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Abstract—The Minimum Variance Distortionless Response
(MVDR) beamformer has good performance, but it requires
knowledge of the spatial noise-and-interference covariance ma-
trix. This is generally not available, but can be estimated from
data using signal subtraction as in Spatial APES (S-APES).
Forward-backward (FB) averaging is often applied to improve
the performance of S-APES. In this letter we suggest an improved
technique termed full forward-backward averaging (FFB). We
prove that FFB is superior to FB in the sense that it increases
the rank of the covariance matrix estimate by up to 50%, and
also improves the convergence of the noise covariance matrix
estimate. We demonstrate that FFB can be used to attain lower
RMSE than FB in S-APES.

I. INTRODUCTION

Adaptive beamformers based on the criterion of Mini-
mum Variance-Distortionless Response (MVDR) are ubiqui-
tous in spatial signal processing. Unfortunately, they depend
on knowledge of the interference-plus-noise covariance matrix,
which is rarely available in practice. One possible way of
estimating the noise statistics is through signal subtraction; the
signal of interest is first estimated using conventional means
and subsequently subtracted from the data vectors, thereby
forming noise vector estimates. A well-known algorithm uti-
lizing this approach is the Amplitude and Phase EStimation
(APES) technique. APES was introduced as an alternative to
the Capon spectral estimator based on an approximate maxi-
mum likelihood criterion [1], and has later been reinterpreted
as a deterministic optimal estimation method [2] and as a
matched filterbank [3]. APES can be combined with various
techniques to improve its robustness [4], [5]. The extension of
APES to beamforming is referred to as multilook APES [6]
or Spatial APES (S-APES) [7]. Repeated investigations of S-
APES have shown that it generally exhibits superior estimation
accuracy and robustness compared to the Capon beamformer,
at the cost of decreased resolution. Both Capon and S-APES
can make use of a technique known as forward-backward (FB)
averaging [8], [9] to improve covariance matrix estimates.

In this letter we suggest the new full forward-backward
(FFB) averaging scheme for S-APES, and prove that it can
increase the rank of the covariance matrix estimate by up to
50% as compared to conventional FB. We also prove that the
covariance matrix estimate converges faster using FFB than
FB. Finally, we demonstrate through simulations that FFB
can be used with S-APES to achieve lower RMSE than when
conventional FB is used.
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II. BACKGROUND

A. Signal Model and MVDR Beamforming

We investigate a narrowband signal impinging on an M -
element uniform linear array (ULA) in N temporal snapshots:

~x[n] = ~s[n] + ~q[n] ∈ CM , n = 0, 1, · · · , N − 1 (1)

where:

~s[n] = A0~v(θ0)[n], ~q[n] = ~e[n]+~n[n], ~e[n] =

D∑
d=1

Ad~v(θd)[n].

(2)
The parameter θ depends on the source’s direction of arrival,
wavenumber, and the inter-element spacing of the ULA. The
signal of interest is ~s, and ~e is the sum of interfering signals.
The vectors:

~v(θ)[n] = eiωn
[
e−iθ(M−1)/2, · · · , 1, · · · , eiθ(M−1)/2

]T
(3)

are the propagation vectors associated with the different sig-
nals. Ad, d = 0, 1, · · · , D − 1 are the (possibly correlated)
complex signal amplitudes. Without loss of generality we
define index d = 0 as our signal of interest and indices
d > 0 as interference. The noise ~n is assumed spatially white
with circular symmetric complex normal entries. The data,
interference-plus-noise, interference, and noise covariance ma-
trices, respectively, are:

R = E
{
~x~xH

}
,Q = E

{
~q~qH

}
,E = E

{
~e~eH

}
N = E

{
~n~nH

}
= σ2

nI (4)

Our goal is to estimate A0 from ~x[n], under the assumption
that the signal’s direction of arrival, and therefore ~v(θ0), is
known. This is accomplished through beamforming:

Â0[n] = ~wH~x[n] (5)

The resulting estimates Â0[n] could potentially be averaged
over n to form a better estimate. The weight vector ~w can be
chosen statically, such as the uniformly weighted delay-and-
sum (DAS) beamformer:

~wDAS =
1

M
~v(θ0), (6)

but better estimates may be achieved with adaptive beam-
formers. In this paper we concentrate on the optimal MVDR
beamformer, which has the following weights:

~wMV =

(
argmin

~w
~wHQ~w s.t. ~wH~v(θ0) = 1

)
=

Q−1~v(θ0)

~vH(θ0)Q−1~v(θ0)
.

(7)
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For low-Signal-to-Noise Ratio (SNR)1 scenarios, ~wMVDR

converges to the uniform weight vector of (6). In practice, Q
is usually unknown and must be estimated. This is the aim of
the APES method, which is covered in the following section.

B. APES Beamformer
The APES spectral estimator was introduced by Li and

Stoica in [1] as a maximum-likelihood amplitude estimator. A
multi-look extension, suited for beamforming, was introduced
by Gini and Lombardini [6] as Multilook-APES (MAPES). We
will follow Jakobsson and Stoica [7] and refer to this method
as Spatial APES (S-APES). S-APES can be interpreted as an
implementation of (7) [3], in which the interference-plus-noise
covariance matrix Q is estimated by first dividing the array
into K subarrays of length L = K −M + 1 that overlap by
all but one element:

~xk[n] = [xk[n], · · · , xk+L−1[n]]T , (8)

and then averaging the subarray covariance matrixes over time
and space, while subtracting a signal estimate:

Q̂f =
1

KN

N−1∑
n=0

K−1∑
k=0

(
~xk[n]e

−iθk − ~m[n]
) (
~xk[n]e

−iθk − ~m[n]
)H

=
1

N

N−1∑
n=0

(
R̂[n]− ~m[n]~m[n]H

)
=

1

N

N−1∑
n=0

Q̂f [n] (9)

The signal estimate vector is found through the uniformly
weighted delay-and-sum beamformer:

~mf [n] =
1

K

K−1∑
k=0

~xk[n]e
iθk, (10)

and the sample covariance matrix is given by:

R̂f [n] =
1

K

K−1∑
k=0

~xk[n]~xk[n]
H . (11)

For reasons that will soon become apparent, the subscript f in
(9), (10), and (11) stands for “forward”. The S-APES estimate
of As is given by inserting (9) into (7), and applying the
resulting weights across all subarrays:

Âs[n] =
~vH(θ0)Q̂

−1
f ~mf [n]

~vH(θ0)Q̂
−1
f ~v(θ0)

(12)

For notational simplicity, the S-APES covariance matrix esti-
mate can be rewritten as:

Q̂f =
1

KN

N−1∑
n=0

K−1∑
k=0

BH
k ~x[n]~x[n]

HBk, (13)

where

Bk = Ak −C, (14)

Ak =
[
~δke
−iθk, · · · , ~δk+L−1e−iθk

]
C =

1

K

[
K−1∑
k=0

~δke
−iθk, · · · ,

K−1∑
k=0

~δk+L−1e
−iθk

]
1By SNR we actually mean Signal-to-White-Noise Ratio, which we define

as SNR =
|A0|2
σ2
n

The vectors ~δk have a 1 as their kth element and zeros every-
where else. It can be shown that S-APES converges to MVDR
as the number of subarrays, K, approaches infinity while the
number of temporal samples, N , stays finite. Therefore, we
now consider the more interesting and less researched case
where N →∞ and K is finite. For N = 1, it is often assumed
that (L = M/2,K = M/2) yields the best performance
[1]. Gini and Lombardini [6] have shown that when multiple
temporal snapshots are available, (L = M − 1,K = 2) is
preferable. The total number of data vectors must at least
satisfy KN ≥ L for Q̂ to be invertible. Arrays with per-
symmetric covariance matrices, such as ULAs, can utilize
forward-backward averaging to double the number of outer
products to average in (11), thereby improving covariance
matrix estimation [8], [9], [10]. We say that a covariance
matrix is persymmetric if it satisfies:

R = JR∗J⇔ J~e∗ = ~e and JN∗J = N, (15)

where J is the exchange matrix with elements equal to 1 on
its antidiagonal and all other elements equal to 0. The R̂f in
(11) is referred to as the forward-only covariance matrix. The
backward-only covariance matrix is equal to:

R̂b =
1

KN

N−1∑
n=0

K−1∑
k=0

BH
k J~x∗[n]~xT [n]JBk (16)

where the vectors J~x∗[n] are referred to as the backward data
vectors. The forward-backward covariance matrix is defined as
the average of the forward and backward covariance matrices:

R̂fb =
1

2

(
R̂f + R̂b

)
. (17)

Similarly, the forward-backward interference-plus-noise co-
variance matrix has been defined as the average of the forward
and backward matrices [1], [2], [7], [11]:

Q̂fb[n] =
1

2

(
Q̂f [n] + Q̂b[n]

)
(18)

= R̂fb[n]−
1

2

(
~mf [n]~mf [n]

H + ~mb[n]~mb[n]
H
)
,

where Q̂f [n] and ~mf [n] are the covariance matrix and signal
vector estimators given by (9) and (10) , and Q̂b[n] and ~mb[n]
are calculated in the same way from the backward data vectors.

III. IMPROVED FORWARD-BACKWARD AVERAGING FOR
S-APES

Unlike for the case of the forward-backward data covariance
matrix of (17), there are actually several plausible ways
of combining the forward and backward data vectors when
estimating the interference-plus-noise covariance matrix, and
(18) is not necessarily the optimal one. We suggest the follow-
ing new estimator, which we call the interference-plus-noise
covariance matrix with full forward-backward averaging:

Q̂ffb[n] = R̂fb[n]− ~mfb[n]~m
H
fb[n] (19)

for ~mfb[n] =
1

2
(~mf [n] + ~mb[n]) .

Because the utilization of forward-backward data vectors is
inherently ad-hoc in the sense that it is not derived from any
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optimization criterion, one cannot claim that either (18) or
(19) is the more correct definition. However, we present the
following propositions that demonstrate the superiority of FFB
over FB in two important aspects.

Proposition 1: Assume the array data vectors are i.i.d.
circular symmetric Gaussian and the forward- and backward
subarray data vectors are distributed so that any subset of L
vectors or less are linearly independent. Then, the ranks of the
FB and FFB estimators satisfy the following relation:

rank
{
Q̂ffb

}
≥ rank

{
Q̂fb

}
(20)

Proof: From (18) we see that Q̂fb is the average of two
matrices with individual ranks min {L,KN − 1} because of
the mean subtraction. Due to the independence assumption,
the sum has rank min {L, 2(KN − 1)}. From (19) we see
that Q̂ffb can be written as an average over 2KN samples
minus their mean:

Q̂ffb =
1

2KN

N−1∑
n=0

K−1∑
k=0

(~xk[n]− ~mfb[n]) (~xk[n]− ~mfb[n])
H

+
1

2KN

N−1∑
n=0

K−1∑
k=0

(J~x∗k[n]− ~mfb[n]) (J~x
∗
k[n]− ~mfb[n])

H

(21)

Therefore, it has rank min {L, 2KN − 1} due to the mean
subtraction. Hence, we have:

rank
{
Q̂ffb

}
= min {L, 2NK − 1} ≥

min {L, 2N(K − 1)} = rank
{
Q̂fb

}
(22)

In particular, for L =M − 1 and 3N ≤ L, the rank increases
by 50% from 2N for FB to 3N for FFB.

A corollary of Proposition 1 is that FFB requires fewer
temporal snapshots than FB to attain an invertible sample
covariance matrix. In the case of single snapshot beamforming
(or simply temporal APES), the implication is that FFB
supports a larger subarray size than FB.

Proposition 2: The FB/FFB interference and noise covari-
ance matrix estimators have the following properties:

Êffb = Êfb∥∥∥EN {N̂ffb

}
− σ2

nI
∥∥∥
F
=

1

2

∥∥∥EN {N̂fb

}
− σ2

nI
∥∥∥
F
, (23)

where EN {·} denotes temporal expectation. In other words,
the FB and FFB estimators achieve identical interference co-
variance matrices, while the noise covariance matrix estimate
of FFB is closer to its true value than FB in the sense of the
Frobenius norm. Therefore, Q̂ffb converges faster to Q than
Q̂fb as K increases.

Proof: The FB interference covariance matrix is:

Êfb =
1

2NK

N−1∑
n=0

K−1∑
k=0

BH
k

(
~e[n]~e[n]H + J~e∗~eTJ

)
Bk

=
1

NK

N−1∑
n=0

K−1∑
k=0

BH
k ~e[n]~e[n]

HBk. (24)

The FFB interference covariance matrix is:

Êffb =
1

2NK

∑
n,k

[
Sk(~e[n])S

H
k (~e[n]) + Sk(~e

∗[n])SHk (~e∗[n])
]

=
1

NK

N−1∑
n=0

K−1∑
k=0

BH
k ~e[n]~e[n]

HBk (25)

where Sk(~e[n]) = AH
k ~e−

1

2
CH (~e+ J~e∗) ,

hence the two matrices are equal. The results (24) and (25)
follow directly from the fact that J~e∗ = ~e.

The temporal expectation of the FB noise covariance matrix
reduces to:

EN

{
N̂fb

}
=

1

2K

K−1∑
k=0

BH
k EN

{
~n~nH + J~n∗~nTJ

}
Bk

=
σ2
n

K

K−1∑
k=0

BH
k Bk (26)

This is a Toeplitz matrix with elements:[
EN

{
N̂fb

}]
m,n

= σ2
n

(
δl + γ(l)− 1

K

K−1∑
k=0

β(k, l)

)
,

where γ(l) = max
{
0,
K − l
K2

}
and β(k, l) =

{
1+δk−l

K |k − l| < L
0 |k − l| ≥ L and l , |m− n| .

(27)

This yields the Frobenius-norm:

∥∥∥EN {N̂fb

}
− σ2

nI
∥∥∥
F
=

∑
m,n

∣∣∣∣∣γ(l)− 1

K

K−1∑
k=0

β(k, l)

∣∣∣∣∣
2
 1

2

,

(28)
where l is defined as in (27). The temporal expectation of the
FFB noise covariance matrix reduces to:

EN

{
N̂ffb

}
=

1

2K

K−1∑
k=0

EN
{
Sk(~n)Sk(~n)

H + Sk(~n
∗)Sk(~n

∗)H
}

=
σ2
n

K

K−1∑
k=0

[(
Ak −

1

2
C

)H (
Ak −

1

2
C

)
+

1

4
CHC

]
,

(29)

which is the Toeplitz matrix:[
EN

{
N̂ffb

}]
m,n

= σ2
n

(
δl +

1

2
γ(l)− 1

2K

K−1∑
k=0

β(k, l)

)
,

(30)

Inserting these expressions into (28), we find:∥∥∥EN {N̂ffb

}
− σ2

nI
∥∥∥
F
=

1

2

∥∥∥EN {N̂fb

}
− σ2

nI
∥∥∥
F

(31)

Asymptotically, for K →∞, we get:

lim
K→∞

EN

{
N̂ffb

}
= EN

{
N̂fb

}
= σ2

nI (32)
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Fig. 1. Low-SNR response for true MVDR (uniform weighting), APES
with forward-backward averaging, and APES with full forward-backward
averaging.
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Fig. 2. Effect of different forward-backward averaging schemes on S-APES
RMSE. Signal of interest arriving from 0◦ with A0 = 1. Interfering signal
arriving from various angles with identical amplitude. M=10, N=10, K=2,L=9,
SNR=-5dB. a) RMSE vs. interference direction of arrival. b) RMSE vs.
number of subarrays for interference from 45◦.

In other words, both estimators converge spatially to the true
noise covariance matrix. Proposition 2 follows directly from
(31) and (32).

A corollary of Proposition 2 is that, as SNR decreases,
neither FB-APES nor FFB-APES will converge (temporally)
to the uniform weight vector (unlike the true MVDR beam-
former). However, FFB-APES will yield a closer match than
FB-APES. This is verified in Fig. 1 for M = 10, L =M − 1,
and SNR → 0. For this case, FFB-APES will yield better
resolution than FB-APES, due to the more narrow mainlobe
of the former. For High-SNR scenarios, however, the perfor-
mance with respect to resolution is harder to predict.

Having shown that Q̂ffb is superior to Q̂fb with respect
to rank and white noise estimation, we propose that basing
S-APES on FFB will improve performance. We test our
hypothesis for the simple case of two unit-amplitude signals
with variable angular spacing arrving at a ULA of M = 10
elements. N = 10 temporal samples are used for covariance
matrix estimation. The results are shown in Fig. 2. We see that
FB leads to a decreased Root Mean Squared Error (RMSE) of
As compared to forward-only, and FFB leads to a decreased
RMSE compared to FB. In Fig. 2 a), we see that FB performs
better than forward-only, while FFB performs better than FB.
In Fig. 2 b), we see that, as the number of subarrays K
increases, the RMSE values of the different beamformers
converge.

IV. CONCLUSIONS

We have suggested a new method for forward-backward av-
eraging in S-APES, termed full forward-backward averaging.
The new method is proved to be superior to the conventional
method with respect to rank and convergence. It is verified
through simulations that full forward-backward averaging can
result in lower RMSE than conventional forward-backward
averaging.
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