From 8417fa6a4f1dcd2b3f9fec01d97803f98e636828 Mon Sep 17 00:00:00 2001 From: basanta Date: Fri, 29 Aug 2008 11:14:21 +0000 Subject: [PATCH] geometry for 2008 run --- PMD/AliPMDv2008.cxx | 1715 +++++++++++++++++++++++++++++++++++++++++++ PMD/AliPMDv2008.h | 74 ++ PMD/PMDsimLinkDef.h | 1 + PMD/libPMDsim.pkg | 3 +- 4 files changed, 1791 insertions(+), 2 deletions(-) create mode 100644 PMD/AliPMDv2008.cxx create mode 100644 PMD/AliPMDv2008.h diff --git a/PMD/AliPMDv2008.cxx b/PMD/AliPMDv2008.cxx new file mode 100644 index 00000000000..c6fce8d82f4 --- /dev/null +++ b/PMD/AliPMDv2008.cxx @@ -0,0 +1,1715 @@ +/*************************************************************************** + * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * + * * + * Author: The ALICE Off-line Project. * + * Contributors are mentioned in the code where appropriate. * + * * + * Permission to use, copy, modify and distribute this software and its * + * documentation strictly for non-commercial purposes is hereby granted * + * without fee, provided that the above copyright notice appears in all * + * copies and that both the copyright notice and this permission notice * + * appear in the supporting documentation. The authors make no claims * + * about the suitability of this software for any purpose. It is * + * provided "as is" without express or implied warranty. * + **************************************************************************/ +/* $Id: AliPMDv1.cxx 18594 2007-05-15 13:28:06Z hristov $ */ + +// +/////////////////////////////////////////////////////////////////////////////// +// // +// Photon Multiplicity Detector Version 1 // +// Bedanga Mohanty : February 14th 2006 +// // +//Begin_Html +/* + +*/ +//End_Html +// // +/////////////////////////////////////////////////////////////////////////////// +//// + +#include "Riostream.h" +#include + +#include "AliConst.h" +#include "AliLog.h" +#include "AliMC.h" +#include "AliMagF.h" +#include "AliPMDv2008.h" +#include "AliRun.h" + +const Int_t AliPMDv2008::fgkNcolUM1 = 48; // Number of cols in UM, type 1 +const Int_t AliPMDv2008::fgkNcolUM2 = 96; // Number of cols in UM, type 2 +const Int_t AliPMDv2008::fgkNrowUM1 = 96; // Number of rows in UM, type 1 +const Int_t AliPMDv2008::fgkNrowUM2 = 48; // Number of rows in UM, type 2 +const Float_t AliPMDv2008::fgkCellRadius = 0.25; // Radius of a hexagonal cell +const Float_t AliPMDv2008::fgkCellWall = 0.02; // Thickness of cell Wall +const Float_t AliPMDv2008::fgkCellDepth = 0.50; // Gas thickness +const Float_t AliPMDv2008::fgkThBase = 0.2; // Thickness of Base plate +const Float_t AliPMDv2008::fgkThBKP = 0.1; // Thickness of Back plane +const Float_t AliPMDv2008::fgkThAir = 1.03; // Thickness of Air +const Float_t AliPMDv2008::fgkThPCB = 0.16; // Thickness of PCB +const Float_t AliPMDv2008::fgkThLead = 1.5; // Thickness of Pb +const Float_t AliPMDv2008::fgkThSteel = 0.5; // Thickness of Steel +const Float_t AliPMDv2008::fgkGap = 0.025; // Air Gap +const Float_t AliPMDv2008::fgkZdist = 361.5; // z-position of the detector +const Float_t AliPMDv2008::fgkSqroot3 = 1.7320508;// Square Root of 3 +const Float_t AliPMDv2008::fgkSqroot3by2 = 0.8660254;// Square Root of 3 by 2 +const Float_t AliPMDv2008::fgkSSBoundary = 0.3; +const Float_t AliPMDv2008::fgkThSS = 1.03; +const Float_t AliPMDv2008::fgkThG10 = 1.03; +ClassImp(AliPMDv2008) + +//_____________________________________________________________________________ +AliPMDv2008::AliPMDv2008(): + fSMthick(0.), + fDthick(0.), + fSMLengthax(0.), + fSMLengthay(0.), + fSMLengthbx(0.), + fSMLengthby(0.), + fMedSens(0) +{ + // + // Default constructor + // + for (Int_t i = 0; i < 3; i++) + { + fDboxmm1[i] = 0.; + fDboxmm12[i] = 0.; + fDboxmm2[i] = 0.; + fDboxmm22[i] = 0.; + } +} + +//_____________________________________________________________________________ +AliPMDv2008::AliPMDv2008(const char *name, const char *title): + AliPMD(name,title), + fSMthick(0.), + fDthick(0.), + fSMLengthax(0.), + fSMLengthay(0.), + fSMLengthbx(0.), + fSMLengthby(0.), + fMedSens(0) +{ + // + // Standard constructor + // + for (Int_t i = 0; i < 3; i++) + { + fDboxmm1[i] = 0.; + fDboxmm12[i] = 0.; + fDboxmm2[i] = 0.; + fDboxmm22[i] = 0.; + } +} + +//_____________________________________________________________________________ +void AliPMDv2008::CreateGeometry() +{ + // Create geometry for Photon Multiplicity Detector + + GetParameters(); + CreateSupermodule(); + CreatePMD(); +} + +//_____________________________________________________________________________ +void AliPMDv2008::CreateSupermodule() +{ + // + // Creates the geometry of the cells of PMD, places them in supermodule + // which is a rectangular object. + // Basic unit is ECAR, a hexagonal cell made of Ar+CO2, which is + // placed inside another hexagonal cell made of Cu (ECCU) with larger + // radius, compared to ECAR. The difference in radius gives the dimension + // of half width of each cell wall. + // These cells are placed in a rectangular strip which are of 2 types + // EST1 and EST2 + // 2 types of unit modules are made EUM1 and EUM2 which contains these strips + // placed repeatedly + // Each supermodule (ESMA, ESMB), made of G10 is filled with following + //components. They have 6 unit moudles inside them + // ESMA, ESMB are placed in EPMD along with EMPB (Pb converter) + // and EMFE (iron support) + + + Int_t i,j; + Int_t number; + Int_t ihrotm,irotdm; + Float_t xb, yb, zb; + + Int_t *idtmed = fIdtmed->GetArray()-599; + + AliMatrix(ihrotm, 90., 30., 90., 120., 0., 0.); + AliMatrix(irotdm, 90., 180., 90., 270., 180., 0.); + + // STEP - I + //******************************************************// + // First create the sensitive medium of a hexagon cell (ECAR) + // Inner hexagon filled with gas (Ar+CO2) + + Float_t hexd2[10] = {0.,360.,6,2,-0.25,0.,0.23,0.25,0.,0.23}; + hexd2[4] = -fgkCellDepth/2.; + hexd2[7] = fgkCellDepth/2.; + hexd2[6] = fgkCellRadius - fgkCellWall; + hexd2[9] = fgkCellRadius - fgkCellWall; + + gMC->Gsvolu("ECAR", "PGON", idtmed[604], hexd2,10); + //******************************************************// + + // STEP - II + //******************************************************// + // Place the sensitive medium inside a hexagon copper cell (ECCU) + // Outer hexagon made of Copper + + Float_t hexd1[10] = {0.,360.,6,2,-0.25,0.,0.25,0.25,0.,0.25}; + hexd1[4] = -fgkCellDepth/2.; + hexd1[7] = fgkCellDepth/2.; + hexd1[6] = fgkCellRadius; + hexd1[9] = fgkCellRadius; + + gMC->Gsvolu("ECCU", "PGON", idtmed[614], hexd1,10); + + // Place inner hex (sensitive volume) inside outer hex (copper) + + gMC->Gspos("ECAR", 1, "ECCU", 0., 0., 0., 0, "ONLY"); + //******************************************************// + + // STEP - III + //******************************************************// + // Now create Rectangular TWO strips (EST1, EST2) + // of 1 column and 48 or 96 cells length + + // volume for first strip EST1 made of AIR + + Float_t dbox1[3]; + dbox1[0] = fgkCellRadius/fgkSqroot3by2; + dbox1[1] = fgkNrowUM1*fgkCellRadius; + dbox1[2] = fgkCellDepth/2.; + + gMC->Gsvolu("EST1","BOX", idtmed[698], dbox1, 3); + + // volume for second strip EST2 + + + Float_t dbox2[3]; + dbox2[1] = fgkNrowUM2*fgkCellRadius; + dbox2[0] = dbox1[0]; + dbox2[2] = dbox1[2]; + + gMC->Gsvolu("EST2","BOX", idtmed[698], dbox2, 3); + + // Place hexagonal cells ECCU placed inside EST1 + xb = 0.; + zb = 0.; + yb = (dbox1[1]) - fgkCellRadius; + for (i = 1; i <= fgkNrowUM1; ++i) + { + number = i; + gMC->Gspos("ECCU", number, "EST1", xb,yb,zb, 0, "ONLY"); + yb -= (fgkCellRadius*2.); + } + + // Place hexagonal cells ECCU placed inside EST2 + xb = 0.; + zb = 0.; + yb = (dbox2[1]) - fgkCellRadius; + for (i = 1; i <= fgkNrowUM2; ++i) + { + number = i; + gMC->Gspos("ECCU", number, "EST2", xb,yb,zb, 0, "ONLY"); + //PH cout << "ECCU in EST2 ==> " << number << "\t"<Gsvolu("EHC1","BOX", idtmed[698], dbox3, 3); + // Place rectangular strips EST1 inside EHC1 unit module + xb = dbox3[0]-dbox1[0]; + + for (j = 1; j <= fgkNcolUM1; ++j) + { + if(j%2 == 0) + { + yb = -fgkCellRadius/2.0; + } + else + { + yb = fgkCellRadius/2.0; + } + number = j; + gMC->Gspos("EST1",number, "EHC1", xb, yb , 0. , 0, "MANY"); + //The strips are being placed from top towards bottom of the module + //This is because the first cell in a module in hardware is the top + //left corner cell + xb = (dbox3[0]-dbox1[0])-j*fgkCellRadius*fgkSqroot3; + + } + //--------------------EHC1 done----------------------------------// + + + //---------------------------------EHC2 Start----------------------// + // Create EHC2 : The honey combs for a unit module type 2 + // First step is to create a honey comb unit module. + // This is named as EHC2, we will lay the EST2 strips of + // honey comb cells inside it. + + //Dimensions of EHC2 + //X-dimension = Number of columns + cell radius + //Y-dimension = Number of rows * cell radius/sqrt3by2 - (some factor) + //Z-dimension = cell depth/2 + + dbox3[0] = (dbox1[0]*fgkNcolUM1)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM1-1)/6.); + dbox3[1] = dbox1[1]+fgkCellRadius/2.; + dbox3[2] = fgkCellDepth/2.; + + Float_t dbox4[3]; + + dbox4[0] =(dbox2[0]*fgkNcolUM2)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM2-1)/6.); + dbox4[1] = dbox2[1] + fgkCellRadius/2.; + dbox4[2] = dbox3[2]; + + //Create a BOX of AIR + gMC->Gsvolu("EHC2","BOX", idtmed[698], dbox4, 3); + + // Place rectangular strips EST2 inside EHC2 unit module + xb = dbox4[0]-dbox2[0]; + for (j = 1; j <= fgkNcolUM2; ++j) + { + if(j%2 == 0) + { + yb = -fgkCellRadius/2.0; + } + else + { + yb = +fgkCellRadius/2.0; + } + number = j; + gMC->Gspos("EST2",number, "EHC2", xb, yb , 0. ,0, "MANY"); + xb = (dbox4[0]-dbox2[0])-j*fgkCellRadius*fgkSqroot3; + } + + + //--------------------EHC2 done----------------------------------// + + + // Now the job is to assmeble an Unit module + // It will have the following components + // (a) Base plate of G10 of 0.2 cm + // (b) Air gap of 0.05 cm + // (c) Bottom PCB of 0.16 cm G10 + // (d) Honey comb 0f 0.5 cm + // (e) Top PCB of 0.16 cm G10 + // (f) Air gap of 0.16 cm + // (g) Back Plane of 0.1 cm G10 + // (h) Then all around then we have an air gap of 0.5mm + // (i) Then all around 0.5mm thick G10 insulation + // (h) Then all around Stainless Steel boundary channel 0.3 cm thick + //Let us first create them one by one + //---------------------------------------------------// + + // ---------------- Lets do it first for UM Type A -----// + + //--------------------------------------------------// + //Bottom and Top PCB : EPCA + //=========================== + // Make a 1.6mm thick G10 Bottom and Top PCB for Unit module A + // X-dimension same as EHC1 - dbox3[0] + // Y-dimension same as EHC1 - dbox3[1] + // Z-dimension 0.16/2 = 0.08 cm + //-------------------------------------------------// + Float_t dboxPcbA[3]; + dboxPcbA[0] = dbox3[0]; + dboxPcbA[1] = dbox3[1]; + dboxPcbA[2] = fgkThPCB/2.; + + //Top and Bottom PCB is a BOX of Material G10 + gMC->Gsvolu("EPCA","BOX", idtmed[607], dboxPcbA, 3); + //--------------------------------------------------------// + //Back Plane : EBKA + //================== + // Make a 1.0mm thick Back Plane PCB for Unit module A + // X-dimension same as EHC1 - dbox3[0] + // Y-dimension same as EHC1 - dbox3[1] + // Z-dimension 0.1/2 = 0.05 cm + //------------------------------------------------------// + Float_t dboxBPlaneA[3]; + dboxBPlaneA[0] = dbox3[0]; + dboxBPlaneA[1] = dbox3[1]; + dboxBPlaneA[2] = fgkThBKP/2.; + + //Back PLane PCB of MAterial G10 + gMC->Gsvolu("EBKA","BOX", idtmed[607], dboxBPlaneA, 3); + //-------------------------------------------------------------// + + //---------- That was all in the Z -direction of Unit Module A----// + + // Now lets us construct the boundary arround the Unit Module --// + // This boundary has + // (a) 0.5 mm X and Y and 10.3 mm Z dimension AIR gap + // (b) 0.5 mm X and Y and 10.3 mm Z dimension G10 + // (c) 3.0 mm X and Y and 12.3 mm Z dimension Stainless Steel + + + + //-------------------------------------------------// + //AIR GAP between UM and Boundary : ECGA FOR PRESHOWER PLANE + //========================================================== + // Make a 10.3mm thick Air gap for Unit module A + // X-dimension same as EHC1+0.05 + // Y-dimension same as EHC1+0.05 + // Z-dimension 1.03/2 = 0.515 cm + Float_t dboxAir3A[3]; + dboxAir3A[0] = dbox3[0]+(2.0*fgkGap); + dboxAir3A[1] = dbox3[1]+(2.0*fgkGap); + dboxAir3A[2] = fgkThAir/2.; + + //FOR PRESHOWER + //Air gap is a BOX of Material Air + gMC->Gsvolu("ECGA","BOX", idtmed[698], dboxAir3A, 3); + + //FOR VETO + //Air gap is a BOX of Material Air + gMC->Gsvolu("ECVA","BOX", idtmed[698], dboxAir3A, 3); + //-------------------------------------------------// + + //-------------------------------------------------// + //G10 boundary between honeycomb and SS : EDGA + //================================================ + // Make a 10.3mm thick G10 Boundary for Unit module A + // X-dimension same as EHC1+Airgap+0.05 + // Y-dimension same as EHC1+Airgap+0.05 + // Z-dimension 1.03/2 = 0.515 cm + Float_t dboxGGA[3]; + dboxGGA[0] = dboxAir3A[0]+(2.0*fgkGap); + dboxGGA[1] = dboxAir3A[1]+(2.0*fgkGap); + dboxGGA[2] = fgkThG10/2.; + + //FOR PRESHOWER + //G10 BOX + gMC->Gsvolu("EDGA","BOX", idtmed[607], dboxGGA, 3); + + //FOR VETO + //G10 BOX + gMC->Gsvolu("EDVA","BOX", idtmed[607], dboxGGA, 3); + + //-------------------------------------------------// + //----------------------------------------------------------// + //Stainless Steel Bounadry : ESSA + //================================== + // Make a 10.3mm thick Stainless Steel boundary for Unit module A + // X-dimension same as EHC1 + Airgap + G10 + 0.3 + // Y-dimension same as EHC1 + Airgap + G10 + 0.3 + // Z-dimension 1.03/2 = 0.515 cm + //------------------------------------------------------// + // A Stainless Steel Boundary Channel to house the unit module + + Float_t dboxSS1[3]; + dboxSS1[0] = dboxGGA[0]+fgkSSBoundary; + dboxSS1[1] = dboxGGA[1]+fgkSSBoundary; + dboxSS1[2] = fgkThSS/2.; + + //FOR PRESHOWER + + //Stainless Steel boundary - Material Stainless Steel + gMC->Gsvolu("ESSA","BOX", idtmed[618], dboxSS1, 3); + + //FOR VETO + //Stainless Steel boundary - Material Stainless Steel + gMC->Gsvolu("ESVA","BOX", idtmed[618], dboxSS1, 3); + + //----------------------------------------------------------------// + + //----------------------------------------------------------------// + // Here we need to place the volume in order ESSA -> EDGA -> ECGA + // this makes the SS boundary and the 0.5mm thick FR4 insulation in place, + // and the air volume ECGA acts as mother for the rest of components. + // The above placeemnt is done at (0.,0.,0.) relative coordiante + // Now we place bottom PCB, honeycomb, top PCB in this volume. We donot place + // unnecessary air volumes now. Just leave the gap as we are placing them + // in air only. This also reduces the number of volumes for geant to track. + +// Tree structure for different volumes +// +// EUM1 +// | +// -------------------- +// | | | +// EBPA ESSA EBKA +// | +// EDGA +// | +// ECGA +// | +// -------------------- +// | | | +// EPCA(1) EHC1 EPCA(2) +// (bottom) | (top PCB) +// | +// Sensitive volume +// (gas) +// + + + //FOR VETO +//Creating the side channels +// SS boundary channel, followed by G10 and Air Gap + gMC->Gspos("EDVA", 1, "ESVA", 0., 0., 0., 0, "ONLY"); + gMC->Gspos("ECVA", 1, "EDVA", 0., 0., 0., 0, "ONLY"); + +//FOR PRESHOWER + gMC->Gspos("EDGA", 1, "ESSA", 0., 0., 0., 0, "ONLY"); + gMC->Gspos("ECGA", 1, "EDGA", 0., 0., 0., 0, "ONLY"); + + // now other components, using Bedanga's code, but changing the values. + //Positioning Bottom PCB, Honey Comb abd Top PCB in AIR + + //For veto plane + //Positioning the Bottom 0.16 cm PCB + Float_t zbpcb = -dboxAir3A[2] + (2.0*fgkGap) + fgkThPCB/2.; + gMC->Gspos("EPCA", 1, "ECVA", 0., 0., zbpcb, 0, "ONLY"); + //Positioning the Honey Comb 0.5 cm + Float_t zhc = zbpcb + fgkThPCB/2. + fgkCellDepth/2.; + gMC->Gspos("EHC1", 1, "ECVA", 0., 0., zhc, 0, "ONLY"); + //Positioning the Top PCB 0.16 cm + Float_t ztpcb = zhc + fgkCellDepth/2 + fgkThPCB/2.; + gMC->Gspos("EPCA", 2, "ECVA", 0., 0., ztpcb, 0, "ONLY"); + + + //For Preshower plane the ordering is reversed + //Positioning the Bottom 0.16 cm PCB + zbpcb = -dboxAir3A[2] + fgkThPCB + fgkThPCB/2.; + gMC->Gspos("EPCA", 1, "ECGA", 0., 0., zbpcb, 0, "ONLY"); + //Positioning the Honey Comb 0.5 cm + zhc = zbpcb + fgkThPCB/2. + fgkCellDepth/2.; + gMC->Gspos("EHC1", 1, "ECGA", 0., 0., zhc, 0, "ONLY"); + //Positioning the Top PCB 0.16 cm + ztpcb = zhc + fgkCellDepth/2 + fgkThPCB/2.; + gMC->Gspos("EPCA", 2, "ECGA", 0., 0., ztpcb, 0, "ONLY"); + + + + + //--------------Now let us construct final UM ---------------// + // We will do it as follows : + // (i) First make a UM of air. which will have dimensions + // of the SS boundary Channel (in x,y) and of height 13.3mm + //(ii) Then we will place all the components + + //----------------------------------------------------------// + // A unit module type A of Air + // Dimensions of Unit Module same as SS boundary channel + Float_t dboxUM1[3]; + dboxUM1[0] = dboxSS1[0]; + dboxUM1[1] = dboxSS1[1]; + dboxUM1[2] = fgkThSS/2. +0.15; // 0.15 added to accomodate Base Plate at + // the bottom and the backplane PCB at the top. + + //FOR PRESHOWER + //Create a Unit module of above dimensions Material : AIR + gMC->Gsvolu("EUM1","BOX", idtmed[698], dboxUM1, 3); + //FOR VETO + gMC->Gsvolu("EUV1","BOX", idtmed[698], dboxUM1, 3); + + //----------------------------------------------------------------// + + //BASE PLATE : EBPA + //================== + // Make a 2mm thick G10 Base plate for Unit module A + // Base plate is as big as the final UM dimensions that is as + // SS boundary channel + Float_t dboxBaseA[3]; + dboxBaseA[0] = dboxSS1[0]; + dboxBaseA[1] = dboxSS1[1]; + dboxBaseA[2] = fgkThBase/2.; + + //Base Blate is a G10 BOX + gMC->Gsvolu("EBPA","BOX", idtmed[607], dboxBaseA, 3); + //----------------------------------------------------// + + //FOR VETO + //- Placing of all components of UM in AIR BOX EUM1--// + //(1) FIRST PUT THE BASE PLATE + Float_t zbaseplate = -dboxUM1[2] + fgkThBase/2.; + gMC->Gspos("EBPA", 1, "EUV1", 0., 0., zbaseplate, 0, "ONLY"); + + //(2) NEXT PLACING the SS BOX + Float_t zss = zbaseplate + fgkThBase/2. + fgkThSS/2.; + gMC->Gspos("ESVA", 1, "EUV1", 0., 0., zss, 0, "ONLY"); + + // (3) Positioning the Backplane PCB 0.1 cm + Float_t zbkp = zss + fgkThSS/2. + fgkThBKP/2.; + gMC->Gspos("EBKA", 1, "EUV1", 0., 0., zbkp, 0, "ONLY"); + + //FOR PRESHOWER + // (3) Positioning the Backplane PCB 0.1 cm + zbkp = -dboxUM1[2] + fgkThBKP/2.; + gMC->Gspos("EBKA", 1, "EUM1", 0., 0., zbkp, 0, "ONLY"); + + //(2) NEXT PLACING the SS BOX + zss = zbkp + fgkThBKP/2. + fgkThSS/2.; + gMC->Gspos("ESSA", 1, "EUM1", 0., 0., zss, 0, "ONLY"); + + //(1) FIRST PUT THE BASE PLATE + zbaseplate = zss + fgkThSS/2 + fgkThBase/2.; + gMC->Gspos("EBPA", 1, "EUM1", 0., 0., zbaseplate, 0, "ONLY"); + //-------------------- UM Type A completed ------------------------// + + + + //-------------------- Lets do the same thing for UM type B -------// + //--------------------------------------------------// + //Bottom and Top PCB : EPCB + //=========================== + // Make a 1.6mm thick G10 Bottom and Top PCB for Unit module B + // X-dimension same as EHC2 - dbox4[0] + // Y-dimension same as EHC2 - dbox4[1] + // Z-dimension 0.16/2 = 0.08 cm + //-------------------------------------------------// + Float_t dboxPcbB[3]; + dboxPcbB[0] = dbox4[0]; + dboxPcbB[1] = dbox4[1]; + dboxPcbB[2] = fgkThPCB/2.; + + //Top and Bottom PCB is a BOX of Material G10 + gMC->Gsvolu("EPCB","BOX", idtmed[607], dboxPcbB, 3); + //--------------------------------------------------------// + //Back Plane : EBKB + //================== + // Make a 1.0mm thick Back Plane PCB for Unit module B + // X-dimension same as EHC2 - dbox4[0] + // Y-dimension same as EHC2 - dbox4[1] + // Z-dimension 0.1/2 = 0.05 cm + //------------------------------------------------------// + Float_t dboxBPlaneB[3]; + dboxBPlaneB[0] = dbox4[0]; + dboxBPlaneB[1] = dbox4[1]; + dboxBPlaneB[2] = fgkThBKP/2.; + + //Back PLane PCB of MAterial G10 + gMC->Gsvolu("EBKB","BOX", idtmed[607], dboxBPlaneB, 3); + //-------------------------------------------------------------// + + //---------- That was all in the Z -direction of Unit Module B----// + + // Now lets us construct the boundary arround the Unit Module --// + // This boundary has + // (a) 0.5 mm X and Y and 10.3 mm Z dimension AIR gap + // (b) 0.5 mm X and Y and 10.3 mm Z dimension G10 + // (c) 3.0 mm X and Y and 12.3 mm Z dimension Stainless Steel + + //-------------------------------------------------// + //AIR GAP between UM and Boundary : ECGB + //================================================ + // Make a 10.3mm thick Air gap for Unit module B + // X-dimension same as EHC2+0.05 + // Y-dimension same as EHC2+0.05 + // Z-dimension 1.03/2 = 0.515 cm + Float_t dboxAir3B[3]; + dboxAir3B[0] = dbox4[0]+(2.0*fgkGap); + dboxAir3B[1] = dbox4[1]+(2.0*fgkGap); + dboxAir3B[2] = fgkThAir/2.; + + //PRESHOWER + //Air gap is a BOX of Material Air + gMC->Gsvolu("ECGB","BOX", idtmed[698], dboxAir3B, 3); + //VETO + gMC->Gsvolu("ECVB","BOX", idtmed[698], dboxAir3B, 3); + + //-------------------------------------------------// + + //-------------------------------------------------// + //G10 boundary between honeycomb and SS : EDGB + //================================================ + // Make a 10.3mm thick G10 Boundary for Unit module B + // X-dimension same as EHC2+Airgap+0.05 + // Y-dimension same as EHC2+Airgap+0.05 + // Z-dimension 1.03/2 = 0.515 cm + Float_t dboxGGB[3]; + dboxGGB[0] = dboxAir3B[0]+(2.0*fgkGap); + dboxGGB[1] = dboxAir3B[1]+(2.0*fgkGap); + dboxGGB[2] = fgkThG10/2.; + + //PRESHOWER + //G10 BOX + gMC->Gsvolu("EDGB","BOX", idtmed[607], dboxGGB, 3); + //VETO + gMC->Gsvolu("EDVB","BOX", idtmed[607], dboxGGB, 3); + //-------------------------------------------------// + //----------------------------------------------------------// + //Stainless Steel Bounadry : ESSB + //================================== + // Make a 10.3mm thick Stainless Steel boundary for Unit module B + // X-dimension same as EHC2 + Airgap + G10 + 0.3 + // Y-dimension same as EHC2 + Airgap + G10 + 0.3 + // Z-dimension 1.03/2 = 0.515 cm + //------------------------------------------------------// + // A Stainless Steel Boundary Channel to house the unit module + + Float_t dboxSS2[3]; + dboxSS2[0] = dboxGGB[0] + fgkSSBoundary; + dboxSS2[1] = dboxGGB[1] + fgkSSBoundary; + dboxSS2[2] = fgkThSS/2.; + + //PRESHOWER + //Stainless Steel boundary - Material Stainless Steel + gMC->Gsvolu("ESSB","BOX", idtmed[618], dboxSS2, 3); + //VETO + gMC->Gsvolu("ESVB","BOX", idtmed[618], dboxSS2, 3); + //----------------------------------------------------------------// + + //----------------------------------------------------------------// + // Here we need to place the volume in order ESSB -> EDGB -> ECGB + // this makes the SS boiundary and the 0.5mm thick FR4 insulation in place, + // and the air volume ECGB acts as mother for the rest of components. + // The above placeemnt is done at (0.,0.,0.) relative coordiante + // Now we place bottom PCB, honeycomb, top PCB in this volume. We donot place + // unnecessary air volumes now. Just leave the gap as we are placing them + // in air only. This also reduces the number of volumes for geant to track. + +// Tree structure for different volumes +// +// EUM2 +// | +// -------------------- +// | | | +// EBPB ESSB EBKB +// | +// EDGB +// | +// ECGB +// | +// -------------------- +// | | | +// EPCB(1) EHC2 EPCB(2) +// (bottom) | (top PCB) +// | +// Sensitive volume +// (gas) +// + +//PRESHOWER +//Creating the side channels +// SS boundary channel, followed by G10 and Air Gap + gMC->Gspos("EDGB", 1, "ESSB", 0., 0., 0., 0, "ONLY"); + gMC->Gspos("ECGB", 1, "EDGB", 0., 0., 0., 0, "ONLY"); + //VETO + gMC->Gspos("EDVB", 1, "ESVB", 0., 0., 0., 0, "ONLY"); + gMC->Gspos("ECVB", 1, "EDVB", 0., 0., 0., 0, "ONLY"); + + // now other components, using Bedang's code, but changing the values. + //Positioning Bottom PCB, Honey Comb abd Top PCB in AIR + + //VETO + //Positioning the Bottom 0.16 cm PCB + Float_t zbpcb2 = -dboxAir3B[2] + (2.0*fgkGap) + fgkThPCB/2.; + gMC->Gspos("EPCB", 1, "ECVB", 0., 0., zbpcb2, 0, "ONLY"); + //Positioning the Honey Comb 0.5 cm + Float_t zhc2 = zbpcb2 + fgkThPCB/2. + fgkCellDepth/2.; + gMC->Gspos("EHC2", 1, "ECVB", 0., 0., zhc2, 0, "ONLY"); + //Positioning the Top PCB 0.16 cm + Float_t ztpcb2 = zhc2 + fgkCellDepth/2 + fgkThPCB/2.; + gMC->Gspos("EPCB", 2, "ECVB", 0., 0., ztpcb2, 0, "ONLY"); + + //PRESHOWER + //For preshower plane the ordering is reversed + //Positioning the Bottom 0.16 cm PCB + zbpcb2 = -dboxAir3B[2] + fgkThPCB + fgkThPCB/2.; + gMC->Gspos("EPCB", 1, "ECGB", 0., 0., zbpcb2, 0, "ONLY"); + //Positioning the Honey Comb 0.5 cm + zhc2 = zbpcb2 + fgkThPCB/2. + fgkCellDepth/2.; + gMC->Gspos("EHC2", 1, "ECGB", 0., 0., zhc2, 0, "ONLY"); + //Positioning the Top PCB 0.16 cm + ztpcb2 = zhc2 + fgkCellDepth/2 + fgkThPCB/2.; + gMC->Gspos("EPCB", 2, "ECGB", 0., 0., ztpcb2, 0, "ONLY"); + + + + //--------------Now let us construct final UM ---------------// + // We will do it as follows : + // (i) First make a UM of air. which will have dimensions + // of the SS boundary Channel (in x,y) and of height 13.3mm + //(ii) Then we will place all the components + + //----------------------------------------------------------// + // A unit module type B of Air + // Dimensions of Unit Module same as SS boundary channel + + Float_t dboxUM2[3]; + dboxUM2[0] = dboxSS2[0]; + dboxUM2[1] = dboxSS2[1]; + dboxUM2[2] = fgkThSS/2. +0.15; // 0.15 added to accomodate Base Plate at + // the bottom and the backplane PCB at the top. + + //PRESHOWER + //Create a Unit module of above dimensions Material : AIR + gMC->Gsvolu("EUM2","BOX", idtmed[698], dboxUM2, 3); + + //VETO + gMC->Gsvolu("EUV2","BOX", idtmed[698], dboxUM2, 3); + //----------------------------------------------------------------// + + //BASE PLATE : EBPB + //================== + // Make a 2mm thick G10 Base plate for Unit module B + // Base plate is as big as the final UM dimensions that is as + // SS boundary channel + Float_t dboxBaseB[3]; + dboxBaseB[0] = dboxSS2[0]; + dboxBaseB[1] = dboxSS2[1]; + dboxBaseB[2] = fgkThBase/2.; + + //Base Blate is a G10 BOX + gMC->Gsvolu("EBPB","BOX", idtmed[607], dboxBaseB, 3); + //----------------------------------------------------// + + //VETO + //- Placing of all components of UM in AIR BOX EUM2--// + //(1) FIRST PUT THE BASE PLATE + Float_t zbaseplate2 = -dboxUM2[2] + fgkThBase/2.; + gMC->Gspos("EBPB", 1, "EUV2", 0., 0., zbaseplate2, 0, "ONLY"); + + //(2) NEXT PLACING the SS BOX + Float_t zss2 = zbaseplate2 + fgkThBase/2. + fgkThSS/2.; + gMC->Gspos("ESVB", 1, "EUV2", 0., 0., zss2, 0, "ONLY"); + + // (3) Positioning the Backplane PCB 0.1 cm + Float_t zbkp2 = zss2 + fgkThSS/2. + fgkThBKP/2.; + gMC->Gspos("EBKB", 1, "EUV2", 0., 0., zbkp2, 0, "ONLY"); + + + + //FOR PRESHOWER + // (3) Positioning the Backplane PCB 0.1 cm + zbkp2 = -dboxUM2[2] + fgkThBKP/2.; + gMC->Gspos("EBKB", 1, "EUM2", 0., 0., zbkp2, 0, "ONLY"); + + //(2) NEXT PLACING the SS BOX + zss2 = zbkp2 + fgkThBKP/2. + fgkThSS/2.; + gMC->Gspos("ESSB", 1, "EUM2", 0., 0., zss2, 0, "ONLY"); + + //(1) FIRST PUT THE BASE PLATE + zbaseplate2 = zss2 + fgkThSS/2 + fgkThBase/2.; + gMC->Gspos("EBPB", 1, "EUM2", 0., 0., zbaseplate2, 0, "ONLY"); + //-------------------- UM Type B completed ------------------------// + + + //--- Now we need to make Lead plates of UM dimension -----// + + /**************************/ + //----------------------------------------------------------// + // The lead convertor is of unit module size + // Dimensions of Unit Module same as SS boundary channel + + Float_t dboxPba[3]; + dboxPba[0] = dboxUM1[0]; + dboxPba[1] = dboxUM1[1]; + dboxPba[2] = fgkThLead/2.; + // Lead of UM dimension + gMC->Gsvolu("EPB1","BOX", idtmed[600], dboxPba, 3); + + Float_t dboxPbb[3]; + dboxPbb[0] = dboxUM2[0]; + dboxPbb[1] = dboxUM2[1]; + dboxPbb[2] = fgkThLead/2.; + // Lead of UM dimension + gMC->Gsvolu("EPB2","BOX", idtmed[600], dboxPbb, 3); + + //----------------------------------------------------------------// + + // 2 types of Rectangular shaped supermodules (BOX) + //each with 6 unit modules + + // volume for SUPERMODULE ESMA + //Space added to provide a gapping for HV between UM's + //There is a gap of 0.15 cm between two Modules (UMs) + // in x-direction and 0.1cm along y-direction + + Float_t dboxSM1[3]; + dboxSM1[0] = 3.0*dboxUM1[0] + (2.0*0.075); + dboxSM1[1] = 2.0*dboxUM1[1] + 0.05; + dboxSM1[2] = dboxUM1[2]; + + //FOR PRESHOWER + gMC->Gsvolu("ESMA","BOX", idtmed[698], dboxSM1, 3); + + //FOR VETO + gMC->Gsvolu("EMVA","BOX", idtmed[698], dboxSM1, 3); + + //Position the 6 unit modules in EMSA + Float_t xa1,xa2,xa3,ya1,ya2; + xa1 = dboxSM1[0] - dboxUM1[0]; + xa2 = xa1 - dboxUM1[0] - 0.15 - dboxUM1[0]; + xa3 = xa2 - dboxUM1[0] - 0.15 - dboxUM1[0]; + ya1 = dboxSM1[1] - dboxUM1[1]; + ya2 = ya1 - dboxUM1[1] - 0.1 - dboxUM1[1]; + + //PRESHOWER + // gMC->Gspos("EUM1", 1, "ESMA", xa1, ya1, 0., 0, "ONLY"); // BKN + gMC->Gspos("EUM1", 2, "ESMA", xa2, ya1, 0., 0, "ONLY"); + gMC->Gspos("EUM1", 3, "ESMA", xa3, ya1, 0., 0, "ONLY"); + gMC->Gspos("EUM1", 4, "ESMA", xa1, ya2, 0., 0, "ONLY"); + gMC->Gspos("EUM1", 5, "ESMA", xa2, ya2, 0., 0, "ONLY"); + gMC->Gspos("EUM1", 6, "ESMA", xa3, ya2, 0., 0, "ONLY"); + + //VETO + gMC->Gspos("EUV1", 1, "EMVA", xa1, ya1, 0., 0, "ONLY"); + gMC->Gspos("EUV1", 2, "EMVA", xa2, ya1, 0., 0, "ONLY"); + gMC->Gspos("EUV1", 3, "EMVA", xa3, ya1, 0., 0, "ONLY"); + gMC->Gspos("EUV1", 4, "EMVA", xa1, ya2, 0., 0, "ONLY"); + gMC->Gspos("EUV1", 5, "EMVA", xa2, ya2, 0., 0, "ONLY"); + gMC->Gspos("EUV1", 6, "EMVA", xa3, ya2, 0., 0, "ONLY"); + + + // volume for SUPERMODULE ESMB + //Space is added to provide a gapping for HV between UM's + Float_t dboxSM2[3]; + dboxSM2[0] = 2.0*dboxUM2[0] + 0.075; + dboxSM2[1] = 3.0*dboxUM2[1] + (2.0*0.05); + dboxSM2[2] = dboxUM2[2]; + + //PRESHOWER + gMC->Gsvolu("ESMB","BOX", idtmed[698], dboxSM2, 3); + //VETO + gMC->Gsvolu("EMVB","BOX", idtmed[698], dboxSM2, 3); + + //Position the 6 unit modules in EMSB + Float_t xb1,xb2,yb1,yb2,yb3; + xb1 = dboxSM2[0] - dboxUM2[0]; + xb2 = xb1 - dboxUM2[0] - 0.15 - dboxUM2[0]; + yb1 = dboxSM2[1] - dboxUM2[1]; + yb2 = yb1 - dboxUM2[1] - 0.1 - dboxUM2[1]; + yb3 = yb2 - dboxUM2[1] - 0.1 - dboxUM2[1]; + + + //PRESHOWER + // gMC->Gspos("EUM2", 1, "ESMB", xb1, yb1, 0., 0, "ONLY"); // BKN + // gMC->Gspos("EUM2", 2, "ESMB", xb2, yb1, 0., 0, "ONLY"); + gMC->Gspos("EUM2", 3, "ESMB", xb1, yb2, 0., 0, "ONLY"); + gMC->Gspos("EUM2", 4, "ESMB", xb2, yb2, 0., 0, "ONLY"); + gMC->Gspos("EUM2", 5, "ESMB", xb1, yb3, 0., 0, "ONLY"); + gMC->Gspos("EUM2", 6, "ESMB", xb2, yb3, 0., 0, "ONLY"); + + //VETO + gMC->Gspos("EUV2", 1, "EMVB", xb1, yb1, 0., 0, "ONLY"); + gMC->Gspos("EUV2", 2, "EMVB", xb2, yb1, 0., 0, "ONLY"); + gMC->Gspos("EUV2", 3, "EMVB", xb1, yb2, 0., 0, "ONLY"); + gMC->Gspos("EUV2", 4, "EMVB", xb2, yb2, 0., 0, "ONLY"); + gMC->Gspos("EUV2", 5, "EMVB", xb1, yb3, 0., 0, "ONLY"); + gMC->Gspos("EUV2", 6, "EMVB", xb2, yb3, 0., 0, "ONLY"); + + // Make smiliar stucture for lead as for PMD plane + //================================================ + + // 2 types of Rectangular shaped supermodules (BOX) + //each with 6 unit modules + + // volume for SUPERMODULE ESMPbA + //Space added to provide a gapping for HV between UM's + + Float_t dboxSMPb1[3]; + dboxSMPb1[0] = 3.0*dboxUM1[0] + (2.0*0.075); + dboxSMPb1[1] = 2.0*dboxUM1[1] + 0.05; + dboxSMPb1[2] = fgkThLead/2.; + + gMC->Gsvolu("ESPA","BOX", idtmed[698], dboxSMPb1, 3); + + + //Position the 6 unit modules in ESMPbA + Float_t xpa1,xpa2,xpa3,ypa1,ypa2; + xpa1 = -dboxSMPb1[0] + dboxUM1[0]; + xpa2 = xpa1 + dboxUM1[0] + 0.15 + dboxUM1[0]; + xpa3 = xpa2 + dboxUM1[0] + 0.15 + dboxUM1[0]; + ypa1 = dboxSMPb1[1] - dboxUM1[1]; + ypa2 = ypa1 - dboxUM1[1] - 0.1 - dboxUM1[1]; + + + gMC->Gspos("EPB1", 1, "ESPA", xpa1, ypa1, 0., 0, "ONLY"); + gMC->Gspos("EPB1", 2, "ESPA", xpa2, ypa1, 0., 0, "ONLY"); + gMC->Gspos("EPB1", 3, "ESPA", xpa3, ypa1, 0., 0, "ONLY"); + gMC->Gspos("EPB1", 4, "ESPA", xpa1, ypa2, 0., 0, "ONLY"); + gMC->Gspos("EPB1", 5, "ESPA", xpa2, ypa2, 0., 0, "ONLY"); + gMC->Gspos("EPB1", 6, "ESPA", xpa3, ypa2, 0., 0, "ONLY"); + + + // volume for SUPERMODULE ESMPbB + //Space is added to provide a gapping for HV between UM's + Float_t dboxSMPb2[3]; + dboxSMPb2[0] = 2.0*dboxUM2[0] + 0.075; + dboxSMPb2[1] = 3.0*dboxUM2[1] + (2.0*0.05); + dboxSMPb2[2] = fgkThLead/2.; + + gMC->Gsvolu("ESPB","BOX", idtmed[698], dboxSMPb2, 3); + + //Position the 6 unit modules in ESMPbB + Float_t xpb1,xpb2,ypb1,ypb2,ypb3; + xpb1 = -dboxSMPb2[0] + dboxUM2[0]; + xpb2 = xpb1 + dboxUM2[0] + 0.15 + dboxUM2[0]; + ypb1 = dboxSMPb2[1] - dboxUM2[1]; + ypb2 = ypb1 - dboxUM2[1] - 0.1 - dboxUM2[1]; + ypb3 = ypb2 - dboxUM2[1] - 0.1 - dboxUM2[1]; + + + gMC->Gspos("EPB2", 1, "ESPB", xpb1, ypb1, 0., 0, "ONLY"); + gMC->Gspos("EPB2", 2, "ESPB", xpb2, ypb1, 0., 0, "ONLY"); + gMC->Gspos("EPB2", 3, "ESPB", xpb1, ypb2, 0., 0, "ONLY"); + gMC->Gspos("EPB2", 4, "ESPB", xpb2, ypb2, 0., 0, "ONLY"); + gMC->Gspos("EPB2", 5, "ESPB", xpb1, ypb3, 0., 0, "ONLY"); + gMC->Gspos("EPB2", 6, "ESPB", xpb2, ypb3, 0., 0, "ONLY"); + + + //--------------------------------------------------- + /// ALICE PMD FEE BOARDS IMPLEMENTATION + // Dt: 25th February 2006 + // - M.M. Mondal, S.K. Prasad and P.K. Netrakanti + //--------------------------------------------------- + + //FEE boards + // It is FR4 board of length 7cm + // breadth of 2.4 cm and thickness 0.1cm + Float_t dboxFEE[3]; + dboxFEE[0] = 0.05; + dboxFEE[1] = 3.50; + dboxFEE[2] = 1.20; + + gMC->Gsvolu("EFEE","BOX", idtmed[607], dboxFEE, 3); + + //Mother volume to accomodate FEE boards + // It should have the dimension + // as the back plane or the + //corresponding UM + //TYPE A + //------------------------------------------------------// + + Float_t dboxFEEBPlaneA[3]; + dboxFEEBPlaneA[0] = dboxBPlaneA[0]; //dbox3[0]; + dboxFEEBPlaneA[1] = dboxBPlaneA[1];//dbox3[1]; + dboxFEEBPlaneA[2] = 1.2; + + //Volume of same dimension as Back PLane of Material AIR + gMC->Gsvolu("EFBA","BOX", idtmed[698], dboxFEEBPlaneA, 3); + + //TYPE B + Float_t dboxFEEBPlaneB[3]; + dboxFEEBPlaneB[0] = dboxBPlaneB[0]; //dbox4[0]; + dboxFEEBPlaneB[1] = dboxBPlaneB[1];//dbox4[1]; + dboxFEEBPlaneB[2] = 1.2; + + //Back PLane PCB of MAterial G10 + gMC->Gsvolu("EFBB","BOX", idtmed[698], dboxFEEBPlaneB, 3); + + //Placing the FEE boards in the Mother volume of AIR + + //Type A + + Float_t xFee; // X-position of FEE board + Float_t yFee; // Y-position of FEE board + Float_t zFee = 0.0; // Z-position of FEE board + + Float_t xA = 0.25; //distance from the border to 1st FEE board + Float_t yA = 4.00; //distance from the border to 1st FEE board + Float_t xSepa = 1.70; //Distance between two FEE boards + Float_t ySepa = 8.00; //Distance between two FEE boards + + + // FEE Boards EFEE placed inside EFBA + number = 1; + yFee = dboxFEEBPlaneA[1] - yA; + for (i = 1; i <= 6; ++i) + { + xFee = -dboxFEEBPlaneA[0] + xA; + for (j = 1; j <= 12; ++j) + { + gMC->Gspos("EFEE", number, "EFBA", xFee,yFee,zFee, 0, "ONLY"); + xFee += xSepa; + number += 1; + } + yFee -= ySepa; + } + // FEE Boards EFEE placed inside EFBB + number = 1; + yFee = dboxFEEBPlaneB[1] - yA; + for (i = 1; i <= 3; ++i) + { + xFee = -dboxFEEBPlaneB[0] + xA; + for (j = 1; j <= 24; ++j) + { + gMC->Gspos("EFEE", number, "EFBB", xFee,yFee,zFee, 0, "ONLY"); + xFee += xSepa; + number += 1; + } + yFee -= ySepa; + } + + + //Distance between the two backplanes of two UMs + //in x-direction is 0.92 and ydirection is 0.95 + Float_t dboxEFSA[3]; + dboxEFSA[0] = 3.0*dboxFEEBPlaneA[0] + 0.92; + dboxEFSA[1] = 2.0*dboxFEEBPlaneA[1] + (0.95/2.0); + dboxEFSA[2] = dboxFEEBPlaneA[2]; + + //Type A + gMC->Gsvolu("EFSA","BOX", idtmed[698],dboxEFSA, 3); + + //Distance between the two backplanes of two UMs + //in x-direction is 0.92 and ydirection is 0.95 + Float_t dboxEFSB[3]; + dboxEFSB[0] = 2.0*dboxFEEBPlaneB[0] + (0.938/2.0); + dboxEFSB[1] = 3.0*dboxFEEBPlaneB[1] + 1.05; + dboxEFSB[2] = dboxFEEBPlaneB[2]; + + //Type A + gMC->Gsvolu("EFSB","BOX", idtmed[698],dboxEFSB, 3); + + + Float_t xfs1,xfs2,xfs3,yfs1,yfs2,yfs3; + xfs1 = -dboxEFSA[0] + dboxFEEBPlaneA[0]; + xfs2 = xfs1 + dboxFEEBPlaneA[0] + 0.92 + dboxFEEBPlaneA[0]; + xfs3 = xfs2 + dboxFEEBPlaneA[0] + 0.92 + dboxFEEBPlaneA[0]; + yfs1 = dboxEFSA[1] - dboxFEEBPlaneA[1]; + yfs2 = yfs1 - dboxFEEBPlaneA[1] - 0.95 - dboxFEEBPlaneA[1]; + + + + // gMC->Gspos("EFBA", 1, "EFSA", xfs1, yfs1, 0., 0, "ONLY"); // BKN + gMC->Gspos("EFBA", 2, "EFSA", xfs2, yfs1, 0., 0, "ONLY"); + gMC->Gspos("EFBA", 3, "EFSA", xfs3, yfs1, 0., 0, "ONLY"); + gMC->Gspos("EFBA", 4, "EFSA", xfs1, yfs2, 0., 0, "ONLY"); + gMC->Gspos("EFBA", 5, "EFSA", xfs2, yfs2, 0., 0, "ONLY"); + gMC->Gspos("EFBA", 6, "EFSA", xfs3, yfs2, 0., 0, "ONLY"); + + + //Type B positioning + + xfs1 = -dboxEFSB[0] + dboxFEEBPlaneB[0]; + xfs2 = xfs1 + dboxFEEBPlaneB[0] + 0.938 + dboxFEEBPlaneB[0]; + yfs1 = dboxEFSB[1] - dboxFEEBPlaneB[1]; + yfs2 = yfs1 - dboxFEEBPlaneB[1] - 1.05 - dboxFEEBPlaneB[1]; + yfs3 = yfs2 - dboxFEEBPlaneB[1] - 1.05 - dboxFEEBPlaneB[1]; + + + + // gMC->Gspos("EFBB", 1, "EFSB", xfs1, yfs1, 0., 0, "ONLY"); // BKN + // gMC->Gspos("EFBB", 2, "EFSB", xfs2, yfs1, 0., 0, "ONLY"); // BKN + gMC->Gspos("EFBB", 3, "EFSB", xfs1, yfs2, 0., 0, "ONLY"); + gMC->Gspos("EFBB", 4, "EFSB", xfs2, yfs2, 0., 0, "ONLY"); + gMC->Gspos("EFBB", 5, "EFSB", xfs1, yfs3, 0., 0, "ONLY"); + gMC->Gspos("EFBB", 6, "EFSB", xfs2, yfs3, 0., 0, "ONLY"); + + +} + +//_____________________________________________________________________________ + +void AliPMDv2008::CreatePMD() +{ + // + // Create final detector from supermodules + // -- Author : Bedanga and Viyogi June 2003 + + Float_t zp; + Int_t jhrot12,jhrot13, irotdm; + Int_t *idtmed = fIdtmed->GetArray()-599; + + //VOLUMES Names : begining with "E" for all PMD volumes, + + // --- DEFINE Iron volumes for SM A + // Fe Support + Float_t dboxFea[3]; + dboxFea[0] = fSMLengthax; + dboxFea[1] = fSMLengthay; + dboxFea[2] = fgkThSteel/2.; + + gMC->Gsvolu("EFEA","BOX", idtmed[618], dboxFea, 3); + + // --- DEFINE Iron volumes for SM B + + // Fe Support + Float_t dboxFeb[3]; + dboxFeb[0] = fSMLengthbx; + dboxFeb[1] = fSMLengthby; + dboxFeb[2] = fgkThSteel/2.; + + gMC->Gsvolu("EFEB","BOX", idtmed[618], dboxFeb, 3); + + AliMatrix(irotdm, 90., 0., 90., 90., 180., 0.); + AliMatrix(jhrot12, 90., 180., 90., 270., 0., 0.); + AliMatrix(jhrot13, 90., 240., 90., 330., 0., 0.); + + // Gaspmd, the dimension of RECTANGULAR mother volume of PMD, + // Four mother volumes EPM1,EPM2 for A-type and + // volumes EPM3 and EPM4 for B-type. Four to create a hole + // and avoid overlap with beam pipe + + Float_t gaspmd[3]; + gaspmd[0] = fSMLengthax; + gaspmd[1] = fSMLengthay; + gaspmd[2] = fSMthick; + + gMC->Gsvolu("EPM1", "BOX", idtmed[698], gaspmd, 3); + gMC->Gsvolu("EPM2", "BOX", idtmed[698], gaspmd, 3); + + //Complete detector for Type A + //Position Super modules type A for both CPV and PMD in EPMD + Float_t zpsa,zpba,zfea,zcva,zfee; + + // zpsa = - gaspmd[2] + fSMthick/2.; + // -2.5 is given to place PMD at -361.5 + // BM : In future after putting proper electronics + // -2.5 will be replaced by -gaspmd[2] + + //TYPE A + //Fee board + + // This part is commented for the time being by BKN + + zfee=-gaspmd[2] + 1.2; + + /* + gMC->Gspos("EFSA", 1, "EPM1", 0., 0., zfee, 0, "ONLY"); + gMC->Gspos("EFSA", 2, "EPM2", 0., 0., zfee, jhrot12, "ONLY"); + */ + + //VETO + + zcva = zfee + 1.2 + fDthick; + + /* + gMC->Gspos("EMVA", 1, "EPM1", 0., 0., zcva, 0, "ONLY"); + gMC->Gspos("EMVA", 2, "EPM2", 0., 0., zcva, jhrot12, "ONLY"); + */ + + + + //Iron support + zfea = zcva + fDthick + fgkThSteel/2.; + gMC->Gspos("EFEA", 1, "EPM1", 0., 0., zfea, 0, "ONLY"); + //gMC->Gspos("EFEA", 2, "EPM2", 0., 0., zfea, 0, "ONLY"); + //Lead + zpba=zfea+fgkThSteel/2.+ fgkThLead/2.; + gMC->Gspos("ESPA", 1, "EPM1", 0., 0., zpba, 0, "ONLY"); + //gMC->Gspos("ESPA", 2, "EPM2", 0., 0., zpba, 0, "ONLY"); + //Preshower + zpsa = zpba + fgkThLead/2. + fDthick; + gMC->Gspos("ESMA", 1, "EPM1", 0., 0., zpsa, 0, "ONLY"); + //gMC->Gspos("ESMA", 2, "EPM2", 0., 0., zpsa, jhrot12, "ONLY"); + //FEE boards + zfee=zpsa + fDthick + 1.2; + gMC->Gspos("EFSA", 3, "EPM1", 0., 0., zfee, 0, "ONLY"); + //gMC->Gspos("EFSA", 4, "EPM2", 0., 0., zfee, jhrot12, "ONLY"); + + + //TYPE - B + gaspmd[0] = fSMLengthbx; + gaspmd[1] = fSMLengthby; + gaspmd[2] = fSMthick; + + gMC->Gsvolu("EPM3", "BOX", idtmed[698], gaspmd, 3); + gMC->Gsvolu("EPM4", "BOX", idtmed[698], gaspmd, 3); + + //Complete detector for Type B + //Position Super modules type B for both CPV and PMD in EPMD + Float_t zpsb,zpbb,zfeb,zcvb; + // zpsb = - gaspmd[2] + fSMthick/2.; + // -2.5 is given to place PMD at -361.5 + // BM: In future after putting proper electronics + // -2.5 will be replaced by -gaspmd[2] + + //Fee board + + zfee=-gaspmd[2] + 1.2; + + /* + gMC->Gspos("EFSB", 5, "EPM3", 0., 0., zfee, 0, "ONLY"); + gMC->Gspos("EFSB", 6, "EPM4", 0., 0., zfee, jhrot12, "ONLY"); + */ + + zcvb= zfee + 1.2 + fDthick; + + //VETO + /* + gMC->Gspos("EMVB", 3, "EPM3", 0., 0., zcvb, 0, "ONLY"); + gMC->Gspos("EMVB", 4, "EPM4", 0., 0., zcvb, jhrot12, "ONLY"); + */ + + //IRON SUPPORT + zfeb= zcvb + fDthick + fgkThSteel/2.; + //gMC->Gspos("EFEB", 3, "EPM3", 0., 0., zfeb, 0, "ONLY"); + gMC->Gspos("EFEB", 4, "EPM4", 0., 0., zfeb, 0, "ONLY"); + //LEAD + zpbb= zfeb + fgkThSteel/2.+ fgkThLead/2.; + //gMC->Gspos("ESPB", 3, "EPM3", 0., 0., zpbb, 0, "ONLY"); + gMC->Gspos("ESPB", 4, "EPM4", 0., 0., zpbb, 0, "ONLY"); + //PRESHOWER + zpsb = zpbb + fgkThLead/2.+ fDthick; + //gMC->Gspos("ESMB", 3, "EPM3", 0., 0., zpsb, 0, "ONLY"); + gMC->Gspos("ESMB", 4, "EPM4", 0., 0., zpsb, jhrot12, "ONLY"); + //FEE boards + zfee=zpsb + fDthick + 1.2; + //gMC->Gspos("EFSB", 7, "EPM3", 0., 0., zfee, 0, "ONLY"); + gMC->Gspos("EFSB", 8, "EPM4", 0., 0., zfee, jhrot12, "ONLY"); + + + // --- Place the EPMD in ALICE + //Z-distance of PMD from Interaction Point + zp = fgkZdist; + + //X and Y-positions of the PMD planes + Float_t xfinal,yfinal; + Float_t xsmb,ysmb; + Float_t xsma,ysma; + + xfinal = fSMLengthax + 0.48/2 + fSMLengthbx; + yfinal = fSMLengthay + 0.20/2 + fSMLengthby; + + + xsma = xfinal - fSMLengthax; + ysma = yfinal - fSMLengthay; + xsmb = -xfinal + fSMLengthbx; + ysmb = yfinal - fSMLengthby; + + +//Position Full PMD in ALICE +// +// EPM1 EPM3 +// +// EPM4 EPM2 +// (rotated (rotated EPM1) +// EPM3) +// + gMC->Gspos("EPM1", 1, "ALIC", xsma,ysma,zp, 0, "ONLY"); + gMC->Gspos("EPM2", 1, "ALIC", -xsma,-ysma,zp, 0, "ONLY"); + gMC->Gspos("EPM3", 1, "ALIC", xsmb,ysmb,zp, 0, "ONLY"); + gMC->Gspos("EPM4", 1, "ALIC", -xsmb,-ysmb,zp, 0, "ONLY"); +} + + +//_____________________________________________________________________________ +void AliPMDv2008::DrawModule() const +{ + // Draw a shaded view of the Photon Multiplicity Detector + // + // cout << " Inside Draw Modules " << endl; + + gMC->Gsatt("*", "seen", -1); + gMC->Gsatt("alic", "seen", 0); + // + // Set the visibility of the components + // + gMC->Gsatt("ECAR","seen",0); + gMC->Gsatt("ECCU","seen",1); + gMC->Gsatt("EST1","seen",1); + gMC->Gsatt("EST2","seen",1); + gMC->Gsatt("EUM1","seen",1); + gMC->Gsatt("EUM2","seen",1); + gMC->Gsatt("ESMA","seen",1); + gMC->Gsatt("EPMD","seen",1); + // + gMC->Gdopt("hide", "on"); + gMC->Gdopt("shad", "on"); + gMC->Gsatt("*", "fill", 7); + gMC->SetClipBox("."); + gMC->SetClipBox("*", 0, 3000, -3000, 3000, -6000, 6000); + gMC->DefaultRange(); + gMC->Gdraw("alic", 40, 30, 0, 22, 20.5, .02, .02); + gMC->Gdhead(1111, "Photon Multiplicity Detector Version 1"); + + //gMC->Gdman(17, 5, "MAN"); + gMC->Gdopt("hide", "off"); + + AliDebug(1,"Outside Draw Modules"); +} + +//_____________________________________________________________________________ +void AliPMDv2008::CreateMaterials() +{ + // Create materials for the PMD + // + // ORIGIN : Y. P. VIYOGI + // + // cout << " Inside create materials " << endl; + + Int_t isxfld = gAlice->Field()->Integ(); + Float_t sxmgmx = gAlice->Field()->Max(); + + // --- Define the various materials for GEANT --- + + AliMaterial(1, "Pb $", 207.19, 82., 11.35, .56, 18.5); + + // Argon + + Float_t dAr = 0.001782; // --- Ar density in g/cm3 --- + Float_t x0Ar = 19.55 / dAr; + AliMaterial(2, "Argon$", 39.95, 18., dAr, x0Ar, 6.5e4); + + // --- CO2 --- + + Float_t aCO2[2] = { 12.,16. }; + Float_t zCO2[2] = { 6.,8. }; + Float_t wCO2[2] = { 1.,2. }; + Float_t dCO2 = 0.001977; + AliMixture(3, "CO2 $", aCO2, zCO2, dCO2, -2, wCO2); + + AliMaterial(4, "Al $", 26.98, 13., 2.7, 8.9, 18.5); + + // ArCO2 + + Float_t aArCO2[3] = {39.948,12.0107,15.9994}; + Float_t zArCO2[3] = {18.,6.,8.}; + Float_t wArCO2[3] = {0.7,0.08,0.22}; + Float_t dArCO2 = dAr * 0.7 + dCO2 * 0.3; + AliMixture(5, "ArCO2$", aArCO2, zArCO2, dArCO2, 3, wArCO2); + + AliMaterial(6, "Fe $", 55.85, 26., 7.87, 1.76, 18.5); + + // G10 + + Float_t aG10[4]={1.,12.011,15.9994,28.086}; + Float_t zG10[4]={1.,6.,8.,14.}; + Float_t wG10[4]={0.15201,0.10641,0.49444,0.24714}; + AliMixture(8,"G10",aG10,zG10,1.7,4,wG10); + + AliMaterial(15, "Cu $", 63.54, 29., 8.96, 1.43, 15.); + + // Steel + Float_t aSteel[4] = { 55.847,51.9961,58.6934,28.0855 }; + Float_t zSteel[4] = { 26.,24.,28.,14. }; + Float_t wSteel[4] = { .715,.18,.1,.005 }; + Float_t dSteel = 7.88; + AliMixture(19, "STAINLESS STEEL$", aSteel, zSteel, dSteel, 4, wSteel); + + //Air + + Float_t aAir[4]={12.0107,14.0067,15.9994,39.948}; + Float_t zAir[4]={6.,7.,8.,18.}; + Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827}; + Float_t dAir1 = 1.20479E-10; + Float_t dAir = 1.20479E-3; + AliMixture(98, "Vacum$", aAir, zAir, dAir1, 4, wAir); + AliMixture(99, "Air $", aAir, zAir, dAir , 4, wAir); + + // Define tracking media + AliMedium(1, "Pb conv.$", 1, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); + AliMedium(4, "Al $", 4, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); + AliMedium(5, "ArCO2 $", 5, 1, 0, isxfld, sxmgmx, .1, .1, .10, .1); + AliMedium(6, "Fe $", 6, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); + AliMedium(8, "G10plate$", 8, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); + AliMedium(15, "Cu $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); + AliMedium(19, "S steel$", 19, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); + AliMedium(98, "Vacuum $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .10, 10); + AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .10, .1); + + AliDebug(1,"Outside create materials"); + +} + +//_____________________________________________________________________________ +void AliPMDv2008::Init() +{ + // + // Initialises PMD detector after it has been built + // + + // + AliDebug(2,"Inside Init"); + AliDebug(2,"PMD simulation package (v1) initialised"); + AliDebug(2,"parameters of pmd"); + AliDebug(2,Form("%10.2f %10.2f %10.2f %10.2f\n", + fgkCellRadius,fgkCellWall,fgkCellDepth,fgkZdist)); + Int_t *idtmed = fIdtmed->GetArray()-599; + fMedSens=idtmed[605-1]; + // --- Generate explicitly delta rays in the iron, aluminium and lead --- + gMC->Gstpar(idtmed[600], "LOSS", 3.); + gMC->Gstpar(idtmed[600], "DRAY", 1.); + + gMC->Gstpar(idtmed[603], "LOSS", 3.); + gMC->Gstpar(idtmed[603], "DRAY", 1.); + + gMC->Gstpar(idtmed[604], "LOSS", 3.); + gMC->Gstpar(idtmed[604], "DRAY", 1.); + + gMC->Gstpar(idtmed[605], "LOSS", 3.); + gMC->Gstpar(idtmed[605], "DRAY", 1.); + + gMC->Gstpar(idtmed[607], "LOSS", 3.); + gMC->Gstpar(idtmed[607], "DRAY", 1.); + + // --- Energy cut-offs in the Pb and Al to gain time in tracking --- + // --- without affecting the hit patterns --- + gMC->Gstpar(idtmed[600], "CUTGAM", 1e-4); + gMC->Gstpar(idtmed[600], "CUTELE", 1e-4); + gMC->Gstpar(idtmed[600], "CUTNEU", 1e-4); + gMC->Gstpar(idtmed[600], "CUTHAD", 1e-4); + + gMC->Gstpar(idtmed[605], "CUTGAM", 1e-4); + gMC->Gstpar(idtmed[605], "CUTELE", 1e-4); + gMC->Gstpar(idtmed[605], "CUTNEU", 1e-4); + gMC->Gstpar(idtmed[605], "CUTHAD", 1e-4); + + gMC->Gstpar(idtmed[603], "CUTGAM", 1e-4); + gMC->Gstpar(idtmed[603], "CUTELE", 1e-4); + gMC->Gstpar(idtmed[603], "CUTNEU", 1e-4); + gMC->Gstpar(idtmed[603], "CUTHAD", 1e-4); +// gMC->Gstpar(idtmed[609], "CUTGAM", 1e-4); +// gMC->Gstpar(idtmed[609], "CUTELE", 1e-4); +// gMC->Gstpar(idtmed[609], "CUTNEU", 1e-4); +// gMC->Gstpar(idtmed[609], "CUTHAD", 1e-4); + // --- Prevent particles stopping in the gas due to energy cut-off --- + gMC->Gstpar(idtmed[604], "CUTGAM", 1e-5); + gMC->Gstpar(idtmed[604], "CUTELE", 1e-5); + gMC->Gstpar(idtmed[604], "CUTNEU", 1e-5); + gMC->Gstpar(idtmed[604], "CUTHAD", 1e-5); + gMC->Gstpar(idtmed[604], "CUTMUO", 1e-5); + // Visualization of volumes + gMC->Gsatt("ECAR", "SEEN", 0); + gMC->Gsatt("ECCU", "SEEN", 0); + gMC->Gsatt("ECCU", "COLO", 4); + gMC->Gsatt("EST1", "SEEN", 0); + gMC->Gsatt("EST2", "SEEN", 0); + gMC->Gsatt("EHC1", "SEEN", 0); + gMC->Gsatt("EHC2", "SEEN", 0); + gMC->Gsatt("EPCA", "SEEN", 0); + gMC->Gsatt("EBKA", "SEEN", 0); + gMC->Gsatt("ECGA", "SEEN", 0); + gMC->Gsatt("ECVA", "SEEN", 0); + gMC->Gsatt("EDGA", "SEEN", 0); + gMC->Gsatt("EDVA", "SEEN", 0); + gMC->Gsatt("ESSA", "SEEN", 0); + gMC->Gsatt("ESVA", "SEEN", 0); + gMC->Gsatt("EUM1", "SEEN", 0); + gMC->Gsatt("EUV1", "SEEN", 0); + gMC->Gsatt("EBPA", "SEEN", 0); + gMC->Gsatt("EPCB", "SEEN", 0); + gMC->Gsatt("EBKB", "SEEN", 0); + gMC->Gsatt("ECGB", "SEEN", 0); + gMC->Gsatt("ECVB", "SEEN", 0); + gMC->Gsatt("EDGB", "SEEN", 0); + gMC->Gsatt("EDVB", "SEEN", 0); + gMC->Gsatt("ESSB", "SEEN", 0); + gMC->Gsatt("ESVB", "SEEN", 0); + gMC->Gsatt("EUM2", "SEEN", 0); + gMC->Gsatt("EUV2", "SEEN", 0); + gMC->Gsatt("EBPB", "SEEN", 0); + gMC->Gsatt("EPB1", "SEEN", 0); + gMC->Gsatt("EPB2", "SEEN", 0); + gMC->Gsatt("ESMA", "SEEN", 0); + gMC->Gsatt("EMVA", "SEEN", 0); + gMC->Gsatt("ESMB", "SEEN", 0); + gMC->Gsatt("EMVB", "SEEN", 0); + gMC->Gsatt("ESPA", "SEEN", 0); + gMC->Gsatt("ESPB", "SEEN", 0); + gMC->Gsatt("EFEE", "SEEN", 0); + gMC->Gsatt("EFEE", "COLO", 4); + gMC->Gsatt("EFBA", "SEEN", 0); + gMC->Gsatt("EFBB", "SEEN", 0); + gMC->Gsatt("EFSA", "SEEN", 0); + gMC->Gsatt("EFSB", "SEEN", 0); + gMC->Gsatt("EFEA", "SEEN", 0); + gMC->Gsatt("EFEB", "SEEN", 0); + gMC->Gsatt("EPM1", "SEEN", 1); + gMC->Gsatt("EPM2", "SEEN", 1); + gMC->Gsatt("EPM3", "SEEN", 1); + gMC->Gsatt("EPM4", "SEEN", 1); +} + +//_____________________________________________________________________________ +void AliPMDv2008::StepManager() +{ + // + // Called at each step in the PMD + // + + Int_t copy; + Float_t hits[4], destep; + Float_t center[3] = {0,0,0}; + Int_t vol[10]; + // const char *namep; + + if(gMC->CurrentMedium() == fMedSens && (destep = gMC->Edep())) { + + gMC->CurrentVolID(copy); + // namep=gMC->CurrentVolName(); + // printf("Current vol is %s \n",namep); + vol[0]=copy; + + gMC->CurrentVolOffID(1,copy); + //namep=gMC->CurrentVolOffName(1); + // printf("Current vol 11 is %s \n",namep); + vol[1]=copy; + + gMC->CurrentVolOffID(2,copy); + //namep=gMC->CurrentVolOffName(2); + //printf("Current vol 22 is %s \n",namep); + vol[2]=copy; + + // if(strncmp(namep,"EHC1",4))vol[2]=1; + + gMC->CurrentVolOffID(3,copy); + // namep=gMC->CurrentVolOffName(3); + //printf("Current vol 33 is %s \n",namep); + vol[3]=copy; + + gMC->CurrentVolOffID(4,copy); + // namep=gMC->CurrentVolOffName(4); + // printf("Current vol 44 is %s \n",namep); + vol[4]=copy; + + gMC->CurrentVolOffID(5,copy); + // namep=gMC->CurrentVolOffName(5); + // printf("Current vol 55 is %s \n",namep); + vol[5]=copy; + + gMC->CurrentVolOffID(6,copy); + // namep=gMC->CurrentVolOffName(6); + // printf("Current vol 66 is %s \n",namep); + vol[6]=copy; + + gMC->CurrentVolOffID(7,copy); + // namep=gMC->CurrentVolOffName(7); + // printf("Current vol 77 is %s \n",namep); + vol[7]=copy; + + gMC->CurrentVolOffID(8,copy); + // namep=gMC->CurrentVolOffName(8); + // printf("Current vol 88 is %s \n",namep); + vol[8]=copy; + + + gMC->CurrentVolOffID(9,copy); + // namep=gMC->CurrentVolOffName(9); + // printf("Current vol 99 is %s \n",namep); + vol[9]=copy; + + + // printf("volume number %4d %4d %4d %4d %4d %4d %4d %4d %4d %4d %10.3f \n",vol[0],vol[1],vol[2],vol[3],vol[4],vol[5],vol[6],vol[7],vol[8],vol[9],destep*1000000); + + gMC->Gdtom(center,hits,1); + hits[3] = destep*1e9; //Number in eV + AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); + + } +} + + +//------------------------------------------------------------------------ +// Get parameters + +void AliPMDv2008::GetParameters() +{ + // This gives all the parameters of the detector + // such as Length of Supermodules, type A, type B, + // thickness of the Supermodule + // + + fSMLengthax = 32.7434; + //The total length in X is due to the following components + // Factor 3 is because of 3 module length in X for this type + // fgkNcolUM1*fgkCellRadius (48 x 0.25): Total span of each module in X + // fgkCellRadius/2. : There is offset of 1/2 cell + // 0.05+0.05 : Insulation gaps etc + // fgkSSBoundary (0.3) : Boundary frame + // double XA = 3.0*((fgkCellRadius/fgkSqroot3by2*fgkNcolUM1)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM1-1)/6.)+(2.0*fgkGap)+(2.0*fgkGap)+fgkSSBoundary) + (2.0*0.075); + + fSMLengthbx = 42.5886; + //The total length in X is due to the following components + // Factor 2 is because of 2 module length in X for this type + // fgkNcolUM2*fgkCellRadius (96 x 0.25): Total span of each module in X + // fgkCellRadius/2. : There is offset of 1/2 cell + // 0.05+0.05 : Insulation gaps etc + // fgkSSBoundary (0.3) : Boundary frame + //double XB = 2.0*((fgkCellRadius/fgkSqroot3by2*fgkNcolUM2)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM2-1)/6.)+(2.0*fgkGap)+(2.0*fgkGap)+fgkSSBoundary) + 0.075; + + + + fSMLengthay = 49.1; + //The total length in Y is due to the following components + // Factor 2 is because of 2 module length in Y for this type + // fgkCellRadius/fgkSqroot3by2)*fgkNrowUM1 (0.25/sqrt3/2 * 96): Total span of each module in Y + // of strips + // 0.05+0.05 : Insulation gaps etc + // fgkSSBoundary (0.3) : Boundary frame + // double YA = 2.0*(fgkNrowUM1*fgkCellRadius+fgkCellRadius/2.+(2.0*fgkGap)+(2.0*fgkGap)+fgkSSBoundary) + 0.05; + + fSMLengthby = 37.675; + //The total length in Y is due to the following components + // Factor 3 is because of 3 module length in Y for this type + // fgkCellRadius/fgkSqroot3by2)*fgkNrowUM2 (0.25/sqrt3/2 * 48): Total span of each module in Y + // of strips + // 0.05+0.05 : Insulation gaps etc + // fgkSSBoundary (0.3) : Boundary frame + //double YB = 3.0*((fgkNrowUM2*fgkCellRadius + fgkCellRadius/2.)+(2.0*fgkGap)+(2.0*fgkGap)+fgkSSBoundary) + (2.0*0.05); + + + //Thickness of a pre/veto plane + fDthick = fgkThSS/2. +0.15; + + //Thickness of the PMD ; 2.4 added for FEE boards + fSMthick = 2.0*(fgkThSS/2. +0.15) + +fgkThSteel/2.+fgkThLead/2.0 + 2.4; + + + +} +// --------------------------------------------------------------- +void AliPMDv2008::AddAlignableVolumes() const +{ + // + // Create entries for alignable volumes associating the symbolic volume + // name with the corresponding volume path. Needs to be syncronized with + // eventual changes in the geometry. + // + SetSectorAlignable(); + +} +// ---------------------------------------------------------------- +void AliPMDv2008::SetSectorAlignable() const +{ + // + + TString vpsector = "ALIC_1/EPM"; + TString vpappend = "_1"; + + TString snsector="PMD/Sector"; + + TString volpath, symname; + + for(Int_t cnt=1; cnt<=4; cnt++){ + volpath = vpsector; + volpath += cnt; + volpath += vpappend; + symname = snsector; + symname += cnt; + if(!gGeoManager->SetAlignableEntry(symname.Data(),volpath.Data())) + { + AliFatal("Unable to set alignable entry!"); + } + } +} +// ------------------------------------------------------------------ diff --git a/PMD/AliPMDv2008.h b/PMD/AliPMDv2008.h new file mode 100644 index 00000000000..ea5166c2899 --- /dev/null +++ b/PMD/AliPMDv2008.h @@ -0,0 +1,74 @@ +#ifndef ALIPMDV2008_H +#define ALIPMDV2008_H +/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * + * See cxx source for full Copyright notice */ + +/* $Id: AliPMDv1.h 15401 2006-10-18 18:49:59Z bnandi $ */ +// Rectangular geometry - Bedanga Mohanty - Spetember 2003 + +//////////////////////////////////////////////// +// Manager and hits classes for set:PMD // +//////////////////////////////////////////////// + +#include "AliPMD.h" +#include "TGeoManager.h" +//___________________________________________ + +class AliPMDv2008 : public AliPMD { + +public: + AliPMDv2008(); + AliPMDv2008(const char *name, const char *title); + virtual ~AliPMDv2008() {} + virtual void CreateGeometry(); + virtual void CreatePMD(); + virtual void CreateSupermodule(); + virtual void GetParameters(); + virtual void CreateMaterials(); + virtual void Init(); + virtual Int_t IsVersion() const {return 1;} + virtual void StepManager(); + virtual void DrawModule() const; + virtual void AddAlignableVolumes() const; + void SetSectorAlignable() const; + +private: + + static const Int_t fgkNcolUM1; // Number of cols in UM, type 1 + static const Int_t fgkNcolUM2; // Number of cols in UM, type 2 + static const Int_t fgkNrowUM1; // Number of rows in UM, type 1 + static const Int_t fgkNrowUM2; // Number of rows in UM, type 2 + static const Float_t fgkCellRadius; // Radius of a hexagonal cell + static const Float_t fgkCellWall; // Thickness of cell Wall + static const Float_t fgkCellDepth; // Gas thickness + static const Float_t fgkThBKP; // Thickness of Back plane + static const Float_t fgkThBase; // Thickness of Base plate + static const Float_t fgkThAir; // Thickness of Air + static const Float_t fgkThPCB; // Thickness of PCB + static const Float_t fgkThLead; // Thickness of Pb + static const Float_t fgkThSteel; // Thickness of Steel + static const Float_t fgkGap; // Air Gap + static const Float_t fgkZdist; // z-position of the detector + static const Float_t fgkSqroot3; // Square Root of 3 + static const Float_t fgkSqroot3by2; // Square Root of 3 by 2 + static const Float_t fgkSSBoundary; + static const Float_t fgkThSS ; + static const Float_t fgkThG10 ; + + + Float_t fSMthick; // Thickness of the supermodule + Float_t fDthick; // Thickness of the pre/veto module + Float_t fSMLengthax; // Supermodule length along X, type A + Float_t fSMLengthay; // Supermodule length along Y, type A + Float_t fSMLengthbx; // Supermodule length along X, type B + Float_t fSMLengthby; // Supermodule length along Y, type A + Int_t fMedSens; // Sensitive Medium Ar+CO2 + Float_t fDboxmm1[3]; // Master MODULE EMPA of aluminum for PMD + Float_t fDboxmm12[3]; // Master MODULE EMCA of aluminum for CPV + Float_t fDboxmm2[3]; // Master MODULE EMPB of aluminum for PMD + Float_t fDboxmm22[3]; // Master MODULE EMCB of aluminum for CPV + + ClassDef(AliPMDv2008,0) //Hits manager for set:PMD +}; + +#endif diff --git a/PMD/PMDsimLinkDef.h b/PMD/PMDsimLinkDef.h index ca8f0702d8f..d8ba7d8fd59 100644 --- a/PMD/PMDsimLinkDef.h +++ b/PMD/PMDsimLinkDef.h @@ -11,6 +11,7 @@ #pragma link C++ class AliPMD+; #pragma link C++ class AliPMDv0+; #pragma link C++ class AliPMDv1+; +#pragma link C++ class AliPMDv2008+; #pragma link C++ class AliPMDhit+; #pragma link C++ class AliPMDcell+; #pragma link C++ class AliPMDDigitizer+; diff --git a/PMD/libPMDsim.pkg b/PMD/libPMDsim.pkg index 34d3944534c..855d7e7f677 100644 --- a/PMD/libPMDsim.pkg +++ b/PMD/libPMDsim.pkg @@ -1,8 +1,7 @@ #-*- Mode: Makefile -*- - # $Id$ -SRCS:= AliPMD.cxx AliPMDv0.cxx AliPMDv1.cxx AliPMDhit.cxx AliPMDcell.cxx AliPMDDigitizer.cxx AliPMDDDLRawData.cxx AliPMDQADataMakerSim.cxx +SRCS:= AliPMD.cxx AliPMDv0.cxx AliPMDv1.cxx AliPMDv2008.cxx AliPMDhit.cxx AliPMDcell.cxx AliPMDDigitizer.cxx AliPMDDDLRawData.cxx AliPMDQADataMakerSim.cxx HDRS:= $(SRCS:.cxx=.h) -- 2.39.3