From: morsch Date: Wed, 7 Jul 2004 16:14:53 +0000 (+0000) Subject: TFluka based on TGeo only. (A. Gheata) X-Git-Url: http://git.uio.no/git/?a=commitdiff_plain;h=829fb83879b74ada89faeeae48436e4bf8503f02;p=u%2Fmrichter%2FAliRoot.git TFluka based on TGeo only. (A. Gheata) --- diff --git a/TFluka/TFluka.cxx b/TFluka/TFluka.cxx new file mode 100644 index 00000000000..ca688e813e3 --- /dev/null +++ b/TFluka/TFluka.cxx @@ -0,0 +1,2611 @@ +/************************************************************************** + * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * + * * + * Author: The ALICE Off-line Project. * + * Contributors are mentioned in the code where appropriate. * + * * + * Permission to use, copy, modify and distribute this software and its * + * documentation strictly for non-commercial purposes is hereby granted * + * without fee, provided that the above copyright notice appears in all * + * copies and that both the copyright notice and this permission notice * + * appear in the supporting documentation. The authors make no claims * + * about the suitability of this software for any purpose. It is * + * provided "as is" without express or implied warranty. * + **************************************************************************/ + +/* $Id$ */ + +// +// Realisation of the TVirtualMC interface for the FLUKA code +// (See official web side http://www.fluka.org/). +// +// This implementation makes use of the TGeo geometry modeller. +// User configuration is via automatic generation of FLUKA input cards. +// +// Authors: +// A. Fasso +// E. Futo +// A. Gheata +// A. Morsch +// + +#include + +//#include "AliModule.h" +//#include "AliRun.h" +#include "TClonesArray.h" +#include "TFluka.h" +#include "TCallf77.h" //For the fortran calls +#include "Fdblprc.h" //(DBLPRC) fluka common +#include "Fepisor.h" //(EPISOR) fluka common +#include "Ffinuc.h" //(FINUC) fluka common +#include "Fiounit.h" //(IOUNIT) fluka common +#include "Fpaprop.h" //(PAPROP) fluka common +#include "Fpart.h" //(PART) fluka common +#include "Ftrackr.h" //(TRACKR) fluka common +#include "Fpaprop.h" //(PAPROP) fluka common +#include "Ffheavy.h" //(FHEAVY) fluka common + +#include "TVirtualMC.h" +#include "TGeoManager.h" +#include "TGeoMaterial.h" +#include "TGeoMedium.h" +#include "TFlukaMCGeometry.h" +#include "TFlukaCerenkov.h" +#include "TLorentzVector.h" + +// Fluka methods that may be needed. +#ifndef WIN32 +# define flukam flukam_ +# define fluka_openinp fluka_openinp_ +# define fluka_closeinp fluka_closeinp_ +# define mcihad mcihad_ +# define mpdgha mpdgha_ +#else +# define flukam FLUKAM +# define fluka_openinp FLUKA_OPENINP +# define fluka_closeinp FLUKA_CLOSEINP +# define mcihad MCIHAD +# define mpdgha MPDGHA +#endif + +extern "C" +{ + // + // Prototypes for FLUKA functions + // + void type_of_call flukam(const int&); + void type_of_call fluka_openinp(const int&, DEFCHARA); + void type_of_call fluka_closeinp(const int&); + int type_of_call mcihad(const int&); + int type_of_call mpdgha(const int&); +} + +// +// Class implementation for ROOT +// +ClassImp(TFluka) + +// +//---------------------------------------------------------------------------- +// TFluka constructors and destructors. +//______________________________________________________________________________ +TFluka::TFluka() + :TVirtualMC(), + fVerbosityLevel(0), + fInputFileName("") +{ + // + // Default constructor + // + fGeneratePemf = kFALSE; + fNVolumes = 0; + fCurrentFlukaRegion = -1; + fGeom = 0; + fMCGeo = 0; + fMaterials = 0; + fDummyBoundary = 0; + fFieldFlag = 1; +} + +//______________________________________________________________________________ +TFluka::TFluka(const char *title, Int_t verbosity, Bool_t isRootGeometrySupported) + :TVirtualMC("TFluka",title, isRootGeometrySupported), + fVerbosityLevel(verbosity), + fInputFileName(""), + fTrackIsEntering(0), + fTrackIsExiting(0), + fTrackIsNew(0) +{ + // create geometry interface + if (fVerbosityLevel >=3) + cout << "<== TFluka::TFluka(" << title << ") constructor called." << endl; + + fNVolumes = 0; + fCurrentFlukaRegion = -1; + fDummyBoundary = 0; + fFieldFlag = 1; + fGeneratePemf = kFALSE; + fMCGeo = new TGeoMCGeometry("MCGeo", "TGeo Implementation of VirtualMCGeometry", kTRUE); + fGeom = new TFlukaMCGeometry("geom", "ALICE geometry"); + if (verbosity > 2) fGeom->SetDebugMode(kTRUE); + fMaterials = 0; +} + +//______________________________________________________________________________ +TFluka::~TFluka() { +// Destructor + delete fGeom; + delete fMCGeo; + if (fVerbosityLevel >=3) + cout << "<== TFluka::~TFluka() destructor called." << endl; +} + +// +//______________________________________________________________________________ +// TFluka control methods +//______________________________________________________________________________ +void TFluka::Init() { +// +// Geometry initialisation +// + if (fVerbosityLevel >=3) cout << "==> TFluka::Init() called." << endl; + + if (!gGeoManager) new TGeoManager("geom", "FLUKA geometry"); + fApplication->ConstructGeometry(); + TGeoVolume *top = (TGeoVolume*)gGeoManager->GetListOfVolumes()->First(); + gGeoManager->SetTopVolume(top); + gGeoManager->CloseGeometry("di"); + gGeoManager->DefaultColors(); // to be removed + fNVolumes = fGeom->NofVolumes(); + fGeom->CreateFlukaMatFile("flukaMat.inp"); + if (fVerbosityLevel >=3) { + printf("== Number of volumes: %i\n ==", fNVolumes); + cout << "\t* InitPhysics() - Prepare input file to be called" << endl; + } + // now we have TGeo geometry created and we have to patch alice.inp + // with the material mapping file FlukaMat.inp +} + + +//______________________________________________________________________________ +void TFluka::FinishGeometry() { +// +// Build-up table with region to medium correspondance +// + if (fVerbosityLevel >=3) { + cout << "==> TFluka::FinishGeometry() called." << endl; + printf("----FinishGeometry - nothing to do with TGeo\n"); + cout << "<== TFluka::FinishGeometry() called." << endl; + } +} + +//______________________________________________________________________________ +void TFluka::BuildPhysics() { +// +// Prepare FLUKA input files and call FLUKA physics initialisation +// + + if (fVerbosityLevel >=3) + cout << "==> TFluka::BuildPhysics() called." << endl; +// Prepare input file with the current physics settings + InitPhysics(); + cout << "\t* InitPhysics() - Prepare input file was called" << endl; + + if (fVerbosityLevel >=2) + cout << "\t* Changing lfdrtr = (" << (GLOBAL.lfdrtr?'T':'F') + << ") in fluka..." << endl; + GLOBAL.lfdrtr = true; + + if (fVerbosityLevel >=2) + cout << "\t* Opening file " << fInputFileName << endl; + const char* fname = fInputFileName; + fluka_openinp(lunin, PASSCHARA(fname)); + + if (fVerbosityLevel >=2) + cout << "\t* Calling flukam..." << endl; + flukam(1); + + if (fVerbosityLevel >=2) + cout << "\t* Closing file " << fInputFileName << endl; + fluka_closeinp(lunin); + + FinishGeometry(); + + if (fVerbosityLevel >=3) + cout << "<== TFluka::Init() called." << endl; + + + if (fVerbosityLevel >=3) + cout << "<== TFluka::BuildPhysics() called." << endl; +} + +//______________________________________________________________________________ +void TFluka::ProcessEvent() { +// +// Process one event +// + if (fVerbosityLevel >=3) + cout << "==> TFluka::ProcessEvent() called." << endl; + fApplication->GeneratePrimaries(); + EPISOR.lsouit = true; + flukam(1); + if (fVerbosityLevel >=3) + cout << "<== TFluka::ProcessEvent() called." << endl; +} + +//______________________________________________________________________________ +Bool_t TFluka::ProcessRun(Int_t nevent) { +// +// Run steering +// + + if (fVerbosityLevel >=3) + cout << "==> TFluka::ProcessRun(" << nevent << ") called." + << endl; + + if (fVerbosityLevel >=2) { + cout << "\t* GLOBAL.fdrtr = " << (GLOBAL.lfdrtr?'T':'F') << endl; + cout << "\t* Calling flukam again..." << endl; + } + + fApplication->InitGeometry(); + Int_t todo = TMath::Abs(nevent); + for (Int_t ev = 0; ev < todo; ev++) { + fApplication->BeginEvent(); + ProcessEvent(); + fApplication->FinishEvent(); + } + + if (fVerbosityLevel >=3) + cout << "<== TFluka::ProcessRun(" << nevent << ") called." + << endl; + return kTRUE; +} + +//_____________________________________________________________________________ +// methods for building/management of geometry + +// functions from GCONS +//____________________________________________________________________________ +void TFluka::Gfmate(Int_t imat, char *name, Float_t &a, Float_t &z, + Float_t &dens, Float_t &radl, Float_t &absl, + Float_t* /*ubuf*/, Int_t& /*nbuf*/) { +// + TGeoMaterial *mat; + TIter next (gGeoManager->GetListOfMaterials()); + while ((mat = (TGeoMaterial*)next())) { + if (mat->GetUniqueID() == (UInt_t)imat) break; + } + if (!mat) { + Error("Gfmate", "no material with index %i found", imat); + return; + } + sprintf(name, "%s", mat->GetName()); + a = mat->GetA(); + z = mat->GetZ(); + dens = mat->GetDensity(); + radl = mat->GetRadLen(); + absl = mat->GetIntLen(); +} + +//______________________________________________________________________________ +void TFluka::Gfmate(Int_t imat, char *name, Double_t &a, Double_t &z, + Double_t &dens, Double_t &radl, Double_t &absl, + Double_t* /*ubuf*/, Int_t& /*nbuf*/) { +// + TGeoMaterial *mat; + TIter next (gGeoManager->GetListOfMaterials()); + while ((mat = (TGeoMaterial*)next())) { + if (mat->GetUniqueID() == (UInt_t)imat) break; + } + if (!mat) { + Error("Gfmate", "no material with index %i found", imat); + return; + } + sprintf(name, "%s", mat->GetName()); + a = mat->GetA(); + z = mat->GetZ(); + dens = mat->GetDensity(); + radl = mat->GetRadLen(); + absl = mat->GetIntLen(); +} + +// detector composition +//______________________________________________________________________________ +void TFluka::Material(Int_t& kmat, const char* name, Double_t a, + Double_t z, Double_t dens, Double_t radl, Double_t absl, + Float_t* buf, Int_t nwbuf) { +// + Double_t* dbuf = fGeom->CreateDoubleArray(buf, nwbuf); + Material(kmat, name, a, z, dens, radl, absl, dbuf, nwbuf); + delete [] dbuf; +} + +//______________________________________________________________________________ +void TFluka::Material(Int_t& kmat, const char* name, Double_t a, + Double_t z, Double_t dens, Double_t radl, Double_t absl, + Double_t* /*buf*/, Int_t /*nwbuf*/) { +// + TGeoMaterial *mat; + kmat = gGeoManager->GetListOfMaterials()->GetSize(); + if ((z-Int_t(z)) > 1E-3) { + mat = fGeom->GetMakeWrongMaterial(z); + if (mat) { + mat->SetRadLen(radl,absl); + mat->SetUniqueID(kmat); + return; + } + } + gGeoManager->Material(name, a, z, dens, kmat, radl, absl); +} + +//______________________________________________________________________________ +void TFluka::Mixture(Int_t& kmat, const char *name, Float_t *a, + Float_t *z, Double_t dens, Int_t nlmat, Float_t *wmat) { +// + Double_t* da = fGeom->CreateDoubleArray(a, TMath::Abs(nlmat)); + Double_t* dz = fGeom->CreateDoubleArray(z, TMath::Abs(nlmat)); + Double_t* dwmat = fGeom->CreateDoubleArray(wmat, TMath::Abs(nlmat)); + + Mixture(kmat, name, da, dz, dens, nlmat, dwmat); + for (Int_t i=0; i 0 then wmat contains the proportion by + // weights of each basic material in the mixture. + // + // If nlmat < 0 then WMAT contains the number of atoms + // of a given kind into the molecule of the COMPOUND + // In this case, WMAT in output is changed to relative + // weigths. + // + Int_t i,j; + if (nlmat < 0) { + nlmat = - nlmat; + Double_t amol = 0; + for (i=0;iGetListOfMaterials()->GetSize(); + // Check if we have elements with fractional Z + TGeoMaterial *mat = 0; + TGeoMixture *mix = 0; + Bool_t mixnew = kFALSE; + for (i=0; i loop mixtures to look for it + for (j=0; jGetListOfMaterials()->At(j); + if (!mat) break; + if (!mat->IsMixture()) continue; + mix = (TGeoMixture*)mat; + if (TMath::Abs(z[i]-mix->GetZ()) >1E-3) continue; +// printf(" FOUND component %i as mixture %s\n", i, mat->GetName()); + mixnew = kTRUE; + break; + } + if (!mixnew) Warning("Mixture","%s : cannot find component %i with fractional Z=%f\n", name, i, z[i]); + break; + } + if (mixnew) { + Int_t nlmatnew = nlmat+mix->GetNelements()-1; + Double_t *anew = new Double_t[nlmatnew]; + Double_t *znew = new Double_t[nlmatnew]; + Double_t *wmatnew = new Double_t[nlmatnew]; + Int_t ind=0; + for (j=0; jGetNelements(); j++) { + anew[ind] = mix->GetAmixt()[j]; + znew[ind] = mix->GetZmixt()[j]; + wmatnew[ind] = wmat[i]*mix->GetWmixt()[j]; + ind++; + } + Mixture(kmat, name, anew, znew, dens, nlmatnew, wmatnew); + delete [] anew; + delete [] znew; + delete [] wmatnew; + return; + } + // Now we need to compact identical elements within the mixture + // First check if this happens + mixnew = kFALSE; + for (i=0; iMixture(name, a, z, dens, nlmat, wmat, kmat); +} + +//______________________________________________________________________________ +void TFluka::Medium(Int_t& kmed, const char *name, Int_t nmat, + Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd, + Double_t stemax, Double_t deemax, Double_t epsil, + Double_t stmin, Float_t* ubuf, Int_t nbuf) { + // + kmed = gGeoManager->GetListOfMedia()->GetSize()+1; + fMCGeo->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax, + epsil, stmin, ubuf, nbuf); +} + +//______________________________________________________________________________ +void TFluka::Medium(Int_t& kmed, const char *name, Int_t nmat, + Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd, + Double_t stemax, Double_t deemax, Double_t epsil, + Double_t stmin, Double_t* ubuf, Int_t nbuf) { + // + kmed = gGeoManager->GetListOfMedia()->GetSize()+1; + fMCGeo->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax, + epsil, stmin, ubuf, nbuf); +} + +//______________________________________________________________________________ +void TFluka::Matrix(Int_t& krot, Double_t thetaX, Double_t phiX, + Double_t thetaY, Double_t phiY, Double_t thetaZ, + Double_t phiZ) { +// + krot = gGeoManager->GetListOfMatrices()->GetEntriesFast(); + fMCGeo->Matrix(krot, thetaX, phiX, thetaY, phiY, thetaZ, phiZ); +} + +//______________________________________________________________________________ +void TFluka::Gstpar(Int_t itmed, const char* param, Double_t parval) { +// +// + + if (fVerbosityLevel >=3) printf("Gstpar called with %6d %5s %12.4e %6d\n", itmed, param, parval, fGeom->GetFlukaMaterial(itmed)); + + Bool_t process = kFALSE; + if (strncmp(param, "DCAY", 4) == 0 || + strncmp(param, "PAIR", 4) == 0 || + strncmp(param, "COMP", 4) == 0 || + strncmp(param, "PHOT", 4) == 0 || + strncmp(param, "PFIS", 4) == 0 || + strncmp(param, "DRAY", 4) == 0 || + strncmp(param, "ANNI", 4) == 0 || + strncmp(param, "BREM", 4) == 0 || + strncmp(param, "MUNU", 4) == 0 || + strncmp(param, "CKOV", 4) == 0 || + strncmp(param, "HADR", 4) == 0 || + strncmp(param, "LOSS", 4) == 0 || + strncmp(param, "MULS", 4) == 0 || + strncmp(param, "RAYL", 4) == 0) + { + process = kTRUE; + } + if (process) { + SetProcess(param, Int_t (parval), fGeom->GetFlukaMaterial(itmed)); + } else { + SetCut(param, parval, fGeom->GetFlukaMaterial(itmed)); + } +} + +// functions from GGEOM +//_____________________________________________________________________________ +void TFluka::Gsatt(const char *name, const char *att, Int_t val) +{ + char vname[5]; + fGeom->Vname(name,vname); + char vatt[5]; + fGeom->Vname(att,vatt); + gGeoManager->SetVolumeAttribute(vname, vatt, val); +} + +//______________________________________________________________________________ +Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed, + Float_t *upar, Int_t np) { +// + return fMCGeo->Gsvolu(name, shape, nmed, upar, np); +} + +//______________________________________________________________________________ +Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed, + Double_t *upar, Int_t np) { +// + return fMCGeo->Gsvolu(name, shape, nmed, upar, np); +} + +//______________________________________________________________________________ +void TFluka::Gsdvn(const char *name, const char *mother, Int_t ndiv, + Int_t iaxis) { +// + fMCGeo->Gsdvn(name, mother, ndiv, iaxis); +} + +//______________________________________________________________________________ +void TFluka::Gsdvn2(const char *name, const char *mother, Int_t ndiv, + Int_t iaxis, Double_t c0i, Int_t numed) { +// + fMCGeo->Gsdvn2(name, mother, ndiv, iaxis, c0i, numed); +} + +//______________________________________________________________________________ +void TFluka::Gsdvt(const char *name, const char *mother, Double_t step, + Int_t iaxis, Int_t numed, Int_t ndvmx) { +// + fMCGeo->Gsdvt(name, mother, step, iaxis, numed, ndvmx); +} + +//______________________________________________________________________________ +void TFluka::Gsdvt2(const char *name, const char *mother, Double_t step, + Int_t iaxis, Double_t c0, Int_t numed, Int_t ndvmx) { +// + fMCGeo->Gsdvt2(name, mother, step, iaxis, c0, numed, ndvmx); +} + +//______________________________________________________________________________ +void TFluka::Gsord(const char * /*name*/, Int_t /*iax*/) { +// +// Nothing to do with TGeo +} + +//______________________________________________________________________________ +void TFluka::Gspos(const char *name, Int_t nr, const char *mother, + Double_t x, Double_t y, Double_t z, Int_t irot, + const char *konly) { +// + fMCGeo->Gspos(name, nr, mother, x, y, z, irot, konly); +} + +//______________________________________________________________________________ +void TFluka::Gsposp(const char *name, Int_t nr, const char *mother, + Double_t x, Double_t y, Double_t z, Int_t irot, + const char *konly, Float_t *upar, Int_t np) { + // + fMCGeo->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np); +} + +//______________________________________________________________________________ +void TFluka::Gsposp(const char *name, Int_t nr, const char *mother, + Double_t x, Double_t y, Double_t z, Int_t irot, + const char *konly, Double_t *upar, Int_t np) { + // + fMCGeo->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np); +} + +//______________________________________________________________________________ +void TFluka::Gsbool(const char* /*onlyVolName*/, const char* /*manyVolName*/) { +// +// Nothing to do with TGeo +} + +//______________________________________________________________________________ +void TFluka::SetCerenkov(Int_t itmed, Int_t npckov, Float_t* ppckov, + Float_t* absco, Float_t* effic, Float_t* rindex) { +// +// Set Cerenkov properties for medium itmed +// +// npckov: number of sampling points +// ppckov: energy values +// absco: absorption length +// effic: quantum efficiency +// rindex: refraction index +// +// +// +// Create object holding Cerenkov properties +// + TFlukaCerenkov* cerenkovProperties = new TFlukaCerenkov(npckov, ppckov, absco, effic, rindex); +// +// Pass object to medium + TGeoMedium* medium = gGeoManager->GetMedium(itmed); + medium->SetCerenkovProperties(cerenkovProperties); +} + +//______________________________________________________________________________ +void TFluka::SetCerenkov(Int_t /*itmed*/, Int_t /*npckov*/, Double_t * /*ppckov*/, + Double_t * /*absco*/, Double_t * /*effic*/, Double_t * /*rindex*/) { +// +// Not implemented with TGeo - what G4 did ? Any FLUKA card generated? + Warning("SetCerenkov", "Not implemented with TGeo"); +} + +// Euclid +//______________________________________________________________________________ +void TFluka::WriteEuclid(const char* /*fileName*/, const char* /*topVol*/, + Int_t /*number*/, Int_t /*nlevel*/) { +// +// Not with TGeo + Warning("WriteEuclid", "Not implemented with TGeo"); +} + + + +//_____________________________________________________________________________ +// methods needed by the stepping +//____________________________________________________________________________ + +Int_t TFluka::GetMedium() const { +// +// Get the medium number for the current fluka region +// + return fGeom->GetMedium(); // this I need to check due to remapping !!! +} + + + +//____________________________________________________________________________ +// particle table usage +// ID <--> PDG transformations +//_____________________________________________________________________________ +Int_t TFluka::IdFromPDG(Int_t pdg) const +{ + // + // Return Fluka code from PDG and pseudo ENDF code + + // Catch the feedback photons + if (pdg == 50000051) return (-1); + // MCIHAD() goes from pdg to fluka internal. + Int_t intfluka = mcihad(pdg); + // KPTOIP array goes from internal to official + return GetFlukaKPTOIP(intfluka); +} + +//______________________________________________________________________________ +Int_t TFluka::PDGFromId(Int_t id) const +{ + // + // Return PDG code and pseudo ENDF code from Fluka code + + // IPTOKP array goes from official to internal + + if (id == -1) { +// Cerenkov photon + if (fVerbosityLevel >= 1) + printf("\n PDGFromId: Cerenkov Photon \n"); + return 50000050; + } +// Error id + if (id == 0 || id < -6 || id > 250) { + if (fVerbosityLevel >= 1) + printf("PDGFromId: Error id = 0\n"); + return -1; + } +// Good id + Int_t intfluka = GetFlukaIPTOKP(id); + if (intfluka == 0) { + if (fVerbosityLevel >= 1) + printf("PDGFromId: Error intfluka = 0: %d\n", id); + return -1; + } else if (intfluka < 0) { + if (fVerbosityLevel >= 1) + printf("PDGFromId: Error intfluka < 0: %d\n", id); + return -1; + } + if (fVerbosityLevel >= 3) + printf("mpdgha called with %d %d \n", id, intfluka); + // MPDGHA() goes from fluka internal to pdg. + return mpdgha(intfluka); +} + +//_____________________________________________________________________________ +// methods for physics management +//____________________________________________________________________________ +// +// set methods +// + +void TFluka::SetProcess(const char* flagName, Int_t flagValue, Int_t imat) +{ +// Set process user flag for material imat +// + strcpy(&fProcessFlag[fNbOfProc][0],flagName); + fProcessValue[fNbOfProc] = flagValue; + fProcessMaterial[fNbOfProc] = imat; + fNbOfProc++; +} + +//______________________________________________________________________________ +Bool_t TFluka::SetProcess(const char* flagName, Int_t flagValue) +{ +// Set process user flag +// + + Int_t i; + if (fNbOfProc < 100) { + for (i=0; iInitPhysics\n"); + Int_t i, j, k; + Double_t fCut; + + FILE *pAliceCoreInp, *pAliceFlukaMat, *pAliceInp; + + Double_t zero = 0.0; + Double_t one = 1.0; + Double_t two = 2.0; + Double_t three = 3.0; + + Float_t fLastMaterial = fGeom->GetLastMaterialIndex(); + if (fVerbosityLevel >= 3) printf(" last FLUKA material is %g\n", fLastMaterial); + + // Prepare Cerenkov + TObjArray *matList = GetFlukaMaterials(); + Int_t nmaterial = matList->GetEntriesFast(); + fMaterials = new Int_t[nmaterial+3]; + +// construct file names + + TString sAliceCoreInp = getenv("ALICE_ROOT"); + sAliceCoreInp +="/TFluka/input/"; + TString sAliceTmp = "flukaMat.inp"; + TString sAliceInp = GetInputFileName(); + sAliceCoreInp += GetCoreInputFileName(); + +// open files + + if ((pAliceCoreInp = fopen(sAliceCoreInp.Data(),"r")) == NULL) { + printf("\nCannot open file %s\n",sAliceCoreInp.Data()); + exit(1); + } + if ((pAliceFlukaMat = fopen(sAliceTmp.Data(),"r")) == NULL) { + printf("\nCannot open file %s\n",sAliceTmp.Data()); + exit(1); + } + if ((pAliceInp = fopen(sAliceInp.Data(),"w")) == NULL) { + printf("\nCannot open file %s\n",sAliceInp.Data()); + exit(1); + } + +// copy core input file + Char_t sLine[255]; + Float_t fEventsPerRun; + + while ((fgets(sLine,255,pAliceCoreInp)) != NULL) { + if (strncmp(sLine,"GEOEND",6) != 0) + fprintf(pAliceInp,"%s",sLine); // copy until GEOEND card + else { + fprintf(pAliceInp,"GEOEND\n"); // add GEOEND card + goto flukamat; + } + } // end of while until GEOEND card + + + flukamat: + while ((fgets(sLine,255,pAliceFlukaMat)) != NULL) { // copy flukaMat.inp file + fprintf(pAliceInp,"%s\n",sLine); + } + + while ((fgets(sLine,255,pAliceCoreInp)) != NULL) { + if (strncmp(sLine,"START",5) != 0) + fprintf(pAliceInp,"%s\n",sLine); + else { + sscanf(sLine+10,"%10f",&fEventsPerRun); + goto fin; + } + } //end of while until START card + +fin: +// in G3 the process control values meaning can be different for +// different processes, but for most of them is: +// 0 process is not activated +// 1 process is activated WITH generation of secondaries +// 2 process is activated WITHOUT generation of secondaries +// if process does not generate secondaries => 1 same as 2 +// +// Exceptions: +// MULS: also 3 +// LOSS: also 3, 4 +// RAYL: only 0,1 +// HADR: may be > 2 +// + +// Loop over number of SetProcess calls + fprintf(pAliceInp,"*----------------------------------------------------------------------------- \n"); + fprintf(pAliceInp,"*----- The following data are generated from SetProcess and SetCut calls ----- \n"); + fprintf(pAliceInp,"*----------------------------------------------------------------------------- \n"); + + for (i = 0; i < fNbOfProc; i++) { + Float_t matMin = three; + Float_t matMax = fLastMaterial; + Bool_t global = kTRUE; + if (fProcessMaterial[i] != -1) { + matMin = Float_t(fProcessMaterial[i]); + matMax = matMin; + global = kFALSE; + } + + // annihilation + // G3 default value: 1 + // G4 processes: G4eplusAnnihilation/G4IeplusAnnihilation + // Particles: e+ + // Physics: EM + // flag = 0 no annihilation + // flag = 1 annihilation, decays processed + // flag = 2 annihilation, no decay product stored + // gMC ->SetProcess("ANNI",1); // EMFCUT -1. 0. 0. 3. lastmat 0. ANNH-THR + if (strncmp(&fProcessFlag[i][0],"ANNI",4) == 0) { + if (fProcessValue[i] == 1 || fProcessValue[i] == 2) { + fprintf(pAliceInp,"*\n*Kinetic energy threshold (GeV) for e+ annihilation - resets to default=0.\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('ANNI',1) or SetProcess('ANNI',2)\n"); + // -one = kinetic energy threshold (GeV) for e+ annihilation (resets to default=0) + // zero = not used + // zero = not used + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + // one = step length in assigning indices + // "ANNH-THR"; + fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fANNH-THR\n",-one,zero,zero,matMin,matMax,one); + } + else if (fProcessValue[i] == 0) { + fprintf(pAliceInp,"*\n*No annihilation - no FLUKA card generated\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('ANNI',0)\n"); + } + else { + fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('ANNI',?) call.\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + } + + // bremsstrahlung and pair production are both activated + // G3 default value: 1 + // G4 processes: G4eBremsstrahlung/G4IeBremsstrahlung, + // G4MuBremsstrahlung/G4IMuBremsstrahlung, + // G4LowEnergyBremstrahlung + // Particles: e-/e+; mu+/mu- + // Physics: EM + // flag = 0 no bremsstrahlung + // flag = 1 bremsstrahlung, photon processed + // flag = 2 bremsstrahlung, no photon stored + // gMC ->SetProcess("BREM",1); // PAIRBREM 2. 0. 0. 3. lastmat + // EMFCUT -1. 0. 0. 3. lastmat 0. ELPO-THR + // G3 default value: 1 + // G4 processes: G4GammaConversion, + // G4MuPairProduction/G4IMuPairProduction + // G4LowEnergyGammaConversion + // Particles: gamma, mu + // Physics: EM + // flag = 0 no delta rays + // flag = 1 delta rays, secondaries processed + // flag = 2 delta rays, no secondaries stored + // gMC ->SetProcess("PAIR",1); // PAIRBREM 1. 0. 0. 3. lastmat + // EMFCUT 0. 0. -1. 3. lastmat 0. PHOT-THR + else if ((strncmp(&fProcessFlag[i][0],"PAIR",4) == 0) && (fProcessValue[i] == 1 || fProcessValue[i] == 2)) { + + for (j=0; jSetCut("PPCUTM",cut); // total energy cut for direct pair prod. by muons + fCut = 0.0; + for (k=0; kSetCut("BCUTM",cut); // cut for muon and hadron bremsstrahlung + fCut = 0.0; + for (k=0; kSetCut("PPCUTM",cut); // total energy cut for direct pair prod. by muons + // one = pair production by muons and charged hadrons is activated + // zero = e+, e- kinetic energy threshold (in GeV) for explicit pair production. + // zero = no explicit bremsstrahlung production is simulated + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + fprintf(pAliceInp,"PAIRBREM %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,zero,zero,matMin,matMax); + + // for e+ and e- + fprintf(pAliceInp,"*\n*Pair production by electrons is activated\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('PAIR',1) or SetProcess('PAIR',2)\n"); + fCut = -1.0; + for (j=0; jSetProcess("BREM",1); // PAIRBREM 2. 0. 0. 3. lastmat + // EMFCUT -1. 0. 0. 3. lastmat 0. ELPO-THR + else if (strncmp(&fProcessFlag[i][0],"BREM",4) == 0) { + for (j = 0; j < fNbOfProc; j++) { + if ((strncmp(&fProcessFlag[j][0],"PAIR",4) == 0) && + fProcessValue[j] == 1 && + (fProcessMaterial[j] == fProcessMaterial[i])) goto NOBREM; + } + if (fProcessValue[i] == 1 || fProcessValue[i] == 2) { + fprintf(pAliceInp,"*\n*Bremsstrahlung by muons and charged hadrons is activated\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('BREM',1) or SetProcess('BREM',2)\n"); + fprintf(pAliceInp,"*Energy threshold set by call SetCut('BCUTM',cut) or set to 0.\n"); + // two = bremsstrahlung by muons and charged hadrons is activated + // zero = no meaning + // muon and hadron bremsstrahlung + // G4 particles: "gamma" + // G3 default value: CUTGAM=0.001 GeV + //gMC ->SetCut("BCUTM",cut); // cut for muon and hadron bremsstrahlung + fCut = 0.0; + for (j=0; jSetProcess("CKOV",1); // ??? Cerenkov photon generation + + else if (strncmp(&fProcessFlag[i][0],"CKOV",4) == 0) { + if ((fProcessValue[i] == 1 || fProcessValue[i] == 2) && global) { + // Write comments + fprintf(pAliceInp, "* \n"); + fprintf(pAliceInp, "*Cerenkov photon generation\n"); + fprintf(pAliceInp, "*Generated from call: SetProcess('CKOV',1) or SetProcess('CKOV',2)\n"); + // Loop over media + for (Int_t im = 0; im < nmaterial; im++) + { + TGeoMaterial* material = dynamic_cast (matList->At(im)); + Int_t idmat = material->GetIndex(); + + if (!global && idmat != fProcessMaterial[i]) continue; + + fMaterials[idmat] = im; + // Skip media with no Cerenkov properties + TFlukaCerenkov* cerenkovProp; + if (!(cerenkovProp = dynamic_cast(material->GetCerenkovProperties()))) continue; + // + // This medium has Cerenkov properties + // + // + // Write OPT-PROD card for each medium + Float_t emin = cerenkovProp->GetMinimumEnergy(); + Float_t emax = cerenkovProp->GetMaximumEnergy(); + fprintf(pAliceInp, "OPT-PROD %10.4g%10.4g%10.4g%10.4g%10.4g%10.4gCERENKOV\n", emin, emax, 0., + Float_t(idmat), Float_t(idmat), 0.); + // + // Write OPT-PROP card for each medium + // Forcing FLUKA to call user routines (queffc.cxx, rflctv.cxx, rfrndx.cxx) + // + fprintf(pAliceInp, "OPT-PROP %10.4g%10.4g%10.4g%10.1f%10.1f%10.1fWV-LIMIT\n", + cerenkovProp->GetMinimumWavelength(), + cerenkovProp->GetMaximumWavelength(), + cerenkovProp->GetMaximumWavelength(), + Float_t(idmat), Float_t(idmat), 0.0); + + if (cerenkovProp->IsMetal()) { + fprintf(pAliceInp, "OPT-PROP %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fMETAL\n", + -100., -100., -100., + Float_t(idmat), Float_t(idmat), 0.0); + } else { + fprintf(pAliceInp, "OPT-PROP %10.1f%10.1f%10.1f%10.1f%10.1f%10.1f\n", + -100., -100., -100., + Float_t(idmat), Float_t(idmat), 0.0); + } + + + for (Int_t j = 0; j < 3; j++) { + fprintf(pAliceInp, "OPT-PROP %10.1f%10.1f%10.1f%10.1f%10.1f%10.1f&\n", + -100., -100., -100., + Float_t(idmat), Float_t(idmat), 0.0); + } + // Photon detection efficiency user defined + + if (cerenkovProp->IsSensitive()) + fprintf(pAliceInp, "OPT-PROP %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fSENSITIV\n", + -100., -100., -100., + Float_t(idmat), Float_t(idmat), 0.0); + + } // materials + } else if (fProcessValue[i] == 0) { + fprintf(pAliceInp,"*\n*No Cerenkov photon generation\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('CKOV',0)\n"); + // zero = not used + // zero = not used + // zero = not used + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + // one = step length in assigning indices + //"CERE-OFF"; + fprintf(pAliceInp,"OPT-PROD %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fCERE-OFF\n",zero,zero,zero,matMin,matMax,one); + } + else { + fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('CKOV',?) call.\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + } // end of else if (strncmp(&fProcessFlag[i][0],"CKOV",4) == 0) + + // Compton scattering + // G3 default value: 1 + // G4 processes: G4ComptonScattering, + // G4LowEnergyCompton, + // G4PolarizedComptonScattering + // Particles: gamma + // Physics: EM + // flag = 0 no Compton scattering + // flag = 1 Compton scattering, electron processed + // flag = 2 Compton scattering, no electron stored + // gMC ->SetProcess("COMP",1); // EMFCUT -1. 0. 0. 3. lastmat 0. PHOT-THR + else if (strncmp(&fProcessFlag[i][0],"COMP",4) == 0) { + if (fProcessValue[i] == 1 || fProcessValue[i] == 2) { + fprintf(pAliceInp,"*\n*Energy threshold (GeV) for Compton scattering - resets to default=0.\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('COMP',1);\n"); + // - one = energy threshold (GeV) for Compton scattering - resets to default=0. + // zero = not used + // zero = not used + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + // one = step length in assigning indices + //"PHOT-THR"; + fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fPHOT-THR\n",-one,zero,zero,matMin,matMax,one); + } + else if (fProcessValue[i] == 0) { + fprintf(pAliceInp,"*\n*No Compton scattering - no FLUKA card generated\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('COMP',0)\n"); + } + else { + fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('COMP',?) call.\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + } // end of else if (strncmp(&fProcessFlag[i][0],"COMP",4) == 0) + + // decay + // G3 default value: 1 + // G4 process: G4Decay + // + // Particles: all which decay is applicable for + // Physics: General + // flag = 0 no decays + // flag = 1 decays, secondaries processed + // flag = 2 decays, no secondaries stored + //gMC ->SetProcess("DCAY",1); // not available + else if ((strncmp(&fProcessFlag[i][0],"DCAY",4) == 0) && fProcessValue[i] == 1) + cout << "SetProcess for flag=" << &fProcessFlag[i][0] << " value=" << fProcessValue[i] << " not avaliable!" << endl; + + // delta-ray + // G3 default value: 2 + // !! G4 treats delta rays in different way + // G4 processes: G4eIonisation/G4IeIonization, + // G4MuIonisation/G4IMuIonization, + // G4hIonisation/G4IhIonisation + // Particles: charged + // Physics: EM + // flag = 0 no energy loss + // flag = 1 restricted energy loss fluctuations + // flag = 2 complete energy loss fluctuations + // flag = 3 same as 1 + // flag = 4 no energy loss fluctuations + // gMC ->SetProcess("DRAY",0); // DELTARAY 1.E+6 0. 0. 3. lastmat 0. + else if (strncmp(&fProcessFlag[i][0],"DRAY",4) == 0) { + if (fProcessValue[i] == 0 || fProcessValue[i] == 4) { + fprintf(pAliceInp,"*\n*Kinetic energy threshold (GeV) for delta ray production\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('DRAY',0) or SetProcess('DRAY',4)\n"); + fprintf(pAliceInp,"*No delta ray production by muons - threshold set artificially high\n"); + Double_t emin = 1.0e+6; // kinetic energy threshold (GeV) for delta ray production (discrete energy transfer) + // zero = ignored + // zero = ignored + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + // one = step length in assigning indices + fprintf(pAliceInp,"DELTARAY %10.4g%10.1f%10.1f%10.1f%10.1f%10.1f\n",emin,zero,zero,matMin,matMax,one); + } + else if (fProcessValue[i] == 1 || fProcessValue[i] == 2 || fProcessValue[i] == 3) { + fprintf(pAliceInp,"*\n*Kinetic energy threshold (GeV) for delta ray production\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('DRAY',flag), flag=1,2,3\n"); + fprintf(pAliceInp,"*Delta ray production by muons switched on\n"); + fprintf(pAliceInp,"*Energy threshold set by call SetCut('DCUTM',cut) or set to 1.0e+6.\n"); + fCut = 1.0e+6; + for (j = 0; j < fNbOfCut; j++) { + if (strncmp(&fCutFlag[j][0],"DCUTM",5) == 0 && + fCutMaterial[j] == fProcessMaterial[i]) fCut = fCutValue[j]; + } + // fCut = kinetic energy threshold (GeV) for delta ray production (discrete energy transfer) + // zero = ignored + // zero = ignored + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + // one = step length in assigning indices + fprintf(pAliceInp,"DELTARAY %10.4g%10.1f%10.1f%10.1f%10.1f%10.1f\n",fCut,zero,zero,matMin,matMax,one); + } + else { + fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('DRAY',?) call.\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + } // end of else if (strncmp(&fProcessFlag[i][0],"DRAY",4) == 0) + + // hadronic process + // G3 default value: 1 + // G4 processes: all defined by TG4PhysicsConstructorHadron + // + // Particles: hadrons + // Physics: Hadron + // flag = 0 no multiple scattering + // flag = 1 hadronic interactions, secondaries processed + // flag = 2 hadronic interactions, no secondaries stored + // gMC ->SetProcess("HADR",1); // ??? hadronic process + //Select pure GEANH (HADR 1) or GEANH/NUCRIN (HADR 3) ????? + else if (strncmp(&fProcessFlag[i][0],"HADR",4) == 0) { + if (fProcessValue[i] == 1 || fProcessValue[i] == 2) { + fprintf(pAliceInp,"*\n*Hadronic interaction is ON by default in FLUKA\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + else if (fProcessValue[i] == 0) { + fprintf(pAliceInp,"*\n*Hadronic interaction is set OFF\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('HADR',0);\n"); + // zero = ignored + // three = multiple scattering for hadrons and muons is completely suppressed + // zero = no spin-relativistic corrections + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + fprintf(pAliceInp,"MULSOPT %10.1f%10.1f%10.1f%10.1f%10.1f\n",zero,three,zero,matMin,matMax); + + } + else { + fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('HADR',?) call.\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + } // end of else if (strncmp(&fProcessFlag[i][0],"HADR",4) == 0) + + + // energy loss + // G3 default value: 2 + // G4 processes: G4eIonisation/G4IeIonization, + // G4MuIonisation/G4IMuIonization, + // G4hIonisation/G4IhIonisation + // + // Particles: charged + // Physics: EM + // flag=0 no energy loss + // flag=1 restricted energy loss fluctuations + // flag=2 complete energy loss fluctuations + // flag=3 same as 1 + // flag=4 no energy loss fluctuations + // If the value ILOSS is changed, then (in G3) cross-sections and energy + // loss tables must be recomputed via the command 'PHYSI' + // gMC ->SetProcess("LOSS",2); // ??? IONFLUCT ? energy loss + else if (strncmp(&fProcessFlag[i][0],"LOSS",4) == 0) { + if (fProcessValue[i] == 2) { // complete energy loss fluctuations + fprintf(pAliceInp,"*\n*Complete energy loss fluctuations do not exist in FLUKA\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('LOSS',2);\n"); + fprintf(pAliceInp,"*flag=2=complete energy loss fluctuations\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + else if (fProcessValue[i] == 1 || fProcessValue[i] == 3) { // restricted energy loss fluctuations + fprintf(pAliceInp,"*\n*Restricted energy loss fluctuations\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('LOSS',1) or SetProcess('LOSS',3)\n"); + // one = restricted energy loss fluctuations (for hadrons and muons) switched on + // one = restricted energy loss fluctuations (for e+ and e-) switched on + // one = minimal accuracy + // matMin = lower bound of the material indices in which the respective thresholds apply + // upper bound of the material indices in which the respective thresholds apply + fprintf(pAliceInp,"IONFLUCT %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,one,one,matMin,matMax); + } + else if (fProcessValue[i] == 4) { // no energy loss fluctuations + fprintf(pAliceInp,"*\n*No energy loss fluctuations\n"); + fprintf(pAliceInp,"*\n*Generated from call: SetProcess('LOSS',4)\n"); + // - one = restricted energy loss fluctuations (for hadrons and muons) switched off + // - one = restricted energy loss fluctuations (for e+ and e-) switched off + // one = minimal accuracy + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + fprintf(pAliceInp,"IONFLUCT %10.1f%10.1f%10.1f%10.1f%10.1f\n",-one,-one,one,matMin,matMax); + } + else { + fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('LOSS',?) call.\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + } // end of else if (strncmp(&fProcessFlag[i][0],"LOSS",4) == 0) + + + // multiple scattering + // G3 default value: 1 + // G4 process: G4MultipleScattering/G4IMultipleScattering + // + // Particles: charged + // Physics: EM + // flag = 0 no multiple scattering + // flag = 1 Moliere or Coulomb scattering + // flag = 2 Moliere or Coulomb scattering + // flag = 3 Gaussian scattering + // gMC ->SetProcess("MULS",1); // MULSOPT multiple scattering + else if (strncmp(&fProcessFlag[i][0],"MULS",4) == 0) { + if (fProcessValue[i] == 1 || fProcessValue[i] == 2 || fProcessValue[i] == 3) { + fprintf(pAliceInp,"*\n*Multiple scattering is ON by default for e+e- and for hadrons/muons\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + else if (fProcessValue[i] == 0) { + fprintf(pAliceInp,"*\n*Multiple scattering is set OFF\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('MULS',0);\n"); + // zero = ignored + // three = multiple scattering for hadrons and muons is completely suppressed + // three = multiple scattering for e+ and e- is completely suppressed + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + fprintf(pAliceInp,"MULSOPT %10.1f%10.1f%10.1f%10.1f%10.1f\n",zero,three,three,matMin,matMax); + } + else { + fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('MULS',?) call.\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + } // end of else if (strncmp(&fProcessFlag[i][0],"MULS",4) == 0) + + + // muon nuclear interaction + // G3 default value: 0 + // G4 processes: G4MuNuclearInteraction, + // G4MuonMinusCaptureAtRest + // + // Particles: mu + // Physics: Not set + // flag = 0 no muon-nuclear interaction + // flag = 1 nuclear interaction, secondaries processed + // flag = 2 nuclear interaction, secondaries not processed + // gMC ->SetProcess("MUNU",1); // MUPHOTON 1. 0. 0. 3. lastmat + else if (strncmp(&fProcessFlag[i][0],"MUNU",4) == 0) { + if (fProcessValue[i] == 1) { + fprintf(pAliceInp,"*\n*Muon nuclear interactions with production of secondary hadrons\n"); + fprintf(pAliceInp,"*\n*Generated from call: SetProcess('MUNU',1);\n"); + // one = full simulation of muon nuclear interactions and production of secondary hadrons + // zero = ratio of longitudinal to transverse virtual photon cross-section - Default = 0.25. + // zero = fraction of rho-like interactions ( must be < 1) - Default = 0.75. + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + fprintf(pAliceInp,"MUPHOTON %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,zero,zero,matMin,matMax); + } + else if (fProcessValue[i] == 2) { + fprintf(pAliceInp,"*\n*Muon nuclear interactions without production of secondary hadrons\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('MUNU',2);\n"); + // two = full simulation of muon nuclear interactions and production of secondary hadrons + // zero = ratio of longitudinal to transverse virtual photon cross-section - Default = 0.25. + // zero = fraction of rho-like interactions ( must be < 1) - Default = 0.75. + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + fprintf(pAliceInp,"MUPHOTON %10.1f%10.1f%10.1f%10.1f%10.1f\n",two,zero,zero,matMin,matMax); + } + else if (fProcessValue[i] == 0) { + fprintf(pAliceInp,"*\n*No muon nuclear interaction - no FLUKA card generated\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('MUNU',0)\n"); + } + else { + fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('MUNU',?) call.\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + } // end of else if (strncmp(&fProcessFlag[i][0],"MUNU",4) == 0) + + + // photofission + // G3 default value: 0 + // G4 process: ?? + // + // Particles: gamma + // Physics: ?? + // gMC ->SetProcess("PFIS",0); // PHOTONUC -1. 0. 0. 3. lastmat 0. + // flag = 0 no photon fission + // flag = 1 photon fission, secondaries processed + // flag = 2 photon fission, no secondaries stored + else if (strncmp(&fProcessFlag[i][0],"PFIS",4) == 0) { + if (fProcessValue[i] == 0) { + fprintf(pAliceInp,"*\n*No photonuclear interactions\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('PFIS',0);\n"); + // - one = no photonuclear interactions + // zero = not used + // zero = not used + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + fprintf(pAliceInp,"PHOTONUC %10.1f%10.1f%10.1f%10.1f%10.1f\n",-one,zero,zero,matMin,matMax); + } + else if (fProcessValue[i] == 1) { + fprintf(pAliceInp,"*\n*Photon nuclear interactions are activated at all energies\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('PFIS',1);\n"); + // one = photonuclear interactions are activated at all energies + // zero = not used + // zero = not used + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + fprintf(pAliceInp,"PHOTONUC %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,zero,zero,matMin,matMax); + } + else if (fProcessValue[i] == 0) { + fprintf(pAliceInp,"*\n*No photofission - no FLUKA card generated\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('PFIS',0)\n"); + } + else { + fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('PFIS',?) call.\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + } + + + // photo electric effect + // G3 default value: 1 + // G4 processes: G4PhotoElectricEffect + // G4LowEnergyPhotoElectric + // Particles: gamma + // Physics: EM + // flag = 0 no photo electric effect + // flag = 1 photo electric effect, electron processed + // flag = 2 photo electric effect, no electron stored + // gMC ->SetProcess("PHOT",1); // EMFCUT 0. -1. 0. 3. lastmat 0. PHOT-THR + else if (strncmp(&fProcessFlag[i][0],"PHOT",4) == 0) { + if (fProcessValue[i] == 1 || fProcessValue[i] == 2) { + fprintf(pAliceInp,"*\n*Photo electric effect is activated\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('PHOT',1);\n"); + // zero = ignored + // - one = resets to default=0. + // zero = ignored + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + // one = step length in assigning indices + //"PHOT-THR"; + fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fPHOT-THR\n",zero,-one,zero,matMin,matMax,one); + } + else if (fProcessValue[i] == 0) { + fprintf(pAliceInp,"*\n*No photo electric effect - no FLUKA card generated\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('PHOT',0)\n"); + } + else { + fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('PHOT',?) call.\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + } // else if (strncmp(&fProcessFlag[i][0],"PHOT",4) == 0) + + + // Rayleigh scattering + // G3 default value: 0 + // G4 process: G4OpRayleigh + // + // Particles: optical photon + // Physics: Optical + // flag = 0 Rayleigh scattering off + // flag = 1 Rayleigh scattering on + //xx gMC ->SetProcess("RAYL",1); + else if (strncmp(&fProcessFlag[i][0],"RAYL",4) == 0) { + if (fProcessValue[i] == 1) { + fprintf(pAliceInp,"*\n*Rayleigh scattering is ON by default in FLUKA\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + else if (fProcessValue[i] == 0) { + fprintf(pAliceInp,"*\n*Rayleigh scattering is set OFF\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('RAYL',0);\n"); + // - one = no Rayleigh scattering and no binding corrections for Compton + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + fprintf(pAliceInp,"EMFRAY %10.1f%10.1f%10.1f%10.1f\n",-one,three,matMin,matMax); + } + else { + fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('RAYL',?) call.\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + } // end of else if (strncmp(&fProcessFlag[i][0],"RAYL",4) == 0) + + + // synchrotron radiation in magnetic field + // G3 default value: 0 + // G4 process: G4SynchrotronRadiation + // + // Particles: ?? + // Physics: Not set + // flag = 0 no synchrotron radiation + // flag = 1 synchrotron radiation + //xx gMC ->SetProcess("SYNC",1); // synchrotron radiation generation + else if (strncmp(&fProcessFlag[i][0],"SYNC",4) == 0) { + fprintf(pAliceInp,"*\n*Synchrotron radiation generation is NOT implemented in FLUKA\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + + + // Automatic calculation of tracking medium parameters + // flag = 0 no automatic calculation + // flag = 1 automatic calculation + //xx gMC ->SetProcess("AUTO",1); // ??? automatic computation of the tracking medium parameters + else if (strncmp(&fProcessFlag[i][0],"AUTO",4) == 0) { + fprintf(pAliceInp,"*\n*Automatic calculation of tracking medium parameters is always ON in FLUKA\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + + + // To control energy loss fluctuation model + // flag = 0 Urban model + // flag = 1 PAI model + // flag = 2 PAI+ASHO model (not active at the moment) + //xx gMC ->SetProcess("STRA",1); // ??? energy fluctuation model + else if (strncmp(&fProcessFlag[i][0],"STRA",4) == 0) { + if (fProcessValue[i] == 0 || fProcessValue[i] == 2 || fProcessValue[i] == 3) { + fprintf(pAliceInp,"*\n*Ionization energy losses calculation is activated\n"); + fprintf(pAliceInp,"*Generated from call: SetProcess('STRA',n);, n=0,1,2\n"); + // one = restricted energy loss fluctuations (for hadrons and muons) switched on + // one = restricted energy loss fluctuations (for e+ and e-) switched on + // one = minimal accuracy + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + fprintf(pAliceInp,"IONFLUCT %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,one,one,matMin,matMax); + } + else { + fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('STRA',?) call.\n"); + fprintf(pAliceInp,"*No FLUKA card generated\n"); + } + } // else if (strncmp(&fProcessFlag[i][0],"STRA",4) == 0) + + + + + else { // processes not yet treated + + // light photon absorption (Cerenkov photons) + // it is turned on when Cerenkov process is turned on + // G3 default value: 0 + // G4 process: G4OpAbsorption, G4OpBoundaryProcess + // + // Particles: optical photon + // Physics: Optical + // flag = 0 no absorption of Cerenkov photons + // flag = 1 absorption of Cerenkov photons + // gMC ->SetProcess("LABS",2); // ??? Cerenkov light absorption + + + + cout << "SetProcess for flag=" << &fProcessFlag[i][0] << " value=" << fProcessValue[i] << " not yet implemented!" << endl; + } + } //end of loop number of SetProcess calls + + +// Loop over number of SetCut calls + for (Int_t i = 0; i < fNbOfCut; i++) { + Float_t matMin = three; + Float_t matMax = fLastMaterial; + Bool_t global = kTRUE; + if (fCutMaterial[i] != -1) { + matMin = Float_t(fCutMaterial[i]); + matMax = matMin; + global = kFALSE; + } + + // cuts handled in SetProcess calls + if (strncmp(&fCutFlag[i][0],"BCUTM",5) == 0) continue; + else if (strncmp(&fCutFlag[i][0],"BCUTE",5) == 0) continue; + else if (strncmp(&fCutFlag[i][0],"DCUTM",5) == 0) continue; + else if (strncmp(&fCutFlag[i][0],"PPCUTM",6) == 0) continue; + + // delta-rays by electrons + // G4 particles: "e-" + // G3 default value: 10**4 GeV + // gMC ->SetCut("DCUTE",cut); // cut for deltarays by electrons + else if (strncmp(&fCutFlag[i][0],"DCUTE",5) == 0) { + fprintf(pAliceInp,"*\n*Cut for delta rays by electrons\n"); + fprintf(pAliceInp,"*Generated from call: SetCut('DCUTE',cut);\n"); + // -fCutValue[i]; + // zero = ignored + // zero = ignored + // matMin = lower bound of the material indices in which the respective thresholds apply + // matMax = upper bound of the material indices in which the respective thresholds apply + // loop over materials for EMFCUT FLUKA cards + for (j=0; j < matMax-matMin+1; j++) { + Int_t nreg, imat, *reglist; + Float_t ireg; + imat = (Int_t) matMin + j; + reglist = fGeom->GetMaterialList(imat, nreg); + // loop over regions of a given material + for (k=0; kGetListOfUVolumes()->GetEntriesFast()-1), 1.0); + } // end of if for delta-rays by electrons + + + // gammas + // G4 particles: "gamma" + // G3 default value: 0.001 GeV + // gMC ->SetCut("CUTGAM",cut); // cut for gammas + + else if (strncmp(&fCutFlag[i][0],"CUTGAM",6) == 0 && global) { + fprintf(pAliceInp,"*\n*Cut for gamma\n"); + fprintf(pAliceInp,"*Generated from call: SetCut('CUTGAM',cut);\n"); + // -fCutValue[i]; + // 7.0 = lower bound of the particle id-numbers to which the cut-off + fprintf(pAliceInp,"PART-THR %10.4g%10.1f\n",-fCutValue[i],7.0); + } + else if (strncmp(&fCutFlag[i][0],"CUTGAM",6) == 0 && !global) { + fprintf(pAliceInp,"*\n*Cut specific to material for gamma\n"); + fprintf(pAliceInp,"*Generated from call: SetCut('CUTGAM',cut);\n"); + // fCutValue[i]; + // loop over materials for EMFCUT FLUKA cards + for (j=0; j < matMax-matMin+1; j++) { + Int_t nreg, imat, *reglist; + Float_t ireg; + imat = (Int_t) matMin + j; + reglist = fGeom->GetMaterialList(imat, nreg); + // loop over regions of a given material + for (Int_t k=0; kSetCut("CUTELE",cut); // cut for e+,e- + else if (strncmp(&fCutFlag[i][0],"CUTELE",6) == 0 && global) { + fprintf(pAliceInp,"*\n*Cut for electrons\n"); + fprintf(pAliceInp,"*Generated from call: SetCut('CUTELE',cut);\n"); + // -fCutValue[i]; + // three = lower bound of the particle id-numbers to which the cut-off + // 4.0 = upper bound of the particle id-numbers to which the cut-off + // one = step length in assigning numbers + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f%10.1f\n",-fCutValue[i],three,4.0,one); + } + else if (strncmp(&fCutFlag[i][0],"CUTELE",6) == 0 && !global) { + fprintf(pAliceInp,"*\n*Cut specific to material for electrons\n"); + fprintf(pAliceInp,"*Generated from call: SetCut('CUTELE',cut);\n"); + // -fCutValue[i]; + // loop over materials for EMFCUT FLUKA cards + for (j=0; j < matMax-matMin+1; j++) { + Int_t nreg, imat, *reglist; + Float_t ireg; + imat = (Int_t) matMin + j; + reglist = fGeom->GetMaterialList(imat, nreg); + // loop over regions of a given material + for (k=0; kSetCut("CUTNEU",cut); // cut for neutral hadrons + else if (strncmp(&fCutFlag[i][0],"CUTNEU",6) == 0 && global) { + fprintf(pAliceInp,"*\n*Cut for neutral hadrons\n"); + fprintf(pAliceInp,"*Generated from call: SetCut('CUTNEU',cut);\n"); + + // 8.0 = Neutron + // 9.0 = Antineutron + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],8.0,9.0); + + // 12.0 = Kaon zero long + // 12.0 = Kaon zero long + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],12.0,12.0); + + // 17.0 = Lambda, 18.0 = Antilambda + // 19.0 = Kaon zero short + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],17.0,19.0); + + // 22.0 = Sigma zero, Pion zero, Kaon zero + // 25.0 = Antikaon zero + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],22.0,25.0); + + // 32.0 = Antisigma zero + // 32.0 = Antisigma zero + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],32.0,32.0); + + // 34.0 = Xi zero + // 35.0 = AntiXi zero + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],34.0,35.0); + + // 47.0 = D zero + // 48.0 = AntiD zero + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],47.0,48.0); + + // 53.0 = Xi_c zero + // 53.0 = Xi_c zero + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],53.0,53.0); + + // 55.0 = Xi'_c zero + // 56.0 = Omega_c zero + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],55.0,56.0); + + // 59.0 = AntiXi_c zero + // 59.0 = AntiXi_c zero + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],59.0,59.0); + + // 61.0 = AntiXi'_c zero + // 62.0 = AntiOmega_c zero + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],61.0,62.0); + } + + // charged hadrons + // G4 particles: of type "baryon", "meson", "nucleus" with non-zero charge + // G3 default value: 0.01 GeV + //gMC ->SetCut("CUTHAD",cut); // cut for charged hadrons + else if (strncmp(&fCutFlag[i][0],"CUTHAD",6) == 0 && global) { + fprintf(pAliceInp,"*\n*Cut for charged hadrons\n"); + fprintf(pAliceInp,"*Generated from call: SetCut('CUTHAD',cut);\n"); + + // 1.0 = Proton + // 2.0 = Antiproton + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],1.0,2.0); + + // 13.0 = Positive Pion, Negative Pion, Positive Kaon + // 16.0 = Negative Kaon + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],13.0,16.0); + + // 20.0 = Negative Sigma + // 21.0 = Positive Sigma + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],20.0,21.0); + + // 31.0 = Antisigma minus + // 33.0 = Antisigma plus + // 2.0 = step length + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f%10.1f\n",-fCutValue[i],31.0,33.0,2.0); + + // 36.0 = Negative Xi, Positive Xi, Omega minus + // 39.0 = Antiomega + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],36.0,39.0); + + // 45.0 = D plus + // 46.0 = D minus + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],45.0,46.0); + + // 49.0 = D_s plus, D_s minus, Lambda_c plus + // 52.0 = Xi_c plus + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],49.0,52.0); + + // 54.0 = Xi'_c plus + // 60.0 = AntiXi'_c minus + // 6.0 = step length + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f%10.1f\n",-fCutValue[i],54.0,60.0,6.0); + + // 57.0 = Antilambda_c minus + // 58.0 = AntiXi_c minus + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],57.0,58.0); + } + + // muons + // G4 particles: "mu+", "mu-" + // G3 default value: 0.01 GeV + //gMC ->SetCut("CUTMUO",cut); // cut for mu+, mu- + else if (strncmp(&fCutFlag[i][0],"CUTMUO",6)== 0 && global) { + fprintf(pAliceInp,"*\n*Cut for muons\n"); + fprintf(pAliceInp,"*Generated from call: SetCut('CUTMUO',cut);\n"); + // 10.0 = Muon+ + // 11.0 = Muon- + fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],10.0,11.0); + } + + // + // time of flight cut in seconds + // G4 particles: all + // G3 default value: 0.01 GeV + //gMC ->SetCut("TOFMAX",tofmax); // time of flight cuts in seconds + else if (strncmp(&fCutFlag[i][0],"TOFMAX",6) == 0) { + fprintf(pAliceInp,"*\n*Time of flight cuts in seconds\n"); + fprintf(pAliceInp,"*Generated from call: SetCut('TOFMAX',tofmax);\n"); + // zero = ignored + // zero = ignored + // -6.0 = lower bound of the particle numbers for which the transport time cut-off and/or the start signal is to be applied + // 64.0 = upper bound of the particle numbers for which the transport time cut-off and/or the start signal is to be applied + fprintf(pAliceInp,"TIME-CUT %10.4g%10.1f%10.1f%10.1f%10.1f\n",fCutValue[i]*1.e9,zero,zero,-6.0,64.0); + } + + else if (global){ + cout << "SetCut for flag=" << &fCutFlag[i][0] << " value=" << fCutValue[i] << " not yet implemented!" << endl; + } + else { + cout << "SetCut for flag=" << &fCutFlag[i][0] << " value=" << fCutValue[i] << " (material specific) not yet implemented!" << endl; + } + + } //end of loop over SetCut calls + +// Add START and STOP card + fprintf(pAliceInp,"START %10.1f\n",fEventsPerRun); + fprintf(pAliceInp,"STOP \n"); + + +// Close files + + fclose(pAliceCoreInp); + fclose(pAliceFlukaMat); + fclose(pAliceInp); + +} // end of InitPhysics + + +//______________________________________________________________________________ +void TFluka::SetMaxStep(Double_t) +{ +// SetMaxStep is dummy procedure in TFluka ! + if (fVerbosityLevel >=3) + cout << "SetMaxStep is dummy procedure in TFluka !" << endl; +} + +//______________________________________________________________________________ +void TFluka::SetMaxNStep(Int_t) +{ +// SetMaxNStep is dummy procedure in TFluka ! + if (fVerbosityLevel >=3) + cout << "SetMaxNStep is dummy procedure in TFluka !" << endl; +} + +//______________________________________________________________________________ +void TFluka::SetUserDecay(Int_t) +{ +// SetUserDecay is dummy procedure in TFluka ! + if (fVerbosityLevel >=3) + cout << "SetUserDecay is dummy procedure in TFluka !" << endl; +} + +// +// dynamic properties +// +//______________________________________________________________________________ +void TFluka::TrackPosition(TLorentzVector& position) const +{ +// Return the current position in the master reference frame of the +// track being transported +// TRACKR.atrack = age of the particle +// TRACKR.xtrack = x-position of the last point +// TRACKR.ytrack = y-position of the last point +// TRACKR.ztrack = z-position of the last point + Int_t caller = GetCaller(); + if (caller == 3 || caller == 6 || caller == 11 || caller == 12) { //bxdraw,endraw,usdraw + position.SetX(GetXsco()); + position.SetY(GetYsco()); + position.SetZ(GetZsco()); + position.SetT(TRACKR.atrack); + } + else if (caller == 4) { // mgdraw + position.SetX(TRACKR.xtrack[TRACKR.ntrack]); + position.SetY(TRACKR.ytrack[TRACKR.ntrack]); + position.SetZ(TRACKR.ztrack[TRACKR.ntrack]); + position.SetT(TRACKR.atrack); + } + else if (caller == 5) { // sodraw + position.SetX(TRACKR.xtrack[TRACKR.ntrack]); + position.SetY(TRACKR.ytrack[TRACKR.ntrack]); + position.SetZ(TRACKR.ztrack[TRACKR.ntrack]); + position.SetT(0); + } + else + Warning("TrackPosition","position not available"); +} + +//______________________________________________________________________________ +void TFluka::TrackPosition(Double_t& x, Double_t& y, Double_t& z) const +{ +// Return the current position in the master reference frame of the +// track being transported +// TRACKR.atrack = age of the particle +// TRACKR.xtrack = x-position of the last point +// TRACKR.ytrack = y-position of the last point +// TRACKR.ztrack = z-position of the last point + Int_t caller = GetCaller(); + if (caller == 3 || caller == 6 || caller == 11 || caller == 12) { //bxdraw,endraw,usdraw + x = GetXsco(); + y = GetYsco(); + z = GetZsco(); + } + else if (caller == 4 || caller == 5) { // mgdraw, sodraw + x = TRACKR.xtrack[TRACKR.ntrack]; + y = TRACKR.ytrack[TRACKR.ntrack]; + z = TRACKR.ztrack[TRACKR.ntrack]; + } + else + Warning("TrackPosition","position not available"); +} + +//______________________________________________________________________________ +void TFluka::TrackMomentum(TLorentzVector& momentum) const +{ +// Return the direction and the momentum (GeV/c) of the track +// currently being transported +// TRACKR.ptrack = momentum of the particle (not always defined, if +// < 0 must be obtained from etrack) +// TRACKR.cx,y,ztrck = direction cosines of the current particle +// TRACKR.etrack = total energy of the particle +// TRACKR.jtrack = identity number of the particle +// PAPROP.am[TRACKR.jtrack] = particle mass in gev + Int_t caller = GetCaller(); + if (caller != 2) { // not eedraw + if (TRACKR.ptrack >= 0) { + momentum.SetPx(TRACKR.ptrack*TRACKR.cxtrck); + momentum.SetPy(TRACKR.ptrack*TRACKR.cytrck); + momentum.SetPz(TRACKR.ptrack*TRACKR.cztrck); + momentum.SetE(TRACKR.etrack); + return; + } + else { + Double_t p = sqrt(TRACKR.etrack*TRACKR.etrack - PAPROP.am[TRACKR.jtrack+6]*PAPROP.am[TRACKR.jtrack+6]); + momentum.SetPx(p*TRACKR.cxtrck); + momentum.SetPy(p*TRACKR.cytrck); + momentum.SetPz(p*TRACKR.cztrck); + momentum.SetE(TRACKR.etrack); + return; + } + } + else + Warning("TrackMomentum","momentum not available"); +} + +//______________________________________________________________________________ +void TFluka::TrackMomentum(Double_t& px, Double_t& py, Double_t& pz, Double_t& e) const +{ +// Return the direction and the momentum (GeV/c) of the track +// currently being transported +// TRACKR.ptrack = momentum of the particle (not always defined, if +// < 0 must be obtained from etrack) +// TRACKR.cx,y,ztrck = direction cosines of the current particle +// TRACKR.etrack = total energy of the particle +// TRACKR.jtrack = identity number of the particle +// PAPROP.am[TRACKR.jtrack] = particle mass in gev + Int_t caller = GetCaller(); + if (caller != 2) { // not eedraw + if (TRACKR.ptrack >= 0) { + px = TRACKR.ptrack*TRACKR.cxtrck; + py = TRACKR.ptrack*TRACKR.cytrck; + pz = TRACKR.ptrack*TRACKR.cztrck; + e = TRACKR.etrack; + return; + } + else { + Double_t p = sqrt(TRACKR.etrack*TRACKR.etrack - PAPROP.am[TRACKR.jtrack+6]*PAPROP.am[TRACKR.jtrack+6]); + px = p*TRACKR.cxtrck; + py = p*TRACKR.cytrck; + pz = p*TRACKR.cztrck; + e = TRACKR.etrack; + return; + } + } + else + Warning("TrackMomentum","momentum not available"); +} + +//______________________________________________________________________________ +Double_t TFluka::TrackStep() const +{ +// Return the length in centimeters of the current step +// TRACKR.ctrack = total curved path + Int_t caller = GetCaller(); + if (caller == 11 || caller==12 || caller == 3 || caller == 6) //bxdraw,endraw,usdraw + return 0.0; + else if (caller == 4) //mgdraw + return TRACKR.ctrack; + else + return -1.0; +} + +//______________________________________________________________________________ +Double_t TFluka::TrackLength() const +{ +// TRACKR.cmtrck = cumulative curved path since particle birth + Int_t caller = GetCaller(); + if (caller == 11 || caller==12 || caller == 3 || caller == 4 || caller == 6) //bxdraw,endraw,mgdraw,usdraw + return TRACKR.cmtrck; + else + return -1.0; +} + +//______________________________________________________________________________ +Double_t TFluka::TrackTime() const +{ +// Return the current time of flight of the track being transported +// TRACKR.atrack = age of the particle + Int_t caller = GetCaller(); + if (caller == 11 || caller==12 || caller == 3 || caller == 4 || caller == 6) //bxdraw,endraw,mgdraw,usdraw + return TRACKR.atrack; + else + return -1; +} + +//______________________________________________________________________________ +Double_t TFluka::Edep() const +{ +// Energy deposition +// if TRACKR.ntrack = 0, TRACKR.mtrack = 0: +// -->local energy deposition (the value and the point are not recorded in TRACKR) +// but in the variable "rull" of the procedure "endraw.cxx" +// if TRACKR.ntrack > 0, TRACKR.mtrack = 0: +// -->no energy loss along the track +// if TRACKR.ntrack > 0, TRACKR.mtrack > 0: +// -->energy loss distributed along the track +// TRACKR.dtrack = energy deposition of the jth deposition even + + // If coming from bxdraw we have 2 steps of 0 length and 0 edep + Int_t caller = GetCaller(); + if (caller == 11 || caller==12) return 0.0; + Double_t sum = 0; + for ( Int_t j=0;j= 0 && isec < FINUC.np) { + particleId = PDGFromId(FINUC.kpart[isec]); + position.SetX(fXsco); + position.SetY(fYsco); + position.SetZ(fZsco); + position.SetT(TRACKR.atrack); + momentum.SetPx(FINUC.plr[isec]*FINUC.cxr[isec]); + momentum.SetPy(FINUC.plr[isec]*FINUC.cyr[isec]); + momentum.SetPz(FINUC.plr[isec]*FINUC.czr[isec]); + momentum.SetE(FINUC.tki[isec] + PAPROP.am[FINUC.kpart[isec]+6]); + } + else if (isec >= FINUC.np && isec < FINUC.np + FHEAVY.npheav) { + Int_t jsec = isec - FINUC.np; + particleId = FHEAVY.kheavy[jsec]; // this is Fluka id !!! + position.SetX(fXsco); + position.SetY(fYsco); + position.SetZ(fZsco); + position.SetT(TRACKR.atrack); + momentum.SetPx(FHEAVY.pheavy[jsec]*FHEAVY.cxheav[jsec]); + momentum.SetPy(FHEAVY.pheavy[jsec]*FHEAVY.cyheav[jsec]); + momentum.SetPz(FHEAVY.pheavy[jsec]*FHEAVY.czheav[jsec]); + if (FHEAVY.tkheav[jsec] >= 3 && FHEAVY.tkheav[jsec] <= 6) + momentum.SetE(FHEAVY.tkheav[jsec] + PAPROP.am[jsec+6]); + else if (FHEAVY.tkheav[jsec] > 6) + momentum.SetE(FHEAVY.tkheav[jsec] + FHEAVY.amnhea[jsec]); // to be checked !!! + } + else + Warning("GetSecondary","isec out of range"); + } + else + Warning("GetSecondary","no secondaries available"); +} // end of GetSecondary + +//______________________________________________________________________________ +TMCProcess TFluka::ProdProcess(Int_t) const + +{ +// Name of the process that has produced the secondary particles +// in the current step + const TMCProcess kIpNoProc = kPNoProcess; + const TMCProcess kIpPDecay = kPDecay; + const TMCProcess kIpPPair = kPPair; +// const TMCProcess kIpPPairFromPhoton = kPPairFromPhoton; +// const TMCProcess kIpPPairFromVirtualPhoton = kPPairFromVirtualPhoton; + const TMCProcess kIpPCompton = kPCompton; + const TMCProcess kIpPPhotoelectric = kPPhotoelectric; + const TMCProcess kIpPBrem = kPBrem; +// const TMCProcess kIpPBremFromHeavy = kPBremFromHeavy; +// const TMCProcess kIpPBremFromElectronOrPositron = kPBremFromElectronOrPositron; + const TMCProcess kIpPDeltaRay = kPDeltaRay; +// const TMCProcess kIpPMoller = kPMoller; +// const TMCProcess kIpPBhabha = kPBhabha; + const TMCProcess kIpPAnnihilation = kPAnnihilation; +// const TMCProcess kIpPAnnihilInFlight = kPAnnihilInFlight; +// const TMCProcess kIpPAnnihilAtRest = kPAnnihilAtRest; + const TMCProcess kIpPHadronic = kPHadronic; + const TMCProcess kIpPMuonNuclear = kPMuonNuclear; + const TMCProcess kIpPPhotoFission = kPPhotoFission; + const TMCProcess kIpPRayleigh = kPRayleigh; +// const TMCProcess kIpPCerenkov = kPCerenkov; +// const TMCProcess kIpPSynchrotron = kPSynchrotron; + + Int_t mugamma = TRACKR.jtrack == 7 || TRACKR.jtrack == 10 || TRACKR.jtrack == 11; + if (fIcode == 102) return kIpPDecay; + else if (fIcode == 104 || fIcode == 217) return kIpPPair; +// else if (fIcode == 104) return kIpPairFromPhoton; +// else if (fIcode == 217) return kIpPPairFromVirtualPhoton; + else if (fIcode == 219) return kIpPCompton; + else if (fIcode == 221) return kIpPPhotoelectric; + else if (fIcode == 105 || fIcode == 208) return kIpPBrem; +// else if (fIcode == 105) return kIpPBremFromHeavy; +// else if (fIcode == 208) return kPBremFromElectronOrPositron; + else if (fIcode == 103 || fIcode == 400) return kIpPDeltaRay; + else if (fIcode == 210 || fIcode == 212) return kIpPDeltaRay; +// else if (fIcode == 210) return kIpPMoller; +// else if (fIcode == 212) return kIpPBhabha; + else if (fIcode == 214 || fIcode == 215) return kIpPAnnihilation; +// else if (fIcode == 214) return kIpPAnnihilInFlight; +// else if (fIcode == 215) return kIpPAnnihilAtRest; + else if (fIcode == 101) return kIpPHadronic; + else if (fIcode == 101) { + if (!mugamma) return kIpPHadronic; + else if (TRACKR.jtrack == 7) return kIpPPhotoFission; + else return kIpPMuonNuclear; + } + else if (fIcode == 225) return kIpPRayleigh; +// Fluka codes 100, 300 and 400 still to be investigasted + else return kIpNoProc; +} + +//Int_t StepProcesses(TArrayI &proc) const +// Return processes active in the current step +//{ +//ck = total energy of the particl ???????????????? +//} + + +//______________________________________________________________________________ +Int_t TFluka::VolId2Mate(Int_t id) const +{ +// +// Returns the material number for a given volume ID +// + return fMCGeo->VolId2Mate(id); +} + +//______________________________________________________________________________ +const char* TFluka::VolName(Int_t id) const +{ +// +// Returns the volume name for a given volume ID +// + return fMCGeo->VolName(id); +} + +//______________________________________________________________________________ +Int_t TFluka::VolId(const Text_t* volName) const +{ +// +// Converts from volume name to volume ID. +// Time consuming. (Only used during set-up) +// Could be replaced by hash-table +// + return fMCGeo->VolId(volName); +} + +//______________________________________________________________________________ +Int_t TFluka::CurrentVolID(Int_t& copyNo) const +{ +// +// Return the logical id and copy number corresponding to the current fluka region +// + if (gGeoManager->IsOutside()) return 0; + TGeoNode *node = gGeoManager->GetCurrentNode(); + copyNo = node->GetNumber(); + Int_t id = node->GetVolume()->GetNumber(); + return id; +} + +//______________________________________________________________________________ +Int_t TFluka::CurrentVolOffID(Int_t off, Int_t& copyNo) const +{ +// +// Return the logical id and copy number of off'th mother +// corresponding to the current fluka region +// + if (off<0 || off>gGeoManager->GetLevel()) return 0; + if (off==0) return CurrentVolID(copyNo); + TGeoNode *node = gGeoManager->GetMother(off); + if (!node) return 0; + copyNo = node->GetNumber(); + return node->GetVolume()->GetNumber(); +} + +//______________________________________________________________________________ +const char* TFluka::CurrentVolName() const +{ +// +// Return the current volume name +// + if (gGeoManager->IsOutside()) return 0; + return gGeoManager->GetCurrentVolume()->GetName(); +} + +//______________________________________________________________________________ +const char* TFluka::CurrentVolOffName(Int_t off) const +{ +// +// Return the volume name of the off'th mother of the current volume +// + if (off<0 || off>gGeoManager->GetLevel()) return 0; + if (off==0) return CurrentVolName(); + TGeoNode *node = gGeoManager->GetMother(off); + if (!node) return 0; + return node->GetVolume()->GetName(); +} + +//______________________________________________________________________________ +Int_t TFluka::CurrentMaterial(Float_t & /*a*/, Float_t & /*z*/, + Float_t & /*dens*/, Float_t & /*radl*/, Float_t & /*absl*/) const +{ +// +// Return the current medium number ??? what about material properties +// + Int_t copy; + Int_t id = TFluka::CurrentVolID(copy); + Int_t med = TFluka::VolId2Mate(id); + return med; +} + +//______________________________________________________________________________ +void TFluka::Gmtod(Float_t* xm, Float_t* xd, Int_t iflag) +{ +// Transforms a position from the world reference frame +// to the current volume reference frame. +// +// Geant3 desription: +// ================== +// Computes coordinates XD (in DRS) +// from known coordinates XM in MRS +// The local reference system can be initialized by +// - the tracking routines and GMTOD used in GUSTEP +// - a call to GMEDIA(XM,NUMED) +// - a call to GLVOLU(NLEVEL,NAMES,NUMBER,IER) +// (inverse routine is GDTOM) +// +// If IFLAG=1 convert coordinates +// IFLAG=2 convert direction cosinus +// +// --- + Double_t xmL[3], xdL[3]; + Int_t i; + for (i=0;i<3;i++) xmL[i]=xm[i]; + if (iflag == 1) gGeoManager->MasterToLocal(xmL,xdL); + else gGeoManager->MasterToLocalVect(xmL,xdL); + for (i=0;i<3;i++) xd[i] = xdL[i]; +} + +//______________________________________________________________________________ +void TFluka::Gmtod(Double_t* xm, Double_t* xd, Int_t iflag) +{ + if (iflag == 1) gGeoManager->MasterToLocal(xm,xd); + else gGeoManager->MasterToLocalVect(xm,xd); +} + +//______________________________________________________________________________ +void TFluka::Gdtom(Float_t* xd, Float_t* xm, Int_t iflag) +{ +// Transforms a position from the current volume reference frame +// to the world reference frame. +// +// Geant3 desription: +// ================== +// Computes coordinates XM (Master Reference System +// knowing the coordinates XD (Detector Ref System) +// The local reference system can be initialized by +// - the tracking routines and GDTOM used in GUSTEP +// - a call to GSCMED(NLEVEL,NAMES,NUMBER) +// (inverse routine is GMTOD) +// +// If IFLAG=1 convert coordinates +// IFLAG=2 convert direction cosinus +// +// --- + Double_t xmL[3], xdL[3]; + Int_t i; + for (i=0;i<3;i++) xdL[i] = xd[i]; + if (iflag == 1) gGeoManager->LocalToMaster(xdL,xmL); + else gGeoManager->LocalToMasterVect(xdL,xmL); + for (i=0;i<3;i++) xm[i]=xmL[i]; +} + +//______________________________________________________________________________ +void TFluka::Gdtom(Double_t* xd, Double_t* xm, Int_t iflag) +{ + if (iflag == 1) gGeoManager->LocalToMaster(xd,xm); + else gGeoManager->LocalToMasterVect(xd,xm); +} + +//______________________________________________________________________________ +TObjArray *TFluka::GetFlukaMaterials() +{ + return fGeom->GetMatList(); +} + +//______________________________________________________________________________ +void TFluka::SetMreg(Int_t l) +{ +// Set current fluka region + fCurrentFlukaRegion = l; + fGeom->SetMreg(l); +} + + + + diff --git a/TFluka/TFluka.h b/TFluka/TFluka.h new file mode 100644 index 00000000000..bf55bf431a9 --- /dev/null +++ b/TFluka/TFluka.h @@ -0,0 +1,382 @@ +#ifndef TFLUKA +#define TFLUKA +/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * + * See cxx source for full Copyright notice */ + +/* $Id$ */ + +/////////////////////////////////////////////////////////////////////////////// +// // +// // +// FLUKA implementation of the VirtualMC Interface // +// // +// // +/////////////////////////////////////////////////////////////////////////////// + + +#include "TVirtualMC.h" +#include "TGeoMCGeometry.h" +#include "TMCProcess.h" + +//Forward declaration +class TFlukaMCGeometry; +class TGeoMaterial; + +class TFluka : public TVirtualMC { + + public: + TFluka(const char *title, Int_t verbosity = 0, Bool_t isRootGeometrySupported = 0); + TFluka(); + virtual ~TFluka(); + + // + // methods for building/management of geometry + // ------------------------------------------------ + // + + // functions from GCONS + virtual void Gfmate(Int_t imat, char *name, Float_t &a, Float_t &z, + Float_t &dens, Float_t &radl, Float_t &absl, + Float_t* ubuf, Int_t& nbuf); + virtual void Gfmate(Int_t imat, char *name, Double_t &a, Double_t &z, + Double_t &dens, Double_t &radl, Double_t &absl, + Double_t* ubuf, Int_t& nbuf); + + // detector composition + virtual void Material(Int_t& kmat, const char* name, Double_t a, + Double_t z, Double_t dens, Double_t radl, Double_t absl, + Float_t* buf, Int_t nwbuf); + virtual void Material(Int_t& kmat, const char* name, Double_t a, + Double_t z, Double_t dens, Double_t radl, Double_t absl, + Double_t* buf, Int_t nwbuf); + virtual void Mixture(Int_t& kmat, const char *name, Float_t *a, + Float_t *z, Double_t dens, Int_t nlmat, Float_t *wmat); + virtual void Mixture(Int_t& kmat, const char *name, Double_t *a, + Double_t *z, Double_t dens, Int_t nlmat, Double_t *wmat); + virtual void Medium(Int_t& kmed, const char *name, Int_t nmat, + Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd, + Double_t stemax, Double_t deemax, Double_t epsil, + Double_t stmin, Float_t* ubuf, Int_t nbuf); + virtual void Medium(Int_t& kmed, const char *name, Int_t nmat, + Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd, + Double_t stemax, Double_t deemax, Double_t epsil, + Double_t stmin, Double_t* ubuf, Int_t nbuf); + virtual void Matrix(Int_t& krot, Double_t thetaX, Double_t phiX, + Double_t thetaY, Double_t phiY, Double_t thetaZ, + Double_t phiZ); + virtual void Gstpar(Int_t itmed, const char *param, Double_t parval); + + // functions from GGEOM + virtual Int_t Gsvolu(const char *name, const char *shape, Int_t nmed, + Float_t *upar, Int_t np); + virtual Int_t Gsvolu(const char *name, const char *shape, Int_t nmed, + Double_t *upar, Int_t np); + virtual void Gsdvn(const char *name, const char *mother, Int_t ndiv, + Int_t iaxis); + virtual void Gsdvn2(const char *name, const char *mother, Int_t ndiv, + Int_t iaxis, Double_t c0i, Int_t numed); + virtual void Gsdvt(const char *name, const char *mother, Double_t step, + Int_t iaxis, Int_t numed, Int_t ndvmx); + virtual void Gsdvt2(const char *name, const char *mother, Double_t step, + Int_t iaxis, Double_t c0, Int_t numed, Int_t ndvmx); + virtual void Gsord(const char *name, Int_t iax); + virtual void Gspos(const char *name, Int_t nr, const char *mother, + Double_t x, Double_t y, Double_t z, Int_t irot, + const char *konly="ONLY"); + virtual void Gsposp(const char *name, Int_t nr, const char *mother, + Double_t x, Double_t y, Double_t z, Int_t irot, + const char *konly, Float_t *upar, Int_t np); + virtual void Gsposp(const char *name, Int_t nr, const char *mother, + Double_t x, Double_t y, Double_t z, Int_t irot, + const char *konly, Double_t *upar, Int_t np); + virtual void Gsbool(const char* onlyVolName, const char* manyVolName); + + virtual void SetCerenkov(Int_t itmed, Int_t npckov, Float_t *ppckov, + Float_t *absco, Float_t *effic, Float_t *rindex); + virtual void SetCerenkov(Int_t itmed, Int_t npckov, Double_t *ppckov, + Double_t *absco, Double_t *effic, Double_t *rindex); + + + // functions for drawing + virtual void DrawOneSpec(const char* /*name*/) + {printf("WARNING: DrawOneSpec not yet implemented !\n");} + virtual void Gsatt(const char* name, const char* att, Int_t val); + virtual void Gdraw(const char*,Double_t /*theta = 30*/, Double_t /*phi = 30*/, + Double_t /*psi = 0*/, Double_t /*u0 = 10*/, Double_t /*v0 = 10*/, + Double_t /*ul = 0.01*/, Double_t /*vl = 0.01*/) + {printf("WARNING: Gdraw not yet implemented !\n");} + + // Euclid + virtual void WriteEuclid(const char*, const char*, Int_t, Int_t); + + // get methods + virtual Int_t VolId(const Text_t* volName) const; + virtual const char* VolName(Int_t id) const; + virtual Int_t NofVolumes() const {return fNVolumes;} + virtual Int_t VolId2Mate(Int_t id) const; + // + // methods for physics management + // ------------------------------------------------ + // + + // set methods + virtual Bool_t SetProcess(const char* flagName, Int_t flagValue); + virtual void SetProcess(const char* flagName, Int_t flagValue, Int_t imed); + virtual Bool_t SetCut(const char* cutName, Double_t cutValue); + virtual void SetCut(const char* cutName, Double_t cutValue, Int_t imed); + virtual Double_t Xsec(char*, Double_t, Int_t, Int_t); + + // particle table usage + virtual Int_t IdFromPDG(Int_t id) const; + virtual Int_t PDGFromId(Int_t pdg) const; + virtual void DefineParticles() + {printf("WARNING: DefineParticles not yet implemented !\n");} + + // + // methods for step management + // ------------------------------------------------ + // + + // action methods + virtual void StopTrack() + {printf("WARNING: StopTrack not yet implemented !\n");} + virtual void StopEvent() + {printf("WARNING: StopEvent not yet implemented !\n");} + virtual void StopRun() + {printf("WARNING: StopRun not yet implemented !\n");} + + // set methods + virtual void SetMaxStep(Double_t); + virtual void SetMaxNStep(Int_t); + virtual void SetUserDecay(Int_t); + + // get methods + // tracking volume(s) + virtual Int_t CurrentVolID(Int_t& copyNo) const; + virtual Int_t CurrentVolOffID(Int_t off, Int_t& copyNo) const; + virtual const char* CurrentVolName() const; + virtual const char* CurrentVolOffName(Int_t off) const; + virtual Int_t CurrentMaterial(Float_t &a, Float_t &z, + Float_t &dens, Float_t &radl, Float_t &absl) const; + virtual Int_t CurrentEvent() const + {printf("WARNING: CurrentEvent not yet implemented !\n"); return -1;} + virtual void Gmtod(Float_t* xm, Float_t* xd, Int_t iflag); + + virtual void Gmtod(Double_t* xm, Double_t* xd, Int_t iflag); + + virtual void Gdtom(Float_t* xd, Float_t* xm, Int_t iflag); + + virtual void Gdtom(Double_t* xd, Double_t* xm, Int_t iflag); + + virtual Double_t MaxStep() const + {printf("WARNING: MaxStep not yet implemented !\n"); return -1.;} + virtual Int_t GetMaxNStep() const + {printf("WARNING: GetMaxNStep not yet implemented !\n"); return -1;} + virtual Int_t GetMedium() const; + + // tracking particle + // dynamic properties + virtual void TrackPosition(TLorentzVector& position) const; + virtual void TrackPosition(Double_t& x, Double_t& y, Double_t& z) const; + virtual void TrackMomentum(TLorentzVector& momentum) const; + virtual void TrackMomentum(Double_t& px, Double_t& py, Double_t& pz, Double_t& e) const; + virtual Double_t TrackStep() const; + virtual Double_t TrackLength() const; + virtual Double_t TrackTime() const; + virtual Double_t Edep() const; + // static properties + virtual Int_t TrackPid() const; + virtual Double_t TrackCharge() const; + virtual Double_t TrackMass() const; + virtual Double_t Etot() const; + // track status + virtual Bool_t IsNewTrack() const; + virtual Bool_t IsTrackInside() const; + virtual Bool_t IsTrackEntering() const; + virtual Bool_t IsTrackExiting() const; + virtual Bool_t IsTrackOut() const; + virtual Bool_t IsTrackDisappeared() const; + virtual Bool_t IsTrackStop() const; + virtual Bool_t IsTrackAlive() const; + + // secondaries + virtual Int_t NSecondaries() const ; + virtual void GetSecondary(Int_t isec, Int_t& particleId, + TLorentzVector& position, TLorentzVector& momentum); + virtual TMCProcess ProdProcess(Int_t iproc) const ; + virtual Int_t StepProcesses(TArrayI &/*proc*/) const + {printf("WARNING: StepProcesses not yet implemented !\n"); return -1;} + + + // + // Geant3 specific methods + // !!! need to be transformed to common interface + // + virtual void Gdopt(const char*,const char*) + {printf("WARNING: Gdopt not yet implemented !\n");} + virtual void SetClipBox(const char*,Double_t=-9999,Double_t=0, Double_t=-9999, + Double_t=0,Double_t=-9999,Double_t=0) + {printf("WARNING: SetClipBox not yet implemented !\n");} + virtual void DefaultRange() + {printf("WARNING: DefaultRange not yet implemented !\n");} + virtual void Gdhead(Int_t, const char*, Double_t=0) + {printf("WARNING: Gdhead not yet implemented !\n");} + virtual void Gdman(Double_t, Double_t, const char*) + {printf("WARNING: Gdman not yet implemented !\n");} + virtual void SetColors() + {printf("WARNING: SetColors not yet implemented !\n");} + virtual void Gtreve() + {printf("WARNING: Gtreve not yet implemented !\n");} + virtual void GtreveRoot() + {printf("WARNING: GtreveRoot not yet implemented !\n");} + virtual void Gckmat(Int_t, char*) + {printf("WARNING: Gckmat not yet implemented !\n");} + virtual void InitLego() + {printf("WARNING: InitLego not yet implemented !\n");} + virtual void Gfpart(Int_t, char*, Int_t&, Float_t&, Float_t&, Float_t&) + {printf("WARNING: Gfpart not yet implemented !\n");} + virtual void Gspart(Int_t, const char*, Int_t, Double_t, Double_t, Double_t) + {printf("WARNING: Gspart not yet implemented !\n");} + + // Dummy methods + virtual Bool_t DefineParticle(int, const char*, TMCParticleType, double, double, double) {return kTRUE;} + virtual Bool_t DefineIon(const char*, int, int, int, double, double) {return kTRUE;} + virtual TString ParticleName(int) const {return "";} + virtual Double_t ParticleMass(int) const {return 0.;} + virtual Double_t ParticleCharge(int) const {return 0.;} + virtual Double_t ParticleLifeTime(int) const {return 0.;} + virtual TMCParticleType ParticleMCType(int) const {return (TMCParticleType) 0;} + // + // control methods + // ------------------------------------------------ + // + + virtual void Init(); + virtual void InitPhysics(); + virtual void FinishGeometry(); + virtual void BuildPhysics(); + virtual void ProcessEvent(); + virtual Bool_t ProcessRun(Int_t nevent); + + // + //New Getter and Setters + // ------------------------------------------------ + // + // - Core input file name + TString GetCoreInputFileName() const {return fCoreInputFileName;} + void SetCoreInputFileName(const char* n) {fCoreInputFileName = n;} + + // - Input file name + TString GetInputFileName() const {return fInputFileName;} + void SetInputFileName(const char* n) {fInputFileName = n;} + + // - SetProcess and SetCut + Int_t GetProcessNb() const {return fNbOfProc;} + void SetProcessNb(Int_t l) {fNbOfProc = l;} + Int_t GetCutNb() const {return fNbOfProc;} + void SetCutNb(Int_t l) {fNbOfCut = l;} + + // - Verbosity level + Int_t GetVerbosityLevel() const {return fVerbosityLevel;} + void SetVerbosityLevel(Int_t l) {fVerbosityLevel = l;} + + // - Fluka Draw procedures identifiers + // bxdraw = 1 inside + // bxdraw = 11 entering + // bxdraw = 12 exiting + // eedraw = 2 + // endraw = 3 + // mgdraw = 4 + // sodraw = 5 + // usdraw = 6 + Int_t GetCaller() const {return fCaller;} + void SetCaller(Int_t l) {fCaller = l;} + + // - Fluka Draw procedures formal parameters + Int_t GetIcode() const {return fIcode;} + void SetIcode(Int_t l) {fIcode = l;} + // in the case of sodraw fIcode=0 + + Int_t GetMreg() const {return fCurrentFlukaRegion;} + void SetMreg(Int_t l); + + Int_t GetNewreg() const {return fNewReg;} + void SetNewreg(Int_t l) {fNewReg = l;} + + Double_t GetRull() const {return fRull;} + void SetRull(Double_t r) {fRull = r;} + + Double_t GetXsco() const {return fXsco;} + void SetXsco(Double_t x) {fXsco = x;} + + Double_t GetYsco() const {return fYsco;} + void SetYsco(Double_t y) {fYsco = y;} + + Double_t GetZsco() const {return fZsco;} + void SetZsco(Double_t z) {fZsco = z;} + + void SetCurrentFlukaRegion(Int_t reg) {fCurrentFlukaRegion=reg;} + Int_t GetCurrentFlukaRegion() const {return fCurrentFlukaRegion;} + + void SetDummyBoundary(Int_t mode) {fDummyBoundary = mode;} + Int_t GetDummyBoundary() const {return fDummyBoundary;} + Bool_t IsDummyBoundary() const {return (fDummyBoundary==0)?kFALSE:kTRUE;} + + void SetGeneratePemf(Bool_t flag=kTRUE) {fGeneratePemf = flag;} + Bool_t IsGeneratePemf() const {return fGeneratePemf;} + + void EnableField(Bool_t flag=kTRUE) {fFieldFlag = flag;} + Bool_t IsFieldEnabled() const {return fFieldFlag;} + void SetTrackIsEntering(){fTrackIsEntering = kTRUE; fTrackIsExiting = kFALSE;} + void SetTrackIsExiting() {fTrackIsExiting = kTRUE; fTrackIsEntering = kFALSE;} + void SetTrackIsInside() {fTrackIsExiting = kFALSE; fTrackIsEntering = kFALSE;} + void SetTrackIsNew(Bool_t flag=kTRUE) {fTrackIsNew = flag;} + Int_t GetMaterialIndex(Int_t idmat) {return fMaterials[idmat];} + TObjArray *GetFlukaMaterials(); + + + private: + TFluka(const TFluka &mc): TVirtualMC(mc) {;} + TFluka & operator=(const TFluka &) {return (*this);} + + + Int_t fVerbosityLevel; //Verbosity level (0 lowest - 3 highest) + + TString fInputFileName; //Name of the real input file (e.g. alice.inp) + TString fCoreInputFileName; //Name of the input file (e.g. corealice.inp) + + Int_t fCaller; //Parameter to indicate who is the caller of the Fluka Draw + Int_t fIcode; //Fluka Draw procedures formal parameter + Int_t fNewReg; //Fluka Draw procedures formal parameter + Double_t fRull; //Fluka Draw procedures formal parameter + Double_t fXsco; //Fluka Draw procedures formal parameter + Double_t fYsco; //Fluka Draw procedures formal parameter + Double_t fZsco; //Fluka Draw procedures formal parameter + Bool_t fTrackIsEntering; // Flag for track entering + Bool_t fTrackIsExiting; // Flag for track exiting + Bool_t fTrackIsNew; // Flag for new track + Bool_t fFieldFlag; // Flag for magnetic field + Bool_t fGeneratePemf; // Flag for automatic .pemf generation + Int_t fDummyBoundary; // Flag for crossing dummy boundaries + //variables for SetProcess and SetCut + Int_t fNbOfProc; // Current number of processes + Int_t fProcessValue[10000]; // User values assigned to processes + Int_t fProcessMaterial[10000]; // Materials assigned to user settings + Char_t fProcessFlag[10000][5]; // User flags assigned to processes + Int_t fNbOfCut; // Current number of cuts + Double_t fCutValue[10000]; // User values assigned to cuts + Char_t fCutFlag[10000][7]; // User flags assigned to cuts + Int_t fCutMaterial[10000]; // Materials assigned to cuts + + //Geometry through TGeo + Int_t* fMaterials; //!Array of indices + Int_t fNVolumes; //!Current number of volumes + Int_t fCurrentFlukaRegion; //Index of fluka region at each step + TFlukaMCGeometry *fGeom; // TGeo-FLUKA interface + TGeoMCGeometry *fMCGeo; // Interface to TGeo builder + + ClassDef(TFluka,1) //C++ interface to Fluka montecarlo +}; + +#endif //TFLUKA +