]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ALIFAST/AliFTrackMaker.cxx
Remove compilation of grndmq
[u/mrichter/AliRoot.git] / ALIFAST / AliFTrackMaker.cxx
CommitLineData
65a39007 1//////////////////////////////////////////////////////////////////////////
2// //
3// AliFast TrackMaker class. //
4// //
5// //
6//////////////////////////////////////////////////////////////////////////
7// ---------------------------------------------------------------------//
8// //
9// origin: "res.f" fortran by Karel Safarik which was used to //
10// calculate the track resolution for TP. //
11// Different detectors and material can be selected. //
12// The basic routines compute information and error matrices //
13// used for the calculation of momentum resolution. //
14// see references: ASK KAREL?? //
15// //
16// C++ in AliFast framework: Elzbieta Richter-Was and Yiota Foka //
17// following general structure od Makers in //
18// ATLFast by R. Brun. //
19// //
20// purpose: provide a Maker which by using general basic routines of //
21// "res.f" computes the necessary elements of covariance matrix//
22// for the calculation of Track Resolution. //
23// Those elements are the product of the TrackResolMaker and //
24// are hold in TrackResol class. They are expected to be used //
25// together with additional information for the calculation of //
26// the smeared momenta. //
27// Additional information necessary for this calculation //
28// will be provided via classes or functions specific to the //
29// specific study and/or detectors. //
30// One can select the detector and/or material for a specific //
31// study. //
32// //
33// starting point: res.f will be initialy partially contained in //
34// AliFTrackResolMaker and in AliFDet //
35// It will be reorganised further in the framework of //
36// AliFast according to the needs. //
37// Names of variables are kept as in fortran code. //
38// //
39//////////////////////////////////////////////////////////////////////////
40
41
42#ifdef WIN32
43// there is a bug in the Microsoft VisualC++ compiler
44// this class must be compiled with optimization off on Windows
45# pragma optimize( "", off )
46#endif
47
48#include <TParticle.h>
49#include <TFile.h>
50#include <TSystem.h>
51#include <TRandom.h>
52#include <TROOT.h>
53#include <TMath.h>
54#include <TH1.h>
55#include <TH2.h>
56#include <TH3.h>
57
58#include "AliFast.h"
59//#include "AliFMCMaker.h"
60#include "AliFTrackMaker.h"
61#include "AliFTrack.h"
62#include "AliFDet.h"
63
64const Double_t kPi = TMath::Pi();
65const Double_t k2Pi = 2*kPi;
66const Double_t kPiHalf = kPi/2.;
67extern AliFast * gAliFast;
68ClassImp(AliFTrackMaker)
69
70//_____________________________________________________________________________
71AliFTrackMaker::AliFTrackMaker()
72{
73 fNTracks = 0;
2685bf00 74 fResID1Test = 0;
75 fResID2Test = 0;
76 fResID3Test = 0;
77 fResID4Test = 0;
78 fResID5Test = 0;
65a39007 79}
80
81//_____________________________________________________________________________
82AliFTrackMaker::AliFTrackMaker(const char *name, const char *title)
83 :AliFMaker(name,title)
84{
85// Default Setters for tracks
86
87 fFruits = new TClonesArray("AliFTrack",100, kFALSE);
88 fBranchName = "Tracks";
89 fNTracks = 0;
90// Please, how to do this optionally ??!!!
91 Save();
92}
93
94//_____________________________________________________________________________
95AliFTrackMaker::~AliFTrackMaker()
96{
97 //dummy
98}
99
100//_____________________________________________________________________________
101AliFTrack *AliFTrackMaker::AddTrack(Int_t code, Double_t charge,
102 Double_t pT, Double_t eta,Double_t phi,
103 Double_t v11, Double_t v22, Double_t v33,
104 Double_t v12, Double_t v13, Double_t v23, Int_t iFlag)
105{
106// Add a new track to the list of tracks
107
108 //Note the use of the "new with placement" to create a new track object.
109 //This complex "new" works in the following way:
110 // tracks[i] is the value of the pointer for track number i in the TClonesArray
111 // if it is zero, then a new track must be generated. This typically
112 // will happen only at the first events
113 // If it is not zero, then the already existing object is overwritten
114 // by the new track parameters.
115 // This technique should save a huge amount of time otherwise spent
116 // in the operators new and delete.
117
118 TClonesArray &tracks = *(TClonesArray*)fFruits;
119 return new(tracks[fNTracks++]) AliFTrack(code,charge,pT,eta,phi,
120 v11, v22, v33, v12, v13, v23, iFlag);
121}
122
123//_____________________________________________________________________________
124void AliFTrackMaker::Clear(Option_t *option)
125{
126 //Reset Track Maker
127
128 fNTracks = 0;
129 AliFMaker::Clear(option);
130}
131
132//_____________________________________________________________________________
133void AliFTrackMaker::Draw(Option_t *)
134{
135// Dummy Draw
136
137}
138
139//_____________________________________________________________________________
140void AliFTrackMaker::Init()
141{
142 //Create control histograms
143 if(gAliFast->TestTrack() == 0){
144
145 fResID11 = new TH1D("ResID11","Elec: delta(1/pTotal)*pTotal",1000,-0.5,0.5);
146 fResID12 = new TH1D("ResID12","Elec: delta(lambda)/lambda",1000,-0.01,0.01);
147 fResID13 = new TH1D("ResID13","Elec: delta(phi)/phi",1000,-0.01,0.01);
148
149 fResID21 = new TH1D("ResID21","Pion: delta(1/pTotal)*pTotal",1000,-1.0,1.0);
150 fResID22 = new TH1D("ResID22","Pion: delta(lambda)/lambda",1000,-1.0,1.0);
151 fResID23 = new TH1D("ResID23","Pion: delta(phi)/phi",1000,-1.0,1.0);
152
153 fResID31 = new TH1D("ResID31","Kaon: delta(1/pTotal)*pTotal",1000,-1.0,1.0);
154 fResID32 = new TH1D("ResID32","Kaon: delta(lambda)/lambda",1000,-1.0,1.0);
155 fResID33 = new TH1D("ResID33","Kaon: delta(phi)/phi",1000,-1.0,1.0);
156
157 fResID41 = new TH1D("ResID41","Proton: delta(1/pTotal)*pTotal",1000,-1.0,1.0);
158 fResID42 = new TH1D("ResID42","Proton: delta(lambda)/lambda",1000,-1.0,1.0);
159 fResID43 = new TH1D("ResID43","Proton: delta(phi)/phi",1000,-1.0,1.0);
160
161 }
162 //Create test histograms for TestJob only
163 if(gAliFast->TestTrack() == 1){
164 fResID1Test = new TH1D("ResID1Test","histogram21 from res.f",1000,0.075,10.075);
165 fResID2Test = new TH1D("ResID2Test","histogram21 from res.f",1000,0.075,10.075);
166 fResID3Test = new TH1D("ResID3Test","histogram21 from res.f",1000,0.075,10.075);
167 fResID4Test = new TH1D("ResID4Test","histogram21 from res.f",1000,0.075,10.075);
168 fResID5Test = new TH1D("ResID5Test","histogram21 from res.f",1000,0.075,10.075);
169 }
170
171 //Set particle masses
172 SetPionMass();
173 SetKaonMass();
174 SetElectronMass();
175 SetProtonMass();
176
177 //Switch on/off tracks reconstruction
178 SetRecTrack();
179
180}
181
182//_____________________________________________________________________________
183// Calculate track and its resolution
184//_____________________________________________________________________________
185void AliFTrackMaker::Make()
186{
187 Double_t v11, v22, v33, v12, v13, v23;
188 Int_t iFlag;
189
190 fNTracks = 0;
191
192 // Check if it is a TestJob
193 if(gAliFast->TestTrack() == 1){
194 // Run test job
195 MakeTest(10);
196 }else{
197 // Run production job
198 // Get pointers to Particles arrays and TClonesArray
199
65a39007 200 Int_t idPart, idTrack;
201 Double_t charge, pT, eta, phi;
202 TParticle *part;
a153408e 203 Int_t nparticles = gAlice->GetNtrack();
65a39007 204 printf("%10s%10d\n","nparticles",nparticles);
205 for(Int_t ind=0;ind<nparticles;ind++) {
a153408e 206 part = gAlice->Particle(ind);
65a39007 207 idPart = part->GetPdgCode();
208 charge = part->GetPDG()->Charge();
209 pT = part->Pt();
210 eta = part->Eta();
211 phi = part->Phi();
212 printf("%10s%10d%20.5e%20.5e%20.5e%20.5e\n","Particle",idPart,charge,pT,eta,phi);
213 // Check convention for tracks reconstruction
214 idTrack = 0;
215 if(TMath::Abs(idPart) == 11) idTrack = 1;
216 if(TMath::Abs(idPart) == 111 || TMath::Abs(idPart) == 211) idTrack = 2;
217 if(TMath::Abs(idPart) == 311 || TMath::Abs(idPart) == 321) idTrack = 3;
218 if(TMath::Abs(idPart) == 2212) idTrack = 4;
219
220 if(idTrack > 0 && fRecTrack > 0){
221 // Check if track should be reconstructed
222 if((fRecTrack == 1 && idTrack == 1) ||
223 (fRecTrack == 2 && idTrack == 2) ||
224 (fRecTrack == 3 && idTrack == 3) ||
225 (fRecTrack == 4 && idTrack == 4) ||
226 fRecTrack == 100 ) {
227 // Tracks are reconstructed
228 ErrorMatrix(idTrack,pT,eta, v11, v22, v33, v12, v13, v23, iFlag);
229
230 // Calculate and smear track parameters
231 Double_t lambda, cosLambda, pTotal,pInverse;
232 Double_t pInverseSmea, lambdaSmea, phiSmea;
233 Double_t a1, a2, a3, b2, b3, c3;
234 Double_t rn1, rn2, rn3;
235
236 lambda = kPiHalf -2.0*TMath::ATan(TMath::Exp(-eta));
237 cosLambda = TMath::Cos(lambda);
238 pTotal = pT/cosLambda;
239 pInverse = 1.0/pTotal;
240
241 a1 = TMath::Sqrt(v11);
242 if(a1 == 0.){
243 a2 = 0;
244 a3 = 0;
245 }else{
246 a2 = v12/a1;
247 a3 = v13/a1;
248 }
249 b2 = TMath::Sqrt(v22-a2*a2);
250 if(b2 == 0.){
251 b3 = 0;
252 }else{
253 b3 = (v23 - a2*a3)/b2;
254 }
255 c3 = TMath::Sqrt(v33 - a3*a3 -b3*b3);
256 rn1 = gRandom->Gaus(0,1);
257 rn2 = gRandom->Gaus(0,1);
258 rn3 = gRandom->Gaus(0,1);
259
260 pInverseSmea = pInverse + a1*rn1;
261 lambdaSmea = lambda + a2*rn1 + b2*rn2;
262 phiSmea = phi + a3*rn1 + b3*rn2 + c3*rn3;
263
264 // Fill control histograms
265 if(idTrack == 1){
266 fResID11->Fill((pInverseSmea-pInverse)/pInverse);
267 fResID12->Fill((lambdaSmea-lambda)/lambda);
268 fResID13->Fill((phiSmea-phi)/phi);
269 }
270 else if(idTrack == 2){
271 fResID21->Fill((pInverseSmea-pInverse)/pInverse);
272 fResID22->Fill((lambdaSmea-lambda)/lambda);
273 fResID23->Fill((phiSmea-phi)/phi);
274 }
275 else if(idTrack == 3){
276 fResID31->Fill((pInverseSmea-pInverse)/pInverse);
277 fResID32->Fill((lambdaSmea-lambda)/lambda);
278 fResID33->Fill((phiSmea-phi)/phi);
279 }
280 else if(idTrack == 4){
281 fResID41->Fill((pInverseSmea-pInverse)/pInverse);
282 fResID42->Fill((lambdaSmea-lambda)/lambda);
283 fResID43->Fill((phiSmea-phi)/phi);
284 }
285 }else{
286 // Tracks are not reconstructed
287 v11=0.;
288 v12=0.;
289 v13=0.;
290 v22=0.;
291 v23=0.;
292 v33=0.;
293 iFlag=0;
294 }
295 // Store resolution variables to AliFTrack ClonesArray
296 AddTrack(idTrack, charge, pT, eta, phi, v11, v22, v33, v12, v13, v23, iFlag);
297 printf("%10s%10d%20.5e%20.5e%20.5e%20.5e%20.5e%20.5e%20.5e%20.5e%20.5e%20.5e%10d\n",
298 "Track",idTrack,charge,pT,eta,phi,v11, v22, v33, v12, v13, v23, iFlag);
299 }
300
301 }
302 }
303}
304
305//_____________________________________________________________________________
306void AliFTrackMaker::Finish()
307{
308 // For TestJob only
309 if(gAliFast->TestTrack() == 1){
310 /*
311 // Draw test histograms
312 TCanvas *c1 = new TCanvas("c1"," ",200,10,600,480);
313 c1->Divide(2,3);
314 c1->cd(1); fResID1Test->Draw();
315 c1->cd(2); fResID2Test->Draw();
316 c1->cd(3); fResID3Test->Draw();
317 c1->cd(4); fResID4Test->Draw();
318 c1->cd(5); fResID5Test->Draw();
319 c1->Update();
320 // Store TestRes.eps file
321 c1->Print("TestRes.eps");
322 */
323 // Store histograms on file
324 TFile f2("TestRes.root","RECREATE","Test Res.f");
325 fResID1Test->Write();
326 fResID2Test->Write();
327 fResID3Test->Write();
328 fResID4Test->Write();
329 fResID5Test->Write();
330 f2.Close();
331 }
332}
333//_____________________________________________________________________________
334void AliFTrackMaker::ErrorMatrix(Int_t idTrack, Double_t pT, Double_t eta,
335 Double_t &v11, Double_t &v22, Double_t &v33, Double_t &v12, Double_t &v13, Double_t &v23,
336 Int_t &iFlag)
337{
338 ///////////////////////////////////////////////
339 //idTrack track type input //
340 //pT transverse mom input //
341 //lambda deep angle input //
342 //v11,v22,v23 error matrix output //
343 //v12,v13,v23 output //
344 //iFlag output //
345 ///////////////////////////////////////////////
346
347 AliFDet *detector = gAliFast->Detector();
348 Int_t nDet = detector->NDet();
349 Int_t nDetActive = detector->NDetActive();
350 Int_t nTwice = nDetActive + nDetActive;
351
352 Double_t rTrack, rTrackInverse, pTotal, pInverse, diffPInverse;
353 Double_t safety;
354 Double_t cosLambda, tanLambda, diffLambda;
355 Double_t rDet;
356
357 Double_t hh0[kNMaxDet2][kNMaxDet2], hhi0[kNMaxDet2][kNMaxDet2];
358 Double_t hh1[kNMaxDet2][kNMaxDet2], hhi1[kNMaxDet2][kNMaxDet2];
359 Double_t dhhiOverPInverse[kNMaxDet2][kNMaxDet2];
360 Double_t dhhiOverLambda[kNMaxDet2][kNMaxDet2];
361 Double_t a1[kNMaxDet2][kNMaxDet2], a2[kNMaxDet2][kNMaxDet2];
362 Double_t a0PInverse[kNMaxDet2];
363 Double_t a0Lambda[kNMaxDet2];
364 Double_t a0Phi[kNMaxDet2];
365
366 Double_t vF11, vF12, vF13, vF22, vF23, vF33, d1, d2, d3, det;
367 Int_t idet, icyl, im, in;
368 Double_t phiHalf;
369 Double_t lambda;
370
371 lambda = kPiHalf -2.0*TMath::ATan(TMath::Exp(-eta));
372 rTrack = detector->ConstMag()*pT;
373 safety = 10.0;
374 if(2.0*rTrack < (detector->RDet(nDet) + safety)){
375 iFlag = 0;
376 v11 = 0;
377 v22 = 0;
378 v33 = 0;
379 v12 = 0;
380 v13 = 0;
381 v23 = 0;
382 return;
383 }
384 iFlag = 1;
385 cosLambda = TMath::Cos(lambda);
386 pTotal = pT/cosLambda;
387 pInverse = 1.0/pTotal;
388 diffPInverse = pInverse*1.0e-5;
389 diffLambda = 1.0e-4;
390
391 // Compute likelihood and derivatives
392
393 LogLikelyhood(idTrack, pInverse, lambda);
394 for(icyl=1; icyl<nTwice+1; icyl++){
395 for(im=1; im<nTwice+1; im++){
396 hh0[icyl][im] = HH(icyl,im);
397 hhi0[icyl][im] = HHI(icyl,im);
398 }
399 }
400 LogLikelyhood(idTrack, pInverse+diffPInverse,lambda);
401 for(icyl=1; icyl<nTwice+1; icyl++){
402 for(im=1; im<nTwice+1; im++){
403 hh1[icyl][im] = HH(icyl,im);
404 hhi1[icyl][im] = HHI(icyl,im);
405 }
406 }
407 for(icyl=1; icyl<nTwice+1; icyl++){
408 for(im=1; im<icyl+1; im++){
409 dhhiOverPInverse[icyl][im] = (hhi1[icyl][im]-hhi0[icyl][im])/diffPInverse;
410 }
411 }
412 LogLikelyhood(idTrack, pInverse, lambda+diffLambda);
413 for(icyl=1; icyl<nTwice+1; icyl++){
414 for(im=1; im<nTwice+1; im++){
415 hh1[icyl][im] = HH(icyl,im);
416 hhi1[icyl][im] = HHI(icyl,im);
417 }
418 }
419 for(icyl=1; icyl<nTwice+1; icyl++){
420 for(im=1; im<icyl+1; im++){
421 dhhiOverLambda[icyl][im] = (hhi1[icyl][im]-hhi0[icyl][im])/diffLambda;
422 }
423 }
424
425 // Compute additional derivatives
426 rTrackInverse = 1.0/rTrack;
427 tanLambda = TMath::Tan(lambda);
428 icyl = 0;
429 for(idet=1; idet<nDet+1;idet++){
430 if(detector->IFlagDet(idet) > 0){
431 icyl = icyl + 1;
432 rDet = detector->RDet(idet);
433 phiHalf = TMath::ASin(0.5*rDet*rTrackInverse);
434 Double_t rHelp = rDet /
435 (2.0 * TMath::Sqrt(1.0-(0.5 *rDet*rTrackInverse)*
436 (0.5 *rDet*rTrackInverse)));
437 a0PInverse[icyl] = - rDet* rHelp
438 /(detector->ConstMag()*cosLambda);
439 a0Lambda[icyl] = - rDet* rHelp
440 * tanLambda * rTrackInverse;
441 a0Phi[icyl] = rDet;
442 a0PInverse[nDetActive+icyl] = 2.0 * tanLambda
443 *rTrack*(rHelp-rTrack*phiHalf)
444 /(detector->ConstMag()*cosLambda);
445 a0Lambda[nDetActive+icyl] = 2.0 * ( rHelp*tanLambda*tanLambda
446 + rTrack*phiHalf);
447 a0Phi[nDetActive+icyl] = 0.0 ;
448 }
449 }
450
451 // Compute information matrix
452
453 vF11=0.0;
454 vF12=0.0;
455 vF13=0.0;
456 vF22=0.0;
457 vF23=0.0;
458 vF33=0.0;
459 for(icyl=1; icyl<nTwice+1; icyl++){
460 d1=0.0;
461 d2=0.0;
462 d3=0.0;
463 for(im=1; im < icyl+1; im++){
464 d1 = d1 + hhi0[icyl][im]*a0PInverse[im];
465 d2 = d2 + hhi0[icyl][im]*a0Lambda[im];
466 d3 = d3 + hhi0[icyl][im]*a0Phi[im];
467 }
468 vF11 =vF11 + d1*d1;
469 vF12 =vF12 + d1*d2;
470 vF13 =vF13 + d1*d3;
471 vF22 =vF22 + d2*d2;
472 vF23 =vF23 + d2*d3;
473 vF33 =vF33 + d3*d3;
474 }
475 for(icyl=1; icyl<nTwice+1; icyl++){
476 for(im=1; im<icyl+1; im++){
477 a1[icyl][im] = 0;
478 a2[icyl][im] = 0;
479 for(in=im; in<icyl+1;in++){
480 a1[icyl][im]=a1[icyl][im]+dhhiOverPInverse[icyl][in]*hh0[im][in];
481 a2[icyl][im]=a2[icyl][im]+dhhiOverLambda[icyl][in]*hh0[im][in];
482 }
483 vF11=vF11+a1[icyl][im]*a1[icyl][im];
484 vF12=vF12+a1[icyl][im]*a2[icyl][im];
485 vF22=vF22+a2[icyl][im]*a2[icyl][im];
486 }
487 vF11=vF11+a1[icyl][icyl]*a1[icyl][icyl];
488 vF12=vF12+a1[icyl][icyl]*a2[icyl][icyl];
489 vF22=vF22+a2[icyl][icyl]*a2[icyl][icyl];
490 }
491
492 // Invert information matrix
493
494 det=( vF11*vF22 - vF12*vF12 ) *vF33 + (vF12*vF23 - vF13*vF22)*vF13
495 + (vF12*vF13 - vF11*vF23)*vF23;
496
497 v11 = (vF22*vF33 - vF23*vF23)/det;
498 v22 = (vF11*vF33 - vF13*vF13)/det;
499 v33 = (vF11*vF22 - vF12*vF12)/det;
500 v12 = (vF13*vF23 - vF12*vF33)/det;
501 v13 = (vF12*vF23 - vF13*vF22)/det;
502 v23 = (vF12*vF13 - vF11*vF23)/det;
503
504 }
505//_____________________________________________________________________________//
506void AliFTrackMaker::LogLikelyhood(Int_t idTrack, Double_t pInverse,Double_t lambda)
507{
508 ///////////////////////////////////////////////
509 //hh ?? output //
510 //hhi ?? output //
511 //idTrack track type input //
512 //pInverse inverse momentum input //
513 //lambda polar angle of track input //
514 ///////////////////////////////////////////////
515
516
517 AliFDet *detector = gAliFast->Detector();
518 Int_t nDet = detector->NDet();
519 Int_t nDetActive = detector->NDetActive();
520 Int_t nTwice = nDetActive + nDetActive;
521
522 Double_t rDet, rDetSQ;
523 Int_t idet, icyl, im, imc;
524 Double_t cosLambda, tanLambda, pTotal, pT, rTrack, rTrackSQ;
525 Double_t beta, overPBeta, rTrackInv, thickCorr, temp1, temp2;
526 Double_t partMassSQ;
527 Double_t aShelp[kNMaxDet2], dShelp[kNMaxDet2];
528 Double_t projXVXT[kNMaxDet2],projYVXT[kNMaxDet2], projZVXT[kNMaxDet2];
529 Double_t proj[kNMaxDet2][kNMaxDet2];
530 Double_t erroScatt[kNMaxDet2], variance[kNMaxDet2][kNMaxDet2];
531 Double_t erroSQ[kNMaxDet2];
532 Double_t hh[kNMaxDet2][kNMaxDet2];
533 Double_t hhi[kNMaxDet2][kNMaxDet2];
534 Double_t errorVX, errorVY, errorVZ;
535
536 cosLambda = TMath::Cos(lambda);
537 tanLambda = TMath::Tan(lambda);
538 pTotal = 1.0/pInverse;
539 pT = pTotal * cosLambda;
540 rTrack = detector->ConstMag() * pTotal * cosLambda;
541 rTrackSQ = rTrack * rTrack;
542 partMassSQ= ParticleMass(idTrack)*ParticleMass(idTrack);
543 beta = pTotal / TMath::Sqrt(partMassSQ+pTotal*pTotal);
544 overPBeta = 1./(pTotal*beta);
545 rTrackInv = 1./rTrack;
546 errorVX = detector->ErrorVertexX();
547 errorVY = detector->ErrorVertexY();
548 errorVZ = detector->ErrorVertexZ();
549
550
551 erroScatt[0]=0.0;
552 erroScatt[1]=0.0;
553 for(idet=1; idet < nDet; idet++){
554 thickCorr = detector->ThickDet(idet)/TMath::Sqrt(cosLambda*
555 TMath::Sqrt(1.0-0.25*(detector->RDetSQ(idet)/rTrackSQ)));
556 if(detector->IFlagGas(idet) == 0){
557 thickCorr = thickCorr * (1.3266 + 0.076 * TMath::Log(thickCorr));}
558 thickCorr = overPBeta * thickCorr;
559 erroScatt[idet+1]=thickCorr*thickCorr;
560 }
561
562
563 icyl = 0;
564 for(idet=1; idet<nDet+1; idet++){
565 rDet = detector->RDet(idet);
566 rDetSQ = rDet*rDet;
567 dShelp[idet] = TMath::Sqrt(4.0*rTrackSQ-rDetSQ);
568 aShelp[idet] = TMath::ASin(rDet/(rTrack+rTrack));
569 if(detector->IFlagDet(idet) > 0) {
570 icyl = icyl + 1;
571 projXVXT[icyl] = rDet * rTrackInv;
572 projXVXT[nDetActive+icyl] = -tanLambda;
573 temp1 = (rTrackSQ + rTrackSQ - rDetSQ)/dShelp[idet];
574 temp2 = rDet/dShelp[idet];
575 projYVXT[icyl] = temp1*rTrackInv;
576 projYVXT[nDetActive+icyl] = tanLambda * temp2;
577 projZVXT[icyl] = 0.0;
578 projZVXT[nDetActive+icyl] = 1.0;
579 proj[icyl][1] = 0.0;
580 proj[nDetActive+icyl][0] = 0.0;
581 proj[nDetActive+icyl][nDet] = 0.0;
582 proj[icyl][nDet] = 0.0;
583 for(im=2; im<idet+1; im++){
584 proj[icyl][im]= (( rDet
585 *(rTrackSQ+rTrackSQ-detector->RDetSQ(im-1))
586 - detector->RDet(im-1)*temp1*dShelp[im-1])
587 /((rTrackSQ + rTrackSQ)*cosLambda));
588 proj[nDetActive+icyl][im]= 0.5 * detector->RDet(im-1)
589 * rTrackInv
590 * tanLambda * (detector->RDet(im-1)
591 - dShelp[im-1]*temp2)/cosLambda;
592 proj[nDetActive+icyl][nDet+im]= (rTrack+rTrack) * (aShelp[idet] - aShelp[im-1])
593 + ( rDet*dShelp[im-1]-detector->RDet(im-1)*dShelp[idet])
594 * dShelp[im-1] * tanLambda * tanLambda
595 / (dShelp[idet] * (rTrack+rTrack));
596 proj[icyl][nDet+im]= tanLambda
597 * (rDet*detector->RDet(im-1)*dShelp[im-1]
598 / (rTrackSQ+rTrackSQ)
599 - (rDetSQ + detector->RDetSQ(im-1)
600 - rDetSQ * detector->RDetSQ(im-1)
601 / (rTrackSQ+rTrackSQ))
602 / dShelp[idet]);
603 }
604 for(im=idet+1; im < nDet+1; im++){
605 proj[icyl][im] = 0.0;
606 proj[nDetActive+icyl][im] = 0.0;
607 proj[nDetActive+icyl][nDet+im] = 0.0;
608 proj[icyl][nDet+im] = 0.0;
609 }
610 if(detector->IFlagDet(idet) == 1){
611 erroSQ[icyl] = detector->ErrorRPhi(idet);
612 erroSQ[nDetActive+icyl] = detector->ErrorZ(idet);
613 }else{
614 TPCResolution(pT, rDet, lambda);
615 erroSQ[icyl] = SigmaRPhiSQ();
616 erroSQ[nDetActive+icyl] = SigmaZSQ();
617 }
618 erroSQ[icyl] = erroSQ[icyl] + detector->ErrorR(idet)*temp2*temp2;
619 erroSQ[nDetActive+icyl] = erroSQ[nDetActive+icyl]
620 + detector->ErrorR(idet)*tanLambda*tanLambda;
621 }
622 }
623 for(icyl=1; icyl<nTwice+1; icyl++){
624 for(im=1; im<icyl+1; im++){
625 variance[icyl][im]=
626 projXVXT[icyl]*projXVXT[im]*errorVX
627 +projYVXT[icyl]*projYVXT[im]*errorVY
628 +projZVXT[icyl]*projZVXT[im]*errorVZ;
629 for(imc=1; imc<nDet+1; imc++){
630 variance[icyl][im]=variance[icyl][im]
631 +(proj[icyl][imc]*proj[im][imc]
632 + proj[icyl][nDet+imc]*proj[im][nDet+imc])
633 * erroScatt[imc];
634 }
635 }
636 variance[icyl][icyl] = variance[icyl][icyl]+erroSQ[icyl];
637 }
638
639 for(icyl=1; icyl<nTwice+1; icyl++){
640 for(im=icyl; im<nTwice+1; im++){
641 hh[icyl][im]=variance[im][icyl];
642 for(imc=1; imc<icyl;imc++){
643 hh[icyl][im]=hh[icyl][im]-hh[imc][icyl]*hh[imc][im];
644 }
645 if(im == icyl){
646 hh[icyl][im] = TMath::Sqrt(hh[icyl][im]);
647 } else {
648 hh[icyl][im] = hh[icyl][im]/hh[icyl][icyl];
649 }
650 }
651 }
652
653 for(icyl=1; icyl<nTwice+1; icyl++){
654 hhi[icyl][icyl] = 1.0 / hh[icyl][icyl];
655 for(im=1; im<icyl; im++){
656 hhi[icyl][im] = 0.0;
657 for(imc=im; imc<icyl; imc++){
658 hhi[icyl][im] = hhi[icyl][im]-hh[imc][icyl]*hhi[imc][im];
659 }
660 hhi[icyl][im] = hhi[icyl][im]*hhi[icyl][icyl];
661 }
662 }
663
664 for(icyl=1; icyl<nTwice+1; icyl++){
665 for(im=1; im<nTwice+1; im++){
666 SetHH(icyl,im,hh[icyl][im]);
667 SetHHI(icyl,im,hhi[icyl][im]);
668 }
669 }
670
671
672}
673//_____________________________________________________________________________
674// translation of routine tpc_resolution of res.f
675//_____________________________________________________________________________
676void AliFTrackMaker::TPCResolution(Double_t pTransv, Double_t radiPad, Double_t lambda)
677{
678 ///////////////////////////////////////////////
679 //sigmaRPhiSQ resolution in r-phi output //
680 //sigmaZSQ resolution in z output //
681 //pTransv transverse momentum input //
682 //radiPad radius of pad row input //
683 //lambda polar angle of track input //
684 //
685 //units: cm, GeV/c, radian //
686 //parametrisation of TPC resolution //
687 //version of 03.07.1995 //
688 //source: Marek Kowalski, Karel Safarik //
689 ///////////////////////////////////////////////
690
691 Double_t aRCoeff=0.41818e-2;
692 Double_t bRCoeff=0.17460e-4;
693 Double_t cRCoeff=0.30993e-8;
694 Double_t dRCoeff=0.41061e-6;
695 Double_t aZCoeff=0.39610e-2;
696 Double_t bZCoeff=0.22443e-4;
697 Double_t cZCoeff=0.51504e-1;
698
699 Double_t sigmaRPhiSQ;
700 Double_t sigmaZSQ;
701
702 sigmaRPhiSQ = aRCoeff - bRCoeff * radiPad * TMath::Tan(lambda)+
703 (cRCoeff * (radiPad/pTransv) + dRCoeff) * radiPad/pTransv;
704
705 sigmaZSQ = aZCoeff - bZCoeff * radiPad * TMath::Tan(lambda)+
706 cZCoeff * TMath::Tan(lambda)*TMath::Tan(lambda);
707
708 if(sigmaRPhiSQ < 1.0e-6 ) sigmaRPhiSQ = 1.0e-6;
709 if(sigmaZSQ < 1.0e-6 ) sigmaZSQ = 1.0e-6;
710
711 sigmaRPhiSQ = (TMath::Sqrt(sigmaRPhiSQ) + 0.005)
712 * (TMath::Sqrt(sigmaRPhiSQ) + 0.005);
713 sigmaZSQ = (TMath::Sqrt(sigmaZSQ) + 0.005)
714 * (TMath::Sqrt(sigmaZSQ) + 0.005);
715
716 SetSigmaRPhiSQ(sigmaRPhiSQ);
717 SetSigmaZSQ(sigmaZSQ);
718
719
720}
721
722//_____________________________________________________________________________
723// returns the mass given particle ID
724//-----------------------------------------------------------------------------
725Double_t AliFTrackMaker::ParticleMass(Int_t idTrack)
726{
727 Double_t mass = 0.0;
728
729 if(idTrack == 2){ mass = fPionMass;}
730 else if(idTrack == 3){ mass = fKaonMass;}
731 else if(idTrack == 1) {mass = fElectronMass;}
732 else if(idTrack == 4) {mass = fProtonMass;}
733
734 return mass;
735
736}
737
738//_____________________________________________________________________________
739// returns the rapidity given particle pT, pz
740//-----------------------------------------------------------------------------
741Double_t AliFTrackMaker::Rapidity(Double_t pt, Double_t pz)
742{
743// Compute rapidity
744
745 Double_t etalog = TMath::Log((TMath::Sqrt(pt*pt + pz*pz) + TMath::Abs(pz))/pt);
746 if (pz < 0 ) return -TMath::Abs(etalog);
747 else return TMath::Abs(etalog);
748}
749
750//_____________________________________________________________________________
751// returns the phi angle given particle px, py
752//-----------------------------------------------------------------------------
753Double_t AliFTrackMaker::Angle(Double_t x, Double_t y)
754{
755// Compute phi angle of particle
756// ... this is a copy of function ULANGL
757// .. sign(a,b) = -abs(a) if b < 0
758// = abs(a) if b >= 0
759
760 Double_t angle = 0;
761 Double_t r = TMath::Sqrt(x*x + y*y);
762 if (r < 1e-20) return angle;
763 if (TMath::Abs(x)/r < 0.8) {
764 angle = TMath::Sign((Double_t)TMath::Abs(TMath::ACos(x/r)), y);
765 } else {
766 angle = TMath::ASin(y/r);
767 if (x < 0 ) {
768 if(angle >= 0) angle = kPi - angle;
769 else angle = -kPi - angle;
770 }
771 }
772 return angle;
773}
774//_____________________________________________________________________________
775Int_t AliFTrackMaker::Charge(Int_t kf)
776{
777//...this is copy of function LUCHGE
778//...Purpose: to give three times the charge for a particle/parton.
779
780 static Int_t kchg[500] = { -1,2,-1,2,-1,2,-1,2,0,0,-3,0,-3,0,-3,0,-3,0,
781 0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,3,0,0,3,0,-1,0,0,0,0,0,0,0,0,0,0,0,
782 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
783 2,-1,2,-1,2,3,0,0,0,0,0,0,0,0,0,0,0,3,0,3,3,0,3,0,3,0,3,0,0,0,0,0,
784 0,0,0,0,0,3,0,3,3,0,3,0,3,0,3,0,0,0,0,0,0,0,0,0,0,3,0,3,3,0,3,0,3,
785 0,3,0,0,0,0,0,0,0,0,0,0,3,0,3,3,0,3,0,3,0,3,0,0,0,0,0,0,0,0,0,0,3,
786 0,3,3,0,3,0,3,0,3,0,0,0,0,0,0,0,0,0,0,3,0,3,3,0,3,0,3,0,3,0,0,0,0,
787 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
788 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
789 3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,
790 0,3,0,0,0,0,0,0,0,0,-3,0,0,0,0,0,0,0,0,3,0,-3,0,3,-3,0,0,0,3,6,0,
791 3,0,0,0,0,0,-3,0,3,-3,0,-3,0,0,0,0,-3,0,3,6,-3,0,3,-3,0,-3,0,3,6,
792 0,3,0,0,0,0,0,-3,0,3,-3,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
793 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
794 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
795 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 };
796
797// extern integer kfcomp_(integer *);
798 Int_t ipower;
799 Int_t ret = 0;
800 Int_t kfa = TMath::Abs(kf);
801 Int_t kc = Compress(kfa);
802
803//...Initial values. Simple case of direct readout.
804 if (kc == 0) {
805 } else if (kfa <= 100 || kc <= 80 || kc > 100) {
806 ret = kchg[kc-1];
807
808// ...Construction from quark content for heavy meson, diquark, baryon.
809 } else if (kfa/1000 % 10 == 0) {
810 ipower = kfa/100 % 10;
811 ret = (kchg[kfa / 100 % 10 - 1] - kchg[kfa/10 % 10 - 1])*Int_t(TMath::Power(-1, ipower));
812 } else if (kfa / 10 % 10 == 0) {
813 ret = kchg[kfa/1000 % 10 - 1] + kchg[kfa/100 % 10 - 1];
814 } else {
815 ret = kchg[kfa/1000 % 10 - 1] + kchg[kfa/100 % 10 - 1] + kchg[kfa/10 % 10 - 1];
816 }
817
818// ...Add on correct sign.
819 if (kf > 0) return ret;
820 else return -ret;
821}
822//_____________________________________________________________________________
823Int_t AliFTrackMaker::Compress(Int_t kf)
824{
825//...this is copy of function LUCOMP
826//...Purpose: to compress the standard KF codes for use in mass and decay
827//...arrays; also to check whether a given code actually is defined.
828// from BLOCK LUDATA
829 static Int_t kchg[500] = { 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,0,0,0,0,
830 0,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
831 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,1,
832 1,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,
833 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,
834 0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,
835 1,1,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,
836 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
837 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,
838 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,
839 0,0,1,0,1,1,0,0,0,0,0,0,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,0,0,0,0,1,1,
840 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,1,1,
841 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
842 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
843 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
844 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 };
845 static Int_t kftab[25] = { 211,111,221,311,321,130,310,213,113,223,313,
846 323,2112,2212,210,2110,2210,110,220,330,440,30443,30553,0,0 };
847 static Int_t kctab[25] = { 101,111,112,102,103,221,222,121,131,132,122,
848 123,332,333,281,282,283,284,285,286,287,231,235,0,0 };
849
850 Int_t ret = 0;
851 Int_t kfla, kflb, kflc, kflr, kfls, kfa, ikf;
852
853 kfa = TMath::Abs(kf);
854//...Simple cases: direct translation or table.
855 if (kfa == 0 || kfa >= 100000) {
856 return ret;
857 } else if (kfa <= 100) {
858 ret = kfa;
859 if (kf < 0 && kchg[kfa - 1] == 0) ret = 0;
860 return ret;
861 } else {
862 for (ikf = 1; ikf <= 23; ++ikf) {
863 if (kfa == kftab[ikf-1]) {
864 ret = kctab[ikf-1];
865 if (kf < 0 && kchg[ret-1] == 0) ret = 0;
866 return ret;
867 }
868 }
869 }
870// ...Subdivide KF code into constituent pieces.
871 kfla = kfa / 1000%10;
872 kflb = kfa / 100%10;
873 kflc = kfa / 10%10;
874 kfls = kfa%10;
875 kflr = kfa / 10000%10;
876// ...Mesons.
877 if (kfa - kflr*10000 < 1000) {
878 if (kflb == 0 || kflb == 9 || kflc == 0 || kflc == 9) {
879 } else if (kflb < kflc) {
880 } else if (kf < 0 && kflb == kflc) {
881 } else if (kflb == kflc) {
882 if (kflr == 0 && kfls == 1) { ret = kflb + 110;
883 } else if (kflr == 0 && kfls == 3) { ret = kflb + 130;
884 } else if (kflr == 1 && kfls == 3) { ret = kflb + 150;
885 } else if (kflr == 1 && kfls == 1) { ret = kflb + 170;
886 } else if (kflr == 2 && kfls == 3) { ret = kflb + 190;
887 } else if (kflr == 0 && kfls == 5) { ret = kflb + 210;
888 }
889 } else if (kflb <= 5) {
890 if (kflr == 0 && kfls == 1) { ret = (kflb-1)*(kflb-2)/2 + 100 + kflc;
891 } else if (kflr == 0 && kfls == 3) { ret = (kflb-1)*(kflb-2)/2 + 120 + kflc;
892 } else if (kflr == 1 && kfls == 3) { ret = (kflb-1)*(kflb-2)/2 + 140 + kflc;
893 } else if (kflr == 1 && kfls == 1) { ret = (kflb-1)*(kflb-2)/2 + 160 + kflc;
894 } else if (kflr == 2 && kfls == 3) { ret = (kflb-1)*(kflb-2)/2 + 180 + kflc;
895 } else if (kflr == 0 && kfls == 5) { ret = (kflb-1)*(kflb-2)/2 + 200 + kflc;
896 }
897 } else if (kfls == 1 && kflr <= 1 || kfls == 3 && kflr <= 2 || kfls == 5 && kflr == 0) {
898 ret = kflb + 80;
899 }
900// ...Diquarks.
901 } else if ((kflr == 0 || kflr == 1) && kflc == 0) {
902 if (kfls != 1 && kfls != 3) {
903 } else if (kfla == 9 || kflb == 0 || kflb == 9) {
904 } else if (kfla < kflb) {
905 } else if (kfls == 1 && kfla == kflb) {
906 } else { ret = 90;
907 }
908// ...Spin 1/2 baryons.
909 } else if (kflr == 0 && kfls == 2) {
910 if (kfla == 9 || kflb == 0 || kflb == 9 || kflc == 9) {
911 } else if (kfla <= kflc || kfla < kflb) {
912 } else if (kfla >= 6 || kflb >= 4 || kflc >= 4) {
913 ret = kfla + 80;
914 } else if (kflb < kflc) {
915 ret = (kfla+1)*kfla*(kfla-1)/6 + 300 + kflc*(kflc-1)/2 + kflb;
916 } else {
917 ret = (kfla+1)*kfla*(kfla-1)/6 + 330 + kflb*(kflb-1)/2 + kflc;
918 }
919// ...Spin 3/2 baryons.
920 } else if (kflr == 0 && kfls == 4) {
921 if (kfla == 9 || kflb == 0 || kflb == 9 || kflc == 9) {
922 } else if (kfla < kflb || kflb < kflc) {
923 } else if (kfla >= 6 || kflb >= 4) {
924 ret = kfla + 80;
925 } else {
926 ret = (kfla+1)*kfla*(kfla-1) / 6 + 360 + kflb*(kflb -1) / 2 + kflc;
927 }
928 }
929 return ret;
930}
931
932//_____________________________________________________________________________
933// TEST JOB: Calculate tracks resolution
934//_____________________________________________________________________________
935void AliFTrackMaker::MakeTest(Int_t n)
936{
937 Double_t v11, v22, v33, v12, v13, v23;
938 Int_t iFlag;
939 Int_t idTrack;
940 Double_t pTStart, pT, eta;
941
942 Double_t sumDPop,sumDDip,sumDPhi;
943 Double_t isum,fm;
944 Double_t pTotal,partMassSQ,beta,lambda;
945 Double_t dPop,dLop,dDip,dPhi,rho12,rho13,rho23;
29894e14 946 Double_t dPPStrag,dPPTot=0;
65a39007 947 // Double_t resol1[1001][11],resol2[10001][11],resol3[1001][11],
948 // resol4[1001][11],resol5[10001][11]
949 Double_t store1[1001],store2[10001],store3[1001],
950 store4[1001],store5[10001];
951
952
953 idTrack = 2;
954 pTStart = 0.07;
955 for(Int_t istep=1; istep<n; istep++){
956 if(istep < 100 && istep > 20) istep = istep -1 + 5;
957 if(istep < 500 && istep > 100) istep = istep -1 + 25;
958 if(istep <1000 && istep > 500) istep = istep -1 + 100;
959 pT = pTStart + 0.01*istep;
960 eta = - 0.044;
961 sumDPop = 0;
962 sumDDip = 0;
963 sumDPhi = 0;
964 isum = 0;
965 for(Int_t in=1; in<11; in++){
966 eta = eta + 0.088;
967 lambda = kPiHalf -2.0*TMath::ATan(TMath::Exp(-eta));
968 pTotal = pT / TMath::Cos(lambda);
969 if(idTrack == 1){
970 dPPStrag = 0.055 /pT;}
971 else{
972 partMassSQ = ParticleMass(idTrack)*ParticleMass(idTrack);
973 beta = pTotal/ TMath::Sqrt(pTotal*pTotal + partMassSQ);
974 dPPStrag = 0.04/(pT*TMath::Power(beta,2.6666666667));
975 }
976 ErrorMatrix(idTrack,pT,eta, v11, v22, v33, v12, v13, v23, iFlag);
977 if(iFlag == 1){
978 dLop = TMath::Sqrt(v11);
979 dDip = TMath::Sqrt(v22);
980 dPhi = TMath::Sqrt(v33);
981 rho12 = v12/(dLop*dDip);
982 rho13 = v13/(dLop*dPhi);
983 rho23 = v23/(dDip*dPhi);
984 dPop = 100. *dLop * pTotal;
985 dDip = 1000. * dDip;
986 dPhi = 1000. * dPhi;
987 dPPTot = TMath::Sqrt(dPop*dPop + dPPStrag*dPPStrag);
988 // resol1[istep][in] = dPop;
989 // resol2[istep][in] = dDip;
990 // resol3[istep][in] = dPhi;
991 // resol4[istep][in] = dPPTot;
992 // resol5[istep][in] = dPPStrag;
993 sumDPop = sumDPop + dPop;
994 sumDDip = sumDDip + dDip;
995 sumDPhi = sumDPhi + dPhi;
996 isum = isum + 1;}
997 else{
998 printf("%20s %10.5f %10.5f %20s\n","pT,eta",pT,eta,"cannot smear");
999 }
1000 }
1001 if(isum > 0){
1002 dPop = sumDPop/isum;
1003 dDip = sumDDip/isum;
1004 dPhi = sumDPhi/isum;
1005 dPPTot = TMath::Sqrt(dPop*dPop + dPPStrag*dPPStrag);}
1006 else{
1007 dPop = 0;
1008 dDip = 0;
1009 dPhi = 0;
1010 }
1011 store1[istep] = dPop;
1012 store2[istep] = dDip;
1013 store3[istep] = dPhi;
1014 store4[istep] = dPPTot;
1015 store5[istep] = dPPStrag;
1016 if(istep > 20 ){
1017 Int_t im = 5;
1018 if(istep > 100) {im = 25;}
1019 if(istep > 500) {im = 100;}
1020 fm = 1./(1.*im);
1021 for(Int_t ist=1; ist<im; ist++){
1022 // for(Int_t in=1; in < 11; in++){
1023 // resol1[istep-im+ist][in] = resol1[istep-im][in]+
1024 // ist*fm*(resol1[istep][in]-resol1[istep-im][in]);
1025 // resol2[istep-im+ist][in] = resol2[istep-im][in]+
1026 // ist*fm*(resol2[istep][in]-resol2[istep-im][in]);
1027 // resol3[istep-im+ist][in] = resol3[istep-im][in]+
1028 // ist*fm*(resol3[istep][in]-resol3[istep-im][in]);
1029 // resol4[istep-im+ist][in] = resol4[istep-im][in]+
1030 // ist*fm*(resol4[istep][in]-resol4[istep-im][in]);
1031 // resol5[istep-im+ist][in] = resol5[istep-im][in]+
1032 // ist*fm*(resol5[istep][in]-resol5[istep-im][in]);
1033 // }
1034 store1[istep-im+ist]=store1[istep-im]+
1035 ist*fm*(store1[istep]-store1[istep-im]);
1036 store2[istep-im+ist]=store2[istep-im]+
1037 ist*fm*(store2[istep]-store2[istep-im]);
1038 store3[istep-im+ist]=store3[istep-im]+
1039 ist*fm*(store3[istep]-store3[istep-im]);
1040 store4[istep-im+ist]=store4[istep-im]+
1041 ist*fm*(store4[istep]-store4[istep-im]);
1042 store5[istep-im+ist]=store5[istep-im]+
1043 ist*fm*(store5[istep]-store5[istep-im]);
1044 // Fill control histograms
1045 fResID1Test->Fill(pTStart + 0.01*(istep-im+ist),store1[istep-im+ist]);
1046 fResID2Test->Fill(pTStart + 0.01*(istep-im+ist),store2[istep-im+ist]);
1047 fResID3Test->Fill(pTStart + 0.01*(istep-im+ist),store3[istep-im+ist]);
1048 fResID4Test->Fill(pTStart + 0.01*(istep-im+ist),store4[istep-im+ist]);
1049 fResID5Test->Fill(pTStart + 0.01*(istep-im+ist),store5[istep-im+ist]);
1050 }
1051 printf("%10s %10d %20.15f %20.15f %20.15f %20.15f %20.15f \n",
1052 "TestTrack:",istep,store1[istep],store2[istep],store3[istep],
1053 store4[istep],store5[istep]);
1054 } else {
1055 printf("%10s %10d %20.15f %20.15f %20.15f %20.15f %20.15f \n",
1056 "TestTrack:",istep,store1[istep],store2[istep],store3[istep],
1057 store4[istep],store5[istep]);
1058 fResID1Test->Fill(pT,store1[istep]);
1059 fResID2Test->Fill(pT,store2[istep]);
1060 fResID3Test->Fill(pT,store3[istep]);
1061 fResID4Test->Fill(pT,store4[istep]);
1062 fResID5Test->Fill(pT,store5[istep]);
1063 }
1064 }
1065}
1066//_____________________________________________________________________________