X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=TRD%2FAliTRDseedV1.cxx;h=ddbb5fd4d409924764d4bed4b26c0860d9ff58e2;hb=521ea43e8b0b7e33fd44d326744daaaa5caa4cb5;hp=ec20f459f8c6ee64b6cc205338b221ee7b518180;hpb=dd8059a8280f2263b0fac39748161731b378d465;p=u%2Fmrichter%2FAliRoot.git diff --git a/TRD/AliTRDseedV1.cxx b/TRD/AliTRDseedV1.cxx index ec20f459f8c..ddbb5fd4d40 100644 --- a/TRD/AliTRDseedV1.cxx +++ b/TRD/AliTRDseedV1.cxx @@ -36,16 +36,17 @@ //////////////////////////////////////////////////////////////////////////// #include "TMath.h" -#include "TLinearFitter.h" -#include "TClonesArray.h" // tmp -#include +#include "TTreeStream.h" +#include "TGraphErrors.h" #include "AliLog.h" #include "AliMathBase.h" +#include "AliRieman.h" #include "AliCDBManager.h" -#include "AliTracker.h" +#include "AliTRDReconstructor.h" #include "AliTRDpadPlane.h" +#include "AliTRDtransform.h" #include "AliTRDcluster.h" #include "AliTRDseedV1.h" #include "AliTRDtrackV1.h" @@ -53,21 +54,24 @@ #include "AliTRDchamberTimeBin.h" #include "AliTRDtrackingChamber.h" #include "AliTRDtrackerV1.h" -#include "AliTRDReconstructor.h" #include "AliTRDrecoParam.h" #include "AliTRDCommonParam.h" +#include "AliTRDtrackletOflHelper.h" +#include "Cal/AliTRDCalTrkAttach.h" #include "Cal/AliTRDCalPID.h" #include "Cal/AliTRDCalROC.h" #include "Cal/AliTRDCalDet.h" +class AliTracker; + ClassImp(AliTRDseedV1) //____________________________________________________________________ AliTRDseedV1::AliTRDseedV1(Int_t det) :AliTRDtrackletBase() - ,fReconstructor(0x0) - ,fClusterIter(0x0) + ,fkReconstructor(NULL) + ,fClusterIter(NULL) ,fExB(0.) ,fVD(0.) ,fT0(0.) @@ -75,9 +79,10 @@ AliTRDseedV1::AliTRDseedV1(Int_t det) ,fDiffL(0.) ,fDiffT(0.) ,fClusterIdx(0) + ,fErrorMsg(0) ,fN(0) ,fDet(det) - ,fMom(0.) + ,fPt(0.) ,fdX(0.) ,fX0(0.) ,fX(0.) @@ -85,15 +90,14 @@ AliTRDseedV1::AliTRDseedV1(Int_t det) ,fZ(0.) ,fS2Y(0.) ,fS2Z(0.) - ,fC(0.) ,fChi2(0.) { // // Constructor // - for(Int_t ic=kNclusters; ic--;) fIndexes[ic] = -1; + memset(fIndexes,0xFF,kNclusters*sizeof(fIndexes[0])); memset(fClusters, 0, kNclusters*sizeof(AliTRDcluster*)); - memset(fPad, 0, 3*sizeof(Float_t)); + memset(fPad, 0, 4*sizeof(Float_t)); fYref[0] = 0.; fYref[1] = 0.; fZref[0] = 0.; fZref[1] = 0.; fYfit[0] = 0.; fYfit[1] = 0.; @@ -102,7 +106,9 @@ AliTRDseedV1::AliTRDseedV1(Int_t det) for(int ispec=0; ispecGetZat(fX0); + fZref[1] = rieman->GetDZat(fX0); + fYref[0] = rieman->GetYat(fX0); + fYref[1] = rieman->GetDYat(fX0); + if(fkReconstructor && fkReconstructor->IsHLT()){ + fRefCov[0] = 1; + fRefCov[2] = 10; + }else{ + fRefCov[0] = rieman->GetErrY(fX0); + fRefCov[2] = rieman->GetErrZ(fX0); + } + fC[0] = rieman->GetC(); + fChi2 = rieman->GetChi2(); +} + + //____________________________________________________________ Bool_t AliTRDseedV1::Init(AliTRDtrackV1 *track) { @@ -247,30 +276,34 @@ Bool_t AliTRDseedV1::Init(AliTRDtrackV1 *track) Double_t y, z; if(!track->GetProlongation(fX0, y, z)) return kFALSE; - UpDate(track); + Update(track); return kTRUE; } //_____________________________________________________________________________ -void AliTRDseedV1::Reset() +void AliTRDseedV1::Reset(Option_t *opt) { - // - // Reset seed - // +// +// Reset seed. If option opt="c" is given only cluster arrays are cleared. +// + for(Int_t ic=kNclusters; ic--;) fIndexes[ic] = -1; + memset(fClusters, 0, kNclusters*sizeof(AliTRDcluster*)); + fN=0; SetBit(kRowCross, kFALSE); + if(strcmp(opt, "c")==0) return; + fExB=0.;fVD=0.;fT0=0.;fS2PRF=0.; fDiffL=0.;fDiffT=0.; fClusterIdx=0; - fN=0; + fErrorMsg = 0; fDet=-1; - fMom=0.; + fPt=0.; fdX=0.;fX0=0.; fX=0.; fY=0.; fZ=0.; fS2Y=0.; fS2Z=0.; - fC=0.; fChi2 = 0.; + fC[0]=0.; fC[1]=0.; + fChi2 = 0.; - for(Int_t ic=kNclusters; ic--;) fIndexes[ic] = -1; - memset(fClusters, 0, kNclusters*sizeof(AliTRDcluster*)); - memset(fPad, 0, 3*sizeof(Float_t)); + memset(fPad, 0, 4*sizeof(Float_t)); fYref[0] = 0.; fYref[1] = 0.; fZref[0] = 0.; fZref[1] = 0.; fYfit[0] = 0.; fYfit[1] = 0.; @@ -279,23 +312,23 @@ void AliTRDseedV1::Reset() for(int ispec=0; ispecGetSnp(); Double_t fTgl = trk->GetTgl(); - fMom = trk->GetP(); - fYref[1] = fSnp/(1. - fSnp*fSnp); - fZref[1] = fTgl; + fPt = trk->Pt(); + Double_t norm =1./TMath::Sqrt((1.-fSnp)*(1.+fSnp)); + fYref[1] = fSnp*norm; + fZref[1] = fTgl*norm; SetCovRef(trk->GetCovariance()); Double_t dx = trk->GetX() - fX0; @@ -345,7 +378,7 @@ void AliTRDseedV1::UseClusters() if((*c)->IsShared() || (*c)->IsUsed()){ if((*c)->IsShared()) SetNShared(GetNShared()-1); else SetNUsed(GetNUsed()-1); - (*c) = 0x0; + (*c) = NULL; fIndexes[ic] = -1; SetN(GetN()-1); continue; @@ -384,44 +417,32 @@ void AliTRDseedV1::CookdEdx(Int_t nslices) // 3. cluster size // - Int_t nclusters[kNslices]; - memset(nclusters, 0, kNslices*sizeof(Int_t)); memset(fdEdx, 0, kNslices*sizeof(Float_t)); - const Double_t kDriftLength = (.5 * AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick()); - AliTRDcluster *c = 0x0; + AliTRDcluster *c(NULL); for(int ic=0; icGetX()); - + // Filter clusters for dE/dx calculation - + // 1.consider calibration effects for slice determination Int_t slice; - if(dxIsInChamber() + if(dxIsInChamber() slice = Int_t(dx * nslices / kDriftLength); } else slice = c->GetX() < fX0 ? nslices-1 : 0; // 2. take sharing into account Float_t w = /*c->IsShared() ? .5 :*/ 1.; - + // 3. take into account large clusters TODO //w *= c->GetNPads() > 3 ? .8 : 1.; - + //CHECK !!! fdEdx[slice] += w * GetdQdl(ic); //fdQdl[ic]; - nclusters[slice]++; } // End of loop over clusters - - //if(fReconstructor->GetPIDMethod() == AliTRDReconstructor::kLQPID){ - if(nslices == AliTRDpidUtil::kLQslices){ - // calculate mean charge per slice (only LQ PID) - for(int is=0; is 1) && (out[3] > 1)) fLabels[1] = out[2]; } +//____________________________________________________________ +Float_t AliTRDseedV1::GetAnodeWireOffset(Float_t zt) +{ +// Find position inside the amplification cell for reading drift velocity map + + Float_t d = fPad[3] - zt; + if(d<0.){ + AliError(Form("Fail AnodeWireOffset calculation z0[%+7.2f] zt[%+7.2f] d[%+7.2f].", fPad[3], zt, d)); + return 0.125; + } + d -= ((Int_t)(2 * d)) / 2.0; + if(d > 0.25) d = 0.5 - d; + return d; +} + //____________________________________________________________________ -void AliTRDseedV1::GetClusterXY(const AliTRDcluster *c, Double_t &x, Double_t &y) +Float_t AliTRDseedV1::GetCharge(Bool_t useOutliers) const { -// Return corrected position of the cluster taking into -// account variation of the drift velocity with drift length. - - - // drift velocity correction TODO to be moved to the clusterizer - const Float_t cx[] = { - -9.6280e-02, 1.3091e-01,-1.7415e-02,-9.9221e-02,-1.2040e-01,-9.5493e-02, - -5.0041e-02,-1.6726e-02, 3.5756e-03, 1.8611e-02, 2.6378e-02, 3.3823e-02, - 3.4811e-02, 3.5282e-02, 3.5386e-02, 3.6047e-02, 3.5201e-02, 3.4384e-02, - 3.2864e-02, 3.1932e-02, 3.2051e-02, 2.2539e-02,-2.5154e-02,-1.2050e-01, - -1.2050e-01 - }; - - // PRF correction TODO to be replaced by the gaussian - // approximation with full error parametrization and // moved to the clusterizer - const Float_t cy[AliTRDgeometry::kNlayer][3] = { - { 4.014e-04, 8.605e-03, -6.880e+00}, - {-3.061e-04, 9.663e-03, -6.789e+00}, - { 1.124e-03, 1.105e-02, -6.825e+00}, - {-1.527e-03, 1.231e-02, -6.777e+00}, - { 2.150e-03, 1.387e-02, -6.783e+00}, - {-1.296e-03, 1.486e-02, -6.825e+00} - }; - - Int_t ily = AliTRDgeometry::GetLayer(c->GetDetector()); - x = c->GetX() - cx[c->GetLocalTimeBin()]; - y = c->GetY() + cy[ily][0] + cy[ily][1] * TMath::Sin(cy[ily][2] * c->GetCenter()); - return; +// Computes total charge attached to tracklet. If "useOutliers" is set clusters +// which are not in chamber are also used (default false) + + AliTRDcluster *c(NULL); Float_t qt(0.); + for(int ic=0; icIsInChamber() && !useOutliers) continue; + qt += TMath::Abs(c->GetQ()); + } + return qt; } //____________________________________________________________________ -Float_t AliTRDseedV1::GetdQdl(Int_t ic) const +Bool_t AliTRDseedV1::GetEstimatedCrossPoint(Float_t &x, Float_t &z) const +{ +// Algorithm to estimate cross point in the x-z plane for pad row cross tracklets. +// Returns true in case of success. + if(!IsRowCross()) return kFALSE; + + x=0.; z=0.; + AliTRDcluster *c(NULL); + // Find radial range for first row + Float_t x1[] = {0., 1.e3}; + for(int ic=0; icIsInChamber()) continue; + if(c->GetX() <= x1[1]) x1[1] = c->GetX(); + if(c->GetX() >= x1[0]) x1[0] = c->GetX(); + z=c->GetZ(); + } + if((x1[0] - x1[1])<1.e-5) return kFALSE; + + // Find radial range for second row + Bool_t kZ(kFALSE); + Float_t x2[] = {0., 1.e3}; + for(int ic=kNtb; icIsInChamber()) continue; + if(c->GetX() <= x2[1]) x2[1] = c->GetX(); + if(c->GetX() >= x2[0]) x2[0] = c->GetX(); + if(!kZ){ + z+=c->GetZ(); + z*=0.5; + kZ=kTRUE; + } + } + if((x2[0] - x2[1])<1.e-5) return kFALSE; + + // Find intersection of the 2 radial regions + x = 0.5*((x1[0]+x1[1] > x2[0]+x2[1]) ? (x1[1]+x2[0]) : (x1[0]+x2[1])); + return kTRUE; +} + +//____________________________________________________________________ +Float_t AliTRDseedV1::GetdQdl() const +{ +// Calculate total charge / tracklet length for 1D PID +// + Float_t Q = GetCharge(kTRUE); + return Q/TMath::Sqrt(1. + fYref[1]*fYref[1] + fZref[1]*fZref[1]); +} + +//____________________________________________________________________ +Float_t AliTRDseedV1::GetdQdl(Int_t ic, Float_t *dl) const { // Using the linear approximation of the track inside one TRD chamber (TRD tracklet) // the charge per unit length can be written as: // BEGIN_LATEX -// #frac{dq}{dl} = #frac{q_{c}}{dx * #sqrt{1 + #(){#frac{dy}{dx}}^{2}_{fit} + #(){#frac{dy}{dx}}^{2}_{ref}}} +// #frac{dq}{dl} = #frac{q_{c}}{dx * #sqrt{1 + #(){#frac{dy}{dx}}^{2}_{fit} + #(){#frac{dz}{dx}}^{2}_{ref}}} // END_LATEX // where qc is the total charge collected in the current time bin and dx is the length -// of the time bin. For the moment (Jan 20 2009) only pad row cross corrections are -// considered for the charge but none are applied for drift velocity variations along -// the drift region or assymetry of the TRF +// of the time bin. +// The following correction are applied : +// - charge : pad row cross corrections +// [diffusion and TRF assymetry] TODO +// - dx : anisochronity, track inclination - see Fit and AliTRDcluster::GetXloc() +// and AliTRDcluster::GetYloc() for the effects taken into account // +//Begin_Html +// +//End_Html +// In the picture the energy loss measured on the tracklet as a function of drift time [left] and respectively +// drift length [right] for different particle species is displayed. // Author : Alex Bercuci // Float_t dq = 0.; - if(fClusters[ic]) dq += TMath::Abs(fClusters[ic]->GetQ()); - if(fClusters[ic+kNtb]) dq += TMath::Abs(fClusters[ic+kNtb]->GetQ()); - if(dq<1.e-3 || fdX < 1.e-3) return 0.; + // check whether both clusters are inside the chamber + Bool_t hasClusterInChamber = kFALSE; + if(fClusters[ic] && fClusters[ic]->IsInChamber()){ + hasClusterInChamber = kTRUE; + dq += TMath::Abs(fClusters[ic]->GetQ()); + } + if(fClusters[ic+kNtb] && fClusters[ic+kNtb]->IsInChamber()){ + hasClusterInChamber = kTRUE; + dq += TMath::Abs(fClusters[ic+kNtb]->GetQ()); + } + if(!hasClusterInChamber) return 0.; + if(dq<1.e-3) return 0.; + + Double_t dx = fdX; + if(ic-1>=0 && ic+1IsInChamber()) x2 = fClusters[ic-1]->GetX(); + else if(fClusters[ic-1+kNtb] && fClusters[ic-1+kNtb]->IsInChamber()) x2 = fClusters[ic-1+kNtb]->GetX(); + else if(fClusters[ic] && fClusters[ic]->IsInChamber()) x2 = fClusters[ic]->GetX()+fdX; + else x2 = fClusters[ic+kNtb]->GetX()+fdX; + // try to estimate lower radial position (find the cluster which is inside the chamber) + if(fClusters[ic+1] && fClusters[ic+1]->IsInChamber()) x1 = fClusters[ic+1]->GetX(); + else if(fClusters[ic+1+kNtb] && fClusters[ic+1+kNtb]->IsInChamber()) x1 = fClusters[ic+1+kNtb]->GetX(); + else if(fClusters[ic] && fClusters[ic]->IsInChamber()) x1 = fClusters[ic]->GetX()-fdX; + else x1 = fClusters[ic+kNtb]->GetX()-fdX; + + dx = .5*(x2 - x1); + } + dx *= TMath::Sqrt(1. + fYfit[1]*fYfit[1] + fZref[1]*fZref[1]); + if(dl) (*dl) = dx; + if(dx>1.e-9) return dq/dx; + else return 0.; +} + +//____________________________________________________________ +Float_t AliTRDseedV1::GetMomentum(Float_t *err) const +{ +// Returns momentum of the track after update with the current tracklet as: +// BEGIN_LATEX +// p=#frac{1}{1/p_{t}} #sqrt{1+tgl^{2}} +// END_LATEX +// and optionally the momentum error (if err is not null). +// The estimated variance of the momentum is given by: +// BEGIN_LATEX +// #sigma_{p}^{2} = (#frac{dp}{dp_{t}})^{2} #sigma_{p_{t}}^{2}+(#frac{dp}{dtgl})^{2} #sigma_{tgl}^{2}+2#frac{dp}{dp_{t}}#frac{dp}{dtgl} cov(tgl,1/p_{t}) +// END_LATEX +// which can be simplified to +// BEGIN_LATEX +// #sigma_{p}^{2} = p^{2}p_{t}^{4}tgl^{2}#sigma_{tgl}^{2}-2p^{2}p_{t}^{3}tgl cov(tgl,1/p_{t})+p^{2}p_{t}^{2}#sigma_{1/p_{t}}^{2} +// END_LATEX +// - return dq/fdX/TMath::Sqrt(1. + fYfit[1]*fYfit[1] + fZref[1]*fZref[1]); + Double_t p = fPt*TMath::Sqrt(1.+fZref[1]*fZref[1]); + Double_t p2 = p*p; + Double_t tgl2 = fZref[1]*fZref[1]; + Double_t pt2 = fPt*fPt; + if(err){ + Double_t s2 = + p2*tgl2*pt2*pt2*fRefCov[4] + -2.*p2*fZref[1]*fPt*pt2*fRefCov[5] + +p2*pt2*fRefCov[6]; + (*err) = TMath::Sqrt(s2); + } + return p; +} + + +//____________________________________________________________________ +Float_t AliTRDseedV1::GetOccupancyTB() const +{ +// Returns procentage of TB occupied by clusters + + Int_t n(0); + AliTRDcluster *c(NULL); + for(int ic=0; icGetPIDObject(fReconstructor->GetPIDMethod()); + const AliTRDCalPID *pd = calibration->GetPIDObject(fkReconstructor->GetPIDMethod()); if (!pd) { AliError("No access to AliTRDCalPID object"); return kFALSE; } - //AliInfo(Form("Method[%d] : %s", fReconstructor->GetRecoParam() ->GetPIDMethod(), pd->IsA()->GetName())); // calculate tracklet length TO DO - Float_t length = (AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick()); - /// TMath::Sqrt((1.0 - fSnp[iPlane]*fSnp[iPlane]) / (1.0 + fTgl[iPlane]*fTgl[iPlane])); + Float_t length = (AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick())/ TMath::Sqrt((1.0 - GetSnp()*GetSnp()) / (1.0 + GetTgl()*GetTgl())); //calculate dE/dx - CookdEdx(fReconstructor->GetNdEdxSlices()); - - // Sets the a priori probabilities - for(int ispec=0; ispecGetProbability(ispec, fMom, &fdEdx[0], length, GetPlane()); - } + CookdEdx(AliTRDCalPID::kNSlicesNN); + AliDebug(4, Form("p=%6.4f[GeV/c] dEdx{%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f} l=%4.2f[cm]", GetMomentum(), fdEdx[0], fdEdx[1], fdEdx[2], fdEdx[3], fdEdx[4], fdEdx[5], fdEdx[6], fdEdx[7], length)); + // Sets the a priori probabilities + Bool_t kPIDNN(fkReconstructor->GetPIDMethod()==AliTRDpidUtil::kNN); + for(int ispec=0; ispecGetProbability(ispec, GetMomentum(), &fdEdx[0], length, kPIDNN?GetPlane():fkReconstructor->GetRecoParam()->GetPIDLQslices()); + return kTRUE; } @@ -627,20 +783,118 @@ void AliTRDseedV1::GetCovAt(Double_t x, Double_t *cov) const Double_t xr = fX0-x; Double_t sy2 = fCov[0] +2.*xr*fCov[1] + xr*xr*fCov[2]; - Double_t sz2 = GetPadLength()*GetPadLength()/12.; + Double_t sz2 = fS2Z; + //GetPadLength()*GetPadLength()/12.; // insert systematic uncertainties - Double_t sys[15]; - fReconstructor->GetRecoParam()->GetSysCovMatrix(sys); - sy2 += sys[0]; - sz2 += sys[1]; - - // rotate covariance matrix - Double_t t2 = GetTilt()*GetTilt(); - Double_t correction = 1./(1. + t2); - cov[0] = (sy2+t2*sz2)*correction; - cov[1] = GetTilt()*(sz2 - sy2)*correction; - cov[2] = (t2*sy2+sz2)*correction; + if(fkReconstructor){ + Double_t sys[15]; memset(sys, 0, 15*sizeof(Double_t)); + fkReconstructor->GetRecoParam()->GetSysCovMatrix(sys); + sy2 += sys[0]; + sz2 += sys[1]; + } + + // rotate covariance matrix if no RC + if(!IsRowCross()){ + Double_t t2 = GetTilt()*GetTilt(); + Double_t correction = 1./(1. + t2); + cov[0] = (sy2+t2*sz2)*correction; + cov[1] = GetTilt()*(sz2 - sy2)*correction; + cov[2] = (t2*sy2+sz2)*correction; + } else { + cov[0] = sy2; cov[1] = 0.; cov[2] = sy2; + } + + AliDebug(4, Form("C(%6.1f %+6.3f %6.1f) RC[%c]", 1.e4*TMath::Sqrt(cov[0]), cov[1], 1.e4*TMath::Sqrt(cov[2]), IsRowCross()?'y':'n')); +} + +//____________________________________________________________ +Int_t AliTRDseedV1::GetCovSqrt(const Double_t * const c, Double_t *d) +{ +// Helper function to calculate the square root of the covariance matrix. +// The input matrix is stored in the vector c and the result in the vector d. +// Both arrays have to be initialized by the user with at least 3 elements. Return negative in case of failure. +// +// For calculating the square root of the symmetric matrix c +// the following relation is used: +// BEGIN_LATEX +// C^{1/2} = VD^{1/2}V^{-1} +// END_LATEX +// with V being the matrix with the n eigenvectors as columns. +// In case C is symmetric the followings are true: +// - matrix D is diagonal with the diagonal given by the eigenvalues of C +// - V = V^{-1} +// +// Author A.Bercuci +// Date Mar 19 2009 + + const Double_t kZero(1.e-20); + Double_t l[2], // eigenvalues + v[3]; // eigenvectors + // the secular equation and its solution : + // (c[0]-L)(c[2]-L)-c[1]^2 = 0 + // L^2 - L*Tr(c)+DET(c) = 0 + // L12 = [Tr(c) +- sqrt(Tr(c)^2-4*DET(c))]/2 + Double_t tr = c[0]+c[2], // trace + det = c[0]*c[2]-c[1]*c[1]; // determinant + if(TMath::Abs(det)c[2]?-1.:1.)); + l[1] = .5*(tr + dd*(c[0]>c[2]?1.:-1.)); + if(l[0] +// Date Mar 19 2009 + + Double_t det = c[0]*c[2] - c[1]*c[1]; + if(TMath::Abs(det)<1.e-20) return 0.; + Double_t invDet = 1./det; + d[0] = c[2]*invDet; + d[1] =-c[1]*invDet; + d[2] = c[0]*invDet; + return det; +} + +//____________________________________________________________________ +UShort_t AliTRDseedV1::GetVolumeId() const +{ +// Returns geometry volume id by delegation + + for(Int_t ic(0);icGetVolumeId(); + } + return 0; } @@ -688,12 +942,15 @@ void AliTRDseedV1::Calibrate() } } - fT0 = t0Det->GetValue(fDet) + t0ROC->GetValue(col,row); + fT0 = (t0Det->GetValue(fDet) + t0ROC->GetValue(col,row)) / AliTRDCommonParam::Instance()->GetSamplingFrequency(); fVD = vdDet->GetValue(fDet) * vdROC->GetValue(col, row); fS2PRF = calib->GetPRFWidth(fDet, col, row); fS2PRF *= fS2PRF; fExB = AliTRDCommonParam::Instance()->GetOmegaTau(fVD); AliTRDCommonParam::Instance()->GetDiffCoeff(fDiffL, fDiffT, fVD); + AliDebug(4, Form("Calibration params for Det[%3d] Col[%3d] Row[%2d]\n t0[%f] vd[%f] s2PRF[%f] ExB[%f] Dl[%f] Dt[%f]", fDet, col, row, fT0, fVD, fS2PRF, fExB, fDiffL, fDiffT)); + + SetBit(kCalib, kTRUE); } @@ -710,337 +967,710 @@ void AliTRDseedV1::SetOwner() SetBit(kOwner); } -// //____________________________________________________________________ -// Bool_t AliTRDseedV1::AttachClustersIter(AliTRDtrackingChamber *chamber, Float_t quality, Bool_t kZcorr, AliTRDcluster *c) -// { -// // -// // Iterative process to register clusters to the seed. -// // In iteration 0 we try only one pad-row and if quality not -// // sufficient we try 2 pad-rows (about 5% of tracks cross 2 pad-rows) -// // -// // debug level 7 -// // -// -// if(!fReconstructor->GetRecoParam() ){ -// AliError("Seed can not be used without a valid RecoParam."); -// return kFALSE; -// } -// -// AliTRDchamberTimeBin *layer = 0x0; -// if(fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker)>=7){ -// AliTRDtrackingChamber ch(*chamber); -// ch.SetOwner(); -// TTreeSRedirector &cstreamer = *fReconstructor->GetDebugStream(AliTRDReconstructor::kTracker); -// cstreamer << "AttachClustersIter" -// << "chamber.=" << &ch -// << "tracklet.=" << this -// << "\n"; -// } -// -// Float_t tquality; -// Double_t kroady = fReconstructor->GetRecoParam() ->GetRoad1y(); -// Double_t kroadz = GetPadLength() * .5 + 1.; -// -// // initialize configuration parameters -// Float_t zcorr = kZcorr ? GetTilt() * (fZfit[0] - fZref[0]) : 0.; -// Int_t niter = kZcorr ? 1 : 2; -// -// Double_t yexp, zexp; -// Int_t ncl = 0; -// // start seed update -// for (Int_t iter = 0; iter < niter; iter++) { -// ncl = 0; -// for (Int_t iTime = 0; iTime < AliTRDtrackerV1::GetNTimeBins(); iTime++) { -// if(!(layer = chamber->GetTB(iTime))) continue; -// if(!Int_t(*layer)) continue; -// -// // define searching configuration -// Double_t dxlayer = layer->GetX() - fX0; -// if(c){ -// zexp = c->GetZ(); -// //Try 2 pad-rows in second iteration -// if (iter > 0) { -// zexp = fZref[0] + fZref[1] * dxlayer - zcorr; -// if (zexp > c->GetZ()) zexp = c->GetZ() + GetPadLength()*0.5; -// if (zexp < c->GetZ()) zexp = c->GetZ() - GetPadLength()*0.5; -// } -// } else zexp = fZref[0] + (kZcorr ? fZref[1] * dxlayer : 0.); -// yexp = fYref[0] + fYref[1] * dxlayer - zcorr; -// -// // Get and register cluster -// Int_t index = layer->SearchNearestCluster(yexp, zexp, kroady, kroadz); -// if (index < 0) continue; -// AliTRDcluster *cl = (*layer)[index]; -// -// fIndexes[iTime] = layer->GetGlobalIndex(index); -// fClusters[iTime] = cl; -// // fY[iTime] = cl->GetY(); -// // fZ[iTime] = cl->GetZ(); -// ncl++; -// } -// if(fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker)>=7) AliInfo(Form("iter = %d ncl [%d] = %d", iter, fDet, ncl)); -// -// if(ncl>1){ -// // calculate length of the time bin (calibration aware) -// Int_t irp = 0; Float_t x[2]={0., 0.}; Int_t tb[2] = {0,0}; -// for (Int_t iTime = 0; iTime < AliTRDtrackerV1::GetNTimeBins(); iTime++) { -// if(!fClusters[iTime]) continue; -// x[irp] = fClusters[iTime]->GetX(); -// tb[irp] = iTime; -// irp++; -// if(irp==2) break; -// } -// Int_t dtb = tb[1] - tb[0]; -// fdX = dtb ? (x[0] - x[1]) / dtb : 0.15; -// -// // update X0 from the clusters (calibration/alignment aware) -// for (Int_t iTime = 0; iTime < AliTRDtrackerV1::GetNTimeBins(); iTime++) { -// if(!(layer = chamber->GetTB(iTime))) continue; -// if(!layer->IsT0()) continue; -// if(fClusters[iTime]){ -// fX0 = fClusters[iTime]->GetX(); -// break; -// } else { // we have to infere the position of the anode wire from the other clusters -// for (Int_t jTime = iTime+1; jTime < AliTRDtrackerV1::GetNTimeBins(); jTime++) { -// if(!fClusters[jTime]) continue; -// fX0 = fClusters[jTime]->GetX() + fdX * (jTime - iTime); -// break; -// } -// } -// } -// -// // update YZ reference point -// // TODO -// -// // update x reference positions (calibration/alignment aware) -// // for (Int_t iTime = 0; iTime < AliTRDtrackerV1::GetNTimeBins(); iTime++) { -// // if(!fClusters[iTime]) continue; -// // fX[iTime] = fX0 - fClusters[iTime]->GetX(); -// // } -// -// FitMI(); -// } -// if(fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker)>=7) AliInfo(Form("iter = %d nclFit [%d] = %d", iter, fDet, fN2)); -// -// if(IsOK()){ -// tquality = GetQuality(kZcorr); -// if(tquality < quality) break; -// else quality = tquality; -// } -// kroadz *= 2.; -// } // Loop: iter -// if (!IsOK()) return kFALSE; -// -// if(fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker)>=1) CookLabels(); -// -// // load calibration params -// Calibrate(); -// UpdateUsed(); -// return kTRUE; -// } +//____________________________________________________________ +void AliTRDseedV1::SetPadPlane(AliTRDpadPlane * const p) +{ +// Shortcut method to initialize pad geometry. + fPad[0] = p->GetLengthIPad(); + fPad[1] = p->GetWidthIPad(); + fPad[2] = TMath::Tan(TMath::DegToRad()*p->GetTiltingAngle()); + fPad[3] = p->GetRow0() + p->GetAnodeWireOffset(); +} + + //____________________________________________________________________ -Bool_t AliTRDseedV1::AttachClusters(AliTRDtrackingChamber *chamber, Bool_t tilt) +Bool_t AliTRDseedV1::AttachClusters(AliTRDtrackingChamber *const chamber, Bool_t tilt, Bool_t chgPos, Int_t ev) { - // - // Projective algorithm to attach clusters to seeding tracklets - // - // Parameters - // - // Output - // - // Detailed description - // 1. Collapse x coordinate for the full detector plane - // 2. truncated mean on y (r-phi) direction - // 3. purge clusters - // 4. truncated mean on z direction - // 5. purge clusters - // 6. fit tracklet - // - Bool_t kPRINT = kFALSE; - if(!fReconstructor->GetRecoParam() ){ - AliError("Seed can not be used without a valid RecoParam."); +// +// Projective algorithm to attach clusters to seeding tracklets. The following steps are performed : +// 1. Collapse x coordinate for the full detector plane +// 2. truncated mean on y (r-phi) direction +// 3. purge clusters +// 4. truncated mean on z direction +// 5. purge clusters +// +// Parameters +// - chamber : pointer to tracking chamber container used to search the tracklet +// - tilt : switch for tilt correction during road building [default true] +// Output +// - true : if tracklet found successfully. Failure can happend because of the following: +// - +// Detailed description +// +// We start up by defining the track direction in the xy plane and roads. The roads are calculated based +// on tracking information (variance in the r-phi direction) and estimated variance of the standard +// clusters (see AliTRDcluster::SetSigmaY2()) corrected for tilt (see GetCovAt()). From this the road is +// BEGIN_LATEX +// r_{y} = 3*#sqrt{12*(#sigma^{2}_{Trk}(y) + #frac{#sigma^{2}_{cl}(y) + tg^{2}(#alpha_{L})#sigma^{2}_{cl}(z)}{1+tg^{2}(#alpha_{L})})} +// r_{z} = 1.5*L_{pad} +// END_LATEX +// +// Author : Alexandru Bercuci +// Debug : level = 2 for calibration +// level = 3 for visualization in the track SR +// level = 4 for full visualization including digit level + + const AliTRDrecoParam* const recoParam = fkReconstructor->GetRecoParam(); //the dynamic cast in GetRecoParam is slow, so caching the pointer to it + + if(!recoParam){ + AliError("Tracklets can not be used without a valid RecoParam."); + return kFALSE; + } + AliTRDcalibDB *calibration = AliTRDcalibDB::Instance(); + if (!calibration) { + AliError("No access to calibration data"); + return kFALSE; + } + // Retrieve the CDB container class with the parametric likelihood + const AliTRDCalTrkAttach *attach = calibration->GetAttachObject(); + if (!attach) { + AliError("No usable AttachClusters calib object."); return kFALSE; } + // Initialize reco params for this tracklet // 1. first time bin in the drift region - Int_t t0 = 4; - Int_t kClmin = Int_t(fReconstructor->GetRecoParam() ->GetFindableClusters()*AliTRDtrackerV1::GetNTimeBins()); - - Double_t syRef = TMath::Sqrt(fRefCov[0]); + Int_t t0 = 14; + Int_t kClmin = Int_t(recoParam->GetFindableClusters()*AliTRDtrackerV1::GetNTimeBins()); + Int_t kTBmin = 4; + + Double_t sysCov[5]; recoParam->GetSysCovMatrix(sysCov); + Double_t s2yTrk= fRefCov[0], + s2yCl = 0., + s2zCl = GetPadLength()*GetPadLength()/12., + syRef = TMath::Sqrt(s2yTrk), + t2 = GetTilt()*GetTilt(); //define roads - Double_t kroady = 1.; - //fReconstructor->GetRecoParam() ->GetRoad1y(); - Double_t kroadz = GetPadLength() * 1.5 + 1.; - if(kPRINT) printf("AttachClusters() sy[%f] road[%f]\n", syRef, kroady); + const Double_t kroady = 3.; //recoParam->GetRoad1y(); + const Double_t kroadz = GetPadLength() * recoParam->GetRoadzMultiplicator() + 1.; + // define probing cluster (the perfect cluster) and default calibration + Short_t sig[] = {0, 0, 10, 30, 10, 0,0}; + AliTRDcluster cp(fDet, 6, 75, 0, sig, 0); + if(fkReconstructor->IsHLT()) cp.SetRPhiMethod(AliTRDcluster::kCOG); + if(!IsCalibrated()) Calibrate(); + + Int_t kroadyShift(0); + Float_t bz(AliTrackerBase::GetBz()); + if(TMath::Abs(bz)>2.){ + if(bz<0.) kroadyShift = chgPos ? +1 : -1; + else kroadyShift = chgPos ? -1 : +1; + } + AliDebug(4, Form("\n syTrk[cm]=%4.2f dydxTrk[deg]=%+6.2f rs[%d] Chg[%c] rY[cm]=%4.2f rZ[cm]=%5.2f TC[%c]", syRef, TMath::ATan(fYref[1])*TMath::RadToDeg(), kroadyShift, chgPos?'+':'-', kroady, kroadz, tilt?'y':'n')); + Double_t phiTrk(TMath::ATan(fYref[1])), + thtTrk(TMath::ATan(fZref[1])); // working variables const Int_t kNrows = 16; - AliTRDcluster *clst[kNrows][kNclusters]; - Double_t cond[4], dx, dy, yt, zt, - yres[kNrows][kNclusters]; - Int_t idxs[kNrows][kNclusters], ncl[kNrows], ncls = 0; + const Int_t kNcls = 3*kNclusters; // buffer size + TObjArray clst[kNrows]; + Bool_t blst[kNrows][kNcls]; + Double_t cond[4], + dx, dy, dz, + yt, zt, + zc[kNrows], + xres[kNrows][kNcls], yres[kNrows][kNcls], zres[kNrows][kNcls], s2y[kNrows][kNcls]; + Int_t idxs[kNrows][kNcls], ncl[kNrows], ncls = 0; memset(ncl, 0, kNrows*sizeof(Int_t)); - memset(clst, 0, kNrows*kNclusters*sizeof(AliTRDcluster*)); - - // Do cluster projection - AliTRDcluster *c = 0x0; - AliTRDchamberTimeBin *layer = 0x0; + memset(zc, 0, kNrows*sizeof(Double_t)); + memset(idxs, 0, kNrows*kNcls*sizeof(Int_t)); + memset(xres, 0, kNrows*kNcls*sizeof(Double_t)); + memset(yres, 0, kNrows*kNcls*sizeof(Double_t)); + memset(zres, 0, kNrows*kNcls*sizeof(Double_t)); + memset(s2y, 0, kNrows*kNcls*sizeof(Double_t)); + memset(blst, 0, kNrows*kNcls*sizeof(Bool_t)); //this is 8 times faster to memset than "memset(clst, 0, kNrows*kNcls*sizeof(AliTRDcluster*))" + + Double_t roady(0.), s2Mean(0.), sMean(0.); Int_t ns2Mean(0); + + // Do cluster projection and pick up cluster candidates + AliTRDcluster *c(NULL); + AliTRDchamberTimeBin *layer(NULL); Bool_t kBUFFER = kFALSE; - for (Int_t it = 0; it < AliTRDtrackerV1::GetNTimeBins(); it++) { + for (Int_t it = 0; it < kNtb; it++) { if(!(layer = chamber->GetTB(it))) continue; if(!Int_t(*layer)) continue; - + // get track projection at layers position dx = fX0 - layer->GetX(); yt = fYref[0] - fYref[1] * dx; zt = fZref[0] - fZref[1] * dx; - if(kPRINT) printf("\t%2d dx[%f] yt[%f] zt[%f]\n", it, dx, yt, zt); - - // select clusters on a 5 sigmaKalman level - cond[0] = yt; cond[2] = kroady; + // get standard cluster error corrected for tilt if selected + cp.SetLocalTimeBin(it); + cp.SetSigmaY2(0.02, fDiffT, fExB, dx, -1./*zt*/, fYref[1]); + s2yCl = cp.GetSigmaY2() + sysCov[0]; if(!tilt) s2yCl = (s2yCl + t2*s2zCl)/(1.+t2); + if(TMath::Abs(it-12)<7){ s2Mean += cp.GetSigmaY2(); ns2Mean++;} + // get estimated road in r-phi direction + roady = TMath::Min(3.*TMath::Sqrt(12.*(s2yTrk + s2yCl)), kroady); + + AliDebug(5, Form("\n" + " %2d xd[cm]=%6.3f yt[cm]=%7.2f zt[cm]=%8.2f\n" + " syTrk[um]=%6.2f syCl[um]=%6.2f syClTlt[um]=%6.2f\n" + " Ry[mm]=%f" + , it, dx, yt, zt + , 1.e4*TMath::Sqrt(s2yTrk), 1.e4*TMath::Sqrt(cp.GetSigmaY2()+sysCov[0]), 1.e4*TMath::Sqrt(s2yCl) + , 1.e1*roady)); + + // get clusters from layer + cond[0] = yt/*+0.5*kroadyShift*kroady*/; cond[2] = roady; cond[1] = zt; cond[3] = kroadz; - Int_t n=0, idx[6]; - layer->GetClusters(cond, idx, n, 6); + Int_t n=0, idx[6]; layer->GetClusters(cond, idx, n, 6); for(Int_t ic = n; ic--;){ c = (*layer)[idx[ic]]; - dy = yt - c->GetY(); - dy += tilt ? GetTilt() * (c->GetZ() - zt) : 0.; - // select clusters on a 3 sigmaKalman level -/* if(tilt && TMath::Abs(dy) > 3.*syRef){ - printf("too large !!!\n"); - continue; - }*/ + dx = fX0 - c->GetX(); + yt = fYref[0] - fYref[1] * dx; + zt = fZref[0] - fZref[1] * dx; + dz = zt - c->GetZ(); + dy = yt - (c->GetY() + (tilt ? (GetTilt() * dz) : 0.)); Int_t r = c->GetPadRow(); - if(kPRINT) printf("\t\t%d dy[%f] yc[%f] r[%d]\n", ic, TMath::Abs(dy), c->GetY(), r); - clst[r][ncl[r]] = c; + clst[r].AddAtAndExpand(c, ncl[r]); + blst[r][ncl[r]] = kTRUE; idxs[r][ncl[r]] = idx[ic]; + zres[r][ncl[r]] = dz/GetPadLength(); yres[r][ncl[r]] = dy; + xres[r][ncl[r]] = dx; + zc[r] = c->GetZ(); + // TODO temporary solution to avoid divercences in error parametrization + s2y[r][ncl[r]] = TMath::Min(c->GetSigmaY2()+sysCov[0], 0.025); + AliDebug(5, Form(" -> dy[cm]=%+7.4f yc[cm]=%7.2f row[%d] idx[%2d]", dy, c->GetY(), r, ncl[r])); ncl[r]++; ncls++; - if(ncl[r] >= kNclusters) { - AliWarning(Form("Cluster candidates reached limit %d. Some may be lost.", kNclusters)); + if(ncl[r] >= kNcls) { + AliWarning(Form("Cluster candidates row[%d] reached buffer limit[%d]. Some may be lost.", r, kNcls)); kBUFFER = kTRUE; break; } } if(kBUFFER) break; } - if(kPRINT) printf("Found %d clusters\n", ncls); - if(ncls0 && lr-ir != 1){ - if(kPRINT) printf("W - gap in rows attached !!\n"); + if(ncls=2){ + if(nrc==2){ + if(zresRow[0]>zresRow[1]){ // swap + Int_t itmp=idxRow[1]; idxRow[1] = idxRow[0]; idxRow[0] = itmp; + Double_t dtmp=zresRow[1]; zresRow[1] = zresRow[0]; zresRow[0] = dtmp; + } + if(TMath::Abs(idxRow[1] - idxRow[0]) != 1){ + SetErrorMsg(kAttachRowGap); + AliDebug(2, Form("Rows attached not continuous. Select first candidate.\n" + " row[%2d] Ncl[%2d] [cm]=%+8.2f row[%2d] Ncl[%2d] [cm]=%+8.2f", + idxRow[0], ncl[idxRow[0]], zresRow[0], idxRow[1], idxRow[1]<0?0:ncl[idxRow[1]], zresRow[1])); + nrc=1; idxRow[1] = -1; zresRow[1] = 999.; + } + } else { + Int_t idx0[kNrows]; + TMath::Sort(nrc, zresRow, idx0, kFALSE); + nrc = 3; // select only maximum first 3 candidates + Int_t iatmp[] = {-1, -1, -1}; Double_t datmp[] = {999., 999., 999.}; + for(Int_t irc(0); irc[cm]=%+8.2f\n" + "row[%2d] Ncl[%2d] [cm]=%+8.2f\n" + "row[%2d] Ncl[%2d] [cm]=%+8.2f", + idxRow[0], ncl[idxRow[0]], zresRow[0], + idxRow[1], ncl[idxRow[1]], zresRow[1], + idxRow[2], ncl[idxRow[2]], zresRow[2])); + if(TMath::Abs(idxRow[0] - idxRow[2]) == 1){ // select second candidate + AliDebug(2, "Solved ! Remove second candidate."); + nrc = 2; + idxRow[1] = idxRow[2]; zresRow[1] = zresRow[2]; // swap + idxRow[2] = -1; zresRow[2] = 999.; // remove + } else if(TMath::Abs(idxRow[1] - idxRow[2]) == 1){ + if(ncl[idxRow[1]]+ncl[idxRow[2]] > ncl[idxRow[0]]){ + AliDebug(2, "Solved ! Remove first candidate."); + nrc = 2; + idxRow[0] = idxRow[1]; zresRow[0] = zresRow[1]; // swap + idxRow[1] = idxRow[2]; zresRow[1] = zresRow[2]; // swap + } else { + AliDebug(2, "Solved ! Remove second and third candidate."); + nrc = 1; + idxRow[1] = -1; zresRow[1] = 999.; // remove + idxRow[2] = -1; zresRow[2] = 999.; // remove + } + } else { + AliDebug(2, "Unsolved !!! Remove second and third candidate."); + nrc = 1; + idxRow[1] = -1; zresRow[1] = 999.; // remove + idxRow[2] = -1; zresRow[2] = 999.; // remove + } + } else { // remove temporary candidate + nrc = 2; + idxRow[2] = -1; zresRow[2] = 999.; + } } - if(kPRINT) printf("\tir[%d] lr[%d] n[%d]\n", ir, lr, ncl[ir]); - // Evaluate truncated mean on the y direction - if(ncl[ir] > 3) AliMathBase::EvaluateUni(ncl[ir], yres[ir], mean, syDis, Int_t(ncl[ir]*.8)); - else { - mean = 0.; syDis = 0.; - } - - // TODO check mean and sigma agains cluster resolution !! - if(kPRINT) printf("\tr[%2d] m[%f %5.3fsigma] s[%f]\n", ir, mean, TMath::Abs(mean/syRef), syDis); - // select clusters on a 3 sigmaDistr level - Bool_t kFOUND = kFALSE; - for(Int_t ic = ncl[ir]; ic--;){ - if(yres[ir][ic] - mean > 3. * syDis){ - clst[ir][ic] = 0x0; continue; + } + AliDebug(4, Form("Sorted row candidates:\n" + " row[%2d] Ncl[%2d] [cm]=%+8.2f row[%2d] Ncl[%2d] [cm]=%+8.2f" + , idxRow[0], ncl[idxRow[0]], zresRow[0], idxRow[1], ncl[idxRow[1]], zresRow[1])); + + // initialize debug streamer + TTreeSRedirector *pstreamer(NULL); + if(recoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 3 && fkReconstructor->IsDebugStreaming()) pstreamer = fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); + if(pstreamer){ + // save config. for calibration + TVectorD vdy[2], vdx[2], vs2[2]; + for(Int_t jr(0); jr=3) break; - } - if(kPRINT) printf("lr[%d] nr[%d] nrow[0]=%d nrow[1]=%d nrow[2]=%d\n", lr, nr, nrow[0], nrow[1], nrow[2]); - - // classify cluster rows - Int_t row = -1; - switch(nr){ - case 1: - row = lr; - break; - case 2: - SetBit(kRowCross, kTRUE); // mark pad row crossing - if(nrow[0] > nrow[1]){ row = lr+1; lr = -1;} - else{ - row = lr; lr = 1; - nrow[2] = nrow[1]; - nrow[1] = nrow[0]; - nrow[0] = nrow[2]; + (*pstreamer) << "AttachClusters4" + << "r0=" << idxRow[0] + << "dz0=" << zresRow[0] + << "dx0=" << &vdx[0] + << "dy0=" << &vdy[0] + << "s20=" << &vs2[0] + << "r1=" << idxRow[1] + << "dz1=" << zresRow[1] + << "dx1=" << &vdx[1] + << "dy1=" << &vdy[1] + << "s21=" << &vs2[1] + << "\n"; + vdx[0].Clear(); vdy[0].Clear(); vs2[0].Clear(); + vdx[1].Clear(); vdy[1].Clear(); vs2[1].Clear(); + if(recoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 4){ + Int_t idx(idxRow[1]); + if(idx<0){ + for(Int_t ir(0); ir0) continue; + idx = ir; + break; + } + } + (*pstreamer) << "AttachClusters5" + << "c0.=" << &clst[idxRow[0]] + << "c1.=" << &clst[idx] + << "\n"; } - break; - case 3: - SetBit(kRowCross, kTRUE); // mark pad row crossing - break; - } - if(kPRINT) printf("\trow[%d] n[%d]\n\n", row, nrow[0]); - if(row<0) return kFALSE; - - // Select and store clusters - // We should consider here : - // 1. How far is the chamber boundary - // 2. How big is the mean - Int_t n = 0; - for (Int_t ir = 0; ir < nr; ir++) { - Int_t jr = row + ir*lr; - if(kPRINT) printf("\tattach %d clusters for row %d\n", ncl[jr], jr); - for (Int_t ic = 0; ic < ncl[jr]; ic++) { - if(!(c = clst[jr][ic])) continue; - Int_t it = c->GetPadTime(); - // TODO proper indexing of clusters !! - fIndexes[it+kNtb*ir] = chamber->GetTB(it)->GetGlobalIndex(idxs[jr][ic]); - fClusters[it+kNtb*ir] = c; + } + +//======================================================================================= + // Analyse cluster topology + Double_t f[kNcls], // likelihood factors for segments + r[2][kNcls], // d(dydx) of tracklet candidate with respect to track + xm[2][kNcls], // mean + ym[2][kNcls], // mean + sm[2][kNcls], // mean + s[2][kNcls], // sigma_y + p[2][kNcls]; // prob of Gauss + memset(f, 0, kNcls*sizeof(Double_t)); + Int_t index[2][kNcls], n[2][kNcls]; + memset(n, 0, 2*kNcls*sizeof(Int_t)); + Int_t mts(0), nts[2] = {0, 0}; // no of tracklet segments in row + AliTRDpadPlane *pp(AliTRDtransform::Geometry().GetPadPlane(fDet)); + AliTRDtrackletOflHelper helper; + Int_t lyDet(AliTRDgeometry::GetLayer(fDet)); + for(Int_t jr(0), n0(0); jrCookLikelihood(chgPos, lyDet, fPt, phiTrk, n[jr][its], ym[jr][its]/*sRef*/, r[jr][its]*TMath::RadToDeg(), s[jr][its]/sm[jr][its]); + } + } + AliDebug(4, Form(" Tracklet candidates: row[%2d] = %2d row[%2d] = %2d:", idxRow[0], nts[0], idxRow[1], nts[1])); + if(AliLog::GetDebugLevel("TRD", "AliTRDseedV1")>3){ + for(Int_t jr(0); jrGetStreamLevel(AliTRDrecoParam::kTracker) > 2 && fkReconstructor->IsDebugStreaming()) pstreamer = fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); + if(pstreamer){ + // save config. for calibration + TVectorD vidx, vn, vx, vy, vr, vs, vsm, vp, vf; + vidx.ResizeTo(ncl[idxRow[0]]+(idxRow[1]<0?0:ncl[idxRow[1]])); + vn.ResizeTo(mts); + vx.ResizeTo(mts); + vy.ResizeTo(mts); + vr.ResizeTo(mts); + vs.ResizeTo(mts); + vsm.ResizeTo(mts); + vp.ResizeTo(mts); + vf.ResizeTo(mts); + for(Int_t jr(0), jts(0), jc(0); jr1) TMath::Sort(nts[0], f, idx2); + Int_t is(idx2[0]); // seed index + Int_t idxTrklt[kNcls], + kts(0), + nTrklt(n[0][is]); + Double_t fTrklt(f[is]), + rTrklt(r[0][is]), + yTrklt(ym[0][is]), + sTrklt(s[0][is]), + smTrklt(sm[0][is]), + xTrklt(xm[0][is]), + pTrklt(p[0][is]); + memset(idxTrklt, 0, kNcls*sizeof(Int_t)); + // check seed idx2[0] exit if not found + if(f[is]<1.e-2){ + AliDebug(1, Form("Seed seg[%d] row[%2d] n[%2d] f[%f]<0.01.", is, idxRow[0], n[0][is], f[is])); + SetErrorMsg(kAttachClAttach); + if(!pstreamer && recoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 1 && fkReconstructor->IsDebugStreaming()) pstreamer = fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); + if(pstreamer){ + UChar_t stat(0); + if(IsKink()) SETBIT(stat, 1); + if(IsStandAlone()) SETBIT(stat, 2); + if(IsRowCross()) SETBIT(stat, 3); + SETBIT(stat, 4); // set error bit + TVectorD vidx; vidx.ResizeTo(1); vidx[0] = is; + (*pstreamer) << "AttachClusters2" + << "stat=" << stat + << "ev=" << ev + << "chg=" << chgPos + << "det=" << fDet + << "x0=" << fX0 + << "y0=" << fYref[0] + << "z0=" << fZref[0] + << "phi=" << phiTrk + << "tht=" << thtTrk + << "pt=" << fPt + << "s2Trk=" << s2yTrk + << "s2Cl=" << s2Mean + << "idx=" << &vidx + << "n=" << nTrklt + << "f=" << fTrklt + << "x=" << xTrklt + << "y=" << yTrklt + << "r=" << rTrklt + << "s=" << sTrklt + << "sm=" << smTrklt + << "p=" << pTrklt + << "\n"; + } + return kFALSE; + } + AliDebug(2, Form("Seed seg[%d] row[%2d] n[%2d] dy[%f] r[%+5.2f] s[%+5.2f] f[%5.3f]", is, idxRow[0], n[0][is], ym[0][is], r[0][is]*TMath::RadToDeg(), s[0][is]/sm[0][is], f[is])); + + // save seeding segment in the helper + idxTrklt[kts++] = is; + helper.Init(pp, &clst[idxRow[0]], index[0], is); + AliTRDtrackletOflHelper test; // helper to test segment expantion + Float_t rcLikelihood(0.); SetBit(kRowCross, kFALSE); + Double_t dyRez[kNcls]; Int_t idx3[kNcls]; + + //========================================================= + // Define filter parameters from OCDB + Int_t kNSgmDy[2]; attach->GetNsgmDy(kNSgmDy[0], kNSgmDy[1]); + Float_t kLikeMinRelDecrease[2]; attach->GetLikeMinRelDecrease(kLikeMinRelDecrease[0], kLikeMinRelDecrease[1]); + Float_t kRClikeLimit(attach->GetRClikeLimit()); + + //========================================================= + // Try attaching next segments from first row (if any) + if(nts[0]>1){ + Int_t jr(0), ir(idxRow[jr]); + // organize secondary sgms. in decreasing order of their distance from seed + memset(dyRez, 0, nts[jr]*sizeof(Double_t)); + for(Int_t jts(1); jts kNSgmDy[jr]*smTrklt){ + AliDebug(2, Form("Reject seg[%d] row[%2d] n[%2d] dy[%f] > %d*s[%f].", its, idxRow[jr], n[jr][its], dyRez[its], kNSgmDy[jr], kNSgmDy[jr]*smTrklt)); + continue; + } + + test = helper; + Int_t n0 = test.Expand(&clst[ir], index[jr], its); + Double_t rt, dyt, st, xt, smt, pt, ft; + Int_t n1 = test.GetRMS(rt, dyt, st, xt); + pt = Double_t(n1)/n0; + smt = test.GetSyMean(); + // correct position + Double_t dxm= fX0 - xt; + yt = fYref[0] - fYref[1]*dxm; + zt = fZref[0] - fZref[1]*dxm; + // correct tracklet fit for tilt + dyt+= GetTilt()*(zt - zc[idxRow[0]]); + rt += GetTilt() * fZref[1]; + // correct tracklet fit for track position/inclination + dyt= yt - dyt; + rt = (rt - fYref[1])/(1+rt*fYref[1]); + // report inclination in radians + rt = TMath::ATan(rt); + + ft = (n0>=2) ? attach->CookLikelihood(chgPos, lyDet, fPt, phiTrk, n0, dyt/*sRef*/, rt*TMath::RadToDeg(), st/smt) : 0.; + Bool_t kAccept(ft>=fTrklt*(1.-kLikeMinRelDecrease[jr])); + + AliDebug(2, Form("%s seg[%d] row[%2d] n[%2d] dy[%f] r[%+5.2f] s[%+5.2f] f[%f] < %4.2f*F[%f].", + (kAccept?"Adding":"Reject"), its, idxRow[jr], n0, dyt, rt*TMath::RadToDeg(), st/smt, ft, 1.-kLikeMinRelDecrease[jr], fTrklt*(1.-kLikeMinRelDecrease[jr]))); + if(kAccept){ + idxTrklt[kts++] = its; + nTrklt = n0; + fTrklt = ft; + rTrklt = rt; + yTrklt = dyt; + sTrklt = st; + smTrklt= smt; + xTrklt = xt; + pTrklt = pt; + helper.Expand(&clst[ir], index[jr], its); + } + } + } - //printf("\tid[%2d] it[%d] idx[%d]\n", ic, it, fIndexes[it]); + //========================================================= + // Try attaching next segments from second row (if any) + if(nts[1] && (rcLikelihood = zresRow[0]/zresRow[1]) > kRClikeLimit){ + // organize secondaries in decreasing order of their distance from seed + Int_t jr(1), ir(idxRow[jr]); + memset(dyRez, 0, nts[jr]*sizeof(Double_t)); + Double_t rot(TMath::Tan(r[0][is])); + for(Int_t jts(0); jts kNSgmDy[jr]*smTrklt){ + AliDebug(2, Form("Reject seg[%d] row[%2d] n[%2d] dy[%f] > %d*s[%f].", its, idxRow[jr], n[jr][its], dyRez[its], kNSgmDy[jr], kNSgmDy[jr]*smTrklt)); + continue; + } + + test = helper; + Int_t n0 = test.Expand(&clst[ir], index[jr], its); + Double_t rt, dyt, st, xt, smt, pt, ft; + Int_t n1 = test.GetRMS(rt, dyt, st, xt); + pt = Double_t(n1)/n0; + smt = test.GetSyMean(); + // correct position + Double_t dxm= fX0 - xt; + yt = fYref[0] - fYref[1]*dxm; + zt = fZref[0] - fZref[1]*dxm; + // correct tracklet fit for tilt + dyt+= GetTilt()*(zt - zc[idxRow[0]]); + rt += GetTilt() * fZref[1]; + // correct tracklet fit for track position/inclination + dyt= yt - dyt; + rt = (rt - fYref[1])/(1+rt*fYref[1]); + // report inclination in radians + rt = TMath::ATan(rt); + + ft = (n0>=2) ? attach->CookLikelihood(chgPos, lyDet, fPt, phiTrk, n0, dyt/*sRef*/, rt*TMath::RadToDeg(), st/smt) : 0.; + Bool_t kAccept(ft>=fTrklt*(1.-kLikeMinRelDecrease[jr])); + + AliDebug(2, Form("%s seg[%d] row[%2d] n[%2d] dy[%f] r[%+5.2f] s[%+5.2f] f[%f] < %4.2f*F[%f].", + (kAccept?"Adding":"Reject"), its, idxRow[jr], n0, dyt, rt*TMath::RadToDeg(), st/smt, ft, 1.-kLikeMinRelDecrease[jr], fTrklt*(1.-kLikeMinRelDecrease[jr]))); + if(kAccept){ + idxTrklt[kts++] = its; + nTrklt = n0; + fTrklt = ft; + rTrklt = rt; + yTrklt = dyt; + sTrklt = st; + smTrklt= smt; + xTrklt = xt; + pTrklt = pt; + helper.Expand(&clst[ir], index[jr], its); + SetBit(kRowCross, kTRUE); // mark pad row crossing + } + } + } + // clear local copy of clusters + for(Int_t ir(0); irGetStreamLevel(AliTRDrecoParam::kTracker) > 1 && fkReconstructor->IsDebugStreaming()) pstreamer = fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); + if(pstreamer){ + UChar_t stat(0); + if(IsKink()) SETBIT(stat, 1); + if(IsStandAlone()) SETBIT(stat, 2); + if(IsRowCross()) SETBIT(stat, 3); + TVectorD vidx; vidx.ResizeTo(kts); + for(Int_t its(0); itsGetEntriesFast())){ + AliError("Cluster candidates missing !!!"); + SetErrorMsg(kAttachClAttach); + return kFALSE; + } + for(Int_t ic(0); icAt(ic))) continue; + Int_t it(c->GetPadTime()), + jr(Int_t(helper.GetRow() != c->GetPadRow())), + idx(it+kNtb*jr); + if(fClusters[idx]){ + AliDebug(1, Form("Multiple clusters/tb for D[%03d] Tb[%02d] Row[%2d]", fDet, it, c->GetPadRow())); + continue; // already booked } - } + // TODO proper indexing of clusters !! + fIndexes[idx] = chamber->GetTB(it)->GetGlobalIndex(idxs[idxRow[jr]][ic]); + fClusters[idx] = c; + nc++; + } + AliDebug(2, Form("Clusters Found[%2d] Attached[%2d] RC[%c]", nselected, nc, IsRowCross()?'y':'n')); // number of minimum numbers of clusters expected for the tracklet - if (n < kClmin){ - //AliWarning(Form("Not enough clusters to fit the tracklet %d [%d].", n, kClmin)); + if (nc < kClmin){ + AliDebug(1, Form("NOT ENOUGH CLUSTERS %d ATTACHED TO THE TRACKLET [min %d] FROM FOUND %d.", nc, kClmin, ncls)); + SetErrorMsg(kAttachClAttach); return kFALSE; } - SetN(n); + SetN(nc); // Load calibration parameters for this tracklet - Calibrate(); + //Calibrate(); // calculate dx for time bins in the drift region (calibration aware) - Int_t irp = 0; Float_t x[2] = {0.,0.}; Int_t tb[2]={0,0}; - for (Int_t it = t0; it < AliTRDtrackerV1::GetNTimeBins(); it++) { + Float_t x[2] = {0.,0.}; Int_t tb[2]={0,0}; + for (Int_t it = t0, irp=0; irp<2 && it < AliTRDtrackerV1::GetNTimeBins(); it++) { if(!fClusters[it]) continue; x[irp] = fClusters[it]->GetX(); - tb[irp] = it; + tb[irp] = fClusters[it]->GetLocalTimeBin(); irp++; - if(irp==2) break; } Int_t dtb = tb[1] - tb[0]; fdX = dtb ? (x[0] - x[1]) / dtb : 0.15; - - // update X0 from the clusters (calibration/alignment aware) TODO remove dependence on x0 !! - for (Int_t it = 0; it < AliTRDtrackerV1::GetNTimeBins(); it++) { - if(!(layer = chamber->GetTB(it))) continue; - if(!layer->IsT0()) continue; - if(fClusters[it]){ - fX0 = fClusters[it]->GetX(); - break; - } else { // we have to infere the position of the anode wire from the other clusters - for (Int_t jt = it+1; jt < AliTRDtrackerV1::GetNTimeBins(); jt++) { - if(!fClusters[jt]) continue; - fX0 = fClusters[jt]->GetX() + fdX * (jt - it); - break; - } - } - } - return kTRUE; } @@ -1058,12 +1688,10 @@ void AliTRDseedV1::Bootstrap(const AliTRDReconstructor *rec) // // A.Bercuci Oct 30th 2008 // - fReconstructor = rec; + fkReconstructor = rec; AliTRDgeometry g; - AliTRDpadPlane *pp = g.GetPadPlane(fDet); - fPad[0] = pp->GetLengthIPad(); - fPad[1] = pp->GetWidthIPad(); - fPad[3] = TMath::Tan(TMath::DegToRad()*pp->GetTiltingAngle()); + SetPadPlane(g.GetPadPlane(fDet)); + //fSnp = fYref[1]/TMath::Sqrt(1+fYref[1]*fYref[1]); //fTgl = fZref[1]; Int_t n = 0, nshare = 0, nused = 0; @@ -1082,480 +1710,400 @@ void AliTRDseedV1::Bootstrap(const AliTRDReconstructor *rec) //____________________________________________________________________ -Bool_t AliTRDseedV1::Fit(Bool_t tilt, Int_t errors) +Bool_t AliTRDseedV1::Fit(UChar_t opt) { - // - // Linear fit of the tracklet - // - // Parameters : - // - // Output : - // True if successful - // - // Detailed description - // 2. Check if tracklet crosses pad row boundary - // 1. Calculate residuals in the y (r-phi) direction - // 3. Do a Least Square Fit to the data - // +// +// Linear fit of the clusters attached to the tracklet +// +// Parameters : +// - opt : switch for tilt pad correction of cluster y position. Options are +// 0 no correction [default] +// 1 full tilt correction [dz/dx and z0] +// 2 pseudo tilt correction [dz/dx from pad-chamber geometry] +// +// Output : +// True if successful +// +// Detailed description +// +// Fit in the xy plane +// +// The fit is performed to estimate the y position of the tracklet and the track +// angle in the bending plane. The clusters are represented in the chamber coordinate +// system (with respect to the anode wire - see AliTRDtrackerV1::FollowBackProlongation() +// on how this is set). The x and y position of the cluster and also their variances +// are known from clusterizer level (see AliTRDcluster::GetXloc(), AliTRDcluster::GetYloc(), +// AliTRDcluster::GetSX() and AliTRDcluster::GetSY()). +// If gaussian approximation is used to calculate y coordinate of the cluster the position +// is recalculated taking into account the track angle. The general formula to calculate the +// error of cluster position in the gaussian approximation taking into account diffusion and track +// inclination is given for TRD by: +// BEGIN_LATEX +// #sigma^{2}_{y} = #sigma^{2}_{PRF} + #frac{x#delta_{t}^{2}}{(1+tg(#alpha_{L}))^{2}} + #frac{x^{2}tg^{2}(#phi-#alpha_{L})tg^{2}(#alpha_{L})}{12} +// END_LATEX +// +// Since errors are calculated only in the y directions, radial errors (x direction) are mapped to y +// by projection i.e. +// BEGIN_LATEX +// #sigma_{x|y} = tg(#phi) #sigma_{x} +// END_LATEX +// and also by the lorentz angle correction +// +// Fit in the xz plane +// +// The "fit" is performed to estimate the radial position (x direction) where pad row cross happens. +// If no pad row crossing the z position is taken from geometry and radial position is taken from the xy +// fit (see below). +// +// There are two methods to estimate the radial position of the pad row cross: +// 1. leading cluster radial position : Here the lower part of the tracklet is considered and the last +// cluster registered (at radial x0) on this segment is chosen to mark the pad row crossing. The error +// of the z estimate is given by : +// BEGIN_LATEX +// #sigma_{z} = tg(#theta) #Delta x_{x_{0}}/12 +// END_LATEX +// The systematic errors for this estimation are generated by the following sources: +// - no charge sharing between pad rows is considered (sharp cross) +// - missing cluster at row cross (noise peak-up, under-threshold signal etc.). +// +// 2. charge fit over the crossing point : Here the full energy deposit along the tracklet is considered +// to estimate the position of the crossing by a fit in the qx plane. The errors in the q directions are +// parameterized as s_q = q^2. The systematic errors for this estimation are generated by the following sources: +// - no general model for the qx dependence +// - physical fluctuations of the charge deposit +// - gain calibration dependence +// +// Estimation of the radial position of the tracklet +// +// For pad row cross the radial position is taken from the xz fit (see above). Otherwise it is taken as the +// interpolation point of the tracklet i.e. the point where the error in y of the fit is minimum. The error +// in the y direction of the tracklet is (see AliTRDseedV1::GetCovAt()): +// BEGIN_LATEX +// #sigma_{y} = #sigma^{2}_{y_{0}} + 2xcov(y_{0}, dy/dx) + #sigma^{2}_{dy/dx} +// END_LATEX +// and thus the radial position is: +// BEGIN_LATEX +// x = - cov(y_{0}, dy/dx)/#sigma^{2}_{dy/dx} +// END_LATEX +// +// Estimation of tracklet position error +// +// The error in y direction is the error of the linear fit at the radial position of the tracklet while in the z +// direction is given by the cluster error or pad row cross error. In case of no pad row cross this is given by: +// BEGIN_LATEX +// #sigma_{y} = #sigma^{2}_{y_{0}} - 2cov^{2}(y_{0}, dy/dx)/#sigma^{2}_{dy/dx} + #sigma^{2}_{dy/dx} +// #sigma_{z} = Pad_{length}/12 +// END_LATEX +// For pad row cross the full error is calculated at the radial position of the crossing (see above) and the error +// in z by the width of the crossing region - being a matter of parameterization. +// BEGIN_LATEX +// #sigma_{z} = tg(#theta) #Delta x_{x_{0}}/12 +// END_LATEX +// In case of no tilt correction (default in the barrel tracking) the tilt is taken into account by the rotation of +// the covariance matrix. See AliTRDseedV1::GetCovAt() for details. +// +// Author +// A.Bercuci - if(!IsCalibrated()){ - AliWarning("Tracklet fit failed. Call Calibrate()."); + if(!fkReconstructor){ + AliError("The tracklet needs the reconstruction setup. Please initialize by SetReconstructor()."); return kFALSE; } + if(!IsCalibrated()) Calibrate(); + if(opt>2){ + AliWarning(Form("Option [%d] outside range [0, 2]. Using default",opt)); + opt=0; + } const Int_t kClmin = 8; - - - // cluster error parametrization parameters - // 1. sy total charge - const Float_t sq0inv = 0.019962; // [1/q0] - const Float_t sqb = 1.0281564; //[cm] - // 2. sy for the PRF - const Float_t scy[AliTRDgeometry::kNlayer][4] = { - {2.827e-02, 9.600e-04, 4.296e-01, 2.271e-02}, - {2.952e-02,-2.198e-04, 4.146e-01, 2.339e-02}, - {3.090e-02, 1.514e-03, 4.020e-01, 2.402e-02}, - {3.260e-02,-2.037e-03, 3.946e-01, 2.509e-02}, - {3.439e-02,-3.601e-04, 3.883e-01, 2.623e-02}, - {3.510e-02, 2.066e-03, 3.651e-01, 2.588e-02}, - }; - // 3. sy parallel to the track - const Float_t sy0 = 2.649e-02; // [cm] - const Float_t sya = -8.864e-04; // [cm] - const Float_t syb = -2.435e-01; // [cm] - - // 4. sx parallel to the track - const Float_t sxgc = 5.427e-02; - const Float_t sxgm = 7.783e-01; - const Float_t sxgs = 2.743e-01; - const Float_t sxe0 =-2.065e+00; - const Float_t sxe1 =-2.978e-02; - - // 5. sx perpendicular to the track -// const Float_t sxd0 = 1.881e-02; -// const Float_t sxd1 =-4.101e-01; -// const Float_t sxd2 = 1.572e+00; - + const Float_t kScalePulls = 10.; // factor to scale y pulls - NOT UNDERSTOOD // get track direction Double_t y0 = fYref[0]; Double_t dydx = fYref[1]; Double_t z0 = fZref[0]; Double_t dzdx = fZref[1]; - Double_t yt, zt; - // calculation of tg^2(phi - a_L) and tg^2(a_L) - Double_t tgg = (dydx-fExB)/(1.+dydx*fExB); tgg *= tgg; - //Double_t exb2= fExB*fExB; + AliTRDtrackerV1::AliTRDLeastSquare fitterY; + AliTRDtrackerV1::AliTRDLeastSquare fitterZ; - //AliTRDtrackerV1::AliTRDLeastSquare fitterZ; - TLinearFitter fitterY(1, "pol1"); - // convertion factor from square to gauss distribution for sigma - //Double_t convert = 1./TMath::Sqrt(12.); - // book cluster information Double_t qc[kNclusters], xc[kNclusters], yc[kNclusters], zc[kNclusters], sy[kNclusters]; - Int_t ily = AliTRDgeometry::GetLayer(fDet); - Int_t n = 0; - AliTRDcluster *c=0x0, **jc = &fClusters[0]; - for (Int_t ic=0; icGetRecoParam(); //the dynamic cast in GetRecoParam is slow, so caching the pointer to it + + const Char_t *tcName[]={"NONE", "FULL", "HALF"}; + AliDebug(2, Form("Options : TC[%s] dzdx[%c]", tcName[opt], kDZDX?'Y':'N')); + + + for (Int_t ic=0; icIsInChamber()) continue; + // compute pseudo tilt correction + if(kDZDX){ + fZfit[0] = c->GetZ(); + if(rc){ + for(Int_t kc=AliTRDseedV1::kNtb; kcIsInChamber()) continue; + fZfit[0] += cc->GetZ(); fZfit[0] *= 0.5; + break; + } + } + fZfit[1] = fZfit[0]/fX0; + if(rc){ + fZfit[0] += fZfit[1]*0.5*AliTRDgeometry::CdrHght(); + fZfit[1] = fZfit[0]/fX0; + } + kDZDX=kFALSE; + } Float_t w = 1.; if(c->GetNPads()>4) w = .5; if(c->GetNPads()>5) w = .2; - //zRow[fN] = c->GetPadRow(); + // cluster charge qc[n] = TMath::Abs(c->GetQ()); - // correct cluster position for PRF and v drift - //Int_t jc = TMath::Max(fN-3, 0); - //xc[fN] = c->GetXloc(fT0, fVD, &qc[jc], &xc[jc]/*, z0 - c->GetX()*dzdx*/); - //Double_t s2 = fS2PRF + fDiffL*fDiffL*xc[fN]/(1.+2.*exb2)+tgg*xc[fN]*xc[fN]*exb2/12.; - //yc[fN] = c->GetYloc(s2, GetPadWidth(), xc[fN], fExB); - - // uncalibrated cluster correction - // TODO remove - Double_t x, y; GetClusterXY(c, x, y); - xc[n] = fX0 - x; - yc[n] = y; + // pad row of leading + + xc[n] = fX0 - c->GetX(); + + // Recalculate cluster error based on tracking information + c->SetSigmaY2(fS2PRF, fDiffT, fExB, xc[n], -1./*zcorr?zt:-1.*/, dydx); + c->SetSigmaZ2(fPad[0]*fPad[0]/12.); // for HLT + sy[n] = TMath::Sqrt(c->GetSigmaY2()); + + yc[n] = recoParam->UseGAUS() ? + c->GetYloc(y0, sy[n], GetPadWidth()): c->GetY(); zc[n] = c->GetZ(); - // extrapolated y value for the track - yt = y0 - xc[n]*dydx; - // extrapolated z value for the track - zt = z0 - xc[n]*dzdx; - // tilt correction - if(tilt) yc[n] -= GetTilt()*(zc[n] - zt); - - // ELABORATE CLUSTER ERROR - // TODO to be moved to AliTRDcluster - // basic y error (|| to track). - sy[n] = xc[n] < AliTRDgeometry::CamHght() ? 2. : sy0 + sya*TMath::Exp(1./(xc[n]+syb)); - //printf("cluster[%d]\n\tsy[0] = %5.3e [um]\n", fN, sy[fN]*1.e4); - // y error due to total charge - sy[n] += sqb*(1./qc[n] - sq0inv); - //printf("\tsy[1] = %5.3e [um]\n", sy[fN]*1.e4); - // y error due to PRF - sy[n] += scy[ily][0]*TMath::Gaus(c->GetCenter(), scy[ily][1], scy[ily][2]) - scy[ily][3]; - //printf("\tsy[2] = %5.3e [um]\n", sy[fN]*1.e4); - - sy[n] *= sy[n]; - - // ADD ERROR ON x - // error of drift length parallel to the track - Double_t sx = sxgc*TMath::Gaus(xc[n], sxgm, sxgs) + TMath::Exp(sxe0+sxe1*xc[n]); // [cm] - //printf("\tsx[0] = %5.3e [um]\n", sx*1.e4); - // error of drift length perpendicular to the track - //sx += sxd0 + sxd1*d + sxd2*d*d; - sx *= sx; // square sx - - // add error from ExB - if(errors>0) sy[n] += fExB*fExB*sx; - //printf("\tsy[3] = %5.3e [um^2]\n", sy[fN]*1.e8); - - // global radial error due to misalignment/miscalibration - Double_t sx0 = 0.; sx0 *= sx0; - // add sx contribution to sy due to track angle - if(errors>1) sy[n] += tgg*(sx+sx0); - // TODO we should add tilt pad correction here - //printf("\tsy[4] = %5.3e [um^2]\n", sy[fN]*1.e8); - c->SetSigmaY2(sy[n]); - - sy[n] = TMath::Sqrt(sy[n]); + //optional r-phi correction + //printf(" n[%2d] yc[%7.5f] ", n, yc[n]); + Float_t correction(0.); + if(tilt) correction = fPad[2]*(xc[n]*dzdx + zc[n] - z0); + else if(pseudo) correction = fPad[2]*(xc[n]*fZfit[1] + zc[n]-fZfit[0]); + yc[n]-=correction; + //printf("corr(%s%s)[%7.5f] yc1[%7.5f]\n", (tilt?"TC":""), (zcorr?"PC":""), correction, yc[n]); + + AliDebug(5, Form(" tb[%2d] dx[%6.3f] y[%6.2f+-%6.3f]", c->GetLocalTimeBin(), xc[n], yc[n], sy[n])); fitterY.AddPoint(&xc[n], yc[n], sy[n]); + if(rc) fitterZ.AddPoint(&xc[n], qc[n]*(ic AliTRDgeometry::CamHght()+AliTRDgeometry::CdrHght()){ + AliDebug(1, Form("Ref radial position ouside chamber x[%5.2f].", fX)); + SetErrorMsg(kFitFailedY); + return kFALSE; + } + +/* // THE LEADING CLUSTER METHOD for z fit + Float_t xMin = fX0; + Int_t ic=n=kNclusters-1; jc = &fClusters[ic]; + AliTRDcluster *c0 =0x0, **kc = &fClusters[kNtb-1]; + for(; ic>kNtb; ic--, --jc, --kc){ + if((c0 = (*kc)) && c0->IsInChamber() && (xMin>c0->GetX())) xMin = c0->GetX(); + if(!(c = (*jc))) continue; + if(!c->IsInChamber()) continue; + zc[kNclusters-1] = c->GetZ(); + fX = fX0 - c->GetX(); + } + fZfit[0] = .5*(zc[0]+zc[kNclusters-1]); fZfit[1] = 0.; + // Error parameterization + fS2Z = fdX*fZref[1]; + fS2Z *= fS2Z; fS2Z *= 0.2887; // 1/sqrt(12)*/ + + // fit QZ + if(opt!=1 && IsRowCross()){ + if(!fitterZ.Eval()) SetErrorMsg(kFitFailedZ); + if(!HasError(kFitFailedZ) && TMath::Abs(fitterZ.GetFunctionParameter(1))>1.e-10){ + // TODO - one has to recalculate xy fit based on + // better knowledge of z position +// Double_t x = -fitterZ.GetFunctionParameter(0)/fitterZ.GetFunctionParameter(1); +// Double_t z0 = .5*(zc[0]+zc[n-1]); +// fZfit[0] = z0 + fZfit[1]*x; +// fZfit[1] = fZfit[0]/fX0; +// redo fit on xy plane + } + // temporary external error parameterization + fS2Z = 0.05+0.4*TMath::Abs(fZref[1]); fS2Z *= fS2Z; + // TODO correct formula + //fS2Z = sigma_x*TMath::Abs(fZref[1]); } else { - fZfit[0] = zc[0]; fZfit[1] = 0.; + //fZfit[0] = zc[0] + dzdx*0.5*AliTRDgeometry::CdrHght(); fS2Z = GetPadLength()*GetPadLength()/12.; } - - -// // determine z offset of the fit -// Float_t zslope = 0.; -// Int_t nchanges = 0, nCross = 0; -// if(nz==2){ // tracklet is crossing pad row -// // Find the break time allowing one chage on pad-rows -// // with maximal number of accepted clusters -// Int_t padRef = zRow[0]; -// for (Int_t ic=1; ic zc[ic] ? 1. : -1.; -// padRef = zRow[ic]; -// nCross = ic; -// nchanges++; -// } -// } -// -// // condition on nCross and reset nchanges TODO -// -// if(nchanges==1){ -// if(dzdx * zslope < 0.){ -// AliInfo("Tracklet-Track mismatch in dzdx. TODO."); -// } -// -// -// //zc[nc] = fitterZ.GetFunctionParameter(0); -// fCross[1] = fYfit[0] - fCross[0] * fYfit[1]; -// fCross[0] = fX0 - fCross[0]; -// } - return kTRUE; } -/* -//_____________________________________________________________________________ -void AliTRDseedV1::FitMI() +//____________________________________________________________________ +Bool_t AliTRDseedV1::FitRobust(Bool_t chg) { // -// Fit the seed. -// Marian Ivanov's version +// Linear fit of the clusters attached to the tracklet // -// linear fit on the y direction with respect to the reference direction. -// The residuals for each x (x = xc - x0) are deduced from: -// dy = y - yt (1) -// the tilting correction is written : -// y = yc + h*(zc-zt) (2) -// yt = y0+dy/dx*x (3) -// zt = z0+dz/dx*x (4) -// from (1),(2),(3) and (4) -// dy = yc - y0 - (dy/dx + h*dz/dx)*x + h*(zc-z0) -// the last term introduces the correction on y direction due to tilting pads. There are 2 ways to account for this: -// 1. use tilting correction for calculating the y -// 2. neglect tilting correction here and account for it in the error parametrization of the tracklet. - const Float_t kRatio = 0.8; - const Int_t kClmin = 5; - const Float_t kmaxtan = 2; - - if (TMath::Abs(fYref[1]) > kmaxtan){ - //printf("Exit: Abs(fYref[1]) = %3.3f, kmaxtan = %3.3f\n", TMath::Abs(fYref[1]), kmaxtan); - return; // Track inclined too much - } - - Float_t sigmaexp = 0.05 + TMath::Abs(fYref[1] * 0.25); // Expected r.m.s in y direction - Float_t ycrosscor = GetPadLength() * GetTilt() * 0.5; // Y correction for crossing - Int_t fNChange = 0; - - Double_t sumw; - Double_t sumwx; - Double_t sumwx2; - Double_t sumwy; - Double_t sumwxy; - Double_t sumwz; - Double_t sumwxz; - - // Buffering: Leave it constant fot Performance issues - Int_t zints[kNtb]; // Histograming of the z coordinate - // Get 1 and second max probable coodinates in z - Int_t zouts[2*kNtb]; - Float_t allowedz[kNtb]; // Allowed z for given time bin - Float_t yres[kNtb]; // Residuals from reference - //Float_t anglecor = GetTilt() * fZref[1]; // Correction to the angle - - Float_t pos[3*kNtb]; memset(pos, 0, 3*kNtb*sizeof(Float_t)); - Float_t *fX = &pos[0], *fY = &pos[kNtb], *fZ = &pos[2*kNtb]; - - Int_t fN = 0; AliTRDcluster *c = 0x0; - fN2 = 0; - for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) { - yres[i] = 10000.0; - if (!(c = fClusters[i])) continue; - if(!c->IsInChamber()) continue; - // Residual y - //yres[i] = fY[i] - fYref[0] - (fYref[1] + anglecor) * fX[i] + GetTilt()*(fZ[i] - fZref[0]); - fX[i] = fX0 - c->GetX(); - fY[i] = c->GetY(); - fZ[i] = c->GetZ(); - yres[i] = fY[i] - GetTilt()*(fZ[i] - (fZref[0] - fX[i]*fZref[1])); - zints[fN] = Int_t(fZ[i]); - fN++; - } - - if (fN < kClmin){ - //printf("Exit fN < kClmin: fN = %d\n", fN); - return; - } - Int_t nz = AliTRDtrackerV1::Freq(fN, zints, zouts, kFALSE); - Float_t fZProb = zouts[0]; - if (nz <= 1) zouts[3] = 0; - if (zouts[1] + zouts[3] < kClmin) { - //printf("Exit zouts[1] = %d, zouts[3] = %d\n",zouts[1],zouts[3]); - return; - } - - // Z distance bigger than pad - length - if (TMath::Abs(zouts[0]-zouts[2]) > 12.0) zouts[3] = 0; - - Int_t breaktime = -1; - Bool_t mbefore = kFALSE; - Int_t cumul[kNtb][2]; - Int_t counts[2] = { 0, 0 }; - - if (zouts[3] >= 3) { - - // - // Find the break time allowing one chage on pad-rows - // with maximal number of accepted clusters - // - fNChange = 1; - for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) { - cumul[i][0] = counts[0]; - cumul[i][1] = counts[1]; - if (TMath::Abs(fZ[i]-zouts[0]) < 2) counts[0]++; - if (TMath::Abs(fZ[i]-zouts[2]) < 2) counts[1]++; - } - Int_t maxcount = 0; - for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) { - Int_t after = cumul[AliTRDtrackerV1::GetNTimeBins()][0] - cumul[i][0]; - Int_t before = cumul[i][1]; - if (after + before > maxcount) { - maxcount = after + before; - breaktime = i; - mbefore = kFALSE; - } - after = cumul[AliTRDtrackerV1::GetNTimeBins()-1][1] - cumul[i][1]; - before = cumul[i][0]; - if (after + before > maxcount) { - maxcount = after + before; - breaktime = i; - mbefore = kTRUE; - } - } - breaktime -= 1; - } +// Author +// A.Bercuci - for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { - if (i > breaktime) allowedz[i] = mbefore ? zouts[2] : zouts[0]; - if (i <= breaktime) allowedz[i] = (!mbefore) ? zouts[2] : zouts[0]; - } + TTreeSRedirector *pstreamer(NULL); + const AliTRDrecoParam* const recoParam = fkReconstructor->GetRecoParam(); if(recoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 3 && fkReconstructor->IsDebugStreaming()) pstreamer = fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); - if (((allowedz[0] > allowedz[AliTRDtrackerV1::GetNTimeBins()]) && (fZref[1] < 0)) || - ((allowedz[0] < allowedz[AliTRDtrackerV1::GetNTimeBins()]) && (fZref[1] > 0))) { - // - // Tracklet z-direction not in correspondance with track z direction - // - fNChange = 0; - for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { - allowedz[i] = zouts[0]; // Only longest taken - } - } - - if (fNChange > 0) { - // - // Cross pad -row tracklet - take the step change into account - // - for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { - if (!fClusters[i]) continue; - if(!fClusters[i]->IsInChamber()) continue; - if (TMath::Abs(fZ[i] - allowedz[i]) > 2) continue; - // Residual y - //yres[i] = fY[i] - fYref[0] - (fYref[1] + anglecor) * fX[i] + GetTilt()*(fZ[i] - fZref[0]); - yres[i] = fY[i] - GetTilt()*(fZ[i] - (fZref[0] - fX[i]*fZref[1])); -// if (TMath::Abs(fZ[i] - fZProb) > 2) { -// if (fZ[i] > fZProb) yres[i] += GetTilt() * GetPadLength(); -// if (fZ[i] < fZProb) yres[i] -= GetTilt() * GetPadLength(); - } + // factor to scale y pulls. + // ideally if error parametrization correct this is 1. + //Float_t lyScaler = 1./(AliTRDgeometry::GetLayer(fDet)+1.); + Float_t kScalePulls = 1.; + AliTRDcalibDB *calibration = AliTRDcalibDB::Instance(); + if(!calibration){ + AliWarning("No access to calibration data"); + } else { + // Retrieve the CDB container class with the parametric likelihood + const AliTRDCalTrkAttach *attach = calibration->GetAttachObject(); + if(!attach){ + AliWarning("No usable AttachClusters calib object."); + } else { + kScalePulls = attach->GetScaleCov();//*lyScaler; } + } + Double_t xc[kNclusters], yc[kNclusters], sy[kNclusters]; + Int_t n(0), // clusters used in fit + row[]={-1, 0}; // pad row spanned by the tracklet + AliTRDcluster *c(NULL), **jc = &fClusters[0]; + for(Int_t ic=0; icIsInChamber()) continue; + if(row[0]<0){ + fZfit[0] = c->GetZ(); + fZfit[1] = 0.; + row[0] = c->GetPadRow(); + } + xc[n] = fX0 - c->GetX(); + yc[n] = c->GetY(); + sy[n] = c->GetSigmaY2()>0?(TMath::Min(TMath::Sqrt(c->GetSigmaY2()), 0.08)):0.08; + n++; } - - Double_t yres2[kNtb]; - Double_t mean; - Double_t sigma; - for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { - if (!fClusters[i]) continue; - if(!fClusters[i]->IsInChamber()) continue; - if (TMath::Abs(fZ[i] - allowedz[i]) > 2) continue; - yres2[fN2] = yres[i]; - fN2++; - } - if (fN2 < kClmin) { - //printf("Exit fN2 < kClmin: fN2 = %d\n", fN2); - fN2 = 0; - return; - } - AliMathBase::EvaluateUni(fN2,yres2,mean,sigma, Int_t(fN2*kRatio-2.)); - if (sigma < sigmaexp * 0.8) { - sigma = sigmaexp; - } - //Float_t fSigmaY = sigma; - - // Reset sums - sumw = 0; - sumwx = 0; - sumwx2 = 0; - sumwy = 0; - sumwxy = 0; - sumwz = 0; - sumwxz = 0; - - fN2 = 0; - Float_t fMeanz = 0; - Float_t fMPads = 0; - fUsable = 0; - for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { - if (!fClusters[i]) continue; - if (!fClusters[i]->IsInChamber()) continue; - if (TMath::Abs(fZ[i] - allowedz[i]) > 2){fClusters[i] = 0x0; continue;} - if (TMath::Abs(yres[i] - mean) > 4.0 * sigma){fClusters[i] = 0x0; continue;} - SETBIT(fUsable,i); - fN2++; - fMPads += fClusters[i]->GetNPads(); - Float_t weight = 1.0; - if (fClusters[i]->GetNPads() > 4) weight = 0.5; - if (fClusters[i]->GetNPads() > 5) weight = 0.2; - - - Double_t x = fX[i]; - //printf("x = %7.3f dy = %7.3f fit %7.3f\n", x, yres[i], fY[i]-yres[i]); - - sumw += weight; - sumwx += x * weight; - sumwx2 += x*x * weight; - sumwy += weight * yres[i]; - sumwxy += weight * (yres[i]) * x; - sumwz += weight * fZ[i]; - sumwxz += weight * fZ[i] * x; + Double_t corr = fPad[2]*fPad[0]; + for(Int_t ic=kNtb; icIsInChamber()) continue; + if(row[1]==0) row[1] = c->GetPadRow() - row[0]; + xc[n] = fX0 - c->GetX(); + yc[n] = c->GetY() + corr*row[1]; + sy[n] = c->GetSigmaY2()>0?(TMath::Min(TMath::Sqrt(c->GetSigmaY2()), 0.08)):0.08; + n++; } - - if (fN2 < kClmin){ - //printf("Exit fN2 < kClmin(2): fN2 = %d\n",fN2); - fN2 = 0; - return; + UChar_t status(0); + Double_t par[3] = {0.,0.,21122012.}, cov[3]; + if(!AliTRDtrackletOflHelper::Fit(n, xc, yc, sy, par, 1.5, cov)){ + AliDebug(1, Form("Tracklet fit failed D[%03d].", fDet)); + SetErrorMsg(kFitCl); + return kFALSE; } - fMeanz = sumwz / sumw; - Float_t correction = 0; - if (fNChange > 0) { - // Tracklet on boundary - if (fMeanz < fZProb) correction = ycrosscor; - if (fMeanz > fZProb) correction = -ycrosscor; + fYfit[0] = par[0]; + fYfit[1] = -par[1]; + // store covariance + fCov[0] = kScalePulls*cov[0]; // variance of y0 + fCov[1] = kScalePulls*cov[2]; // covariance of y0, dydx + fCov[2] = kScalePulls*cov[1]; // variance of dydx + // the ref radial position is set at the minimum of + // the y variance of the tracklet + fX = -fCov[1]/fCov[2]; + // check radial position + Float_t xs=fX+.5*AliTRDgeometry::CamHght(); + if(xs < 0. || xs > AliTRDgeometry::CamHght()+AliTRDgeometry::CdrHght()){ + AliDebug(1, Form("Ref radial position x[%5.2f] ouside D[%3d].", fX, fDet)); + SetErrorMsg(kFitFailedY); + return kFALSE; + } + fS2Y = fCov[0] + fX*fCov[1]; + fS2Z = fPad[0]*fPad[0]/12.; + AliDebug(2, Form("[I] x[cm]=%6.2f y[cm]=%+5.2f z[cm]=%+6.2f dydx[deg]=%+5.2f sy[um]=%6.2f sz[cm]=%6.2f", GetX(), GetY(), GetZ(), TMath::ATan(fYfit[1])*TMath::RadToDeg(), TMath::Sqrt(fS2Y)*1.e4, TMath::Sqrt(fS2Z))); + if(IsRowCross()){ + Float_t x,z; + if(!GetEstimatedCrossPoint(x,z)){ + AliDebug(2, Form("Failed getting crossing point D[%03d].", fDet)); + SetErrorMsg(kFitFailedY); + return kTRUE; + } + fX = fX0-x; + fS2Y = fCov[0] + fX*fCov[1]; + fZfit[0] = z; + if(IsPrimary()){ + fZfit[1] = z/x; + fS2Z = 0.05+0.4*TMath::Abs(fZfit[1]); fS2Z *= fS2Z; + } + AliDebug(2, Form("[II] x[cm]=%6.2f y[cm]=%+5.2f z[cm]=%+6.2f dydx[deg]=%+5.2f sy[um]=%6.2f sz[um]=%6.2f dzdx[deg]=%+5.2f", GetX(), GetY(), GetZ(), TMath::ATan(fYfit[1])*TMath::RadToDeg(), TMath::Sqrt(fS2Y)*1.e4, TMath::Sqrt(fS2Z)*1.e4, TMath::ATan(fZfit[1])*TMath::RadToDeg())); } - - Double_t det = sumw * sumwx2 - sumwx * sumwx; - fYfit[0] = (sumwx2 * sumwy - sumwx * sumwxy) / det; - fYfit[1] = (sumw * sumwxy - sumwx * sumwy) / det; - - fS2Y = 0; - for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { - if (!TESTBIT(fUsable,i)) continue; - Float_t delta = yres[i] - fYfit[0] - fYfit[1] * fX[i]; - fS2Y += delta*delta; - } - fS2Y = TMath::Sqrt(fS2Y / Float_t(fN2-2)); - // TEMPORARY UNTIL covariance properly calculated - fS2Y = TMath::Max(fS2Y, Float_t(.1)); - fZfit[0] = (sumwx2 * sumwz - sumwx * sumwxz) / det; - fZfit[1] = (sumw * sumwxz - sumwx * sumwz) / det; -// fYfitR[0] += fYref[0] + correction; -// fYfitR[1] += fYref[1]; -// fYfit[0] = fYfitR[0]; - fYfit[1] = -fYfit[1]; - - UpdateUsed(); -}*/ + if(pstreamer){ + Float_t x= fX0 -fX, + y = GetY(), + yt = fYref[0]-fX*fYref[1]; + SETBIT(status, 2); + TVectorD vcov(3); vcov[0]=cov[0];vcov[1]=cov[1];vcov[2]=cov[2]; + Double_t sm(0.), chi2(0.), tmp, dy[kNclusters]; + for(Int_t ic(0); icfZref[i] ) return kFALSE; } - if ( fS2Y != inTracklet->fS2Y ) return kFALSE; - if ( GetTilt() != inTracklet->GetTilt() ) return kFALSE; - if ( GetPadLength() != inTracklet->GetPadLength() ) return kFALSE; + if ( TMath::Abs(fS2Y - inTracklet->fS2Y)>1.e-10 ) return kFALSE; + if ( TMath::Abs(GetTilt() - inTracklet->GetTilt())>1.e-10 ) return kFALSE; + if ( TMath::Abs(GetPadLength() - inTracklet->GetPadLength())>1.e-10 ) return kFALSE; for (Int_t i = 0; i < kNclusters; i++){ // if ( fX[i] != inTracklet->GetX(i) ) return kFALSE; @@ -1624,14 +2177,14 @@ Bool_t AliTRDseedV1::IsEqual(const TObject *o) const //if ( fFreq != inTracklet->GetFreq() ) return kFALSE; //if ( fNChange != inTracklet->GetNChange() ) return kFALSE; - if ( fC != inTracklet->fC ) return kFALSE; + if ( TMath::Abs(fC[0] - inTracklet->fC[0])>1.e-10 ) return kFALSE; //if ( fCC != inTracklet->GetCC() ) return kFALSE; - if ( fChi2 != inTracklet->fChi2 ) return kFALSE; + if ( TMath::Abs(fChi2 - inTracklet->fChi2)>1.e-10 ) return kFALSE; // if ( fChi2Z != inTracklet->GetChi2Z() ) return kFALSE; if ( fDet != inTracklet->fDet ) return kFALSE; - if ( fMom != inTracklet->fMom ) return kFALSE; - if ( fdX != inTracklet->fdX ) return kFALSE; + if ( TMath::Abs(fPt - inTracklet->fPt)>1.e-10 ) return kFALSE; + if ( TMath::Abs(fdX - inTracklet->fdX)>1.e-10 ) return kFALSE; for (Int_t iCluster = 0; iCluster < kNclusters; iCluster++){ AliTRDcluster *curCluster = fClusters[iCluster]; @@ -1650,3 +2203,4 @@ Bool_t AliTRDseedV1::IsEqual(const TObject *o) const } return kTRUE; } +