X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=TRD%2FAliTRDseedV1.cxx;h=b718f5e860a5fe5a42b1e42cc2c855fb2912942a;hb=f4b02da32158fb94bcddacc1d89b6db5e983f0ce;hp=e9e8761d2f2d701b8101b2ca7730c6905b91b0d5;hpb=525f399b93fab4bd7fff11f8b1ec89d0fc6f9016;p=u%2Fmrichter%2FAliRoot.git diff --git a/TRD/AliTRDseedV1.cxx b/TRD/AliTRDseedV1.cxx index e9e8761d2f2..b718f5e860a 100644 --- a/TRD/AliTRDseedV1.cxx +++ b/TRD/AliTRDseedV1.cxx @@ -13,7 +13,7 @@ * provided "as is" without express or implied warranty. * **************************************************************************/ -/* $Id$ */ +/* $Id: AliTRDseedV1.cxx 60233 2013-01-10 09:04:08Z abercuci $ */ //////////////////////////////////////////////////////////////////////////// //// @@ -36,16 +36,18 @@ //////////////////////////////////////////////////////////////////////////// #include "TMath.h" -#include "TLinearFitter.h" -#include "TClonesArray.h" // tmp -#include +#include "TGeoManager.h" +#include "TTreeStream.h" +#include "TGraphErrors.h" #include "AliLog.h" #include "AliMathBase.h" +#include "AliRieman.h" #include "AliCDBManager.h" -#include "AliTracker.h" +#include "AliTRDReconstructor.h" #include "AliTRDpadPlane.h" +#include "AliTRDtransform.h" #include "AliTRDcluster.h" #include "AliTRDseedV1.h" #include "AliTRDtrackV1.h" @@ -55,15 +57,16 @@ #include "AliTRDtrackerV1.h" #include "AliTRDrecoParam.h" #include "AliTRDCommonParam.h" +#include "AliTRDtrackletOflHelper.h" +#include "Cal/AliTRDCalTrkAttach.h" #include "Cal/AliTRDCalPID.h" #include "Cal/AliTRDCalROC.h" #include "Cal/AliTRDCalDet.h" -ClassImp(AliTRDseedV1) +class AliTracker; -TLinearFitter *AliTRDseedV1::fgFitterY = NULL; -TLinearFitter *AliTRDseedV1::fgFitterZ = NULL; +ClassImp(AliTRDseedV1) //____________________________________________________________________ AliTRDseedV1::AliTRDseedV1(Int_t det) @@ -88,7 +91,6 @@ AliTRDseedV1::AliTRDseedV1(Int_t det) ,fZ(0.) ,fS2Y(0.) ,fS2Z(0.) - ,fC(0.) ,fChi2(0.) { // @@ -96,16 +98,18 @@ AliTRDseedV1::AliTRDseedV1(Int_t det) // memset(fIndexes,0xFF,kNclusters*sizeof(fIndexes[0])); memset(fClusters, 0, kNclusters*sizeof(AliTRDcluster*)); - memset(fPad, 0, 3*sizeof(Float_t)); + memset(fPad, 0, 4*sizeof(Float_t)); fYref[0] = 0.; fYref[1] = 0.; fZref[0] = 0.; fZref[1] = 0.; fYfit[0] = 0.; fYfit[1] = 0.; fZfit[0] = 0.; fZfit[1] = 0.; - memset(fdEdx, 0, kNslices*sizeof(Float_t)); + memset(fdEdx, 0, kNdEdxSlices*sizeof(Float_t)); for(int ispec=0; ispecGetZat(fX0); + fZref[1] = rieman->GetDZat(fX0); + fYref[0] = rieman->GetYat(fX0); + fYref[1] = rieman->GetDYat(fX0); + if(fkReconstructor && fkReconstructor->IsHLT()){ + fRefCov[0] = 1; + fRefCov[2] = 10; + }else{ + fRefCov[0] = rieman->GetErrY(fX0); + fRefCov[2] = rieman->GetErrZ(fX0); + } + fC[0] = rieman->GetC(); + fChi2 = rieman->GetChi2(); +} + + +//____________________________________________________________ +Bool_t AliTRDseedV1::Init(const AliTRDtrackV1 *track) { // Initialize this tracklet using the track information // @@ -276,14 +301,15 @@ void AliTRDseedV1::Reset(Option_t *opt) fPt=0.; fdX=0.;fX0=0.; fX=0.; fY=0.; fZ=0.; fS2Y=0.; fS2Z=0.; - fC=0.; fChi2 = 0.; + fC[0]=0.; fC[1]=0.; + fChi2 = 0.; - memset(fPad, 0, 3*sizeof(Float_t)); + memset(fPad, 0, 4*sizeof(Float_t)); fYref[0] = 0.; fYref[1] = 0.; fZref[0] = 0.; fZref[1] = 0.; fYfit[0] = 0.; fYfit[1] = 0.; fZfit[0] = 0.; fZfit[1] = 0.; - memset(fdEdx, 0, kNslices*sizeof(Float_t)); + memset(fdEdx, 0, kNdEdxSlices*sizeof(Float_t)); for(int ispec=0; ispecGetX()); - + // Filter clusters for dE/dx calculation - + // 1.consider calibration effects for slice determination Int_t slice; - if(dxIsInChamber() + if(dxIsInChamber() slice = Int_t(dx * nslices / kDriftLength); } else slice = c->GetX() < fX0 ? nslices-1 : 0; // 2. take sharing into account Float_t w = /*c->IsShared() ? .5 :*/ 1.; - + // 3. take into account large clusters TODO //w *= c->GetNPads() > 3 ? .8 : 1.; - + //CHECK !!! fdEdx[slice] += w * GetdQdl(ic); //fdQdl[ic]; - nclusters[slice]++; } // End of loop over clusters - - //if(fkReconstructor->GetPIDMethod() == AliTRDReconstructor::kLQPID){ - if(nslices == AliTRDpidUtil::kLQslices){ - // calculate mean charge per slice (only LQ PID) - for(int is=0; is 1) && (out[3] > 1)) fLabels[1] = out[2]; } +//____________________________________________________________ +Float_t AliTRDseedV1::GetAnodeWireOffset(Float_t zt) +{ +// Find position inside the amplification cell for reading drift velocity map + + Float_t d = fPad[3] - zt; + if(d<0.){ + AliError(Form("Fail AnodeWireOffset calculation z0[%+7.2f] zt[%+7.2f] d[%+7.2f].", fPad[3], zt, d)); + return 0.125; + } + d -= ((Int_t)(2 * d)) / 2.0; + if(d > 0.25) d = 0.5 - d; + return d; +} + + +//____________________________________________________________________ +Float_t AliTRDseedV1::GetCharge(Bool_t useOutliers) const +{ +// Computes total charge attached to tracklet. If "useOutliers" is set clusters +// which are not in chamber are also used (default false) + + AliTRDcluster *c(NULL); Float_t qt(0.); + for(int ic=0; icIsInChamber() && !useOutliers) continue; + qt += TMath::Abs(c->GetQ()); + } + return qt; +} + +//____________________________________________________________________ +Int_t AliTRDseedV1::GetChargeGaps(Float_t sz[kNtb], Float_t pos[kNtb], Int_t isz[kNtb]) const +{ +// Find number, size and position of charge gaps (consecutive missing time bins). +// Returns the number of gaps and fills their size in input array "sz" and position in array "pos" + + Bool_t gap(kFALSE); + Int_t n(0); + Int_t ipos[kNtb]; memset(isz, 0, kNtb*sizeof(Int_t));memset(ipos, 0, kNtb*sizeof(Int_t)); + for(int ic(0); icGetSamplingFrequency(); + fake.SetPadTime(ipos[igap]); + pos[igap] = fake.GetXloc(fT0, fVD); + if(isz[igap]>1){ + fake.SetPadTime(ipos[igap]-isz[igap]+1); + pos[igap] += fake.GetXloc(fT0, fVD); + pos[igap] /= 2.; + } + } + return n; +} + + +//____________________________________________________________________ +Double_t AliTRDseedV1::EstimatedCrossPoint(AliTRDpadPlane *pp) +{ +// Algorithm to estimate cross point in the x-z plane for pad row cross tracklets or the z coordinate of pad row without pad row cross in the local chamber coordinates. +// Returns variance of the radial offset from anode wire in case of raw cross or 0 otherwise. + + Int_t row[] = {-1, -1}; + Double_t zoff(0.5 * (pp->GetRow0() + pp->GetRowEnd())), sx(0.), mean(0.5*pp->GetNrows()-0.5); + AliTRDcluster *c(NULL); + fS2Y = 0.; + + if(!IsRowCross()){ + for(int ic=0; icIsInChamber()) continue; + row[0] = c->GetPadRow(); + fZfit[0] = Int_t(mean-row[0])*pp->GetLengthIPad() + + 0.5*(mean-row[0]>0.?1.:-1.)*(row[0]>0&&row[0]GetNrows()-1?pp->GetLengthIPad():pp->GetLengthOPad()); + break; + } + } else { + Float_t tbm[2] = {0.}; // mean value of time bin in rows + Int_t tb[kNtb]={0}, //array of time bins from first row + nc[2] = {0}, // no. of clusters in rows + mc(0); // no. of common clusters + Bool_t w[2] = {kFALSE, kFALSE}; // acceptance flag for rows + // Find radial range for first row + for(int ic(0); icIsInChamber()) continue; + if(row[0]<0) row[0] = c->GetPadRow(); + tb[nc[0]++] = ic; tbm[0] += ic; + } + if(nc[0]>2){ + tbm[0] /= nc[0]; + w[0] = kTRUE; + } + // Find radial range for second row + for(int ic(kNtb), jc(0); icIsInChamber()) continue; + if(row[1]<0) row[1] = c->GetPadRow(); + tbm[1] += jc; nc[1]++; + for(Int_t kc(0); kc2){ + tbm[1] /= nc[1]; + w[1] = kTRUE; + } + //printf("0 : %f[%2d] 1 : %f[%2d] mc[%d]\n", tbm[0], nc[0], tbm[1], nc[1], mc); + if(!w[0] && !w[1]){ + AliError("Too few clusters to estimate tracklet."); + return -1; + } + if(!w[0] || !w[1]){ + SetBit(kRowCross, kFALSE); // reset RC bit + if(w[1]) row[0] = row[1]; + fZfit[0] = Int_t(mean-row[0])*pp->GetLengthIPad() + + 0.5*(mean-row[0]>0.?1.:-1.)*(row[0]>0&&row[0]GetNrows()-1?pp->GetLengthIPad():pp->GetLengthOPad()); + }else{ // find the best matching timebin + fZfit[0] = Int_t(mean-0.5*(row[0]+row[1]))*pp->GetLengthIPad(); + Int_t itb(0), dtb(0); + if(!mc) { // no common range + itb = Int_t(0.5*(tbm[0] + tbm[1])); + dtb = Int_t(0.5*TMath::Abs(tbm[0] - tbm[1])); // simple parameterization of the cluster gap + } else { + Double_t rmax(100.); Int_t itbStart(-1), itbStop(0); + // compute distance from + for(Int_t jc(0); jcGetSamplingFrequency():10.); + fS2Y = ((itb-0.5)/freq - fT0 - 0.189)*fVD; // xOff + sx = dtb*0.288675134594812921/freq; sx *= sx; sx += 1.56e-2; sx *= fVD*fVD; + } + } + + // estimate dzdx + Float_t dx(fX0-fS2Y); + fZfit[1] = (fZfit[0]+zoff)/dx; + + // correct dzdx for the bias + UnbiasDZDX(IsRowCross()); + if(IsRowCross()){ + // correct x_cross/sigma(x_cross) for the bias in dzdx + const AliTRDrecoParam* const recoParam = fkReconstructor->GetRecoParam(); + if(recoParam){ + fS2Y += recoParam->GetCorrDZDXxcross()*TMath::Abs(fZfit[1]); + sx += recoParam->GetCorrDZDXxcross()*recoParam->GetCorrDZDXxcross()*GetS2DZDX(fZfit[1]); + } + // correct sigma(x_cross) for the width of the crossing area + sx += GetS2XcrossDZDX(TMath::Abs(fZfit[1])); + + // estimate z and error @ anode wire + fZfit[0] += fZfit[1]*fS2Y; + fS2Z = fZfit[1]*fZfit[1]*sx+fS2Y*fS2Y*GetS2DZDX(fZfit[1]); + } + return sx; +} + +//____________________________________________________________________ +void AliTRDseedV1::UnbiasDZDX(Bool_t rc) +{ + // correct dzdx for the bias in z according to MC + const AliTRDrecoParam* const recoParam = fkReconstructor->GetRecoParam(); + if(!recoParam) return; + fZfit[1] *= recoParam->GetCorrDZDX(rc); + if(rc) fZfit[1] += recoParam->GetCorrDZDXbiasRC(fZfit[1]<0); +} + +//____________________________________________________________________ +Double_t AliTRDseedV1::UnbiasY(Bool_t rc, Bool_t sgn, Int_t chg) +{ +// correct y coordinate for tail cancellation. This should be fixed by considering TC as a function of q/pt. +// rc : TRUE if tracklet crosses rows +// sgn : TRUE if track has same sign with magnetic field +// chg : -1 for negative particles, +1 for the rest + + const AliTRDrecoParam* const recoParam = fkReconstructor->GetRecoParam(); + if(!recoParam) return 0.; + Double_t par[2]={0.}; + if(rc) recoParam->GetYcorrTailCancel(2, par); + else{ + if(sgn && 1./fPt > 1.5) recoParam->GetYcorrTailCancel(1, par); + else if(!sgn) recoParam->GetYcorrTailCancel(0, par); + } + return par[0]+par[1]*chg/fPt; +} + + +//____________________________________________________________________ +Float_t AliTRDseedV1::GetQperTB(Int_t tb) const +{ + // + // Charge of the clusters at timebin + // + Float_t q = 0; + if(fClusters[tb] /*&& fClusters[tb]->IsInChamber()*/) + q += TMath::Abs(fClusters[tb]->GetQ()); + if(fClusters[tb+kNtb] /*&& fClusters[tb+kNtb]->IsInChamber()*/) + q += TMath::Abs(fClusters[tb+kNtb]->GetQ()); + return q/TMath::Sqrt(1. + fYref[1]*fYref[1] + fZref[1]*fZref[1]); +} + +//____________________________________________________________________ +Float_t AliTRDseedV1::GetdQdl() const +{ +// Calculate total charge / tracklet length for 1D PID +// + Float_t Q = GetCharge(kTRUE); + return Q/TMath::Sqrt(1. + fYref[1]*fYref[1] + fZref[1]*fZref[1]); +} //____________________________________________________________________ Float_t AliTRDseedV1::GetdQdl(Int_t ic, Float_t *dl) const @@ -487,7 +733,8 @@ Float_t AliTRDseedV1::GetdQdl(Int_t ic, Float_t *dl) const if(fClusters[ic] && fClusters[ic]->IsInChamber()){ hasClusterInChamber = kTRUE; dq += TMath::Abs(fClusters[ic]->GetQ()); - }else if(fClusters[ic+kNtb] && fClusters[ic+kNtb]->IsInChamber()){ + } + if(fClusters[ic+kNtb] && fClusters[ic+kNtb]->IsInChamber()){ hasClusterInChamber = kTRUE; dq += TMath::Abs(fClusters[ic+kNtb]->GetQ()); } @@ -535,11 +782,11 @@ Float_t AliTRDseedV1::GetMomentum(Float_t *err) const // Double_t p = fPt*TMath::Sqrt(1.+fZref[1]*fZref[1]); - Double_t p2 = p*p; - Double_t tgl2 = fZref[1]*fZref[1]; - Double_t pt2 = fPt*fPt; if(err){ - Double_t s2 = + Double_t p2 = p*p; + Double_t tgl2 = fZref[1]*fZref[1]; + Double_t pt2 = fPt*fPt; + Double_t s2 = p2*tgl2*pt2*pt2*fRefCov[4] -2.*p2*fZref[1]*fPt*pt2*fRefCov[5] +p2*pt2*fRefCov[6]; @@ -549,6 +796,32 @@ Float_t AliTRDseedV1::GetMomentum(Float_t *err) const } +//____________________________________________________________________ +Int_t AliTRDseedV1::GetTBoccupancy() const +{ +// Returns no. of TB occupied by clusters + + Int_t n(0); + for(int ic(0); icGetNdEdxSlices()); - AliDebug(4, Form("PID p[%f] dEdx[%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f] l[%f]", GetMomentum(), fdEdx[0], fdEdx[1], fdEdx[2], fdEdx[3], fdEdx[4], fdEdx[5], fdEdx[6], fdEdx[7], length)); + CookdEdx(AliTRDCalPID::kNSlicesNN); + AliDebug(4, Form("p=%6.4f[GeV/c] dEdx{%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f} l=%4.2f[cm]", GetMomentum(), fdEdx[0], fdEdx[1], fdEdx[2], fdEdx[3], fdEdx[4], fdEdx[5], fdEdx[6], fdEdx[7], length)); // Sets the a priori probabilities + Bool_t kPIDNN(fkReconstructor->GetPIDMethod()==AliTRDpidUtil::kNN); for(int ispec=0; ispecGetProbability(ispec, GetMomentum(), &fdEdx[0], length, GetPlane()); + fProb[ispec] = pd->GetProbability(ispec, GetMomentum(), &fdEdx[0], length, kPIDNN?GetPlane():fkReconstructor->GetRecoParam()->GetPIDLQslices()); return kTRUE; } @@ -624,7 +900,7 @@ Float_t AliTRDseedV1::GetQuality(Bool_t kZcorr) const } //____________________________________________________________________ -void AliTRDseedV1::GetCovAt(Double_t x, Double_t *cov) const +void AliTRDseedV1::GetCovAt(Double_t /*x*/, Double_t *cov) const { // Computes covariance in the y-z plane at radial point x (in tracking coordinates) // and returns the results in the preallocated array cov[3] as : @@ -671,8 +947,8 @@ void AliTRDseedV1::GetCovAt(Double_t x, Double_t *cov) const // - Double_t xr = fX0-x; - Double_t sy2 = fCov[0] +2.*xr*fCov[1] + xr*xr*fCov[2]; + //Double_t xr = fX0-x; + Double_t sy2 = fCov[0];// +2.*xr*fCov[1] + xr*xr*fCov[2]; Double_t sz2 = fS2Z; //GetPadLength()*GetPadLength()/12.; @@ -680,21 +956,26 @@ void AliTRDseedV1::GetCovAt(Double_t x, Double_t *cov) const if(fkReconstructor){ Double_t sys[15]; memset(sys, 0, 15*sizeof(Double_t)); fkReconstructor->GetRecoParam()->GetSysCovMatrix(sys); - sy2 += sys[0]; - sz2 += sys[1]; +// sy2 += sys[0]; +// sz2 += sys[1]; } - // rotate covariance matrix - Double_t t2 = GetTilt()*GetTilt(); - Double_t correction = 1./(1. + t2); - cov[0] = (sy2+t2*sz2)*correction; - cov[1] = GetTilt()*(sz2 - sy2)*correction; - cov[2] = (t2*sy2+sz2)*correction; - //printf("C(%6.1f %+6.3f %6.1f) [%s]\n", 1.e4*TMath::Sqrt(cov[0]), cov[1], 1.e4*TMath::Sqrt(cov[2]), IsRowCross()?" RC ":"-"); + // rotate covariance matrix if no RC + if(!IsRowCross()){ + Double_t t2 = GetTilt()*GetTilt(); + Double_t correction = 1./(1. + t2); + cov[0] = (sy2+t2*sz2)*correction; + cov[1] = GetTilt()*(sz2 - sy2)*correction; + cov[2] = (t2*sy2+sz2)*correction; + } else { + cov[0] = sy2; cov[1] = 0.; cov[2] = sz2; + } + + AliDebug(4, Form("C(%6.1f %+6.3f %6.1f) RC[%c]", 1.e4*TMath::Sqrt(cov[0]), cov[1], 1.e4*TMath::Sqrt(cov[2]), IsRowCross()?'y':'n')); } //____________________________________________________________ -Double_t AliTRDseedV1::GetCovSqrt(const Double_t * const c, Double_t *d) +Int_t AliTRDseedV1::GetCovSqrt(const Double_t * const c, Double_t *d) { // Helper function to calculate the square root of the covariance matrix. // The input matrix is stored in the vector c and the result in the vector d. @@ -713,6 +994,7 @@ Double_t AliTRDseedV1::GetCovSqrt(const Double_t * const c, Double_t *d) // Author A.Bercuci // Date Mar 19 2009 + const Double_t kZero(1.e-20); Double_t l[2], // eigenvalues v[3]; // eigenvectors // the secular equation and its solution : @@ -721,26 +1003,33 @@ Double_t AliTRDseedV1::GetCovSqrt(const Double_t * const c, Double_t *d) // L12 = [Tr(c) +- sqrt(Tr(c)^2-4*DET(c))]/2 Double_t tr = c[0]+c[2], // trace det = c[0]*c[2]-c[1]*c[1]; // determinant - if(TMath::Abs(det)<1.e-20) return -1.; + if(TMath::Abs(det)c[2]?-1.:1.)); + l[1] = .5*(tr + dd*(c[0]>c[2]?1.:-1.)); + if(l[0]GetVolumeId() : 0; -} +// Returns geometry volume id by delegation -//____________________________________________________________________ -TLinearFitter* AliTRDseedV1::GetFitterY() -{ - if(!fgFitterY) fgFitterY = new TLinearFitter(1, "pol1"); - fgFitterY->ClearPoints(); - return fgFitterY; + for(Int_t ic(0);icGetVolumeId(); + } + return 0; } -//____________________________________________________________________ -TLinearFitter* AliTRDseedV1::GetFitterZ() -{ - if(!fgFitterZ) fgFitterZ = new TLinearFitter(1, "pol1"); - fgFitterZ->ClearPoints(); - return fgFitterZ; -} //____________________________________________________________________ void AliTRDseedV1::Calibrate() @@ -857,18 +1134,19 @@ void AliTRDseedV1::SetOwner() } //____________________________________________________________ -void AliTRDseedV1::SetPadPlane(AliTRDpadPlane *p) +void AliTRDseedV1::SetPadPlane(AliTRDpadPlane * const p) { // Shortcut method to initialize pad geometry. - if(!p) return; - SetTilt(TMath::Tan(TMath::DegToRad()*p->GetTiltingAngle())); - SetPadLength(p->GetLengthIPad()); - SetPadWidth(p->GetWidthIPad()); + fPad[0] = p->GetLengthIPad(); + fPad[1] = p->GetWidthIPad(); + fPad[2] = TMath::Tan(TMath::DegToRad()*p->GetTiltingAngle()); + fPad[3] = p->GetRow0() + p->GetAnodeWireOffset(); } + //____________________________________________________________________ -Bool_t AliTRDseedV1::AttachClusters(AliTRDtrackingChamber *const chamber, Bool_t tilt) +Bool_t AliTRDseedV1::AttachClusters(AliTRDtrackingChamber *const chamber, Bool_t tilt, Bool_t chgPos, Int_t ev) { // // Projective algorithm to attach clusters to seeding tracklets. The following steps are performed : @@ -881,11 +1159,13 @@ Bool_t AliTRDseedV1::AttachClusters(AliTRDtrackingChamber *const chamber, Bool_t // Parameters // - chamber : pointer to tracking chamber container used to search the tracklet // - tilt : switch for tilt correction during road building [default true] +// - chgPos : mark same[kFALSE] and opposite[kTRUE] sign tracks with respect to Bz field sign [default true] +// - ev : event number for debug purposes [default = -1] // Output // - true : if tracklet found successfully. Failure can happend because of the following: // - // Detailed description -// +// // We start up by defining the track direction in the xy plane and roads. The roads are calculated based // on tracking information (variance in the r-phi direction) and estimated variance of the standard // clusters (see AliTRDcluster::SetSigmaY2()) corrected for tilt (see GetCovAt()). From this the road is @@ -895,49 +1175,84 @@ Bool_t AliTRDseedV1::AttachClusters(AliTRDtrackingChamber *const chamber, Bool_t // END_LATEX // // Author : Alexandru Bercuci -// Debug : level >3 +// Debug : level = 2 for calibration +// level = 3 for visualization in the track SR +// level = 4 for full visualization including digit level - if(!fkReconstructor->GetRecoParam() ){ + const AliTRDrecoParam* const recoParam = fkReconstructor->GetRecoParam(); //the dynamic cast in GetRecoParam is slow, so caching the pointer to it + + if(!recoParam){ AliError("Tracklets can not be used without a valid RecoParam."); return kFALSE; } + AliTRDcalibDB *calibration = AliTRDcalibDB::Instance(); + if (!calibration) { + AliError("No access to calibration data"); + return kFALSE; + } + // Retrieve the CDB container class with the parametric likelihood + const AliTRDCalTrkAttach *attach = calibration->GetAttachObject(); + if (!attach) { + AliError("No usable AttachClusters calib object."); + return kFALSE; + } + // Initialize reco params for this tracklet // 1. first time bin in the drift region Int_t t0 = 14; - Int_t kClmin = Int_t(fkReconstructor->GetRecoParam() ->GetFindableClusters()*AliTRDtrackerV1::GetNTimeBins()); + Int_t kClmin = Int_t(recoParam->GetFindableClusters()*AliTRDtrackerV1::GetNTimeBins()); + Int_t kTBmin = 4; - Double_t sysCov[5]; fkReconstructor->GetRecoParam()->GetSysCovMatrix(sysCov); + Double_t sysCov[5]; recoParam->GetSysCovMatrix(sysCov); Double_t s2yTrk= fRefCov[0], s2yCl = 0., s2zCl = GetPadLength()*GetPadLength()/12., syRef = TMath::Sqrt(s2yTrk), t2 = GetTilt()*GetTilt(); //define roads - Double_t kroady = 1., //fkReconstructor->GetRecoParam() ->GetRoad1y(); - kroadz = GetPadLength() * fkReconstructor->GetRecoParam()->GetRoadzMultiplicator() + 1.; + const Double_t kroady = 3.; //recoParam->GetRoad1y(); + const Double_t kroadz = GetPadLength() * recoParam->GetRoadzMultiplicator() + 1.; // define probing cluster (the perfect cluster) and default calibration Short_t sig[] = {0, 0, 10, 30, 10, 0,0}; AliTRDcluster cp(fDet, 6, 75, 0, sig, 0); if(fkReconstructor->IsHLT()) cp.SetRPhiMethod(AliTRDcluster::kCOG); if(!IsCalibrated()) Calibrate(); - AliDebug(4, ""); - AliDebug(4, Form("syKalman[%f] rY[%f] rZ[%f]", syRef, kroady, kroadz)); +/* Int_t kroadyShift(0); + Float_t bz(AliTrackerBase::GetBz()); + if(TMath::Abs(bz)>2.){ + if(bz<0.) kroadyShift = chgPos ? +1 : -1; + else kroadyShift = chgPos ? -1 : +1; + }*/ + AliDebug(4, Form("\n syTrk[cm]=%4.2f dydxTrk[deg]=%+6.2f Chg[%c] rY[cm]=%4.2f rZ[cm]=%5.2f TC[%c]", syRef, TMath::ATan(fYref[1])*TMath::RadToDeg(), chgPos?'+':'-', kroady, kroadz, tilt?'y':'n')); + Double_t phiTrk(TMath::ATan(fYref[1])), + thtTrk(TMath::ATan(fZref[1])); // working variables const Int_t kNrows = 16; const Int_t kNcls = 3*kNclusters; // buffer size - AliTRDcluster *clst[kNrows][kNcls]; + TObjArray clst[kNrows]; Bool_t blst[kNrows][kNcls]; - Double_t cond[4], dx, dy, yt, zt, yres[kNrows][kNcls]; + Double_t cond[4], + dx, dy, dz, + yt, zt, + zc[kNrows], + xres[kNrows][kNcls], yres[kNrows][kNcls], zres[kNrows][kNcls], s2y[kNrows][kNcls]; Int_t idxs[kNrows][kNcls], ncl[kNrows], ncls = 0; memset(ncl, 0, kNrows*sizeof(Int_t)); + memset(zc, 0, kNrows*sizeof(Double_t)); + memset(idxs, 0, kNrows*kNcls*sizeof(Int_t)); + memset(xres, 0, kNrows*kNcls*sizeof(Double_t)); memset(yres, 0, kNrows*kNcls*sizeof(Double_t)); + memset(zres, 0, kNrows*kNcls*sizeof(Double_t)); + memset(s2y, 0, kNrows*kNcls*sizeof(Double_t)); memset(blst, 0, kNrows*kNcls*sizeof(Bool_t)); //this is 8 times faster to memset than "memset(clst, 0, kNrows*kNcls*sizeof(AliTRDcluster*))" - // Do cluster projection - AliTRDcluster *c = NULL; - AliTRDchamberTimeBin *layer = NULL; + Double_t roady(0.), s2Mean(0.); Int_t ns2Mean(0); + + // Do cluster projection and pick up cluster candidates + AliTRDcluster *c(NULL); + AliTRDchamberTimeBin *layer(NULL); Bool_t kBUFFER = kFALSE; for (Int_t it = 0; it < kNtb; it++) { if(!(layer = chamber->GetTB(it))) continue; @@ -946,37 +1261,44 @@ Bool_t AliTRDseedV1::AttachClusters(AliTRDtrackingChamber *const chamber, Bool_t dx = fX0 - layer->GetX(); yt = fYref[0] - fYref[1] * dx; zt = fZref[0] - fZref[1] * dx; - // get standard cluster error corrected for tilt + // get standard cluster error corrected for tilt if selected cp.SetLocalTimeBin(it); cp.SetSigmaY2(0.02, fDiffT, fExB, dx, -1./*zt*/, fYref[1]); - s2yCl = (cp.GetSigmaY2() + sysCov[0] + t2*s2zCl)/(1.+t2); - // get estimated road - kroady = 3.*TMath::Sqrt(12.*(s2yTrk + s2yCl)); - - AliDebug(5, Form(" %2d x[%f] yt[%f] zt[%f]", it, dx, yt, zt)); - - AliDebug(5, Form(" syTrk[um]=%6.2f syCl[um]=%6.2f syClTlt[um]=%6.2f Ry[mm]=%f", 1.e4*TMath::Sqrt(s2yTrk), 1.e4*TMath::Sqrt(cp.GetSigmaY2()), 1.e4*TMath::Sqrt(s2yCl), 1.e1*kroady)); - - // select clusters - cond[0] = yt; cond[2] = kroady; + s2yCl = cp.GetSigmaY2() + sysCov[0]; if(!tilt) s2yCl = (s2yCl + t2*s2zCl)/(1.+t2); + if(TMath::Abs(it-12)<7){ s2Mean += cp.GetSigmaY2(); ns2Mean++;} + // get estimated road in r-phi direction + roady = TMath::Min(3.*TMath::Sqrt(12.*(s2yTrk + s2yCl)), kroady); + + AliDebug(5, Form("\n" + " %2d xd[cm]=%6.3f yt[cm]=%7.2f zt[cm]=%8.2f\n" + " syTrk[um]=%6.2f syCl[um]=%6.2f syClTlt[um]=%6.2f\n" + " Ry[mm]=%f" + , it, dx, yt, zt + , 1.e4*TMath::Sqrt(s2yTrk), 1.e4*TMath::Sqrt(cp.GetSigmaY2()+sysCov[0]), 1.e4*TMath::Sqrt(s2yCl) + , 1.e1*roady)); + + // get clusters from layer + cond[0] = yt/*+0.5*kroadyShift*kroady*/; cond[2] = roady; cond[1] = zt; cond[3] = kroadz; - Int_t n=0, idx[6]; - layer->GetClusters(cond, idx, n, 6); + Int_t n=0, idx[6]; layer->GetClusters(cond, idx, n, 6); for(Int_t ic = n; ic--;){ c = (*layer)[idx[ic]]; - dy = yt - c->GetY(); - dy += tilt ? GetTilt() * (c->GetZ() - zt) : 0.; - // select clusters on a 3 sigmaKalman level -/* if(tilt && TMath::Abs(dy) > 3.*syRef){ - printf("too large !!!\n"); - continue; - }*/ + dx = fX0 - c->GetX(); + yt = fYref[0] - fYref[1] * dx; + zt = fZref[0] - fZref[1] * dx; + dz = zt - c->GetZ(); + dy = yt - (c->GetY() + (tilt ? (GetTilt() * dz) : 0.)); Int_t r = c->GetPadRow(); - AliDebug(5, Form(" -> dy[%f] yc[%f] r[%d]", TMath::Abs(dy), c->GetY(), r)); - clst[r][ncl[r]] = c; + clst[r].AddAtAndExpand(c, ncl[r]); blst[r][ncl[r]] = kTRUE; idxs[r][ncl[r]] = idx[ic]; + zres[r][ncl[r]] = dz/GetPadLength(); yres[r][ncl[r]] = dy; + xres[r][ncl[r]] = dx; + zc[r] = c->GetZ(); + // TODO temporary solution to avoid divercences in error parametrization + s2y[r][ncl[r]] = TMath::Min(c->GetSigmaY2()+sysCov[0], 0.025); + AliDebug(5, Form(" -> dy[cm]=%+7.4f yc[cm]=%7.2f row[%d] idx[%2d]", dy, c->GetY(), r, ncl[r])); ncl[r]++; ncls++; if(ncl[r] >= kNcls) { @@ -987,173 +1309,547 @@ Bool_t AliTRDseedV1::AttachClusters(AliTRDtrackingChamber *const chamber, Bool_t } if(kBUFFER) break; } - AliDebug(4, Form("Found %d clusters. Processing ...", ncls)); if(ncls=2){ + if(nrc==2){ + if(zresRow[0]>zresRow[1]){ // swap + Int_t itmp=idxRow[1]; idxRow[1] = idxRow[0]; idxRow[0] = itmp; + Double_t dtmp=zresRow[1]; zresRow[1] = zresRow[0]; zresRow[0] = dtmp; + } + if(TMath::Abs(idxRow[1] - idxRow[0]) != 1){ + SetErrorMsg(kAttachRowGap); + AliDebug(2, Form("Rows attached not continuous. Select first candidate.\n" + " row[%2d] Ncl[%2d] [cm]=%+8.2f row[%2d] Ncl[%2d] [cm]=%+8.2f", + idxRow[0], ncl[idxRow[0]], zresRow[0], idxRow[1], idxRow[1]<0?0:ncl[idxRow[1]], zresRow[1])); + nrc=1; idxRow[1] = -1; zresRow[1] = 999.; + } + } else { + Int_t idx0[kNrows]; + TMath::Sort(nrc, zresRow, idx0, kFALSE); + nrc = 3; // select only maximum first 3 candidates + Int_t iatmp[] = {-1, -1, -1}; Double_t datmp[] = {999., 999., 999.}; + for(Int_t irc(0); irc[cm]=%+8.2f\n" + "row[%2d] Ncl[%2d] [cm]=%+8.2f\n" + "row[%2d] Ncl[%2d] [cm]=%+8.2f", + idxRow[0], ncl[idxRow[0]], zresRow[0], + idxRow[1], ncl[idxRow[1]], zresRow[1], + idxRow[2], ncl[idxRow[2]], zresRow[2])); + if(TMath::Abs(idxRow[0] - idxRow[2]) == 1){ // select second candidate + AliDebug(2, "Solved ! Remove second candidate."); + nrc = 2; + idxRow[1] = idxRow[2]; zresRow[1] = zresRow[2]; // swap + idxRow[2] = -1; zresRow[2] = 999.; // remove + } else if(TMath::Abs(idxRow[1] - idxRow[2]) == 1){ + if(ncl[idxRow[1]]+ncl[idxRow[2]] > ncl[idxRow[0]]){ + AliDebug(2, "Solved ! Remove first candidate."); + nrc = 2; + idxRow[0] = idxRow[1]; zresRow[0] = zresRow[1]; // swap + idxRow[1] = idxRow[2]; zresRow[1] = zresRow[2]; // swap + } else { + AliDebug(2, "Solved ! Remove second and third candidate."); + nrc = 1; + idxRow[1] = -1; zresRow[1] = 999.; // remove + idxRow[2] = -1; zresRow[2] = 999.; // remove + } + } else { + AliDebug(2, "Unsolved !!! Remove second and third candidate."); + nrc = 1; + idxRow[1] = -1; zresRow[1] = 999.; // remove + idxRow[2] = -1; zresRow[2] = 999.; // remove + } + } else { // remove temporary candidate + nrc = 2; + idxRow[2] = -1; zresRow[2] = 999.; + } + } + } + AliDebug(4, Form("Sorted row candidates:\n" + " row[%2d] Ncl[%2d] [cm]=%+8.2f row[%2d] Ncl[%2d] [cm]=%+8.2f" + , idxRow[0], ncl[idxRow[0]], zresRow[0], idxRow[1], idxRow[1]<0?0:ncl[idxRow[1]], zresRow[1])); + + // initialize debug streamer + TTreeSRedirector *pstreamer(NULL); + if((recoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 3 && fkReconstructor->IsDebugStreaming())|| + AliTRDReconstructor::GetStreamLevel()>30) pstreamer = fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); + if(pstreamer){ + // save config. for calibration + TVectorD vdy[2], vdx[2], vs2[2]; + for(Int_t jr(0); jrGetStreamLevel(AliTRDrecoParam::kTracker) > 4 ||AliTRDReconstructor::GetStreamLevel()>4){ + Int_t idx(idxRow[1]); + if(idx<0){ + for(Int_t ir(0); ir0) continue; + idx = ir; + break; + } + } + (*pstreamer) << "AttachClusters5" + << "c0.=" << &clst[idxRow[0]] + << "c1.=" << &clst[idx] + << "\n"; + } + } - // analyze each row individualy - Bool_t kRowSelection(kFALSE); - Double_t mean[]={1.e3, 1.e3, 1.3}, syDis[]={1.e3, 1.e3, 1.3}; - Int_t nrow[] = {0, 0, 0}, rowId[] = {-1, -1, -1}, nr = 0, lr=-1; - TVectorD vdy[3]; - for(Int_t ir=0; ir0 && ir-lr != 1){ - AliDebug(2, "Rows attached not continuous. Turn on selection."); - kRowSelection=kTRUE; +//======================================================================================= + // Analyse cluster topology + Double_t f[kNcls], // likelihood factors for segments + r[2][kNcls], // d(dydx) of tracklet candidate with respect to track + xm[2][kNcls], // mean + ym[2][kNcls], // mean + sm[2][kNcls], // mean + s[2][kNcls], // sigma_y + p[2][kNcls], // prob of Gauss + q[2][kNcls]; // charge/segment + memset(f, 0, kNcls*sizeof(Double_t)); + Int_t index[2][kNcls], n[2][kNcls]; + memset(n, 0, 2*kNcls*sizeof(Int_t)); + Int_t mts(0), nts[2] = {0, 0}; // no of tracklet segments in row + AliTRDpadPlane *pp(AliTRDtransform::Geometry().GetPadPlane(fDet)); + AliTRDtrackletOflHelper helper; + Int_t lyDet(AliTRDgeometry::GetLayer(fDet)); + for(Int_t jr(0), n0(0); jrCookLikelihood(chgPos, lyDet, fPt, phiTrk, n[jr][its], ym[jr][its]/*sRef*/, r[jr][its]*TMath::RadToDeg(), s[jr][its]/sm[jr][its]); + } + } + AliDebug(4, Form(" Tracklet candidates: row[%2d] = %2d row[%2d] = %2d:", idxRow[0], nts[0], idxRow[1], nts[1])); + if(AliLog::GetDebugLevel("TRD", "AliTRDseedV1")>3){ + for(Int_t jr(0); jrGetStreamLevel(AliTRDrecoParam::kTracker) > 2 && fkReconstructor->IsDebugStreaming()) || + AliTRDReconstructor::GetStreamLevel()>2 ) + ) pstreamer = fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); + if(pstreamer){ + // save config. for calibration + TVectorD vidx, vn, vx, vy, vr, vs, vsm, vp, vf; + vidx.ResizeTo(ncl[idxRow[0]]+(idxRow[1]<0?0:ncl[idxRow[1]])); + vn.ResizeTo(mts); + vx.ResizeTo(mts); + vy.ResizeTo(mts); + vr.ResizeTo(mts); + vs.ResizeTo(mts); + vsm.ResizeTo(mts); + vp.ResizeTo(mts); + vf.ResizeTo(mts); + for(Int_t jr(0), jts(0), jc(0); jr 3. * syDis[nr]){ - blst[ir][ic] = kFALSE; continue; +//========================================================= + // Get seed tracklet segment + Int_t idx2[kNcls]; memset(idx2, 0, kNcls*sizeof(Int_t)); // seeding indexing + if(nts[0]>1) TMath::Sort(nts[0], f, idx2); + Int_t is(idx2[0]); // seed index + Int_t idxTrklt[kNcls], + kts(0), + nTrklt(n[0][is]); + Double_t fTrklt(f[is]), + rTrklt(r[0][is]), + yTrklt(ym[0][is]), + sTrklt(s[0][is]), + smTrklt(sm[0][is]), + xTrklt(xm[0][is]), + pTrklt(p[0][is]), + qTrklt(q[0][is]); + memset(idxTrklt, 0, kNcls*sizeof(Int_t)); + // check seed idx2[0] exit if not found + if(f[is]<1.e-2){ + AliDebug(1, Form("Seed seg[%d] row[%2d] n[%2d] f[%f]<0.01.", is, idxRow[0], n[0][is], f[is])); + SetErrorMsg(kAttachClAttach); + if(!pstreamer && + ( (recoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 1 && fkReconstructor->IsDebugStreaming()) || + AliTRDReconstructor::GetStreamLevel()>1 ) + ) pstreamer = fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); + if(pstreamer){ + UChar_t stat(0); + if(IsKink()) SETBIT(stat, 1); + if(IsStandAlone()) SETBIT(stat, 2); + if(IsRowCross()) SETBIT(stat, 3); + SETBIT(stat, 4); // set error bit + TVectorD vidx; vidx.ResizeTo(1); vidx[0] = is; + (*pstreamer) << "AttachClusters2" + << "stat=" << stat + << "ev=" << ev + << "chg=" << chgPos + << "det=" << fDet + << "x0=" << fX0 + << "y0=" << fYref[0] + << "z0=" << fZref[0] + << "phi=" << phiTrk + << "tht=" << thtTrk + << "pt=" << fPt + << "s2Trk=" << s2yTrk + << "s2Cl=" << s2Mean + << "idx=" << &vidx + << "n=" << nTrklt + << "f=" << fTrklt + << "x=" << xTrklt + << "y=" << yTrklt + << "r=" << rTrklt + << "s=" << sTrklt + << "sm=" << smTrklt + << "p=" << pTrklt + << "q=" << qTrklt + << "\n"; + } + return kFALSE; + } + AliDebug(2, Form("Seed seg[%d] row[%2d] n[%2d] dy[%f] r[%+5.2f] s[%+5.2f] f[%5.3f] q[%6.2f]", is, idxRow[0], n[0][is], ym[0][is], r[0][is]*TMath::RadToDeg(), s[0][is]/sm[0][is], f[is], q[0][is])); + + // save seeding segment in the helper + idxTrklt[kts++] = is; + helper.Init(pp, &clst[idxRow[0]], index[0], is); + AliTRDtrackletOflHelper test; // helper to test segment expantion + Float_t rcLikelihood(0.); SetBit(kRowCross, kFALSE); + Double_t dyRez[kNcls]; Int_t idx3[kNcls]; + + //========================================================= + // Define filter parameters from OCDB + Int_t kNSgmDy[2]; attach->GetNsgmDy(kNSgmDy[0], kNSgmDy[1]); + Float_t kLikeMinRelDecrease[2]; attach->GetLikeMinRelDecrease(kLikeMinRelDecrease[0], kLikeMinRelDecrease[1]); + Float_t kRClikeLimit(attach->GetRClikeLimit()); + + //========================================================= + // Try attaching next segments from first row (if any) + if(nts[0]>1){ + Int_t jr(0), ir(idxRow[jr]); + // organize secondary sgms. in decreasing order of their distance from seed + memset(dyRez, 0, nts[jr]*sizeof(Double_t)); + for(Int_t jts(1); jts kNSgmDy[jr]*smTrklt){ + AliDebug(2, Form("Reject seg[%d] row[%2d] n[%2d] dy[%f] > %d*s[%f].", its, idxRow[jr], n[jr][its], dyRez[its], kNSgmDy[jr], kNSgmDy[jr]*smTrklt)); + continue; + } + + test = helper; + Int_t n0 = test.Expand(&clst[ir], index[jr], its); + Double_t rt, dyt, st, xt, smt, pt, qt, ft; + Int_t n1 = test.GetRMS(rt, dyt, st, fX0/*xt*/); + pt = Double_t(n1)/n0; + smt = test.GetSyMean(); + qt = test.GetQ()/TMath::Sqrt(1. + fYref[1]*fYref[1] + fZref[1]*fZref[1]); + xt = fX0; + // correct position + Double_t dxm= fX0 - xt; + yt = fYref[0] - fYref[1]*dxm; + zt = fZref[0] - fZref[1]*dxm; + // correct tracklet fit for tilt + dyt+= GetTilt()*(zt - zc[idxRow[0]]); + rt += GetTilt() * fZref[1]; + // correct tracklet fit for track position/inclination + dyt = yt - dyt; + rt = (rt - fYref[1])/(1+rt*fYref[1]); + // report inclination in radians + rt = TMath::ATan(rt); + + ft = (n0>=2) ? attach->CookLikelihood(chgPos, lyDet, fPt, phiTrk, n0, dyt/*sRef*/, rt*TMath::RadToDeg(), st/smt) : 0.; + Bool_t kAccept(ft>=fTrklt*(1.-kLikeMinRelDecrease[jr])); + + AliDebug(2, Form("%s seg[%d] row[%2d] n[%2d] dy[%f] r[%+5.2f] s[%+5.2f] f[%f] < %4.2f*F[%f].", + (kAccept?"Adding":"Reject"), its, idxRow[jr], n0, dyt, rt*TMath::RadToDeg(), st/smt, ft, 1.-kLikeMinRelDecrease[jr], fTrklt*(1.-kLikeMinRelDecrease[jr]))); + if(kAccept){ + idxTrklt[kts++] = its; + nTrklt = n0; + fTrklt = ft; + rTrklt = rt; + yTrklt = dyt; + sTrklt = st; + smTrklt= smt; + xTrklt = xt; + pTrklt = pt; + qTrklt = qt; + helper.Expand(&clst[ir], index[jr], its); } - nrow[nr]++; rowId[nr]=ir; kFOUND = kTRUE; } - if(kFOUND){ - vdy[nr].Use(nrow[nr], yres[ir]); - nr++; + } + + //========================================================= + // Try attaching next segments from second row (if any) + if(nts[1] && (rcLikelihood = zresRow[0]/zresRow[1]) > kRClikeLimit){ + // organize secondaries in decreasing order of their distance from seed + Int_t jr(1), ir(idxRow[jr]); + memset(dyRez, 0, nts[jr]*sizeof(Double_t)); + Double_t rot(TMath::Tan(r[0][is])); + for(Int_t jts(0); jts kNSgmDy[jr]*smTrklt){ + AliDebug(2, Form("Reject seg[%d] row[%2d] n[%2d] dy[%f] > %d*s[%f].", its, idxRow[jr], n[jr][its], dyRez[its], kNSgmDy[jr], kNSgmDy[jr]*smTrklt)); + continue; + } + + test = helper; + Int_t n0 = test.Expand(&clst[ir], index[jr], its); + Double_t rt, dyt, st, xt, smt, pt, qt, ft; + Int_t n1 = test.GetRMS(rt, dyt, st, fX0/*xt*/); + pt = Double_t(n1)/n0; + smt = test.GetSyMean(); + qt = test.GetQ()/TMath::Sqrt(1. + fYref[1]*fYref[1] + fZref[1]*fZref[1]); + xt = fX0; + // correct position + Double_t dxm= fX0 - xt; + yt = fYref[0] - fYref[1]*dxm; + zt = fZref[0] - fZref[1]*dxm; + // correct tracklet fit for tilt + dyt+= GetTilt()*(zt - zc[idxRow[0]]); + rt += GetTilt() * fZref[1]; + // correct tracklet fit for track position/inclination + dyt = yt - dyt; + rt = (rt - fYref[1])/(1+rt*fYref[1]); + // report inclination in radians + rt = TMath::ATan(rt); + + ft = (n0>=2) ? attach->CookLikelihood(chgPos, lyDet, fPt, phiTrk, n0, dyt/*sRef*/, rt*TMath::RadToDeg(), st/smt) : 0.; + Bool_t kAccept(ft>=fTrklt*(1.-kLikeMinRelDecrease[jr])); + + AliDebug(2, Form("%s seg[%d] row[%2d] n[%2d] dy[%f] r[%+5.2f] s[%+5.2f] f[%f] < %4.2f*F[%f].", + (kAccept?"Adding":"Reject"), its, idxRow[jr], n0, dyt, rt*TMath::RadToDeg(), st/smt, ft, 1.-kLikeMinRelDecrease[jr], fTrklt*(1.-kLikeMinRelDecrease[jr]))); + if(kAccept){ + idxTrklt[kts++] = its; + nTrklt = n0; + fTrklt = ft; + rTrklt = rt; + yTrklt = dyt; + sTrklt = st; + smTrklt= smt; + xTrklt = xt; + pTrklt = pt; + qTrklt = qt; + helper.Expand(&clst[ir], index[jr], its); + SetBit(kRowCross, kTRUE); // mark pad row crossing + } } - lr = ir; if(nr>=3) break; } - if(fkReconstructor->GetRecoParam()->GetStreamLevel(AliTRDrecoParam::kTracker) > 3 && fkReconstructor->IsDebugStreaming()){ - TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); + // clear local copy of clusters + for(Int_t ir(0); irGetStreamLevel(AliTRDrecoParam::kTracker) > 1 && fkReconstructor->IsDebugStreaming()) || + AliTRDReconstructor::GetStreamLevel()>1 ) + ) pstreamer = fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); + if(pstreamer){ UChar_t stat(0); if(IsKink()) SETBIT(stat, 1); if(IsStandAlone()) SETBIT(stat, 2); - cstreamer << "AttachClusters" + if(IsRowCross()) SETBIT(stat, 3); + TVectorD vidx; vidx.ResizeTo(kts); + for(Int_t its(0); itsnrow[0]) AliDebug(2, Form("Conflicting mean[%f < %f] but ncl[%d < %d].", TMath::Abs(mean[0]), TMath::Abs(mean[1]), nrow[0], nrow[1])); - }else{ - if(nrow[1] %f] but ncl[%d > %d].", TMath::Abs(mean[0]), TMath::Abs(mean[1]), nrow[0], nrow[1])); - Swap(nrow[0],nrow[1]); Swap(rowId[0],rowId[1]); - Swap(mean[0],mean[1]); Swap(syDis[0],syDis[1]); - } - rowRemove=1; nr=1; - } else if(nr==3){ // select based on 2 consecutive rows - if(rowId[1]==rowId[0]+1 && rowId[1]!=rowId[2]-1){ - nr=2;rowRemove=2; - } else if(rowId[1]!=rowId[0]+1 && rowId[1]==rowId[2]-1){ - Swap(nrow[0],nrow[2]); Swap(rowId[0],rowId[2]); - Swap(mean[0],mean[2]); Swap(syDis[0],syDis[2]); - nr=2; rowRemove=2; - } - } - if(rowRemove>0){nrow[rowRemove]=0; rowId[rowRemove]=-1;} - } - AliDebug(4, Form(" Ncl[%d[%d] + %d[%d] + %d[%d]]", nrow[0], rowId[0], nrow[1], rowId[1], nrow[2], rowId[2])); - - if(nr==3){ - SetBit(kRowCross, kTRUE); // mark pad row crossing - SetErrorMsg(kAttachRow); - const Float_t am[]={TMath::Abs(mean[0]), TMath::Abs(mean[1]), TMath::Abs(mean[2])}; - AliDebug(4, Form("complex row configuration\n" - " r[%d] n[%d] m[%6.3f] s[%6.3f]\n" - " r[%d] n[%d] m[%6.3f] s[%6.3f]\n" - " r[%d] n[%d] m[%6.3f] s[%6.3f]\n" - , rowId[0], nrow[0], am[0], syDis[0] - , rowId[1], nrow[1], am[1], syDis[1] - , rowId[2], nrow[2], am[2], syDis[2])); - Int_t id[]={0,1,2}; TMath::Sort(3, am, id, kFALSE); - // backup - Int_t rnn[3]; memcpy(rnn, nrow, 3*sizeof(Int_t)); - Int_t rid[3]; memcpy(rid, rowId, 3*sizeof(Int_t)); - Double_t rm[3]; memcpy(rm, mean, 3*sizeof(Double_t)); - Double_t rs[3]; memcpy(rs, syDis, 3*sizeof(Double_t)); - nrow[0]=rnn[id[0]]; rowId[0]=rid[id[0]]; mean[0]=rm[id[0]]; syDis[0]=rs[id[0]]; - nrow[1]=rnn[id[1]]; rowId[1]=rid[id[1]]; mean[1]=rm[id[1]]; syDis[1]=rs[id[1]]; - nrow[2]=0; rowId[2]=-1; mean[2] = 1.e3; syDis[2] = 1.e3; - AliDebug(4, Form("solved configuration\n" - " r[%d] n[%d] m[%+6.3f] s[%6.3f]\n" - " r[%d] n[%d] m[%+6.3f] s[%6.3f]\n" - " r[%d] n[%d] m[%+6.3f] s[%6.3f]\n" - , rowId[0], nrow[0], mean[0], syDis[0] - , rowId[1], nrow[1], mean[1], syDis[1] - , rowId[2], nrow[2], mean[2], syDis[2])); - nr=2; - } else if(nr==2) { - SetBit(kRowCross, kTRUE); // mark pad row crossing - if(nrow[1] > nrow[0]){ // swap row order - Swap(nrow[0],nrow[1]); Swap(rowId[0],rowId[1]); - Swap(mean[0],mean[1]); Swap(syDis[0],syDis[1]); - } + + + //========================================================= + // Store clusters + Int_t nselected(0), nc(0); + TObjArray *selected(helper.GetClusters()); + if(!selected || !(nselected = selected->GetEntriesFast())){ + AliError("Cluster candidates missing !!!"); + SetErrorMsg(kAttachClAttach); + return kFALSE; } - - // Select and store clusters - // We should consider here : - // 1. How far is the chamber boundary - // 2. How big is the mean - Int_t n(0); Float_t dyc[kNclusters]; memset(dyc,0,kNclusters*sizeof(Float_t)); - for (Int_t ir = 0; ir < nr; ir++) { - Int_t jr(rowId[ir]); - AliDebug(4, Form(" Attaching Ncl[%d]=%d ...", jr, ncl[jr])); - for (Int_t ic = 0; ic < ncl[jr]; ic++) { - if(!blst[jr][ic])continue; - c = clst[jr][ic]; - Int_t it(c->GetPadTime()); - Int_t idx(it+kNtb*ir); - if(fClusters[idx]){ - AliDebug(4, Form("Many cluster candidates on row[%2d] tb[%2d].", jr, it)); - // TODO should save also the information on where the multiplicity happened and its size - SetErrorMsg(kAttachMultipleCl); - // TODO should also compare with mean and sigma for this row - if(yres[jr][ic] > dyc[idx]) continue; - } - - // TODO proper indexing of clusters !! - fIndexes[idx] = chamber->GetTB(it)->GetGlobalIndex(idxs[jr][ic]); - fClusters[idx] = c; - dyc[idx] = yres[jr][ic]; - n++; + for(Int_t ic(0); icAt(ic))) continue; + Int_t it(c->GetPadTime()), + jr(Int_t(helper.GetRow() != c->GetPadRow())), + idx(it+kNtb*jr); + if(fClusters[idx]){ + AliDebug(1, Form("Multiple clusters/tb for D[%03d] Tb[%02d] Row[%2d]", fDet, it, c->GetPadRow())); + continue; // already booked } + // TODO proper indexing of clusters !! + fIndexes[idx] = chamber->GetTB(it)->GetGlobalIndex(idxs[idxRow[jr]][ic]); + fClusters[idx] = c; + nc++; } - SetN(n); + AliDebug(2, Form("Clusters Found[%2d] Attached[%2d] RC[%c]", nselected, nc, IsRowCross()?'y':'n')); // number of minimum numbers of clusters expected for the tracklet - if (GetN() < kClmin){ - AliDebug(1, Form("NOT ENOUGH CLUSTERS %d ATTACHED TO THE TRACKLET [min %d] FROM FOUND %d.", GetN(), kClmin, n)); + if (nc < kClmin){ + AliDebug(1, Form("NOT ENOUGH CLUSTERS %d ATTACHED TO THE TRACKLET [min %d] FROM FOUND %d.", nc, kClmin, ncls)); SetErrorMsg(kAttachClAttach); return kFALSE; } + SetN(nc); // Load calibration parameters for this tracklet - Calibrate(); + //Calibrate(); // calculate dx for time bins in the drift region (calibration aware) Float_t x[2] = {0.,0.}; Int_t tb[2]={0,0}; @@ -1184,10 +1880,8 @@ void AliTRDseedV1::Bootstrap(const AliTRDReconstructor *rec) // fkReconstructor = rec; AliTRDgeometry g; - AliTRDpadPlane *pp = g.GetPadPlane(fDet); - fPad[0] = pp->GetLengthIPad(); - fPad[1] = pp->GetWidthIPad(); - fPad[2] = TMath::Tan(TMath::DegToRad()*pp->GetTiltingAngle()); + SetPadPlane(g.GetPadPlane(fDet)); + //fSnp = fYref[1]/TMath::Sqrt(1+fYref[1]*fYref[1]); //fTgl = fZref[1]; Int_t n = 0, nshare = 0, nused = 0; @@ -1206,16 +1900,17 @@ void AliTRDseedV1::Bootstrap(const AliTRDReconstructor *rec) //____________________________________________________________________ -Bool_t AliTRDseedV1::Fit(Bool_t tilt, Bool_t zcorr) +Bool_t AliTRDseedV1::Fit(UChar_t opt) { // // Linear fit of the clusters attached to the tracklet // // Parameters : -// - tilt : switch for tilt pad correction of cluster y position based on -// the z, dzdx info from outside [default false]. -// - zcorr : switch for using z information to correct for anisochronity -// and a finner error parameterization estimation [default false] +// - opt : switch for tilt pad correction of cluster y position. Options are +// 0 no correction [default] +// 1 full tilt correction [dz/dx and z0] +// 2 pseudo tilt correction [dz/dx from pad-chamber geometry] +// // Output : // True if successful // @@ -1300,16 +1995,23 @@ Bool_t AliTRDseedV1::Fit(Bool_t tilt, Bool_t zcorr) // Author // A.Bercuci + if(!fkReconstructor){ + AliError("The tracklet needs the reconstruction setup. Please initialize by SetReconstructor()."); + return kFALSE; + } if(!IsCalibrated()) Calibrate(); + if(opt>2){ + AliWarning(Form("Option [%d] outside range [0, 2]. Using default",opt)); + opt=0; + } const Int_t kClmin = 8; - + const Float_t kScalePulls = 10.; // factor to scale y pulls - NOT UNDERSTOOD // get track direction Double_t y0 = fYref[0]; Double_t dydx = fYref[1]; Double_t z0 = fZref[0]; Double_t dzdx = fZref[1]; - Double_t yt, zt; AliTRDtrackerV1::AliTRDLeastSquare fitterY; AliTRDtrackerV1::AliTRDLeastSquare fitterZ; @@ -1317,54 +2019,85 @@ Bool_t AliTRDseedV1::Fit(Bool_t tilt, Bool_t zcorr) // book cluster information Double_t qc[kNclusters], xc[kNclusters], yc[kNclusters], zc[kNclusters], sy[kNclusters]; - Int_t n = 0; - AliTRDcluster *c=NULL, **jc = &fClusters[0]; - for (Int_t ic=0; icGetRecoParam(); //the dynamic cast in GetRecoParam is slow, so caching the pointer to it + + const Char_t *tcName[]={"NONE", "FULL", "HALF"}; + AliDebug(2, Form("Options : TC[%s] dzdx[%c]", tcName[opt], kDZDX?'Y':'N')); + + + for (Int_t ic=0; icIsInChamber()) continue; + // compute pseudo tilt correction + if(kDZDX){ + fZfit[0] = c->GetZ(); + if(rc){ + for(Int_t kc=AliTRDseedV1::kNtb; kcIsInChamber()) continue; + fZfit[0] += cc->GetZ(); fZfit[0] *= 0.5; + break; + } + } + fZfit[1] = fZfit[0]/fX0; + if(rc){ + fZfit[0] += fZfit[1]*0.5*AliTRDgeometry::CdrHght(); + fZfit[1] = fZfit[0]/fX0; + } + kDZDX=kFALSE; + } - Float_t w = 1.; - if(c->GetNPads()>4) w = .5; - if(c->GetNPads()>5) w = .2; +// TODO use this information to adjust cluster error parameterization +// Float_t w = 1.; +// if(c->GetNPads()>4) w = .5; +// if(c->GetNPads()>5) w = .2; // cluster charge qc[n] = TMath::Abs(c->GetQ()); // pad row of leading - // Radial cluster position - //Int_t jc = TMath::Max(fN-3, 0); - //xc[fN] = c->GetXloc(fT0, fVD, &qc[jc], &xc[jc]/*, z0 - c->GetX()*dzdx*/); xc[n] = fX0 - c->GetX(); - // extrapolated track to cluster position - yt = y0 - xc[n]*dydx; - zt = z0 - xc[n]*dzdx; - // Recalculate cluster error based on tracking information - c->SetSigmaY2(fS2PRF, fDiffT, fExB, xc[n], zcorr?zt:-1., dydx); + c->SetSigmaY2(fS2PRF, fDiffT, fExB, xc[n], -1./*zcorr?zt:-1.*/, dydx); + c->SetSigmaZ2(fPad[0]*fPad[0]/12.); // for HLT sy[n] = TMath::Sqrt(c->GetSigmaY2()); - yc[n] = fkReconstructor->GetRecoParam()->UseGAUS() ? + yc[n] = recoParam->UseGAUS() ? c->GetYloc(y0, sy[n], GetPadWidth()): c->GetY(); zc[n] = c->GetZ(); - //optional tilt correction - if(tilt) yc[n] -= (GetTilt()*(zc[n] - zt)); + //optional r-phi correction + //printf(" n[%2d] yc[%7.5f] ", n, yc[n]); + Float_t correction(0.); + if(tilt) correction = fPad[2]*(xc[n]*dzdx + zc[n] - z0); + else if(pseudo) correction = fPad[2]*(xc[n]*fZfit[1] + zc[n]-fZfit[0]); + yc[n]-=correction; + //printf("corr(%s%s)[%7.5f] yc1[%7.5f]\n", (tilt?"TC":""), (zcorr?"PC":""), correction, yc[n]); + + AliDebug(5, Form(" tb[%2d] dx[%6.3f] y[%6.2f+-%6.3f]", c->GetLocalTimeBin(), xc[n], yc[n], sy[n])); fitterY.AddPoint(&xc[n], yc[n], sy[n]); - if(IsRowCross()) fitterZ.AddPoint(&xc[n], qc[n], 1.); + if(rc) fitterZ.AddPoint(&xc[n], qc[n]*(ic AliTRDgeometry::CamHght()+AliTRDgeometry::CdrHght()){ AliDebug(1, Form("Ref radial position ouside chamber x[%5.2f].", fX)); - SetErrorMsg(kFitOutside); + SetErrorMsg(kFitFailedY); return kFALSE; } - // collect second row clusters - Int_t m(0); - if(IsRowCross()){ -/* // THE LEADING CLUSTER METHOD +/* // THE LEADING CLUSTER METHOD for z fit Float_t xMin = fX0; Int_t ic=n=kNclusters-1; jc = &fClusters[ic]; AliTRDcluster *c0 =0x0, **kc = &fClusters[kNtb-1]; @@ -1404,297 +2136,278 @@ Bool_t AliTRDseedV1::Fit(Bool_t tilt, Bool_t zcorr) fS2Z = fdX*fZref[1]; fS2Z *= fS2Z; fS2Z *= 0.2887; // 1/sqrt(12)*/ - // THE FIT X-Q PLANE METHOD - Int_t ic=n=kNclusters-1; jc = &fClusters[ic]; - for(; ic>kNtb; ic--, --jc){ - if(!(c = (*jc))) continue; - if(!c->IsInChamber()) continue; - qc[n] = TMath::Abs(c->GetQ()); - xc[n] = fX0 - c->GetX(); - zc[n] = c->GetZ(); - fitterZ.AddPoint(&xc[n], -qc[n], 1.); - n--;m++; - } - } - // fit XZ - if(m && IsRowCross()){ - fitterZ.Eval(); - if(fitterZ.GetFunctionParameter(1)!=0.){ - fX = -fitterZ.GetFunctionParameter(0)/fitterZ.GetFunctionParameter(1); - fX=(fX<0.)?0.:fX; - Float_t dl = .5*AliTRDgeometry::CamHght()+AliTRDgeometry::CdrHght(); - fX=(fX> dl)?dl:fX; - fX-=.055; // TODO to be understood + // fit QZ + if(opt!=1 && IsRowCross()){ + if(!fitterZ.Eval()) SetErrorMsg(kFitFailedZ); + if(!HasError(kFitFailedZ) && TMath::Abs(fitterZ.GetFunctionParameter(1))>1.e-10){ + // TODO - one has to recalculate xy fit based on + // better knowledge of z position +// Double_t x = -fitterZ.GetFunctionParameter(0)/fitterZ.GetFunctionParameter(1); +// Double_t z0 = .5*(zc[0]+zc[n-1]); +// fZfit[0] = z0 + fZfit[1]*x; +// fZfit[1] = fZfit[0]/fX0; +// redo fit on xy plane } - - fZfit[0] = .5*(zc[0]+zc[kNclusters-1]); fZfit[1] = 0.; // temporary external error parameterization fS2Z = 0.05+0.4*TMath::Abs(fZref[1]); fS2Z *= fS2Z; // TODO correct formula //fS2Z = sigma_x*TMath::Abs(fZref[1]); } else { - if(IsRowCross() && !m){ - AliDebug(1, "Tracklet crossed row but no clusters found in neighbor row."); - } - fZfit[0] = zc[0]; fZfit[1] = 0.; + //fZfit[0] = zc[0] + dzdx*0.5*AliTRDgeometry::CdrHght(); fS2Z = GetPadLength()*GetPadLength()/12.; } - fS2Y = fCov[0] +2.*fX*fCov[1] + fX*fX*fCov[2]; return kTRUE; } -/* -//_____________________________________________________________________________ -void AliTRDseedV1::FitMI() +//____________________________________________________________________ +Bool_t AliTRDseedV1::FitRobust(AliTRDpadPlane *pp, Bool_t sgn, Int_t chg, Int_t opt) { // -// Fit the seed. -// Marian Ivanov's version +// Linear fit of the clusters attached to the tracklet +// The fit is performed in local chamber coordinates (27.11.2013) to take into account correctly the misalignment +// Also the pad row cross is checked here and some background is removed // -// linear fit on the y direction with respect to the reference direction. -// The residuals for each x (x = xc - x0) are deduced from: -// dy = y - yt (1) -// the tilting correction is written : -// y = yc + h*(zc-zt) (2) -// yt = y0+dy/dx*x (3) -// zt = z0+dz/dx*x (4) -// from (1),(2),(3) and (4) -// dy = yc - y0 - (dy/dx + h*dz/dx)*x + h*(zc-z0) -// the last term introduces the correction on y direction due to tilting pads. There are 2 ways to account for this: -// 1. use tilting correction for calculating the y -// 2. neglect tilting correction here and account for it in the error parametrization of the tracklet. - const Float_t kRatio = 0.8; - const Int_t kClmin = 5; - const Float_t kmaxtan = 2; - - if (TMath::Abs(fYref[1]) > kmaxtan){ - //printf("Exit: Abs(fYref[1]) = %3.3f, kmaxtan = %3.3f\n", TMath::Abs(fYref[1]), kmaxtan); - return; // Track inclined too much - } - - Float_t sigmaexp = 0.05 + TMath::Abs(fYref[1] * 0.25); // Expected r.m.s in y direction - Float_t ycrosscor = GetPadLength() * GetTilt() * 0.5; // Y correction for crossing - Int_t fNChange = 0; - - Double_t sumw; - Double_t sumwx; - Double_t sumwx2; - Double_t sumwy; - Double_t sumwxy; - Double_t sumwz; - Double_t sumwxz; - - // Buffering: Leave it constant fot Performance issues - Int_t zints[kNtb]; // Histograming of the z coordinate - // Get 1 and second max probable coodinates in z - Int_t zouts[2*kNtb]; - Float_t allowedz[kNtb]; // Allowed z for given time bin - Float_t yres[kNtb]; // Residuals from reference - //Float_t anglecor = GetTilt() * fZref[1]; // Correction to the angle - - Float_t pos[3*kNtb]; memset(pos, 0, 3*kNtb*sizeof(Float_t)); - Float_t *fX = &pos[0], *fY = &pos[kNtb], *fZ = &pos[2*kNtb]; +// Author +// A.Bercuci + + TTreeSRedirector *pstreamer(NULL); + const AliTRDrecoParam* const recoParam = fkReconstructor->GetRecoParam(); + if( (recoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 3 && fkReconstructor->IsDebugStreaming()) || + AliTRDReconstructor::GetStreamLevel()>3 ) pstreamer = fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); + + // factor to scale y pulls. + // ideally if error parametrization correct this is 1. + //Float_t lyScaler = 1./(AliTRDgeometry::GetLayer(fDet)+1.); + Float_t kScalePulls = 1.; + AliTRDcalibDB *calibration = AliTRDcalibDB::Instance(); + if(!calibration){ + AliWarning("No access to calibration data"); + } else { + // Retrieve the CDB container class with the parametric likelihood + const AliTRDCalTrkAttach *attach = calibration->GetAttachObject(); + if(!attach){ + AliWarning("No usable AttachClusters calib object."); + } else { + //kScalePulls = attach->GetScaleCov();//*lyScaler; + } + // Retrieve chamber status + SetChmbGood(calibration->IsChamberGood(fDet)); + if(!IsChmbGood()) kScalePulls*=10.; + } + AliTRDCommonParam *cp = AliTRDCommonParam::Instance(); + Double_t freq(cp?cp->GetSamplingFrequency():10.); + + // evaluate locally z and dzdx from TRD only information + if(EstimatedCrossPoint(pp)<0.) return kFALSE; - Int_t fN = 0; AliTRDcluster *c = 0x0; - fN2 = 0; - for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) { - yres[i] = 10000.0; - if (!(c = fClusters[i])) continue; + //printf("D%03d RC[%c] dzdx[%f %f] opt[%d]\n", fDet, IsRowCross()?'y':'n', fZref[1], fZfit[1], opt); + Double_t //xchmb = 0.5 * AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick(), + //zchmb = 0.5 * (pp->GetRow0() + pp->GetRowEnd()), + z0(0.5 * (pp->GetRow0() + pp->GetRowEnd()) + fZfit[0]), + DZ(pp->GetRow0() - pp->GetRowEnd() - pp->GetAnodeWireOffset() + fZfit[0]), + z, d(-1.); + Double_t xc[kNclusters], yc[kNclusters], dz(0.), dzdx(0.), + s2dz(0.), s2dzdx(0.), sy[kNclusters], + s2x((8.33e-2/freq/freq+1.56e-2)*fVD*fVD), // error of 1tb + error of mean time (TRF) + t2(fPad[2]*fPad[2]), + cs(0.); + Int_t n(0), // clusters used in fit + row[]={-1, -1},// pad row spanned by the tracklet + col(-1); // pad column of current cluster + Double_t ycorr(UnbiasY(IsRowCross(), sgn, chg)), + kS2Ycorr(recoParam->GetS2Ycorr(sgn)); + + AliTRDcluster *c(NULL), **jc = &fClusters[0]; + for(Int_t ic=0; icIsInChamber()) continue; - // Residual y - //yres[i] = fY[i] - fYref[0] - (fYref[1] + anglecor) * fX[i] + GetTilt()*(fZ[i] - fZref[0]); - fX[i] = fX0 - c->GetX(); - fY[i] = c->GetY(); - fZ[i] = c->GetZ(); - yres[i] = fY[i] - GetTilt()*(fZ[i] - (fZref[0] - fX[i]*fZref[1])); - zints[fN] = Int_t(fZ[i]); - fN++; - } - - if (fN < kClmin){ - //printf("Exit fN < kClmin: fN = %d\n", fN); - return; - } - Int_t nz = AliTRDtrackerV1::Freq(fN, zints, zouts, kFALSE); - Float_t fZProb = zouts[0]; - if (nz <= 1) zouts[3] = 0; - if (zouts[1] + zouts[3] < kClmin) { - //printf("Exit zouts[1] = %d, zouts[3] = %d\n",zouts[1],zouts[3]); - return; - } - - // Z distance bigger than pad - length - if (TMath::Abs(zouts[0]-zouts[2]) > 12.0) zouts[3] = 0; - - Int_t breaktime = -1; - Bool_t mbefore = kFALSE; - Int_t cumul[kNtb][2]; - Int_t counts[2] = { 0, 0 }; - - if (zouts[3] >= 3) { - - // - // Find the break time allowing one chage on pad-rows - // with maximal number of accepted clusters - // - fNChange = 1; - for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) { - cumul[i][0] = counts[0]; - cumul[i][1] = counts[1]; - if (TMath::Abs(fZ[i]-zouts[0]) < 2) counts[0]++; - if (TMath::Abs(fZ[i]-zouts[2]) < 2) counts[1]++; + if(row[0]<0){ + row[0] = c->GetPadRow(); + z = pp->GetRowPos(row[0]) - 0.5*pp->GetRowSize(row[0]); + switch(opt){ + case 0: // no dz correction (only for RC tracklet) and dzdx from chamber position assuming primary + dzdx = IsRowCross()?fZfit[1]:0.; + s2dzdx= IsRowCross()?GetS2DZDX(dzdx):0.; + dz = IsRowCross()?(z - z0):0.; + s2dz = IsRowCross()?fS2Z:0.; + break; + case 1: // dz correction only for RC tracklet and dzdx from reference + dzdx = fZref[1]; + dz = IsRowCross()?(z - z0):0.; + break; + case 2: // full z correction (z0 & dzdx from reference) + dzdx = fZref[1]; + dz = c->GetZ()-fZref[0]; + break; + default: + AliError(Form("Wrong option fit %d !", opt)); + break; + } } - Int_t maxcount = 0; - for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) { - Int_t after = cumul[AliTRDtrackerV1::GetNTimeBins()][0] - cumul[i][0]; - Int_t before = cumul[i][1]; - if (after + before > maxcount) { - maxcount = after + before; - breaktime = i; - mbefore = kFALSE; - } - after = cumul[AliTRDtrackerV1::GetNTimeBins()-1][1] - cumul[i][1]; - before = cumul[i][0]; - if (after + before > maxcount) { - maxcount = after + before; - breaktime = i; - mbefore = kTRUE; - } + if(col != c->GetPadCol()){ + col = c->GetPadCol(); + cs = pp->GetColSize(col); } - breaktime -= 1; - } - - for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { - if (i > breaktime) allowedz[i] = mbefore ? zouts[2] : zouts[0]; - if (i <= breaktime) allowedz[i] = (!mbefore) ? zouts[2] : zouts[0]; - } - - if (((allowedz[0] > allowedz[AliTRDtrackerV1::GetNTimeBins()]) && (fZref[1] < 0)) || - ((allowedz[0] < allowedz[AliTRDtrackerV1::GetNTimeBins()]) && (fZref[1] > 0))) { - // - // Tracklet z-direction not in correspondance with track z direction - // - fNChange = 0; - for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { - allowedz[i] = zouts[0]; // Only longest taken - } - } - - if (fNChange > 0) { - // - // Cross pad -row tracklet - take the step change into account - // - for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { - if (!fClusters[i]) continue; - if(!fClusters[i]->IsInChamber()) continue; - if (TMath::Abs(fZ[i] - allowedz[i]) > 2) continue; - // Residual y - //yres[i] = fY[i] - fYref[0] - (fYref[1] + anglecor) * fX[i] + GetTilt()*(fZ[i] - fZref[0]); - yres[i] = fY[i] - GetTilt()*(fZ[i] - (fZref[0] - fX[i]*fZref[1])); -// if (TMath::Abs(fZ[i] - fZProb) > 2) { -// if (fZ[i] > fZProb) yres[i] += GetTilt() * GetPadLength(); -// if (fZ[i] < fZProb) yres[i] -= GetTilt() * GetPadLength(); - } + //Use local cluster coordinates - the code should be identical with AliTRDtransform::Transform() !!! + //A.Bercuci 27.11.13 + xc[n] = c->GetXloc(fT0, fVD); // c->GetX(); + yc[n] = c->GetYloc(pp->GetColPos(col) + .5*cs, fS2PRF, cs) - xc[n]*fExB; //c->GetY(); + yc[n]-= fPad[2]*(dz+xc[n]*dzdx); + yc[n]-= ycorr; + if(IsRowCross()){ // estimate closest distance to anode wire + d = DZ-xc[n]*dzdx; + d -= ((Int_t)(2 * d)) / 2.0; + if (d > 0.25) d = 0.5 - d; } + // recalculate cluster error from knowledge of the track inclination in the bending plane + // and eventually distance to anode wire + c->SetSigmaY2(fS2PRF, fDiffT, fExB, xc[n], d, fYref[1]); + s2x = c->GetSX(c->GetLocalTimeBin(), d); s2x*=s2x; + sy[n] = c->GetSigmaY2()>0?(TMath::Min(Double_t(c->GetSigmaY2()), 6.4e-3)):6.4e-3; + sy[n]+= t2*(s2dz+xc[n]*xc[n]*s2dzdx+dzdx*dzdx*s2x); + sy[n] = TMath::Sqrt(sy[n]); + n++; } - - Double_t yres2[kNtb]; - Double_t mean; - Double_t sigma; - for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { - if (!fClusters[i]) continue; - if(!fClusters[i]->IsInChamber()) continue; - if (TMath::Abs(fZ[i] - allowedz[i]) > 2) continue; - yres2[fN2] = yres[i]; - fN2++; - } - if (fN2 < kClmin) { - //printf("Exit fN2 < kClmin: fN2 = %d\n", fN2); - fN2 = 0; - return; + for(Int_t ic=kNtb; icIsInChamber()) continue; + if(row[1]<0){ + row[1] = c->GetPadRow(); + z = pp->GetRowPos(row[1]) - 0.5*pp->GetRowSize(row[1]); + switch(opt){ + case 0: // no dz correction (only for RC tracklet) and dzdx from chamber position assuming primary + //dzdx = fZfit[1]; + dz = z - z0; + break; + case 1: // dz correction only for RC tracklet and dzdx from reference + //dzdx = fZref[1]; + dz = z - z0; + break; + case 2: // full z correction (z0 & dzdx from reference) + //dzdx = fZref[1]; + dz = c->GetZ()-fZref[0]; + break; + default: + AliError(Form("Wrong option fit %d !", opt)); + break; + } + } + if(col != c->GetPadCol()){ + col = c->GetPadCol(); + cs = pp->GetColSize(col); + } + //Use local cluster coordinates - the code should be identical with AliTRDtransform::Transform() !!! + //A.Bercuci 27.11.13 + xc[n] = c->GetXloc(fT0, fVD); // c->GetX(); + yc[n] = c->GetYloc(pp->GetColPos(col) + .5*cs, fS2PRF, cs) - xc[n]*fExB ; + yc[n]-= fPad[2]*(dz+xc[n]*dzdx); + yc[n]-= ycorr; + + d = DZ-xc[n]*dzdx; + d -= ((Int_t)(2 * d)) / 2.0; + if (d > 0.25) d = 0.5 - d; + c->SetSigmaY2(fS2PRF, fDiffT, fExB, xc[n], d, fYref[1]); + s2x = c->GetSX(c->GetLocalTimeBin(), d); s2x*=s2x; + sy[n] = c->GetSigmaY2()>0?(TMath::Min(Double_t(c->GetSigmaY2()), 6.4e-3)):6.4e-3; + sy[n]+= t2*(s2dz+xc[n]*xc[n]*s2dzdx+dzdx*dzdx*s2x); + sy[n] = TMath::Sqrt(sy[n]); + n++; } - AliMathBase::EvaluateUni(fN2,yres2,mean,sigma, Int_t(fN2*kRatio-2.)); - if (sigma < sigmaexp * 0.8) { - sigma = sigmaexp; - } - //Float_t fSigmaY = sigma; - - // Reset sums - sumw = 0; - sumwx = 0; - sumwx2 = 0; - sumwy = 0; - sumwxy = 0; - sumwz = 0; - sumwxz = 0; - - fN2 = 0; - Float_t fMeanz = 0; - Float_t fMPads = 0; - fUsable = 0; - for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { - if (!fClusters[i]) continue; - if (!fClusters[i]->IsInChamber()) continue; - if (TMath::Abs(fZ[i] - allowedz[i]) > 2){fClusters[i] = 0x0; continue;} - if (TMath::Abs(yres[i] - mean) > 4.0 * sigma){fClusters[i] = 0x0; continue;} - SETBIT(fUsable,i); - fN2++; - fMPads += fClusters[i]->GetNPads(); - Float_t weight = 1.0; - if (fClusters[i]->GetNPads() > 4) weight = 0.5; - if (fClusters[i]->GetNPads() > 5) weight = 0.2; - - - Double_t x = fX[i]; - //printf("x = %7.3f dy = %7.3f fit %7.3f\n", x, yres[i], fY[i]-yres[i]); - - sumw += weight; - sumwx += x * weight; - sumwx2 += x*x * weight; - sumwy += weight * yres[i]; - sumwxy += weight * (yres[i]) * x; - sumwz += weight * fZ[i]; - sumwxz += weight * fZ[i] * x; + UChar_t status(0); + // the ref radial position is set close to the minimum of + // the y variance of the tracklet + fX = 0.;//set reference to anode wire + Double_t par[3] = {0.,0.,fX}, cov[3]; + if(!AliTRDtrackletOflHelper::Fit(n, xc, yc, sy, par, 1.5, cov)){ + AliDebug(1, Form("Tracklet fit failed D[%03d].", fDet)); + SetErrorMsg(kFitCl); + return kFALSE; } - - if (fN2 < kClmin){ - //printf("Exit fN2 < kClmin(2): fN2 = %d\n",fN2); - fN2 = 0; - return; + fYfit[0] = par[0] - fX * par[1]; + fYfit[1] = -par[1]; + //printf(" yfit: %f [%f] x[%e] dydx[%f]\n", fYfit[0], par[0], fX, par[1]); + // store covariance + fCov[0] = kS2Ycorr*cov[0]; // variance of y0 + fCov[1] = kScalePulls*cov[2]; // covariance of y0, dydx + fCov[2] = kScalePulls*cov[1]; // variance of dydx + // check radial position + Float_t xs=fX+.5*AliTRDgeometry::CamHght(); + if(xs < 0. || xs > AliTRDgeometry::CamHght()+AliTRDgeometry::CdrHght()){ + AliDebug(1, Form("Ref radial position x[%5.2f] ouside D[%3d].", fX, fDet)); + SetErrorMsg(kFitFailedY); + return kFALSE; } - fMeanz = sumwz / sumw; - Float_t correction = 0; - if (fNChange > 0) { - // Tracklet on boundary - if (fMeanz < fZProb) correction = ycrosscor; - if (fMeanz > fZProb) correction = -ycrosscor; + if(!IsRowCross()){ + Double_t padEffLength(fPad[0] - TMath::Abs(dzdx)); + fS2Z = padEffLength*padEffLength/12.; } - - Double_t det = sumw * sumwx2 - sumwx * sumwx; - fYfit[0] = (sumwx2 * sumwy - sumwx * sumwxy) / det; - fYfit[1] = (sumw * sumwxy - sumwx * sumwy) / det; - - fS2Y = 0; - for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { - if (!TESTBIT(fUsable,i)) continue; - Float_t delta = yres[i] - fYfit[0] - fYfit[1] * fX[i]; - fS2Y += delta*delta; - } - fS2Y = TMath::Sqrt(fS2Y / Float_t(fN2-2)); - // TEMPORARY UNTIL covariance properly calculated - fS2Y = TMath::Max(fS2Y, Float_t(.1)); + AliDebug(2, Form("[I] x[cm]=%6.2f y[cm]=%+5.2f z[cm]=%+6.2f dydx[deg]=%+5.2f", GetX(), GetY(), GetZ(), TMath::ATan(fYfit[1])*TMath::RadToDeg())); - fZfit[0] = (sumwx2 * sumwz - sumwx * sumwxz) / det; - fZfit[1] = (sumw * sumwxz - sumwx * sumwz) / det; -// fYfitR[0] += fYref[0] + correction; -// fYfitR[1] += fYref[1]; -// fYfit[0] = fYfitR[0]; - fYfit[1] = -fYfit[1]; + if(pstreamer){ + Float_t x= fX0 -fX, + y = GetY(), + yt = fYref[0]-fX*fYref[1]; + SETBIT(status, 2); + TVectorD vcov(3); vcov[0]=cov[0];vcov[1]=cov[1];vcov[2]=cov[2]; + Double_t sm(0.), chi2(0.), tmp, dy[kNclusters]; + for(Int_t ic(0); icLocalToMaster(loc, trk); + fX0 = trk[0]; + fY = trk[1]; + fZ = trk[2]; + return; +// if(!IsRowCross()){/*fZfit[1] *= 1.09;*/ return;} +// // recalculate local z coordinate assuming primary track for row cross tracklets +// Double_t zoff(fZ-fZfit[0]); // no alignment aware ! +// //printf("SetXYZ : zoff[%f] zpp[%f]\n", zoff, zpp); +// fZfit[0] = fX0*fZfit[1] - zoff; +// // recalculate tracking coordinates based on the new z coordinate +// loc[2] = fZfit[0]; +// mDet->LocalToMaster(loc, trk); +// fX0 = trk[0]; +// fY = trk[1]; +// fZ = trk[2];//-zcorr[stk]; + //fZfit[1] = /*(IsRowCross()?1.05:1.09)**/fZ/(fX0-fS2Y); +} - UpdateUsed(); -}*/ //___________________________________________________________________ void AliTRDseedV1::Print(Option_t *o) const @@ -1712,8 +2425,9 @@ void AliTRDseedV1::Print(Option_t *o) const GetCovAt(x, cov); AliInfo(" | x[cm] | y[cm] | z[cm] | dydx | dzdx |"); AliInfo(Form("Fit | %7.2f | %7.2f+-%7.2f | %7.2f+-%7.2f| %5.2f | ----- |", x, GetY(), TMath::Sqrt(cov[0]), GetZ(), TMath::Sqrt(cov[2]), fYfit[1])); - AliInfo(Form("Ref | %7.2f | %7.2f+-%7.2f | %7.2f+-%7.2f| %5.2f | %5.2f |", x, fYref[0]-fX*fYref[1], TMath::Sqrt(fRefCov[0]), fZref[0]-fX*fYref[1], TMath::Sqrt(fRefCov[2]), fYref[1], fZref[1])) + AliInfo(Form("Ref | %7.2f | %7.2f+-%7.2f | %7.2f+-%7.2f| %5.2f | %5.2f |", x, fYref[0]-fX*fYref[1], TMath::Sqrt(fRefCov[0]), fZref[0]-fX*fYref[1], TMath::Sqrt(fRefCov[2]), fYref[1], fZref[1])); AliInfo(Form("P / Pt [GeV/c] = %f / %f", GetMomentum(), fPt)); + if(IsStandAlone()) AliInfo(Form("C Rieman / Vertex [1/cm] = %f / %f", fC[0], fC[1])); AliInfo(Form("dEdx [a.u.] = %f / %f / %f / %f / %f/ %f / %f / %f", fdEdx[0], fdEdx[1], fdEdx[2], fdEdx[3], fdEdx[4], fdEdx[5], fdEdx[6], fdEdx[7])); AliInfo(Form("PID = %5.3f / %5.3f / %5.3f / %5.3f / %5.3f", fProb[0], fProb[1], fProb[2], fProb[3], fProb[4])); @@ -1742,9 +2456,9 @@ Bool_t AliTRDseedV1::IsEqual(const TObject *o) const if ( fZref[i] != inTracklet->fZref[i] ) return kFALSE; } - if ( fS2Y != inTracklet->fS2Y ) return kFALSE; - if ( GetTilt() != inTracklet->GetTilt() ) return kFALSE; - if ( GetPadLength() != inTracklet->GetPadLength() ) return kFALSE; + if ( TMath::Abs(fS2Y - inTracklet->fS2Y)>1.e-10 ) return kFALSE; + if ( TMath::Abs(GetTilt() - inTracklet->GetTilt())>1.e-10 ) return kFALSE; + if ( TMath::Abs(GetPadLength() - inTracklet->GetPadLength())>1.e-10 ) return kFALSE; for (Int_t i = 0; i < kNclusters; i++){ // if ( fX[i] != inTracklet->GetX(i) ) return kFALSE; @@ -1767,14 +2481,14 @@ Bool_t AliTRDseedV1::IsEqual(const TObject *o) const //if ( fFreq != inTracklet->GetFreq() ) return kFALSE; //if ( fNChange != inTracklet->GetNChange() ) return kFALSE; - if ( fC != inTracklet->fC ) return kFALSE; + if ( TMath::Abs(fC[0] - inTracklet->fC[0])>1.e-10 ) return kFALSE; //if ( fCC != inTracklet->GetCC() ) return kFALSE; - if ( fChi2 != inTracklet->fChi2 ) return kFALSE; + if ( TMath::Abs(fChi2 - inTracklet->fChi2)>1.e-10 ) return kFALSE; // if ( fChi2Z != inTracklet->GetChi2Z() ) return kFALSE; if ( fDet != inTracklet->fDet ) return kFALSE; - if ( fPt != inTracklet->fPt ) return kFALSE; - if ( fdX != inTracklet->fdX ) return kFALSE; + if ( TMath::Abs(fPt - inTracklet->fPt)>1.e-10 ) return kFALSE; + if ( TMath::Abs(fdX - inTracklet->fdX)>1.e-10 ) return kFALSE; for (Int_t iCluster = 0; iCluster < kNclusters; iCluster++){ AliTRDcluster *curCluster = fClusters[iCluster];