GetESD.sh becomes runtest.sh
[u/mrichter/AliRoot.git] / ANALYSIS / AliD0toKpiPlots.C
CommitLineData
3a9a3487 1void AliD0toKpiPlots(const Char_t *inName="AliD0toKpi.root",
2 const Char_t *outName="D0histograms.root") {
3 //--------------------------------------------------------------------------
4 // This macro histograms many variables of D0->Kpi candidates
5 //
ef0182f7 6 // Andrea Dainese, andrea.dainese@lnl.infn.it
3a9a3487 7 //--------------------------------------------------------------------------
8
ef0182f7 9 gSystem->Load("libANALYSIS.so");
10
3a9a3487 11 // set of cuts
12 Double_t D0Cuts[9] = {0.1, // mass [GeV]
13 1000000., // dca [micron]
14 1.1, // cosThetaStar
15 0., // pT K [GeV/c]
16 0., // pT Pi [GeV/c]
17 100000., // d0K upper [micron]
18 100000., // d0Pi upper [micron]
19 10000000000., // d0d0 [micron^2]
20 -1.1}; // cosThetaPointing
21
22 // number of events (for normalization)
23 Bool_t normalize = kFALSE;
24 Double_t events = 1.;
25
26
27
28 // define histograms
29 TH1F *hptK = new TH1F("hptK","\"K\" p_{t} distribution",50,0,10);
30 hptK->SetXTitle("p_{t} [GeV]");
31
32 TH1F *hptPi = new TH1F("hptPi","\"#pi\" p_{t} distribution",50,0,10);
33 hptPi->SetXTitle("p_{t} [GeV]");
34
35 TH1F *hDCA = new TH1F("hDCA","DCA",50,0,1000);
36 hDCA->SetXTitle("dca [#mu m]");
37
38 TH1F *hptD0 = new TH1F("hptD0","D^{0} p_{t} distribution",40,0,40);
39 hptD0->SetXTitle("p_{t} [GeV]");
40
41 TH1F *hyD0 = new TH1F("hyD0","D^{0} rapidity distribution",50,-2,2);
42 hyD0->SetXTitle("y");
43
44 TH1F *hCPtaD0 = new TH1F("hCPtaD0","cosine of pointing angle distribution",100,-1,1);
45 hCPtaD0->SetXTitle("cos #theta_{point}");
46
47 TH1F *hCPtaXY = new TH1F("hCPtaXY","cosine of pointing angle in (x,y) plane",100,-1,1);
48 hCPtaXY->SetXTitle("cos #theta_{point}");
49
50 TH1F *hCts = new TH1F("hCts","cosine of decay angle",50,-1.2,1.2);
51 hCts->SetXTitle("cos #theta^{*}");
52
53 TH2F *hCtsVsPtK = new TH2F("hCtsVsPtK","cosine of decay angle VS \"K\" p_{t}",50,0,5,50,-1,1);
54 hCtsVsPtK->SetYTitle("cos #theta^{*}");
55 hCtsVsPtK->SetXTitle("p_{t} [GeV]");
56
57 TH1F *hd0d0 = new TH1F("hd0d0","Product of the impact parameters",100,-100000,100000);
58 hd0d0->SetXTitle("d_{0}^{K} #times d_{0}^{#pi} [#mu m^{2}]");
59
60 TH1F *hd0K = new TH1F("hd0K","Impact parameter of \"K\"",100,-5000,5000);
61 hd0K->SetXTitle("d_{0}^{K} [#mu m]");
62
63 TH1F *hd0Pi = new TH1F("hd0Pi","Impact parameter of \"#pi\"",100,-5000,5000);
64 hd0Pi->SetXTitle("d_{0}^{#pi} [#mu m]");
65
66 TH2F *hCPtaVsd0d0 = new TH2F("hCPtaVsd0d0","cos #theta_{point} vs d_{0}^{K} #times d_{0}^{#pi}",100,-100000,100000,100,-1,1);
67 hCPtaVsd0d0->SetXTitle("d_{0}^{K} #times d_{0}^{#pi} [#mu m^{2}]");
68 hCPtaVsd0d0->SetYTitle("cos #theta_{point}");
69
70 TH2F *hCPtaVsd0d0zoom = new TH2F("hCPtaVsd0d0zoom","cos #theta_{point} vs d_{0}^{K} #times d_{0}^{#pi}",100,-100000,0,100,.9,1);
71 hCPtaVsd0d0zoom->SetXTitle("d_{0}^{K} #times d_{0}^{#pi} [#mu m^{2}]");
72 hCPtaVsd0d0zoom->SetYTitle("cos #theta_{point}");
73
74 TH2F *hd0d0VSptD0 = new TH2F("hd0d0VSptD0","d_{0}^{K} #times d_{0}^{#pi} VS D^{0} p_{t}",50,0,25,100,-120000,120000);
75 hd0d0VSptD0->SetYTitle("d_{0}^{K} #times d_{0}^{#pi} [#mu m^{2}]");
76 hd0d0VSptD0->SetXTitle("D^{0} p_{t} [GeV]");
77
78 TH1F *hMass = new TH1F("hMass","Invariant mass distribution",50,1.765,1.965);
79 hMass->SetXTitle("M[K,#pi] [GeV]");
80
81 TH2F *hArm = new TH2F("hArm","Armenteros plot",50,-2,2,50,0,1);
82 hArm->SetXTitle("#alpha");
83 hArm->SetYTitle("q_{t}");
84
85 // open input file and get tree
86 TFile *inFile = TFile::Open(inName);
87
88 TTree *treeD0 = (TTree*)inFile->Get("TreeD0");
89 AliD0toKpi *D = 0;
90 treeD0->SetBranchAddress("D0toKpi",&D);
91 Int_t entries = (Int_t)treeD0->GetEntries();
92
93 printf("+++\n+++ Number of D0 in tree: %d\n+++\n",entries);
94
95 Double_t MD0,MD0bar,ctsD0,ctsD0bar,ctsPiD0,ctsPiD0bar;
96 Double_t WgtD0,WgtD0bar;
97 Double_t sampleABC=0.;
98 Int_t okD0=0,okD0bar=0;
99 Int_t nSel = 0;
100 Int_t ptbin;
101
102 // loop on D0
103 for(Int_t i=0; i<entries; i++) {
104 if(i%10000==0) printf(" candidate %d of %d\n",i,entries);
105
106 // get event from tree
107 treeD0->GetEvent(i);
108 //--- select the PID strategy & compute weights
109 // D->ApplyPID("TOFparam_PbPb");
110 // D->ComputeWgts();
111 // get weights for the three samples A+B+C
112 // D->GetWgts(WgtD0,WgtD0bar,"ABC");
113 WgtD0 = 1.; WgtD0bar = 1.;
114
115 // normalize to 1 event
116 if(normalize) { WgtD0 /= events; WgtD0bar /= events; }
117
118 // check if candidate passes selection (as D0 or D0bar)
119 D->Select(D0Cuts,okD0,okD0bar);
120
121 // set weights to 0 if the candidate doesn't pass selection
122 if(!okD0) WgtD0=0.;
123 if(!okD0bar) WgtD0bar=0.;
124 if(okD0 || okD0bar) nSel++;
125
126 // count selected candidates
127 sampleABC += WgtD0 + WgtD0bar;
128
129 // inv mass and cosThetaStar
130 D->InvMass(MD0,MD0bar);
131 D->CosThetaStar(ctsD0,ctsD0bar);
132
133 // fill histograms
134 hptK->Fill(D->PtChild(1),WgtD0);
135 hptK->Fill(D->PtChild(0),WgtD0bar);
136 hptPi->Fill(D->PtChild(0),WgtD0);
137 hptPi->Fill(D->PtChild(1),WgtD0bar);
138 hd0K->Fill(D->Getd0Child(1),WgtD0);
139 hd0K->Fill(D->Getd0Child(0),WgtD0bar);
140 hd0Pi->Fill(D->Getd0Child(0),WgtD0);
141 hd0Pi->Fill(D->Getd0Child(1),WgtD0bar);
142 hMass->Fill(MD0,WgtD0);
143 hMass->Fill(MD0bar,WgtD0bar);
144 hCts->Fill(ctsD0,WgtD0);
145 hCts->Fill(ctsD0bar,WgtD0bar);
146 hCtsVsPtK->Fill(D->PtChild(1),ctsD0,WgtD0);
147 hCtsVsPtK->Fill(D->PtChild(0),ctsD0bar,WgtD0bar);
148 hDCA->Fill(D->GetDCA(),WgtD0+WgtD0bar);
149 hptD0->Fill(D->Pt(),WgtD0+WgtD0bar);
150 hyD0->Fill(D->Rapidity(),WgtD0+WgtD0bar);
151 hd0d0->Fill(D->ProdImpParams(),WgtD0+WgtD0bar);
152 hCPtaD0->Fill(D->CosPointing(),WgtD0+WgtD0bar);
153 hCPtaXY->Fill(D->CosPointingXY(),WgtD0+WgtD0bar);
154 hCPtaVsd0d0->Fill(D->ProdImpParams(),D->CosPointing(),WgtD0+WgtD0bar);
155 hd0d0VSptD0->Fill(D->Pt(),D->ProdImpParams(),WgtD0+WgtD0bar);
156 hCPtaVsd0d0zoom->Fill(D->ProdImpParams(),D->CosPointing(),WgtD0+WgtD0bar);
157 hArm->Fill(D->Alpha(),D->Qt(),WgtD0+WgtD0bar);
158
159
160 } // end loop on D0 candidates
161
162 inFile->Close();
163
164 printf("\n\n --- Total number of candidates passing selection: %d\n\n --- Sum of weights sample A+B+C: %f\n\n",nSel,sampleABC);
165
166 // draw histograms
167 TCanvas *c1 = new TCanvas("c1","pt K & pi",0,0,700,700);
168 c1->SetLogy();
169 hptK->Draw();
170 hptPi->Draw("same");
171
172 TCanvas *c2 = new TCanvas("c2","pt D0",0,0,700,700);
173 c2->SetLogy();
174 hptD0->Draw();
175
176 TCanvas *c3 = new TCanvas("c3","rapidity D0",0,0,700,700);
177 hyD0->Draw();
178
179 TCanvas *c4 = new TCanvas("c4","pointing angle",0,0,700,700);
180 hCPtaD0->Draw();
181
182 TCanvas *c5 = new TCanvas("c5","d0 x d0",0,0,700,700);
183 c5->SetLogy();
184 hd0d0->Draw();
185
186 TCanvas *c6 = new TCanvas("c6","pointing angle VS d0d0",0,0,700,700);
187 c6->SetLogz();
188 hCPtaVsd0d0->Draw("box");
189
190 TCanvas *c7 = new TCanvas("c7","mass",0,0,700,700);
191 hMass->Draw();
192
193 TCanvas *c8 = new TCanvas("c8","armenteros",0,0,700,700);
194 hArm->Draw("box");
195
196 TCanvas *c9 = new TCanvas("c9","decay angle",0,0,700,700);
197 hCts->Draw();
198
199 TCanvas *c10 = new TCanvas("c10","dca",0,0,700,700);
200 c10->SetLogy();
201 hDCA->Draw();
202
203 TCanvas *c11 = new TCanvas("c11","d0 K & pi",0,0,700,700);
204 c11->SetLogy();
205 hd0K->Draw();
206 hd0Pi->Draw("same");
207
208 // write all histograms to file
209 TFile *outFile = new TFile(outName,"recreate");
210 hMass->Write();
211 hDCA->Write();
212 hCts->Write();
213 hCtsVsPtK->Write();
214 hArm->Write();
215 hCPtaVsd0d0->Write();
216 hd0d0VSptD0->Write();
217 hCPtaVsd0d0zoom->Write();
218 hd0d0->Write();
219 hCPtaD0->Write();
220 hCPtaXY->Write();
221 hptK->Write();
222 hptPi->Write();
223 hptD0->Write();
224 hyD0->Write();
225 hd0K->Write();
226 hd0Pi->Write();
227 outFile->Close();
228
229 return;
230}
231
232
233
234