. Some may be lost.", r, kNcls)); + kBUFFER = kTRUE; break; } } - tboundary[iTime] = nYclusters; - if(kEXIT) break; + if(kBUFFER) break; } - - // Evaluate truncated mean on the y direction - Double_t mean, sigma; - AliMathBase::EvaluateUni(nYclusters, yres, mean, sigma, Int_t(nYclusters*.8)-2); - // purge cluster candidates - Int_t nZclusters = 0; - for(Int_t ic = 0; ic 4. * sigma){ - clusters[ic] = 0x0; - continue; - } - zres[nZclusters++] = clusters[ic]->GetZ() - zexp[clusters[ic]->GetLocalTimeBin()]; + AliDebug(4, Form("Found %d clusters. Processing ...", ncls)); + if(ncls 4. * sigma){ - clusters[ic] = 0x0; - continue; + + // analyze each row individualy + Bool_t kRowSelection(kFALSE); + Double_t mean[]={1.e3, 1.e3, 1.3}, syDis[]={1.e3, 1.e3, 1.3}; + Int_t nrow[] = {0, 0, 0}, rowId[] = {-1, -1, -1}, nr = 0, lr=-1; + TVectorD vdy[3]; + for(Int_t ir=0; ir0 && ir-lr != 1){ + AliDebug(2, "Rows attached not continuous. Turn on selection."); + kRowSelection=kTRUE; } + + AliDebug(5, Form(" r[%d] n[%d]", ir, ncl[ir])); + // Evaluate truncated mean on the y direction + if(ncl[ir] < 4) continue; + AliMathBase::EvaluateUni(ncl[ir], yres[ir], mean[nr], syDis[nr], Int_t(ncl[ir]*.8)); + + // TODO check mean and sigma agains cluster resolution !! + AliDebug(4, Form(" m_%d[%+5.3f (%5.3fs)] s[%f]", nr, mean[nr], TMath::Abs(mean[nr]/syDis[nr]), syDis[nr])); + // remove outliers based on a 3 sigmaDistr level + Bool_t kFOUND = kFALSE; + for(Int_t ic = ncl[ir]; ic--;){ + if(yres[ir][ic] - mean[nr] > 3. * syDis[nr]){ + blst[ir][ic] = kFALSE; continue; + } + nrow[nr]++; rowId[nr]=ir; kFOUND = kTRUE; + } + if(kFOUND){ + vdy[nr].Use(nrow[nr], yres[ir]); + nr++; + } + lr = ir; if(nr>=3) break; + } + if(fkReconstructor->GetRecoParam()->GetStreamLevel(AliTRDrecoParam::kTracker) > 3 && fkReconstructor->IsDebugStreaming()){ + TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); + UChar_t stat(0); + if(IsKink()) SETBIT(stat, 1); + if(IsStandAlone()) SETBIT(stat, 2); + cstreamer << "AttachClusters" + << "stat=" << stat + << "det=" << fDet + << "pt=" << fPt + << "s2y=" << s2yTrk + << "r0=" << rowId[0] + << "dy0=" << &vdy[0] + << "m0=" << mean[0] + << "s0=" << syDis[0] + << "r1=" << rowId[1] + << "dy1=" << &vdy[1] + << "m1=" << mean[1] + << "s1=" << syDis[1] + << "r2=" << rowId[2] + << "dy2=" << &vdy[2] + << "m2=" << mean[2] + << "s2=" << syDis[2] + << "\n"; } - - // Select only one cluster/TimeBin - Int_t lastCluster = 0; - fN2 = 0; - for (Int_t iTime = 0; iTime < AliTRDtrackerV1::GetNTimeBins(); iTime++) { - ncl = tboundary[iTime] - lastCluster; - if(!ncl) continue; - Int_t iptr = lastCluster; - if(ncl > 1){ - Float_t dold = 9999.; - for(int ic=lastCluster; icGetY(); - Float_t z = zexp[iTime] - clusters[ic]->GetZ(); - Float_t d = y * y + z * z; - if(d > dold) continue; - dold = d; - iptr = ic; + + // analyze gap in rows attached + if(kRowSelection){ + SetErrorMsg(kAttachRowGap); + Int_t rowRemove(-1); + if(nr==2){ // select based on minimum distance to track projection + if(TMath::Abs(mean[0])nrow[0]) AliDebug(2, Form("Conflicting mean[%f < %f] but ncl[%d < %d].", TMath::Abs(mean[0]), TMath::Abs(mean[1]), nrow[0], nrow[1])); + }else{ + if(nrow[1] %f] but ncl[%d > %d].", TMath::Abs(mean[0]), TMath::Abs(mean[1]), nrow[0], nrow[1])); + Swap(nrow[0],nrow[1]); Swap(rowId[0],rowId[1]); + Swap(mean[0],mean[1]); Swap(syDis[0],syDis[1]); + } + rowRemove=1; nr=1; + } else if(nr==3){ // select based on 2 consecutive rows + if(rowId[1]==rowId[0]+1 && rowId[1]!=rowId[2]-1){ + nr=2;rowRemove=2; + } else if(rowId[1]!=rowId[0]+1 && rowId[1]==rowId[2]-1){ + Swap(nrow[0],nrow[2]); Swap(rowId[0],rowId[2]); + Swap(mean[0],mean[2]); Swap(syDis[0],syDis[2]); + nr=2; rowRemove=2; } } - fIndexes[iTime] = chamber->GetTB(iTime)->GetGlobalIndex(iptr); - fClusters[iTime] = clusters[iptr]; - fY[iTime] = clusters[iptr]->GetY(); - fZ[iTime] = clusters[iptr]->GetZ(); - lastCluster = tboundary[iTime]; - fN2++; + if(rowRemove>0){nrow[rowRemove]=0; rowId[rowRemove]=-1;} } - - // number of minimum numbers of clusters expected for the tracklet - Int_t kClmin = Int_t(fReconstructor->GetRecoParam() ->GetFindableClusters()*AliTRDtrackerV1::GetNTimeBins()); - if (fN2 < kClmin){ - AliWarning(Form("Not enough clusters to fit the tracklet %d [%d].", fN2, kClmin)); - fN2 = 0; - return kFALSE; + AliDebug(4, Form(" Ncl[%d[%d] + %d[%d] + %d[%d]]", nrow[0], rowId[0], nrow[1], rowId[1], nrow[2], rowId[2])); + + if(nr==3){ + SetBit(kRowCross, kTRUE); // mark pad row crossing + SetErrorMsg(kAttachRow); + const Float_t am[]={TMath::Abs(mean[0]), TMath::Abs(mean[1]), TMath::Abs(mean[2])}; + AliDebug(4, Form("complex row configuration\n" + " r[%d] n[%d] m[%6.3f] s[%6.3f]\n" + " r[%d] n[%d] m[%6.3f] s[%6.3f]\n" + " r[%d] n[%d] m[%6.3f] s[%6.3f]\n" + , rowId[0], nrow[0], am[0], syDis[0] + , rowId[1], nrow[1], am[1], syDis[1] + , rowId[2], nrow[2], am[2], syDis[2])); + Int_t id[]={0,1,2}; TMath::Sort(3, am, id, kFALSE); + // backup + Int_t rnn[3]; memcpy(rnn, nrow, 3*sizeof(Int_t)); + Int_t rid[3]; memcpy(rid, rowId, 3*sizeof(Int_t)); + Double_t rm[3]; memcpy(rm, mean, 3*sizeof(Double_t)); + Double_t rs[3]; memcpy(rs, syDis, 3*sizeof(Double_t)); + nrow[0]=rnn[id[0]]; rowId[0]=rid[id[0]]; mean[0]=rm[id[0]]; syDis[0]=rs[id[0]]; + nrow[1]=rnn[id[1]]; rowId[1]=rid[id[1]]; mean[1]=rm[id[1]]; syDis[1]=rs[id[1]]; + nrow[2]=0; rowId[2]=-1; mean[2] = 1.e3; syDis[2] = 1.e3; + AliDebug(4, Form("solved configuration\n" + " r[%d] n[%d] m[%+6.3f] s[%6.3f]\n" + " r[%d] n[%d] m[%+6.3f] s[%6.3f]\n" + " r[%d] n[%d] m[%+6.3f] s[%6.3f]\n" + , rowId[0], nrow[0], mean[0], syDis[0] + , rowId[1], nrow[1], mean[1], syDis[1] + , rowId[2], nrow[2], mean[2], syDis[2])); + nr=2; + } else if(nr==2) { + SetBit(kRowCross, kTRUE); // mark pad row crossing + if(nrow[1] > nrow[0]){ // swap row order + Swap(nrow[0],nrow[1]); Swap(rowId[0],rowId[1]); + Swap(mean[0],mean[1]); Swap(syDis[0],syDis[1]); + } } - // update used clusters - fNUsed = 0; - for (Int_t iTime = 0; iTime < AliTRDtrackerV1::GetNTimeBins(); iTime++) { - if(!fClusters[iTime]) continue; - if((fClusters[iTime]->IsUsed())) fNUsed++; + // Select and store clusters + // We should consider here : + // 1. How far is the chamber boundary + // 2. How big is the mean + Int_t n(0); Float_t dyc[kNclusters]; memset(dyc,0,kNclusters*sizeof(Float_t)); + for (Int_t ir = 0; ir < nr; ir++) { + Int_t jr(rowId[ir]); + AliDebug(4, Form(" Attaching Ncl[%d]=%d ...", jr, ncl[jr])); + for (Int_t ic = 0; ic < ncl[jr]; ic++) { + if(!blst[jr][ic])continue; + c = clst[jr][ic]; + Int_t it(c->GetPadTime()); + Int_t idx(it+kNtb*ir); + if(fClusters[idx]){ + AliDebug(4, Form("Many cluster candidates on row[%2d] tb[%2d].", jr, it)); + // TODO should save also the information on where the multiplicity happened and its size + SetErrorMsg(kAttachMultipleCl); + // TODO should also compare with mean and sigma for this row + if(yres[jr][ic] > dyc[idx]) continue; + } + + // TODO proper indexing of clusters !! + fIndexes[idx] = chamber->GetTB(it)->GetGlobalIndex(idxs[jr][ic]); + fClusters[idx] = c; + dyc[idx] = yres[jr][ic]; + n++; + } } + SetN(n); - if (fN2-fNUsed < kClmin){ - AliWarning(Form("Too many clusters already in use %d (from %d).", fNUsed, fN2)); - fN2 = 0; + // number of minimum numbers of clusters expected for the tracklet + if (GetN() < kClmin){ + AliDebug(1, Form("NOT ENOUGH CLUSTERS %d ATTACHED TO THE TRACKLET [min %d] FROM FOUND %d.", GetN(), kClmin, n)); + SetErrorMsg(kAttachClAttach); return kFALSE; } - + + // Load calibration parameters for this tracklet + Calibrate(); + + // calculate dx for time bins in the drift region (calibration aware) + Float_t x[2] = {0.,0.}; Int_t tb[2]={0,0}; + for (Int_t it = t0, irp=0; irp<2 && it < AliTRDtrackerV1::GetNTimeBins(); it++) { + if(!fClusters[it]) continue; + x[irp] = fClusters[it]->GetX(); + tb[irp] = fClusters[it]->GetLocalTimeBin(); + irp++; + } + Int_t dtb = tb[1] - tb[0]; + fdX = dtb ? (x[0] - x[1]) / dtb : 0.15; return kTRUE; } @@ -634,49 +1162,127 @@ void AliTRDseedV1::Bootstrap(const AliTRDReconstructor *rec) // // A.Bercuci Oct 30th 2008 // - fReconstructor = rec; + fkReconstructor = rec; AliTRDgeometry g; AliTRDpadPlane *pp = g.GetPadPlane(fDet); - fTilt = TMath::Tan(TMath::DegToRad()*pp->GetTiltingAngle()); - fPadLength = pp->GetLengthIPad(); - fSnp = fYref[1]/TMath::Sqrt(1+fYref[1]*fYref[1]); - fTgl = fZref[1]; - fN = 0; fN2 = 0; fMPads = 0.; + fPad[0] = pp->GetLengthIPad(); + fPad[1] = pp->GetWidthIPad(); + fPad[2] = TMath::Tan(TMath::DegToRad()*pp->GetTiltingAngle()); + //fSnp = fYref[1]/TMath::Sqrt(1+fYref[1]*fYref[1]); + //fTgl = fZref[1]; + Int_t n = 0, nshare = 0, nused = 0; AliTRDcluster **cit = &fClusters[0]; - for(Int_t ic = knTimebins; ic--; cit++){ + for(Int_t ic = kNclusters; ic--; cit++){ if(!(*cit)) return; - fN++; fN2++; - fX[ic] = (*cit)->GetX() - fX0; - fY[ic] = (*cit)->GetY(); - fZ[ic] = (*cit)->GetZ(); + n++; + if((*cit)->IsShared()) nshare++; + if((*cit)->IsUsed()) nused++; } - Update(); // Fit(); + SetN(n); SetNUsed(nused); SetNShared(nshare); + Fit(); CookLabels(); GetProbability(); } //____________________________________________________________________ -Bool_t AliTRDseedV1::Fit(Bool_t tilt) +Bool_t AliTRDseedV1::Fit(Bool_t tilt, Bool_t zcorr) { - // - // Linear fit of the tracklet - // - // Parameters : - // - // Output : - // True if successful - // - // Detailed description - // 2. Check if tracklet crosses pad row boundary - // 1. Calculate residuals in the y (r-phi) direction - // 3. Do a Least Square Fit to the data - // +// +// Linear fit of the clusters attached to the tracklet +// +// Parameters : +// - tilt : switch for tilt pad correction of cluster y position based on +// the z, dzdx info from outside [default false]. +// - zcorr : switch for using z information to correct for anisochronity +// and a finner error parameterization estimation [default false] +// Output : +// True if successful +// +// Detailed description +// +// Fit in the xy plane +// +// The fit is performed to estimate the y position of the tracklet and the track +// angle in the bending plane. The clusters are represented in the chamber coordinate +// system (with respect to the anode wire - see AliTRDtrackerV1::FollowBackProlongation() +// on how this is set). The x and y position of the cluster and also their variances +// are known from clusterizer level (see AliTRDcluster::GetXloc(), AliTRDcluster::GetYloc(), +// AliTRDcluster::GetSX() and AliTRDcluster::GetSY()). +// If gaussian approximation is used to calculate y coordinate of the cluster the position +// is recalculated taking into account the track angle. The general formula to calculate the +// error of cluster position in the gaussian approximation taking into account diffusion and track +// inclination is given for TRD by: +// BEGIN_LATEX +// #sigma^{2}_{y} = #sigma^{2}_{PRF} + #frac{x#delta_{t}^{2}}{(1+tg(#alpha_{L}))^{2}} + #frac{x^{2}tg^{2}(#phi-#alpha_{L})tg^{2}(#alpha_{L})}{12} +// END_LATEX +// +// Since errors are calculated only in the y directions, radial errors (x direction) are mapped to y +// by projection i.e. +// BEGIN_LATEX +// #sigma_{x|y} = tg(#phi) #sigma_{x} +// END_LATEX +// and also by the lorentz angle correction +// +// Fit in the xz plane +// +// The "fit" is performed to estimate the radial position (x direction) where pad row cross happens. +// If no pad row crossing the z position is taken from geometry and radial position is taken from the xy +// fit (see below). +// +// There are two methods to estimate the radial position of the pad row cross: +// 1. leading cluster radial position : Here the lower part of the tracklet is considered and the last +// cluster registered (at radial x0) on this segment is chosen to mark the pad row crossing. The error +// of the z estimate is given by : +// BEGIN_LATEX +// #sigma_{z} = tg(#theta) #Delta x_{x_{0}}/12 +// END_LATEX +// The systematic errors for this estimation are generated by the following sources: +// - no charge sharing between pad rows is considered (sharp cross) +// - missing cluster at row cross (noise peak-up, under-threshold signal etc.). +// +// 2. charge fit over the crossing point : Here the full energy deposit along the tracklet is considered +// to estimate the position of the crossing by a fit in the qx plane. The errors in the q directions are +// parameterized as s_q = q^2. The systematic errors for this estimation are generated by the following sources: +// - no general model for the qx dependence +// - physical fluctuations of the charge deposit +// - gain calibration dependence +// +// Estimation of the radial position of the tracklet +// +// For pad row cross the radial position is taken from the xz fit (see above). Otherwise it is taken as the +// interpolation point of the tracklet i.e. the point where the error in y of the fit is minimum. The error +// in the y direction of the tracklet is (see AliTRDseedV1::GetCovAt()): +// BEGIN_LATEX +// #sigma_{y} = #sigma^{2}_{y_{0}} + 2xcov(y_{0}, dy/dx) + #sigma^{2}_{dy/dx} +// END_LATEX +// and thus the radial position is: +// BEGIN_LATEX +// x = - cov(y_{0}, dy/dx)/#sigma^{2}_{dy/dx} +// END_LATEX +// +// Estimation of tracklet position error +// +// The error in y direction is the error of the linear fit at the radial position of the tracklet while in the z +// direction is given by the cluster error or pad row cross error. In case of no pad row cross this is given by: +// BEGIN_LATEX +// #sigma_{y} = #sigma^{2}_{y_{0}} - 2cov^{2}(y_{0}, dy/dx)/#sigma^{2}_{dy/dx} + #sigma^{2}_{dy/dx} +// #sigma_{z} = Pad_{length}/12 +// END_LATEX +// For pad row cross the full error is calculated at the radial position of the crossing (see above) and the error +// in z by the width of the crossing region - being a matter of parameterization. +// BEGIN_LATEX +// #sigma_{z} = tg(#theta) #Delta x_{x_{0}}/12 +// END_LATEX +// In case of no tilt correction (default in the barrel tracking) the tilt is taken into account by the rotation of +// the covariance matrix. See AliTRDseedV1::GetCovAt() for details. +// +// Author +// A.Bercuci + + if(!IsCalibrated()) Calibrate(); const Int_t kClmin = 8; - const Float_t q0 = 100.; - const Float_t clSigma0 = 2.E-2; //[cm] - const Float_t clSlopeQ = -1.19E-2; //[1/cm] // get track direction Double_t y0 = fYref[0]; @@ -685,117 +1291,390 @@ Bool_t AliTRDseedV1::Fit(Bool_t tilt) Double_t dzdx = fZref[1]; Double_t yt, zt; - const Int_t kNtb = AliTRDtrackerV1::GetNTimeBins(); - AliTRDtrackerV1::AliTRDLeastSquare fitterY, fitterZ; + AliTRDtrackerV1::AliTRDLeastSquare fitterY; + AliTRDtrackerV1::AliTRDLeastSquare fitterZ; - // convertion factor from square to gauss distribution for sigma - Double_t convert = 1./TMath::Sqrt(12.); - // book cluster information - Double_t xc[knTimebins], yc[knTimebins], zc[knTimebins], sy[knTimebins], sz[knTimebins]; - Int_t zRow[knTimebins]; + Double_t qc[kNclusters], xc[kNclusters], yc[kNclusters], zc[kNclusters], sy[kNclusters]; - - fN = 0; - AliTRDcluster *c=0x0, **jc = &fClusters[0]; + Int_t n = 0; + AliTRDcluster *c=NULL, **jc = &fClusters[0]; for (Int_t ic=0; icIsInChamber()) continue; + Float_t w = 1.; if(c->GetNPads()>4) w = .5; if(c->GetNPads()>5) w = .2; - zRow[fN] = c->GetPadRow(); - xc[fN] = fX0 - c->GetX(); - yc[fN] = c->GetY(); - zc[fN] = c->GetZ(); - - // extrapolated y value for the track - yt = y0 - xc[fN]*dydx; - // extrapolated z value for the track - zt = z0 - xc[fN]*dzdx; - // tilt correction - if(tilt) yc[fN] -= fTilt*(zc[fN] - zt); - - // elaborate cluster error - Float_t qr = c->GetQ() - q0; - sy[fN] = qr < 0. ? clSigma0*TMath::Exp(clSlopeQ*qr) : clSigma0; - - fitterY.AddPoint(&xc[fN], yc[fN]-yt, sy[fN]); - - sz[fN] = fPadLength*convert; - fitterZ.AddPoint(&xc[fN], zc[fN], sz[fN]); - fN++; + + // cluster charge + qc[n] = TMath::Abs(c->GetQ()); + // pad row of leading + + // Radial cluster position + //Int_t jc = TMath::Max(fN-3, 0); + //xc[fN] = c->GetXloc(fT0, fVD, &qc[jc], &xc[jc]/*, z0 - c->GetX()*dzdx*/); + xc[n] = fX0 - c->GetX(); + + // extrapolated track to cluster position + yt = y0 - xc[n]*dydx; + zt = z0 - xc[n]*dzdx; + + // Recalculate cluster error based on tracking information + c->SetSigmaY2(fS2PRF, fDiffT, fExB, xc[n], zcorr?zt:-1., dydx); + sy[n] = TMath::Sqrt(c->GetSigmaY2()); + + yc[n] = fkReconstructor->GetRecoParam()->UseGAUS() ? + c->GetYloc(y0, sy[n], GetPadWidth()): c->GetY(); + zc[n] = c->GetZ(); + //optional tilt correction + if(tilt) yc[n] -= (GetTilt()*(zc[n] - zt)); + + fitterY.AddPoint(&xc[n], yc[n], sy[n]); + if(IsRowCross()) fitterZ.AddPoint(&xc[n], qc[n], 1.); + n++; } + // to few clusters - if (fN < kClmin) return kFALSE; + if (n < kClmin) return kFALSE; - // fit XY plane - fitterY.Eval(); - fYfit[0] = y0+fitterY.GetFunctionParameter(0); - fYfit[1] = dydx-fitterY.GetFunctionParameter(1); + // fit XY + if(!fitterY.Eval()){ + SetErrorMsg(kFitFailed); + return kFALSE; + } + fYfit[0] = fitterY.GetFunctionParameter(0); + fYfit[1] = -fitterY.GetFunctionParameter(1); + // store covariance + Double_t p[3]; + fitterY.GetCovarianceMatrix(p); + fCov[0] = p[1]; // variance of y0 + fCov[1] = p[2]; // covariance of y0, dydx + fCov[2] = p[0]; // variance of dydx + // the ref radial position is set at the minimum of + // the y variance of the tracklet + fX = -fCov[1]/fCov[2]; + Float_t xs=fX+.5*AliTRDgeometry::CamHght(); + if(xs < 0. || xs > AliTRDgeometry::CamHght()+AliTRDgeometry::CdrHght()){ + AliDebug(1, Form("Ref radial position ouside chamber x[%5.2f].", fX)); + SetErrorMsg(kFitOutside); + return kFALSE; + } - // check par row crossing - Int_t zN[2*AliTRDseed::knTimebins]; - Int_t nz = AliTRDtrackerV1::Freq(fN, zRow, zN, kFALSE); - // more than one pad row crossing - if(nz>2) return kFALSE; + // collect second row clusters + Int_t m(0); + if(IsRowCross()){ +/* // THE LEADING CLUSTER METHOD + Float_t xMin = fX0; + Int_t ic=n=kNclusters-1; jc = &fClusters[ic]; + AliTRDcluster *c0 =0x0, **kc = &fClusters[kNtb-1]; + for(; ic>kNtb; ic--, --jc, --kc){ + if((c0 = (*kc)) && c0->IsInChamber() && (xMin>c0->GetX())) xMin = c0->GetX(); + if(!(c = (*jc))) continue; + if(!c->IsInChamber()) continue; + zc[kNclusters-1] = c->GetZ(); + fX = fX0 - c->GetX(); + } + fZfit[0] = .5*(zc[0]+zc[kNclusters-1]); fZfit[1] = 0.; + // Error parameterization + fS2Z = fdX*fZref[1]; + fS2Z *= fS2Z; fS2Z *= 0.2887; // 1/sqrt(12)*/ + + // THE FIT X-Q PLANE METHOD + Int_t ic=n=kNclusters-1; jc = &fClusters[ic]; + for(; ic>kNtb; ic--, --jc){ + if(!(c = (*jc))) continue; + if(!c->IsInChamber()) continue; + qc[n] = TMath::Abs(c->GetQ()); + xc[n] = fX0 - c->GetX(); + zc[n] = c->GetZ(); + fitterZ.AddPoint(&xc[n], -qc[n], 1.); + n--;m++; + } + } + // fit XZ + if(m && IsRowCross()){ + fitterZ.Eval(); + if(fitterZ.GetFunctionParameter(1)!=0.){ + fX = -fitterZ.GetFunctionParameter(0)/fitterZ.GetFunctionParameter(1); + fX=(fX<0.)?0.:fX; + Float_t dl = .5*AliTRDgeometry::CamHght()+AliTRDgeometry::CdrHght(); + fX=(fX> dl)?dl:fX; + fX-=.055; // TODO to be understood + } + fZfit[0] = .5*(zc[0]+zc[kNclusters-1]); fZfit[1] = 0.; + // temporary external error parameterization + fS2Z = 0.05+0.4*TMath::Abs(fZref[1]); fS2Z *= fS2Z; + // TODO correct formula + //fS2Z = sigma_x*TMath::Abs(fZref[1]); + } else { + if(IsRowCross() && !m){ + AliDebug(1, "Tracklet crossed row but no clusters found in neighbor row."); + } + fZfit[0] = zc[0]; fZfit[1] = 0.; + fS2Z = GetPadLength()*GetPadLength()/12.; + } + fS2Y = fCov[0] +2.*fX*fCov[1] + fX*fX*fCov[2]; + return kTRUE; +} + + +/* +//_____________________________________________________________________________ +void AliTRDseedV1::FitMI() +{ +// +// Fit the seed. +// Marian Ivanov's version +// +// linear fit on the y direction with respect to the reference direction. +// The residuals for each x (x = xc - x0) are deduced from: +// dy = y - yt (1) +// the tilting correction is written : +// y = yc + h*(zc-zt) (2) +// yt = y0+dy/dx*x (3) +// zt = z0+dz/dx*x (4) +// from (1),(2),(3) and (4) +// dy = yc - y0 - (dy/dx + h*dz/dx)*x + h*(zc-z0) +// the last term introduces the correction on y direction due to tilting pads. There are 2 ways to account for this: +// 1. use tilting correction for calculating the y +// 2. neglect tilting correction here and account for it in the error parametrization of the tracklet. + const Float_t kRatio = 0.8; + const Int_t kClmin = 5; + const Float_t kmaxtan = 2; + + if (TMath::Abs(fYref[1]) > kmaxtan){ + //printf("Exit: Abs(fYref[1]) = %3.3f, kmaxtan = %3.3f\n", TMath::Abs(fYref[1]), kmaxtan); + return; // Track inclined too much + } + + Float_t sigmaexp = 0.05 + TMath::Abs(fYref[1] * 0.25); // Expected r.m.s in y direction + Float_t ycrosscor = GetPadLength() * GetTilt() * 0.5; // Y correction for crossing + Int_t fNChange = 0; + + Double_t sumw; + Double_t sumwx; + Double_t sumwx2; + Double_t sumwy; + Double_t sumwxy; + Double_t sumwz; + Double_t sumwxz; + + // Buffering: Leave it constant fot Performance issues + Int_t zints[kNtb]; // Histograming of the z coordinate + // Get 1 and second max probable coodinates in z + Int_t zouts[2*kNtb]; + Float_t allowedz[kNtb]; // Allowed z for given time bin + Float_t yres[kNtb]; // Residuals from reference + //Float_t anglecor = GetTilt() * fZref[1]; // Correction to the angle + + Float_t pos[3*kNtb]; memset(pos, 0, 3*kNtb*sizeof(Float_t)); + Float_t *fX = &pos[0], *fY = &pos[kNtb], *fZ = &pos[2*kNtb]; + + Int_t fN = 0; AliTRDcluster *c = 0x0; + fN2 = 0; + for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) { + yres[i] = 10000.0; + if (!(c = fClusters[i])) continue; + if(!c->IsInChamber()) continue; + // Residual y + //yres[i] = fY[i] - fYref[0] - (fYref[1] + anglecor) * fX[i] + GetTilt()*(fZ[i] - fZref[0]); + fX[i] = fX0 - c->GetX(); + fY[i] = c->GetY(); + fZ[i] = c->GetZ(); + yres[i] = fY[i] - GetTilt()*(fZ[i] - (fZref[0] - fX[i]*fZref[1])); + zints[fN] = Int_t(fZ[i]); + fN++; + } - // determine z offset of the fit - Float_t zslope = 0.; - Int_t nchanges = 0, nCross = 0; - if(nz==2){ // tracklet is crossing pad row + if (fN < kClmin){ + //printf("Exit fN < kClmin: fN = %d\n", fN); + return; + } + Int_t nz = AliTRDtrackerV1::Freq(fN, zints, zouts, kFALSE); + Float_t fZProb = zouts[0]; + if (nz <= 1) zouts[3] = 0; + if (zouts[1] + zouts[3] < kClmin) { + //printf("Exit zouts[1] = %d, zouts[3] = %d\n",zouts[1],zouts[3]); + return; + } + + // Z distance bigger than pad - length + if (TMath::Abs(zouts[0]-zouts[2]) > 12.0) zouts[3] = 0; + + Int_t breaktime = -1; + Bool_t mbefore = kFALSE; + Int_t cumul[kNtb][2]; + Int_t counts[2] = { 0, 0 }; + + if (zouts[3] >= 3) { + + // // Find the break time allowing one chage on pad-rows // with maximal number of accepted clusters - Int_t padRef = zRow[0]; - for (Int_t ic=1; ic maxcount) { + maxcount = after + before; + breaktime = i; + mbefore = kFALSE; + } + after = cumul[AliTRDtrackerV1::GetNTimeBins()-1][1] - cumul[i][1]; + before = cumul[i][0]; + if (after + before > maxcount) { + maxcount = after + before; + breaktime = i; + mbefore = kTRUE; } - - // evaluate parameters of the crossing point - Float_t sx = (xc[ic-1] - xc[ic])*convert; - fCross[0] = .5 * (xc[ic-1] + xc[ic]); - fCross[2] = .5 * (zc[ic-1] + zc[ic]); - fCross[3] = TMath::Max(dzdx * sx, .01); - zslope = zc[ic-1] > zc[ic] ? 1. : -1.; - padRef = zRow[ic]; - nCross = ic; - nchanges++; } + breaktime -= 1; } - // condition on nCross and reset nchanges TODO - - if(nchanges==1){ - if(dzdx * zslope < 0.){ - AliInfo("tracklet direction does not correspond to the track direction. TODO."); + for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { + if (i > breaktime) allowedz[i] = mbefore ? zouts[2] : zouts[0]; + if (i <= breaktime) allowedz[i] = (!mbefore) ? zouts[2] : zouts[0]; + } + + if (((allowedz[0] > allowedz[AliTRDtrackerV1::GetNTimeBins()]) && (fZref[1] < 0)) || + ((allowedz[0] < allowedz[AliTRDtrackerV1::GetNTimeBins()]) && (fZref[1] > 0))) { + // + // Tracklet z-direction not in correspondance with track z direction + // + fNChange = 0; + for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { + allowedz[i] = zouts[0]; // Only longest taken + } + } + + if (fNChange > 0) { + // + // Cross pad -row tracklet - take the step change into account + // + for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { + if (!fClusters[i]) continue; + if(!fClusters[i]->IsInChamber()) continue; + if (TMath::Abs(fZ[i] - allowedz[i]) > 2) continue; + // Residual y + //yres[i] = fY[i] - fYref[0] - (fYref[1] + anglecor) * fX[i] + GetTilt()*(fZ[i] - fZref[0]); + yres[i] = fY[i] - GetTilt()*(fZ[i] - (fZref[0] - fX[i]*fZref[1])); +// if (TMath::Abs(fZ[i] - fZProb) > 2) { +// if (fZ[i] > fZProb) yres[i] += GetTilt() * GetPadLength(); +// if (fZ[i] < fZProb) yres[i] -= GetTilt() * GetPadLength(); + } } - SetBit(kRowCross, kTRUE); // mark pad row crossing - fitterZ.AddPoint(&fCross[0], fCross[2], fCross[3]); - fitterZ.Eval(); - //zc[nc] = fitterZ.GetFunctionParameter(0); - fCross[1] = fYfit[0] - fCross[0] * fYfit[1]; - fCross[0] = fX0 - fCross[0]; - } else if(nchanges > 1){ // debug - AliError("N pad row crossing > 1."); - return kFALSE; + } + + Double_t yres2[kNtb]; + Double_t mean; + Double_t sigma; + for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { + if (!fClusters[i]) continue; + if(!fClusters[i]->IsInChamber()) continue; + if (TMath::Abs(fZ[i] - allowedz[i]) > 2) continue; + yres2[fN2] = yres[i]; + fN2++; + } + if (fN2 < kClmin) { + //printf("Exit fN2 < kClmin: fN2 = %d\n", fN2); + fN2 = 0; + return; + } + AliMathBase::EvaluateUni(fN2,yres2,mean,sigma, Int_t(fN2*kRatio-2.)); + if (sigma < sigmaexp * 0.8) { + sigma = sigmaexp; + } + //Float_t fSigmaY = sigma; + + // Reset sums + sumw = 0; + sumwx = 0; + sumwx2 = 0; + sumwy = 0; + sumwxy = 0; + sumwz = 0; + sumwxz = 0; + + fN2 = 0; + Float_t fMeanz = 0; + Float_t fMPads = 0; + fUsable = 0; + for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { + if (!fClusters[i]) continue; + if (!fClusters[i]->IsInChamber()) continue; + if (TMath::Abs(fZ[i] - allowedz[i]) > 2){fClusters[i] = 0x0; continue;} + if (TMath::Abs(yres[i] - mean) > 4.0 * sigma){fClusters[i] = 0x0; continue;} + SETBIT(fUsable,i); + fN2++; + fMPads += fClusters[i]->GetNPads(); + Float_t weight = 1.0; + if (fClusters[i]->GetNPads() > 4) weight = 0.5; + if (fClusters[i]->GetNPads() > 5) weight = 0.2; + + + Double_t x = fX[i]; + //printf("x = %7.3f dy = %7.3f fit %7.3f\n", x, yres[i], fY[i]-yres[i]); + + sumw += weight; + sumwx += x * weight; + sumwx2 += x*x * weight; + sumwy += weight * yres[i]; + sumwxy += weight * (yres[i]) * x; + sumwz += weight * fZ[i]; + sumwxz += weight * fZ[i] * x; + } - UpdateUsed(); + if (fN2 < kClmin){ + //printf("Exit fN2 < kClmin(2): fN2 = %d\n",fN2); + fN2 = 0; + return; + } + fMeanz = sumwz / sumw; + Float_t correction = 0; + if (fNChange > 0) { + // Tracklet on boundary + if (fMeanz < fZProb) correction = ycrosscor; + if (fMeanz > fZProb) correction = -ycrosscor; + } - return kTRUE; -} + Double_t det = sumw * sumwx2 - sumwx * sumwx; + fYfit[0] = (sumwx2 * sumwy - sumwx * sumwxy) / det; + fYfit[1] = (sumw * sumwxy - sumwx * sumwy) / det; + + fS2Y = 0; + for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { + if (!TESTBIT(fUsable,i)) continue; + Float_t delta = yres[i] - fYfit[0] - fYfit[1] * fX[i]; + fS2Y += delta*delta; + } + fS2Y = TMath::Sqrt(fS2Y / Float_t(fN2-2)); + // TEMPORARY UNTIL covariance properly calculated + fS2Y = TMath::Max(fS2Y, Float_t(.1)); + + fZfit[0] = (sumwx2 * sumwz - sumwx * sumwxz) / det; + fZfit[1] = (sumw * sumwxz - sumwx * sumwz) / det; +// fYfitR[0] += fYref[0] + correction; +// fYfitR[1] += fYref[1]; +// fYfit[0] = fYfitR[0]; + fYfit[1] = -fYfit[1]; + UpdateUsed(); +}*/ //___________________________________________________________________ void AliTRDseedV1::Print(Option_t *o) const @@ -804,30 +1683,27 @@ void AliTRDseedV1::Print(Option_t *o) const // Printing the seedstatus // - AliInfo(Form("Det[%3d] Tilt[%+6.2f] Pad[%5.2f]", fDet, fTilt, fPadLength)); - AliInfo(Form("Nattach[%2d] Nfit[%2d] Nuse[%2d] pads[%f]", fN, fN2, fNUsed, fMPads)); - AliInfo(Form("x[%7.2f] y[%7.2f] z[%7.2f] dydx[%5.2f] dzdx[%5.2f]", fX0, fYfit[0], fZfit[0], fYfit[1], fZfit[1])); - AliInfo(Form("Ref y[%7.2f] z[%7.2f] dydx[%5.2f] dzdx[%5.2f]", fYref[0], fZref[0], fYref[1], fZref[1])) + AliInfo(Form("Det[%3d] X0[%7.2f] Pad{L[%5.2f] W[%5.2f] Tilt[%+6.2f]}", fDet, fX0, GetPadLength(), GetPadWidth(), GetTilt())); + AliInfo(Form("N[%2d] Nused[%2d] Nshared[%2d] [%d]", GetN(), GetNUsed(), GetNShared(), fN)); + AliInfo(Form("FLAGS : RC[%c] Kink[%c] SA[%c]", IsRowCross()?'y':'n', IsKink()?'y':'n', IsStandAlone()?'y':'n')); + AliInfo(Form("CALIB PARAMS : T0[%5.2f] Vd[%5.2f] s2PRF[%5.2f] ExB[%5.2f] Dl[%5.2f] Dt[%5.2f]", fT0, fVD, fS2PRF, fExB, fDiffL, fDiffT)); + Double_t cov[3], x=GetX(); + GetCovAt(x, cov); + AliInfo(" | x[cm] | y[cm] | z[cm] | dydx | dzdx |"); + AliInfo(Form("Fit | %7.2f | %7.2f+-%7.2f | %7.2f+-%7.2f| %5.2f | ----- |", x, GetY(), TMath::Sqrt(cov[0]), GetZ(), TMath::Sqrt(cov[2]), fYfit[1])); + AliInfo(Form("Ref | %7.2f | %7.2f+-%7.2f | %7.2f+-%7.2f| %5.2f | %5.2f |", x, fYref[0]-fX*fYref[1], TMath::Sqrt(fRefCov[0]), fZref[0]-fX*fYref[1], TMath::Sqrt(fRefCov[2]), fYref[1], fZref[1])) + AliInfo(Form("P / Pt [GeV/c] = %f / %f", GetMomentum(), fPt)); + AliInfo(Form("dEdx [a.u.] = %f / %f / %f / %f / %f/ %f / %f / %f", fdEdx[0], fdEdx[1], fdEdx[2], fdEdx[3], fdEdx[4], fdEdx[5], fdEdx[6], fdEdx[7])); + AliInfo(Form("PID = %5.3f / %5.3f / %5.3f / %5.3f / %5.3f", fProb[0], fProb[1], fProb[2], fProb[3], fProb[4])); if(strcmp(o, "a")!=0) return; AliTRDcluster* const* jc = &fClusters[0]; - for(int ic=0; icPrint(o); } - -/* printf(" fSigmaY =%f\n", fSigmaY); - printf(" fSigmaY2=%f\n", fSigmaY2); - printf(" fMeanz =%f\n", fMeanz); - printf(" fZProb =%f\n", fZProb); - printf(" fLabels[0]=%d fLabels[1]=%d\n", fLabels[0], fLabels[1]);*/ - -/* printf(" fC =%f\n", fC); - printf(" fCC =%f\n",fCC); - printf(" fChi2 =%f\n", fChi2); - printf(" fChi2Z =%f\n", fChi2Z);*/ } @@ -842,51 +1718,47 @@ Bool_t AliTRDseedV1::IsEqual(const TObject *o) const if(!inTracklet) return kFALSE; for (Int_t i = 0; i < 2; i++){ - if ( fYref[i] != inTracklet->GetYref(i) ) return kFALSE; - if ( fZref[i] != inTracklet->GetZref(i) ) return kFALSE; + if ( fYref[i] != inTracklet->fYref[i] ) return kFALSE; + if ( fZref[i] != inTracklet->fZref[i] ) return kFALSE; } - if ( fSigmaY != inTracklet->GetSigmaY() ) return kFALSE; - if ( fSigmaY2 != inTracklet->GetSigmaY2() ) return kFALSE; - if ( fTilt != inTracklet->GetTilt() ) return kFALSE; - if ( fPadLength != inTracklet->GetPadLength() ) return kFALSE; + if ( fS2Y != inTracklet->fS2Y ) return kFALSE; + if ( GetTilt() != inTracklet->GetTilt() ) return kFALSE; + if ( GetPadLength() != inTracklet->GetPadLength() ) return kFALSE; - for (Int_t i = 0; i < knTimebins; i++){ - if ( fX[i] != inTracklet->GetX(i) ) return kFALSE; - if ( fY[i] != inTracklet->GetY(i) ) return kFALSE; - if ( fZ[i] != inTracklet->GetZ(i) ) return kFALSE; - if ( fIndexes[i] != inTracklet->GetIndexes(i) ) return kFALSE; - if ( fUsable[i] != inTracklet->IsUsable(i) ) return kFALSE; + for (Int_t i = 0; i < kNclusters; i++){ +// if ( fX[i] != inTracklet->GetX(i) ) return kFALSE; +// if ( fY[i] != inTracklet->GetY(i) ) return kFALSE; +// if ( fZ[i] != inTracklet->GetZ(i) ) return kFALSE; + if ( fIndexes[i] != inTracklet->fIndexes[i] ) return kFALSE; } +// if ( fUsable != inTracklet->fUsable ) return kFALSE; for (Int_t i=0; i < 2; i++){ - if ( fYfit[i] != inTracklet->GetYfit(i) ) return kFALSE; - if ( fZfit[i] != inTracklet->GetZfit(i) ) return kFALSE; - if ( fYfitR[i] != inTracklet->GetYfitR(i) ) return kFALSE; - if ( fZfitR[i] != inTracklet->GetZfitR(i) ) return kFALSE; - if ( fLabels[i] != inTracklet->GetLabels(i) ) return kFALSE; + if ( fYfit[i] != inTracklet->fYfit[i] ) return kFALSE; + if ( fZfit[i] != inTracklet->fZfit[i] ) return kFALSE; + if ( fLabels[i] != inTracklet->fLabels[i] ) return kFALSE; } - if ( fMeanz != inTracklet->GetMeanz() ) return kFALSE; - if ( fZProb != inTracklet->GetZProb() ) return kFALSE; - if ( fN2 != inTracklet->GetN2() ) return kFALSE; - if ( fNUsed != inTracklet->GetNUsed() ) return kFALSE; - if ( fFreq != inTracklet->GetFreq() ) return kFALSE; - if ( fNChange != inTracklet->GetNChange() ) return kFALSE; - if ( fNChange != inTracklet->GetNChange() ) return kFALSE; +/* if ( fMeanz != inTracklet->GetMeanz() ) return kFALSE; + if ( fZProb != inTracklet->GetZProb() ) return kFALSE;*/ + if ( fN != inTracklet->fN ) return kFALSE; + //if ( fNUsed != inTracklet->fNUsed ) return kFALSE; + //if ( fFreq != inTracklet->GetFreq() ) return kFALSE; + //if ( fNChange != inTracklet->GetNChange() ) return kFALSE; - if ( fC != inTracklet->GetC() ) return kFALSE; - if ( fCC != inTracklet->GetCC() ) return kFALSE; - if ( fChi2 != inTracklet->GetChi2() ) return kFALSE; + if ( fC != inTracklet->fC ) return kFALSE; + //if ( fCC != inTracklet->GetCC() ) return kFALSE; + if ( fChi2 != inTracklet->fChi2 ) return kFALSE; // if ( fChi2Z != inTracklet->GetChi2Z() ) return kFALSE; - if ( fDet != inTracklet->GetDetector() ) return kFALSE; - if ( fMom != inTracklet->GetMomentum() ) return kFALSE; - if ( fdX != inTracklet->GetdX() ) return kFALSE; + if ( fDet != inTracklet->fDet ) return kFALSE; + if ( fPt != inTracklet->fPt ) return kFALSE; + if ( fdX != inTracklet->fdX ) return kFALSE; - for (Int_t iCluster = 0; iCluster < knTimebins; iCluster++){ + for (Int_t iCluster = 0; iCluster < kNclusters; iCluster++){ AliTRDcluster *curCluster = fClusters[iCluster]; - AliTRDcluster *inCluster = inTracklet->GetClusters(iCluster); + AliTRDcluster *inCluster = inTracklet->fClusters[iCluster]; if (curCluster && inCluster){ if (! curCluster->IsEqual(inCluster) ) { curCluster->Print(); @@ -901,3 +1773,4 @@ Bool_t AliTRDseedV1::IsEqual(const TObject *o) const } return kTRUE; } +