X-Git-Url: http://git.uio.no/git/?a=blobdiff_plain;f=TRD%2FAliTRDseedV1.h;h=80bc78283836233e0cd3859b06040725c2e52866;hb=f2c3f145fbadc146e59e6d5f5b00ddd3f3048878;hp=b2ac6fa5f820dfb39a525211e346f7eb0ba4d73f;hpb=d2b9977a7d2bbab26133a3ecf950baab0edc2819;p=u%2Fmrichter%2FAliRoot.git diff --git a/TRD/AliTRDseedV1.h b/TRD/AliTRDseedV1.h index b2ac6fa5f82..80bc7828383 100644 --- a/TRD/AliTRDseedV1.h +++ b/TRD/AliTRDseedV1.h @@ -3,136 +3,438 @@ /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ -/* $Id$ */ +/* $Id: AliTRDseedV1.h 60233 2013-01-10 09:04:08Z abercuci $ */ //////////////////////////////////////////////////////////////////////////// // // -// The TRD track seed // +// \class AliTRDseedV1 +// \brief The TRD offline tracklet +// \author Alexandru Bercuci // // //////////////////////////////////////////////////////////////////////////// -#ifndef ALITRDSEED_H -#include "AliTRDseed.h" +#ifndef ALITRDTRACKLETBASE_H +#include "AliTRDtrackletBase.h" +#endif + +#ifndef ROOT_TMath +#include "TMath.h" +#endif + +#ifndef ALITRDGEOMETRY_H +#include "AliTRDgeometry.h" #endif #ifndef ALIPID_H #include "AliPID.h" #endif -#ifndef ALIRIEMAN_H -#include "AliRieman.h" + +#ifndef ALITRDCLUSTER_H +#include "AliTRDcluster.h" #endif -class TTreeSRedirector; +class TTreeSRedirector; +class TLinearFitter; +class TGeoHMatrix; class AliRieman; +class AliTRDReconstructor; class AliTRDtrackingChamber; -class AliTRDcluster; class AliTRDtrackV1; -class AliTRDReconstructor; -class AliTRDseedV1 : public AliTRDseed +class AliTRDpadPlane; +class AliTRDseedV1 : public AliTRDtrackletBase { + friend class AliHLTTRDTracklet; // wrapper for HLT - public: - - enum { - knSlices = 10 +public: + enum ETRDtrackletBuffers { + kNbits = 6 // bits to store number of clusters + ,kMask = 0x3f // bit mask + ,kNtb = 31 // max clusters/pad row + ,kNclusters = 2*kNtb // max number of clusters/tracklet + ,kNdEdxSlices= 8 // dEdx slices allocated in reconstruction }; + // bits from 0-13 are reserved by ROOT (see TObject.h) - enum AliTRDtrackletStatus { - kOwner = BIT(14) - , kRowCross = BIT(15) + enum ETRDtrackletStatus { + kOwner = BIT(14) // owner of its clusters + ,kRowCross = BIT(15) // pad row cross tracklet + ,kChmbGood = BIT(16) // status of the detector from calibration view point + ,kCalib = BIT(17) // calibrated tracklet + ,kKink = BIT(18) // kink prolongation tracklet + ,kStandAlone = BIT(19) // tracklet build during stand alone track finding + ,kPrimary = BIT(20) // tracklet from a primary track candidate + }; + + enum ETRDtrackletError { // up to 8 bits + kAttachClFound = 0 // not enough clusters found + ,kAttachRowGap = 1 // found gap attached rows + ,kAttachRow = 2 // found 3 rows + ,kAttachMultipleCl= 3// multiple clusters attached to time bin + ,kAttachClAttach= 4 // not enough clusters attached + ,kFitCl = 5 // not enough clusters for fit + ,kFitFailedY = 6 // fit failed in XY plane failed + ,kFitFailedZ = 7 // fit in the QZ plane failed }; - AliTRDseedV1(Int_t plane = -1); + AliTRDseedV1(Int_t det = -1); ~AliTRDseedV1(); AliTRDseedV1(const AliTRDseedV1 &ref); AliTRDseedV1& operator=(const AliTRDseedV1 &ref); - Bool_t AttachClustersIter(AliTRDtrackingChamber *chamber, Float_t quality, Bool_t kZcorr = kFALSE - , AliTRDcluster *c=0x0); - Bool_t AttachClusters(AliTRDtrackingChamber *chamber, Bool_t kZcorr = kFALSE); - void CookdEdx(Int_t nslices); - void Draw(Option_t* o = ""); - Bool_t Fit(Bool_t tilt=kTRUE); - - Bool_t Init(AliTRDtrackV1 *track); - inline void Init(const AliRieman *fit); + Bool_t AttachClusters(AliTRDtrackingChamber *const chamber, Bool_t tilt = kFALSE, Bool_t ChgPlus=kTRUE, Int_t ev=-1); + void Bootstrap(const AliTRDReconstructor *rec); + void Calibrate(); + void CookdEdx(Int_t nslices); + void CookLabels(); + Bool_t CookPID(); + Bool_t Fit(UChar_t opt=0); // OBSOLETE + Bool_t FitRobust(AliTRDpadPlane *pp, Bool_t sgn, Int_t chg, Int_t opt=0); + Double_t EstimatedCrossPoint(AliTRDpadPlane *pp); + Bool_t Init(const AliTRDtrackV1 *track); + void Init(const AliRieman *fit); + Bool_t IsEqual(const TObject *inTracklet) const; + Bool_t IsCalibrated() const { return TestBit(kCalib);} + Bool_t IsChmbGood() const { return TestBit(kChmbGood);} Bool_t IsOwner() const { return TestBit(kOwner);} + Bool_t IsKink() const { return TestBit(kKink);} + Bool_t IsPrimary() const { return TestBit(kPrimary);} + Bool_t HasError(ETRDtrackletError err) const + { return TESTBIT(fErrorMsg, err);} + Bool_t IsOK() const { return GetN() > 4 && GetNUsed() < 4;} Bool_t IsRowCross() const { return TestBit(kRowCross);} + Bool_t IsUsable(Int_t i) const { return fClusters[i] && !fClusters[i]->IsUsed();} + Bool_t IsStandAlone() const { return TestBit(kStandAlone);} - inline Float_t GetChi2Z(const Float_t z = 999.) const; - inline Float_t GetChi2Y(const Float_t y = 999.) const; + Float_t GetAnodeWireOffset(Float_t zt); + Float_t GetC(Int_t typ=0) const { return fC[typ]; } + Float_t GetCharge(Bool_t useOutliers=kFALSE) const; + Float_t GetChi2() const { return fChi2; } + inline Float_t GetChi2Z() const; + inline Float_t GetChi2Y() const; + inline Float_t GetChi2Phi() const; void GetCovAt(Double_t x, Double_t *cov) const; - Double_t* GetCrossXYZ() { return &fCross[0];} - Double_t GetCrossSz2() const { return fCross[3];} - Float_t* GetdEdx() {return &fdEdx[0];} - Float_t GetdQdl(Int_t ic) const; - Double_t GetMomentum() const {return fMom;} - Int_t GetN() const {return fN2;} + void GetCovXY(Double_t *cov) const { memcpy(cov, &fCov[0], 3*sizeof(Double_t));} + void GetCovRef(Double_t *cov) const { memcpy(cov, &fRefCov, 7*sizeof(Double_t));} + static Int_t GetCovSqrt(const Double_t * const c, Double_t *d); + static Double_t GetCovInv(const Double_t * const c, Double_t *d); + UChar_t GetErrorMsg() const { return fErrorMsg;} + Float_t GetdX() const { return fdX;} + const Float_t* GetdEdx() const { return &fdEdx[0];} + Float_t GetQperTB(Int_t tb) const; + Float_t GetdQdl() const; + Float_t GetdQdl(Int_t ic, Float_t *dx=NULL) const; + Float_t GetdYdX() const { return fYfit[1];} + Float_t GetdZdX() const { return fZfit[1];} + Int_t GetdY() const { return Int_t(GetY()/0.014);} + Int_t GetDetector() const { return fDet;} + Int_t GetChargeGaps(Float_t sz[kNtb], Float_t pos[kNtb], Int_t ntb[kNtb]) const; + void GetCalibParam(Float_t &exb, Float_t &vd, Float_t &t0, Float_t &s2, Float_t &dl, Float_t &dt) const { + exb = fExB; vd = fVD; t0 = fT0; s2 = fS2PRF; dl = fDiffL; dt = fDiffT;} + AliTRDcluster* GetClusters(Int_t i) const { return i<0 || i>=kNclusters ? NULL: fClusters[i];} + Int_t GetIndexes(Int_t i) const{ return i<0 || i>=kNclusters ? -1 : fIndexes[i];} + Int_t GetLabels(Int_t i) const { return fLabels[i];} + Float_t GetLocalZ() const { return fZfit[0] - fZfit[1] * fX;} + Float_t GetLocalY() const { return fYfit[0] - fYfit[1] * fX;} + Float_t GetMomentum(Float_t *err = NULL) const; + Int_t GetN() const { return (Int_t)fN&kMask;} + Int_t GetN2() const { return GetN();} + Int_t GetNUsed() const { return Int_t((fN>>kNbits)&kMask);} + Int_t GetNShared() const { return Int_t(((fN>>kNbits)>>kNbits)&kMask);} + Int_t GetTBoccupancy() const; + Int_t GetTBcross() const; Float_t GetQuality(Bool_t kZcorr) const; - Int_t GetPlane() const { return fPlane; } - Double_t* GetProbability(); - Double_t GetSnp() const { return fSnp;} - Double_t GetTgl() const { return fTgl;} - Double_t GetYat(Double_t x) const { return fYfit[0] + fYfit[1] * (x-fX0);} - Double_t GetZat(Double_t x) const { return fZfit[0] + fZfit[1] * (x-fX0);} - + Float_t GetPadLength() const { return fPad[0];} + Float_t GetPadWidth() const { return fPad[1];} + Int_t GetPlane() const { return AliTRDgeometry::GetLayer(fDet); } + + Float_t* GetProbability(Bool_t force=kFALSE); + Float_t GetPt() const { return fPt; } + inline Double_t GetPID(Int_t is=-1) const; + Float_t GetS2Y() const { return fCov[0];} + Float_t GetS2Z() const { return fS2Z;} + Double_t GetS2DYDX(Float_t) const { return fCov[2];} + inline Double_t GetS2DZDX(Float_t) const; + inline Double_t GetS2XcrossDZDX(Double_t absdzdx) const; + Float_t GetSigmaY() const { return fS2Y > 0. ? TMath::Sqrt(fS2Y) : 0.2;} + Float_t GetSnp() const { return fYref[1]/TMath::Sqrt(1+fYref[1]*fYref[1]);} + Float_t GetTgl() const { return fZref[1]/TMath::Sqrt(1+fYref[1]*fYref[1]);} + Float_t GetTilt() const { return fPad[2];} + UInt_t GetTrackletWord() const { return 0;} + UShort_t GetVolumeId() const; + Float_t GetX0() const { return fX0;} + Float_t GetX() const { return fX0 - fX;} + Float_t GetXcross() const { return fS2Y;} + Float_t GetY() const { return TMath::Abs(fY)<1.e-15?GetLocalY():fY;/*fYfit[0] - fYfit[1] * fX;*/} + Double_t GetYat(Double_t x) const { return fY/*fit[0]*/ - fYfit[1] * (fX0-x);} + Float_t GetYfit(Int_t id) const { return fYfit[id];} + Float_t GetYref(Int_t id) const { return fYref[id];} + Float_t GetYref() const { return fYref[0] - fYref[1] *fX;} + Float_t GetZ() const { return TMath::Abs(fZ)<1.e-15?GetLocalZ():fZ;/*fZfit[0] - fZfit[1] * fX;*/} + Double_t GetZat(Double_t x) const { return fZ/*fit[0]*/ - fZfit[1] * (fX0-x);} + Float_t GetZfit(Int_t id) const { return fZfit[id];} + Float_t GetZref(Int_t id) const { return fZref[id];} + Float_t GetZref() const { return fZref[0] - fZref[1] *fX;} + Int_t GetYbin() const { return Int_t(GetY()/0.016);} + Int_t GetZbin() const { return Int_t(GetZ()/fPad[0]);} + + inline AliTRDcluster* NextCluster(); + inline AliTRDcluster* PrevCluster(); void Print(Option_t *o = "") const; - - void SetMomentum(Double_t mom) {fMom = mom;} + inline void ResetClusterIter(Bool_t forward = kTRUE); + void Reset(Option_t *opt=""); + + void SetC(Float_t c, Int_t typ=0) { fC[typ] = c;} + void SetChmbGood(Bool_t k = kTRUE){ SetBit(kChmbGood, k);} + void SetChi2(Float_t chi2) { fChi2 = chi2;} + inline void SetCovRef(const Double_t *cov); + void SetErrorMsg(ETRDtrackletError err) { SETBIT(fErrorMsg, err);} + void SetIndexes(Int_t i, Int_t idx) { fIndexes[i] = idx; } + void SetLabels(Int_t *lbls) { memcpy(fLabels, lbls, 3*sizeof(Int_t)); } + void SetKink(Bool_t k = kTRUE){ SetBit(kKink, k);} + void SetPrimary(Bool_t k = kTRUE){ SetBit(kPrimary, k);} + void SetStandAlone(Bool_t st) { SetBit(kStandAlone, st); } + void SetPt(Double_t pt) { fPt = pt;} void SetOwner(); - void SetPlane(Int_t p) { fPlane = p; } - void SetSnp(Double_t snp) {fSnp = snp;} - void SetTgl(Double_t tgl) {fTgl = tgl;} - void SetReconstructor(const AliTRDReconstructor *rec) {fReconstructor = rec;} -protected: + void SetPadPlane(AliTRDpadPlane * const p); + void SetPadLength(Float_t l) { fPad[0] = l;} + void SetPadWidth(Float_t w) { fPad[1] = w;} + void SetTilt(Float_t tilt) { fPad[2] = tilt; } + void SetDetector(Int_t d) { fDet = d; } + void SetDX(Float_t inDX) { fdX = inDX;} + void SetReconstructor(const AliTRDReconstructor *rec) {fkReconstructor = rec;} + void SetX0(Float_t x0) { fX0 = x0; } + void SetXYZ(TGeoHMatrix *mDet); + void SetYref(Int_t i, Float_t y) { if(i==0||i==1) fYref[i] = y;} + void SetZref(Int_t i, Float_t z) { if(i==0||i==1) fZref[i] = z;} +// void SetUsabilityMap(Long_t um) { fUsable = um; } + void Update(const AliTRDtrackV1* trk); + void UpdateUsed(); + void UseClusters(); - void Copy(TObject &ref) const; +protected: + void Copy(TObject &ref) const; + void UnbiasDZDX(Bool_t rc); + Double_t UnbiasY(Bool_t rc, Bool_t sgn, Int_t chg); private: - const AliTRDReconstructor *fReconstructor;//! local reconstructor - Int_t fPlane; // TRD plane - Float_t fMom; // Momentum estimate for tracklet [GeV/c] - Float_t fSnp; // sin of track with respect to x direction in XY plane - Float_t fTgl; // tg of track with respect to x direction in XZ plane - Float_t fdX; // length of time bin - Float_t fdEdx[knSlices]; // dE/dx measurements for tracklet - Double_t fCross[4]; // spatial parameters of the pad row crossing - Double_t fProb[AliPID::kSPECIES]; // PID probabilities + inline void SetN(Int_t n); + inline void SetNUsed(Int_t n); + inline void SetNShared(Int_t n); + inline void Swap(Int_t &n1, Int_t &n2) const; + inline void Swap(Double_t &d1, Double_t &d2) const; - ClassDef(AliTRDseedV1, 1) // New TRD seed + const AliTRDReconstructor *fkReconstructor;//! local reconstructor + AliTRDcluster **fClusterIter; //! clusters iterator + Int_t fIndexes[kNclusters]; //! Indexes + Float_t fExB; // tg(a_L) @ tracklet location + Float_t fVD; // drift velocity @ tracklet location + Float_t fT0; // time 0 @ tracklet location + Float_t fS2PRF; // sigma^2 PRF for xd->0 and phi=a_L + Float_t fDiffL; // longitudinal diffusion coefficient + Float_t fDiffT; // transversal diffusion coefficient + Char_t fClusterIdx; //! clusters iterator + UChar_t fErrorMsg; // processing error + UInt_t fN; // number of clusters attached/used/shared + Short_t fDet; // TRD detector + AliTRDcluster *fClusters[kNclusters]; // Clusters + Float_t fPad[4]; // local pad definition : length/width/tilt/anode wire offset + Float_t fYref[2]; // Reference y, dydx + Float_t fZref[2]; // Reference z, dz/dx + Float_t fYfit[2]; // Fit :: chamber local y, dy/dx + Float_t fZfit[2]; // Fit :: chamber local z, dz/dx + Float_t fPt; // Pt estimate @ tracklet [GeV/c] + Float_t fdX; // length of time bin + Float_t fX0; // anode wire position in TrackingCoordinates (alignment included) + Float_t fX; // local radial offset from anode wire where tracklet position is estimated + Float_t fY; // r-phi position of the tracklet in TrackingCoordinates (alignment included) + Float_t fZ; // z position of the tracklet in TrackingCoordinates (alignment included) + Float_t fS2Y; // estimated radial cross point (chmb. coord.) in case of RC tracklets + Float_t fS2Z; // estimated resolution in the z direction + Float_t fC[2]; // Curvature for standalone [0] rieman [1] vertex constrained + Float_t fChi2; // Global chi2 + Float_t fdEdx[kNdEdxSlices]; // dE/dx measurements for tracklet + Float_t fProb[AliPID::kSPECIES]; // PID probabilities + Int_t fLabels[3]; // most frequent MC labels and total number of different labels + Double_t fRefCov[7]; // covariance matrix of the track in the yz plane + the rest of the diagonal elements + Double_t fCov[3]; // covariance matrix of the tracklet in the xy plane + ClassDef(AliTRDseedV1, 13) // The offline TRD tracklet }; //____________________________________________________________ -inline Float_t AliTRDseedV1::GetChi2Z(const Float_t z) const +inline Float_t AliTRDseedV1::GetChi2Z() const +{ + Double_t dz = fZref[0]-fZfit[0]; dz*=dz; + Double_t cov[3]; GetCovAt(fX, cov); + Double_t s2 = fRefCov[2]+cov[2]; + return s2 > 0. ? dz/s2 : 0.; +} + +//____________________________________________________________ +inline Float_t AliTRDseedV1::GetChi2Y() const +{ + Double_t dy = fYref[0]-fYfit[0]; dy*=dy; + Double_t cov[3]; GetCovAt(fX, cov); + Double_t s2 = fRefCov[0]+cov[0]; + return s2 > 0. ? dy/s2 : 0.; +} + +//____________________________________________________________ +inline Float_t AliTRDseedV1::GetChi2Phi() const +{ + Double_t dphi = fYref[1]-fYfit[1]; dphi*=dphi; + Double_t cov[3]; GetCovAt(fX, cov); + Double_t s2 = fRefCov[2]+cov[2]; + return s2 > 0. ? dphi/s2 : 0.; +} + + + +//____________________________________________________________ +inline Double_t AliTRDseedV1::GetPID(Int_t is) const +{ + if(is<0) return fProb[AliPID::kElectron]; + if(is0.05) return TMath::Exp(-1.58839-absdzdx*3.24116); + else return 0.957043-absdzdx*12.4597; +} + +//____________________________________________________________ +Double_t AliTRDseedV1::GetS2DZDX(Float_t dzdx) const +{ +// Double_t p0[] = {0.03925, 0.03178}, +// p1[] = {0.06316, 0.06669}; + Double_t p0[] = {0.02835, 0.03925}, + p1[] = {0.04746, 0.06316}; + + Double_t s2(p0[IsRowCross()]+p1[IsRowCross()]*dzdx*dzdx); + s2*=s2; + return s2; +} + + //____________________________________________________________ +inline AliTRDcluster* AliTRDseedV1::NextCluster() { - Float_t z1 = (z == 999.) ? fMeanz : z; - Float_t chi = fZref[0] - z1; - return chi*chi; +// Mimic the usage of STL iterators. +// Forward iterator + + fClusterIdx++; fClusterIter++; + while(fClusterIdx < kNclusters){ + if(!(*fClusterIter)){ + fClusterIdx++; + fClusterIter++; + continue; + } + return *fClusterIter; + } + return NULL; } //____________________________________________________________ -inline Float_t AliTRDseedV1::GetChi2Y(const Float_t y) const +inline AliTRDcluster* AliTRDseedV1::PrevCluster() { - Float_t y1 = (y == 999.) ? fYfitR[0] : y; - Float_t chi = fYref[0] - y1; - return chi*chi; +// Mimic the usage of STL iterators. +// Backward iterator + + fClusterIdx--; fClusterIter--; + while(fClusterIdx >= 0){ + if(!(*fClusterIter)){ + fClusterIdx--; + fClusterIter--; + continue; + } + return *fClusterIter; + } + return NULL; } //____________________________________________________________ -inline void AliTRDseedV1::Init(const AliRieman *rieman) +inline void AliTRDseedV1::ResetClusterIter(Bool_t forward) { - fZref[0] = rieman->GetZat(fX0); - fZref[1] = rieman->GetDZat(fX0); - fYref[0] = rieman->GetYat(fX0); - fYref[1] = rieman->GetDYat(fX0); - fC = rieman->GetC(); - fChi2 = rieman->GetChi2(); +// Mimic the usage of STL iterators. +// Facilitate the usage of NextCluster for forward like +// iterator (kTRUE) and PrevCluster for backward like iterator (kFALSE) + + if(forward){ + fClusterIter = &fClusters[0]; fClusterIter--; + fClusterIdx=-1; + } else { + fClusterIter = &fClusters[kNclusters-1]; fClusterIter++; + fClusterIdx=kNclusters; + } +} + +//____________________________________________________________ +inline void AliTRDseedV1::SetCovRef(const Double_t *cov) +{ +// Copy some "important" covariance matrix elements +// var(y) +// cov(y,z) var(z) +// var(snp) +// var(tgl) +// cov(tgl, 1/pt) var(1/pt) + + memcpy(&fRefCov[0], cov, 3*sizeof(Double_t)); // yz full covariance + fRefCov[3] = cov[ 5]; // snp variance + fRefCov[4] = cov[ 9]; // tgl variance + fRefCov[5] = cov[13]; // cov(tgl, 1/pt) + fRefCov[6] = cov[14]; // 1/pt variance } + +//____________________________________________________________ +inline void AliTRDseedV1::SetN(Int_t n) +{ + if(n<0 || n>kNclusters) return; + fN &= ~kMask; + fN |= (n&kMask); +} + +//____________________________________________________________ +inline void AliTRDseedV1::SetNUsed(Int_t n) +{ + if(n<0 || n>kNclusters) return; + UInt_t mask(kMask<kNclusters) return; + UInt_t mask((kMask<