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Abstract—Algorithms for direction-of-arrival (DOA) estima-
tion and beamforming will suffer from decreased performance
when the estimated statistics deviate from the underlying model.
This can be due to estimation from a finite number of data
vectors or in case of correlation between signals. Covariance
matrix estimators can attempt to counteract these effects by
forcing the estimate to have a Toeplitz structure, such as
redundancy averaging. It is known that redundancy averaging
improves performance, but results in biased DOA estimates that
are worse than what can be acomplished with non-Toeplitz
constrained techniques such as e.g. spatial averaging. In this
letter/correspondence we introduce an optimal, iterative Toeplitz-
constrained covariance matrix estimator. We show that the
estimator yields redundancy averaging as its first step, and that
subsequent steps improve the DOA estimates by reducing the bias
and increasing resolution beyond that of redundancy averaging.

I. INTRODUCTION

Several adaptive beamforming and DOA estimation meth-
ods are based on examining the spatial covariance matrix. For
certain array geometries, such as the uniformly spaced linear
array (ULA), the covariance matrix should ideally be Toeplitz.
Due to different deviations from our assumptions, such as too
few data vectors and/or signal correlation (should we mention
element position errors?) this criterion is often not satisfied.
Several authors have suggested so-called Toeplitz-completion-
based estimation methods that force the estimated covariance
matrix to be nearly Toeplitz, e.g. adaptive spatial averaging
[1], or perfectly Toeplitz, e.g. redundancy averaging [2]. We
have chosen to investigate the latter method. It is known
that redundancy averaging creates a covariance matrix that is
inconsistent with the underlying signal model, yielding biased
DOA estimates [3] that can be outperformed by ordinary
spatial averaging. It is not obvious how to further develop
or modify redundancy averaging to improve its performance,
as the technique does not include any parameters and has not
been derived using any optimality criterion.

In this correspondence we derive a novel technique for
covariance matrix decorrelation through Toeplitz completion
and show that a slightly modified form of redundancy
averaging is the result of the first iteration. Although the
covariance matrix estimates are still inconsistent, the bias
induced in the DOA estimates by this inconsistency is
significantly reduced for each iteration. The new technique
is shown through simulations to have better treshold and
resolution properties than both redundancy averaging avd
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spatial averaging, as well as a DOA RMSE that is superior
to redundancy averaging and approaches spatial averaging as
SNR increases.

Notes:

¢ “Decorrelation” (can be other motivations) or “Toeplitz-
ization” (underlying causes not immediately clear)?
Toeplitz completion....

¢ Check both ESPRIT and MUSIC?

II. BACKGROUND

A. Array Model, our Objective [the Spatial Covariance Ma-
trix, and its Estimation]

We assume an M-element uniformly spaced linear array
(ULA) which captures N temporal samples of a spatial data
vector, Z[n|, consisting of D < M plane-wave signals of
interest, §[n], and spatially white noise, 7i[n]:

Zn) =5n] +dn] e C” n=0,1,--- , N—-1 (1)

The signals of interest can be described as:

D—-1
ga[n] — eiwn Z Adﬁd (2)
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where Ay are the complex signal amplitudes, and the propa-
gation vectors vy for signals arriving at the ULA from angles
0, are:
7= [efiQT”sinOd(Mfl)/Z o] i sinOa(M—1)/2 T. 3)
For notational simplicity, we will define the signal wavenum-

bers as:
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A
and we will also suppress the temporal index n. Our primary
goal is to estimate the directions of arrival (DOA) 6; from
the data #[n]. The number of signals, D, is either known or
it must also be estimated from the data.

We define the data spatial covariance matrix of the data as:
R =E {zz"} ©)

When the signals of interest are uncorrelated, i.e.
E {AdAZ‘H_d,} = 0'55(1/ or 17fﬁd+d/ X dgq+q, the covariance
matrix can be decomposed into the signal and noise covariance



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. X, NO. X, XX 2012

matrices:
R=R;+R, (6)
D—1
R, =Y oqi}
d=0
R, = o2L

These covariance matrices have a Toeplitz structure. When R
is not known, it must be estimated from the data. A “common”
(more sciency definition) estimator is the sample covariance
matrix:

R 1 N-1
R=— HZ:O Z[n)z" [n]. (7)

B. DOA Estimation with Root-MUSIC

There are several non-parametric and parametric techniques
for achieving our primary goal. The non-parametric methods
are typically beamscan algorithms (see e.g. [4]), which form
a spatial spectrum over all wavenumbers and locate the D
largest peaks within. The most famous parametric methods are
MUSIC [5] and ESPRIT [6], and we will concern ourselves
with the former (?). Both these methods use the spatial
covariance matrix to estimate the DOAs of the D signals. This
number D is assumed to be accurately known, which is why
the methods are called parametric.

MUSIC uses the signal-plus-noise- and noise-subspace de-
composition of the covariance matrix:

R=VAVA V= [Vg,y,Vy]. (8)

The wavenumbers are the roots of the MUSIC power spec-
trum:

Quusic(k) = 77 (k) VN VET(k) ©)

C. Robust Covariance Matrix Estimation

In practice, the sample covariance matrix of (7) will not
have a Toeplitz structure. This can be due to different reasons.
If R is based on a finite number of temporal samples, the
deviation from Toeplitz structure will typically increase as the
number of samples N is decreased. If the signals of interest
are correlated, the sample covariance matrix will always have
a non-Toeplitz structure independent of N. An interesting
problem is whether it is still possible to regain the Toeplitz
covariance matrix of (6) despite these deviations. Several
techniques have been suggested, the most well-known being
spatial averaging [7]. Spatial averaging consists of dividing the
array data vectors Z[n] into K subarray data vectors Zy[n| of
length L = M — K + 1 that overlap by all but one element:

Zin] = [zxln], - apgp-1[n])” € CL. (10)

The spatially averaged covariance matrix is formed from the
subarray data vectors as:

(1)

7 )7 [n)]-

Unfortunately, this matrix only achieves Toeplitz structure
asymptotically as K <— oo, which is an unrealistic assumption.

Therefore, the alternative method of redundancy averaging was
suggested to achieve Toeplitz structure for any value of K
and N [2]. Redundancy averaging consists of replacing all
elements of the covariance matrix by the average across the
corresponding matrix diagonal:

=

[Rra]m,n = M_pP pz:;) [R} p,Per’P = |m — n‘ (12)

Both spatial and redundancy averaging achieves some degree
of robustness against above-mentioned model deviations, and
the both have their advantages and disadvantages.

The main advantage of spatial averaging is that it preserves
the underlying covariance matrix structure. Therefore, it con-
verges to the true covariance matrix, i.e. limg oo f{S 4=R.
The disadvantage is that increasing K decreases the degrees
of freedom by the same amount.

The advantage of redundancy averaging is that it can yield
a full-rank matrix from even a single data vector, and it does
not reduce the degrees of freedom at all. The disadvantage
is that it does not preserve the underlying covariance matrix
structure, and can therefore not be used to perfectly regain R
except for certain exceptional scenarios [3].

SOMETHING MORE HERE, MOTIVATION, DISCUSSION,
ETC.

III. COVARIANCE MATRIX DECORRELATION THROUGH
OPTIMAL TOEPLITZ COMPLETION

An element of the signal covariance matrix from (6) can be
written in the wavenumber domain:

1 g 2 il
Ry, n = k)| etk dgg 13
Rl = 3= | 1SGIPe 13)
The wavefield magnitude at wavenumber ks, |S(ks)|%, is

generally unknown, but can be estimated using beamforming:

|5(k,) . {|o"a]"} = a"Ra. (14)

We note that the beamformer estimate can be written in the
wavenumber domain using a Fourier transformation:

2
} . (15

An optimum estimator of |S(k)|* is the Minimum Variance
Distortionless Response (MVDR) beamformer, which is de-
fined as:

W) S (k) dik

—T

IR = E{

1
2w

R 2
‘SMV(kS) — @8 Ry (16)

where 1)y = argming VAR {&" 7} s.t. &7 5 (k,) = 1.

Under the assumption of an uncorrelated wavefield, (16) can
be written in the wavenumber domain as in (15):

By = argmin~i/7r |W(k)|2E{\S(k)|2} de (17

wYom

subject to W (ks) =1 and w,, =0 for m <0 or m > M
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Since this expression depends on |S(k)|2, the very quantity
we are trying to estimate, we can define an iterative estimator

of the uncorrelated wavefield (for steps e = 1,2, --- , 00):
~ 2 A
S| = i R as)

1 (" - 2
where ngt}) = argmlnw2 / W(k)S© (k)| dk.

It is well known that the solution of this MVDR optimization
problem is:
R ii(k)

7H (kR-O5(k)’

—(e+1) _

Wy (19)

R . -1
where R~(¢) is shorthand for ( R(® .This estimate can

be used with (13) to specify an iterative Toeplitz covariance
matrix estimator of the associated uncorrelated wavefield:

[ﬁ(e+1):| :i/ﬂ q‘;’H(k)f{—(e)f{f{—(E)qu'(k) .
21 ()R- (k)|

(20)
As for any other iterative algorithm, there is the qzuestlon of

intialization. A plausible initial estimate ’S (k )L requring
no knowledge about the situation at hand could be the positive,
constant spectrum:

‘ﬁ%mr:a>0 @1)

However, this automatically yields a closed-form solution for
the next step, namely the conventional beamformer, no matter
the value of «. Therefore, it makes more sense to initialize
with the conventional beamformer directly:

2 1 .
0] = 37"
An interesting observation comes when inserting (22) Ainto
(18) and, subsequently, the result into (20) to estimate RO,
namely that the first covariance matrix estimate becomes (see
Appendix A for a proof):

LI

This is equal to the redundancy averaged estimator of (12)
except for a term —P in the denominator of the leading
fraction. As we will show in the next section, both this scaling
and iterating further will improve the performance beyond that
of redundancy averaging. However, since step 1 of the iteration
still yields a closed form solution, it ultimately makes more
sense to start with (23) instead of the conventional beamformer
estimate.

Unfortunately, it is not trivial to prove the convergence
of the iterative estimator in (20). In the next section, we
will demonstrate convergence for a range of cases through
simulations.

It is worth noting that the suggested method is more
computationally demanding than both spatial and redundancy
averaging. Each iteration requires the formation of an M x M
Toeplitz matrix, where the value along each of the M di-
agonals is calculated from the integral in (20). As there is

(k)R(k) 22)

R, P=|m—-n|. (23)

el m—n)k dk.

no closed form solution to this integral, it must be done
numerically. The resulting covariance matrix must be then be
inverted, which has complexity of O(M?) or less due to its
Toeplitz structure.

IV. SIMULATIONS AND DISCUSSION

In this section we will compare the performance of redun-
dancy averaging, spatial averaging, and the suggested method
for DOA estimation using the Root-MUSIC algorithm.

V. CONCLUSION

We have introduced an iterative, Toeplitz-constrained co-
variance matrix estimator for use in parametric DOA estima-
tion. It is shown that this estimator has a slightly modified
redundancy average estimator as its first solution, while the
subsequent solutions result in improved DOA estimates and
resolution.

APPENDIX A: PROOF OF EQUATION (23)

Because the covariance matrix of (13) is Toeplitz, we will
investigate the value along the It diagonal:

. 1 2
(1) _ ‘ ilk
[R :|'m n 27T ( ) ¢ dk7
forl2m—n
1 T B ilk
=5 /_ 7" (k)Ru(k)e™™ dk

—n
1 M-1M-1 1 T-1
= e Z Z 51711* Tm! [t]l’n/[t]
m’=0n’=0 t=0

=
e pz:;) [R] pp+l
(24)

which we confirm is equal to (23) and nearly equal to the
redundancy averaged estimate of the covariance matrix as
given in (12), except for the denominator in the leading
fraction.
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