]> git.uio.no Git - u/mrichter/AliRoot.git/blame - CRT/AliCRTv0.cxx
Further modifications in OpenOutput and WriteCluster
[u/mrichter/AliRoot.git] / CRT / AliCRTv0.cxx
CommitLineData
fb7a1f55 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17$Log$
b27180a1 18Revision 1.10 2002/10/29 17:20:37 hristov
19Corrections for subscript out of range (Alpha)
20
e760b04a 21Revision 1.9 2002/10/23 06:47:56 alibrary
22Introducing Riostream.h
23
83e6a38b 24Revision 1.8 2002/10/14 14:55:34 hristov
25Merging the VirtualMC branch to the main development branch (HEAD)
26
b9d0a01d 27Revision 1.4.2.4 2002/10/10 14:40:31 hristov
28Updating VirtualMC to v3-09-02
29
30Revision 1.7 2002/10/07 11:13:25 gamez
31Access shafts added
32
778e67bd 33Revision 1.6 2002/07/26 06:21:12 gamez
34CRT3 volume taken as sensitive volume
35
67721dc4 36Revision 1.5 2002/07/25 12:52:34 morsch
37AddHit call only if hit has been defined.
38
bd1047f8 39Revision 1.4 2002/07/12 12:57:29 gamez
40Division of CRT1 corrected
41
7cedada3 42Revision 1.3.2.1 2002/07/12 12:32:50 gamez
43Division of CRT1 corrected
44
45Revision 1.3 2002/07/10 15:57:04 gamez
46CreateHall() removed, and new Molasse volumes
47
6e9adb00 48Revision 1.2 2002/07/09 08:45:35 hristov
49Old style include files needed on HP (aCC)
50
b73f53b3 51Revision 1.1 2002/06/16 17:08:19 hristov
52First version of CRT
53
fb7a1f55 54
55*/
56
57///////////////////////////////////////////////////////////////////////////////
58// //
6e9adb00 59// ALICE Cosmic Ray Trigger //
fb7a1f55 60// //
6e9adb00 61// This class contains the functions for version 0 of the ALICE Cosmic Ray //
778e67bd 62// Trigger. This version will be used to simulation comic rays in alice //
63// with all the detectors. //
fb7a1f55 64//
65// Authors:
66//
67// Arturo Fernandez <afernand@fcfm.buap.mx>
68// Enrique Gamez <egamez@fcfm.buap.mx>
69//
70// Universidad Autonoma de Puebla
71//
72//
73//Begin_Html
74/*
75<img src="picts/AliCRTv0Class.gif">
76</pre>
77<br clear=left>
78<p>The responsible person for this module is
79<a href="mailto:egamez@fcfm.buap.mx">Enrique Gamez</a>.
80</font>
81<pre>
82*/
83//End_Html
84// //
85///////////////////////////////////////////////////////////////////////////////
86
83e6a38b 87#include <Riostream.h>
fb7a1f55 88
fb7a1f55 89#include <TGeometry.h>
778e67bd 90#include <TBRIK.h>
fb7a1f55 91#include <TNode.h>
92#include <TLorentzVector.h>
93
fb7a1f55 94#include "AliRun.h"
fb7a1f55 95#include "AliMagF.h"
96#include "AliConst.h"
97#include "AliPDG.h"
98
778e67bd 99#include "AliCRTv0.h"
100#include "AliCRTConstants.h"
101
fb7a1f55 102ClassImp(AliCRTv0)
103
104//_____________________________________________________________________________
105AliCRTv0::AliCRTv0() : AliCRT()
106{
107 //
778e67bd 108 // Default constructor for CRT v0
fb7a1f55 109 //
fb7a1f55 110}
111
112//_____________________________________________________________________________
113AliCRTv0::AliCRTv0(const char *name, const char *title)
114 : AliCRT(name,title)
115{
116 //
778e67bd 117 // Standard constructor for CRT v0
fb7a1f55 118 //
119 //Begin_Html
120 /*
121 <img src="picts/AliCRTv0.gif">
122 */
123 //End_Html
124}
125
778e67bd 126//_____________________________________________________________________________
127AliCRTv0::AliCRTv0(const AliCRTv0& crt)
128{
129 //
130 // Copy ctor.
131 //
132 crt.Copy(*this);
133}
134
135//_____________________________________________________________________________
136AliCRTv0& AliCRTv0::operator= (const AliCRTv0& crt)
137{
138 //
139 // Asingment operator.
140 //
141 crt.Copy(*this);
142 return *this;
143}
144
fb7a1f55 145//_____________________________________________________________________________
146void AliCRTv0::BuildGeometry()
147{
778e67bd 148 //
149 // Create the ROOT TNode geometry for the CRT
150 //
151
152 TNode *node, *top;
153
154 const Int_t kColorCRT = kRed;
155
156 // Find the top node alice.
157 top = gAlice->GetGeometry()->GetNode("alice");
158
159 new TBRIK("S_CRT_A", "CRT box", "void",
160 AliCRTConstants::fgActiveAreaLenght/2.,
161 AliCRTConstants::fgActiveAreaHeight/2.,
162 AliCRTConstants::fgActiveAreaWidth/2.);
163
164
165 new TRotMatrix("Left", "Left", 90., 315., 90., 45., 0., 337.5);
166 new TRotMatrix("Right", "Right", 90., 45., 90., 315., 180., 202.5);
167 new TRotMatrix("Up", "Up", 90., 0., 90., 90., 0., 90.);
168 top->cd();
169
170 //
171 // Put 4 modules on the top of the magnet
172 Float_t box = AliCRTConstants::fgCageWidth/2.;
173 top->cd();
174 node = new TNode("upper1", "upper1", "S_CRT_A", 0., 790., 3.*box, "Up");
175 node->SetLineColor(kColorCRT);
176 fNodes->Add(node);
177
178 top->cd();
179 node = new TNode("upper2", "upper2", "S_CRT_A", 0., 790., box, "Up");
180 node->SetLineColor(kColorCRT);
181 fNodes->Add(node);
182
183 top->cd();
184 node = new TNode("upper3", "upper3", "S_CRT_A", 0., 790., -1.*box, "Up");
185 node->SetLineColor(kColorCRT);
186 fNodes->Add(node);
187
188 top->cd();
189 node = new TNode("upper4", "upper4", "S_CRT_A", 0., 790., -3.*box, "Up");
190 node->SetLineColor(kColorCRT);
191 fNodes->Add(node);
192
193
194 // Modules on the left side.
195 Float_t xtragap = 10.;
196 Float_t initXside = (790.+xtragap)*TMath::Sin(2*22.5*kDegrad); //rigth side
197 Float_t initYside = (790.+xtragap)*TMath::Cos(2*22.5*kDegrad);
198 top->cd();
199 node = new TNode("upper5", "upper5", "S_CRT_A", initXside, initYside, 3.*box, "Left");
200 node->SetLineColor(kColorCRT);
201 fNodes->Add(node);
202
203 top->cd();
204 node = new TNode("upper6", "upper6", "S_CRT_A", initXside, initYside, box, "Left");
205 node->SetLineColor(kColorCRT);
206 fNodes->Add(node);
207
208 top->cd();
209 node = new TNode("upper7", "upper7", "S_CRT_A", initXside, initYside, -1.*box, "Left");
210 node->SetLineColor(kColorCRT);
211 fNodes->Add(node);
212
213 top->cd();
214 node = new TNode("upper8", "upper8", "S_CRT_A", initXside, initYside, -3.*box, "Left");
215 node->SetLineColor(kColorCRT);
216 fNodes->Add(node);
217
218
219 // Modules on the right side.
220 top->cd();
221 node = new TNode("upper9", "upper9", "S_CRT_A", -initXside, initYside, 3.*box, "Right");
222 node->SetLineColor(kColorCRT);
223 fNodes->Add(node);
224
225 top->cd();
226 node = new TNode("upper10", "upper10", "S_CRT_A", -initXside, initYside, box, "Right");
227 node->SetLineColor(kColorCRT);
228 fNodes->Add(node);
229
230 top->cd();
231 node = new TNode("upper11","upper11", "S_CRT_A", -initXside, initYside, -1.*box, "Right");
232 node->SetLineColor(kColorCRT);
233 fNodes->Add(node);
234
235 top->cd();
236 node = new TNode("upper12","upper12", "S_CRT_A", -initXside, initYside, -3.*box, "Right");
237 node->SetLineColor(kColorCRT);
238 fNodes->Add(node);
239
fb7a1f55 240
241}
242
243//_____________________________________________________________________________
244void AliCRTv0::CreateGeometry()
245{
246 //
247 // Create geometry for the CRT array
248 //
778e67bd 249 Int_t idrotm[2499]; // The rotation matrix.
250
251 Int_t * idtmed = fIdtmed->GetArray() - 1099 ;
252
253 //
254 // Molasse
255 CreateMolasse();
256
257 //
258 // Scintillators
259
260 Float_t box[3];
261 box[0] = AliCRTConstants::fgCageLenght/2.; // Half Length of the box along the X axis, cm.
262 box[1] = AliCRTConstants::fgCageHeight/2.; // Half Length of the box along the Y axis, cm.
263 box[2] = AliCRTConstants::fgCageWidth/2.; // Half Length of the box along the Z axis, cm.
264
265
266 // Define the Scintillators. as a big box.
267 Float_t scint[3];
268 scint[0] = AliCRTConstants::fgActiveAreaLenght/2.; // Half Length in X
269 scint[1] = AliCRTConstants::fgActiveAreaHeight/2.; // Half Length in Y
270 scint[2] = AliCRTConstants::fgActiveAreaWidth/2.; // Half Length in Z
271 gMC->Gsvolu("CRT1", "BOX ", idtmed[1112], scint, 3); // Scintillators
272
273 //
274 // Define the coordinates where the draw will begin.
275 //
276
277 //
278 // -- X axis.
279 // we'll start dawing from the center.
280 Float_t initX = 0.;
281
282 //
283 // -- Y axis
284 Float_t gapY = 30.; // 30 cms. above the barrel.
285 // For the height we staimate the from the center of the ceiling,
286 // if were a cilinder, must be about 280cm.
287 Float_t barrel = 790.; // Barrel radius.
288 Float_t height = barrel + gapY - 30.;
289 Float_t initY = height;
290
291 //
292 // -- Z axis.
293 // we'll start dawing from the center.
294
295 //
296 // Put 4 modules on the top of the magnet
297 Int_t step = 4;
298 for ( Int_t i = 1 ; i <= 4 ; i++ ) {
299 gMC->Gspos("CRT1", i, "ALIC", initX, initY, (i-step)*box[2], 0, "ONLY");
300 step--;
301 }
302
303 // Modules on the barrel sides.
304 // Because the openenig angle for each face is 22.5, and if we want to
305 // put the modules right in the middle
306 Float_t xtragap = 10.;
307 Float_t initXside = (height+xtragap)*TMath::Sin(2*22.5*kDegrad); //rigth side
308 Float_t initYside = (height+xtragap)*TMath::Cos(2*22.5*kDegrad);
309
310 // Put 4 modules on the left side of the magnet
311 // The rotation matrix parameters, for the left side.
312 AliMatrix(idrotm[232], 90., 315., 90., 45., 0., 337.5);
313 Int_t stepl = 4;
314 for ( Int_t i = 1 ; i <= 4 ; i++ ) {
315 gMC->Gspos("CRT1", i+4, "ALIC", initXside, initYside, (i-stepl)*box[2],
316 idrotm[232], "ONLY");
317 stepl--;
318 }
319
320 // Put 4 modules on the right side of the magnet
321 // The rotation matrix parameters for the right side.
322 AliMatrix(idrotm[231], 90., 45., 90., 315., 180., 202.5);
323 Int_t stepr = 4;
324 for ( Int_t i = 1 ; i <= 4 ; i++ ) {
325 gMC->Gspos("CRT1", i+8, "ALIC", -initXside, initYside, (i-stepr)*box[2],
326 idrotm[231], "ONLY");
327 stepr--;
328 }
fb7a1f55 329
778e67bd 330 // Divide the modules in 2 planes.
331 //gMC->Gsdvn("CRT2", "CRT1", 2, 2);
332 // Now divide each plane in 8 palettes
333 //gMC->Gsdvn("CRT3", "CRT2", 8, 3);
334
335}
336
337//_____________________________________________________________________________
338void AliCRTv0::CreateMolasse()
339{
fb7a1f55 340 Int_t idrotm[2499]; // The rotation matrix.
341
fb7a1f55 342 Int_t * idtmed = fIdtmed->GetArray() - 1099 ;
343
6e9adb00 344 //
345 // Molasse
346 //
347
348 // Exactly above the hall
349 Float_t tspar[5];
350 tspar[0] = 1170.;
351 tspar[1] = 1170. + 375.;
352 tspar[2] = (1900.+1150.)/2.+100.;
353 tspar[3] = 0.;
354 tspar[4] = 180.;
7cedada3 355 gMC->Gsvolu("CMO1", "TUBS", idtmed[1123], tspar, 5);
6e9adb00 356 gMC->Gspos("CMO1", 1, "ALIC", 0., 500., 1900.-tspar[2]+400., 0, "MANY");
357
358 Float_t tbox[3];
359 tbox[0] = 1250.;
360 tbox[1] = (4420. - 1670.)/2.;
361 tbox[2] = (1900.+1150.)/2. + 200.;
7cedada3 362 gMC->Gsvolu("CM12", "BOX", idtmed[1123], tbox, 3);
6e9adb00 363 gMC->Gspos("CM12", 1, "ALIC", 0., 4420. -tbox[1], 1900.-tbox[2]+400., 0, "MANY");
364
365 AliMatrix(idrotm[2003], 0., 0., 90., 0., 90., 90.);
366 // Along the PM25
367 Float_t tube[3];
368 tube[0] = 455. + 100.;
369 tube[1] = 555. + 375.;
370 tube[2] = (5150. - 1166.)/2.;
7cedada3 371 gMC->Gsvolu("CMO2", "TUBE", idtmed[1123], tube, 3);
6e9adb00 372 gMC->Gspos("CMO2", 1, "ALIC", -2100., 4420.-tube[2], 0., idrotm[2003], "MANY");
373
374
375 // Along the PGC2
376 tube[0] = 650.;
377 tube[1] = 2987.7;
378 tube[2] = (5150. - 690.)/2.;
7cedada3 379 gMC->Gsvolu("CMO3", "TUBE", idtmed[1123], tube, 3);
6e9adb00 380 gMC->Gspos("CMO3", 1, "ALIC", 375., 4420.-tube[2], 1900.+2987.7, idrotm[2003], "MANY");
381 // Behind the PGC2 up to the end of the M. volume.
382 tbox[0] = 12073.;
383 tbox[1] = 2575. + 95.;
778e67bd 384 tbox[2] = (12073. - 1900.-2987.7-650.)/2.;
7cedada3 385 gMC->Gsvolu("CMO7", "BOX", idtmed[1123], tbox, 3);
6e9adb00 386 gMC->Gspos("CMO7", 1, "ALIC", 0., 4420.-tbox[1], 1900.+2987.7+650.+tbox[2], 0, "MANY");
387
388 // Along the PX24 , upper part.
389 tube[0] = 1250.;
390 tube[1] = 2300;
391 tube[2] = 2575. - 1300. + 95.;
7cedada3 392 gMC->Gsvolu("CMO4", "TUBE", idtmed[1123], tube, 3);
6e9adb00 393 gMC->Gspos("CMO4", 1, "ALIC", 0., 404.+1300.+tube[2], -2300., idrotm[2003], "MANY");
394
395 // Along the PX24 , lower part
396 tspar[0] = 1250.;
397 tspar[1] = 2300;
398 tspar[2] = 1300.;
399 tspar[3] = kRaddeg*TMath::ASin(1070./1150.);
400 tspar[4] = 360. - tspar[3];
7cedada3 401 gMC->Gsvolu("CMO5", "TUBS", idtmed[1123], tspar, 5);
6e9adb00 402 gMC->Gspos("CMO5", 1, "ALIC", 0., 404., -2300., idrotm[2003], "MANY");
403 // behind the PX24
404 tbox[0] = 12073.;
405 tbox[1] = 2575. + 95.;
406 tbox[2] = 8523./2.;
7cedada3 407 gMC->Gsvolu("CMO6", "BOX", idtmed[1123], tbox, 3);
6e9adb00 408 gMC->Gspos("CMO6", 1, "ALIC", 0., 4420.-tbox[1], -3550.-tbox[2], 0, "MANY");
409
410
411 // On the right side of th hall
412 tbox[0] = (12073. - 1250.)/2.;
413 tbox[1] = 2575. + 95.;
414 tbox[2] = (8437.7+650.)/2.;
7cedada3 415 gMC->Gsvolu("CMO8", "BOX", idtmed[1123], tbox, 3);
6e9adb00 416 gMC->Gspos("CMO8", 1, "ALIC", 1250.+tbox[0], 4420.-tbox[1], -3550.+tbox[2], 0, "MANY");
417
418 // on the left side of the hall, behind
419 tbox[0] = (12073. - 2755.)/2.;
420 tbox[1] = 2575. + 95.;
421 tbox[2] = (8437.7+650.)/2.;
7cedada3 422 gMC->Gsvolu("CMO9", "BOX", idtmed[1123], tbox, 3);
6e9adb00 423 gMC->Gspos("CMO9", 1, "ALIC", -2755.-tbox[0], 4420.-tbox[1], -3550.+tbox[2], 0, "MANY");
424
425
426 // Molasse betwen the PX24 & PM25 on the left side.
427 tbox[0] = (2755. - 1250.)/2.;
428 tbox[1] = 2575. + 95.;
429 tbox[2] = (3550. - 555.)/2.;
7cedada3 430 gMC->Gsvolu("CM10", "BOX", idtmed[1123], tbox, 3);
6e9adb00 431 gMC->Gspos("CM10", 1, "ALIC", -1250.-tbox[0], 4420.-tbox[1], -tbox[2]-555., 0, "MANY");
432
433
434 // Molasse betwen the PGC2 & PM25 on the left side.
435 tbox[0] = (2755. - 1250.)/2.;
436 tbox[1] = 2575. + 95.;
437 tbox[2] = (1900.+2987.7 - 555. + 650.)/2.;
7cedada3 438 gMC->Gsvolu("CM11", "BOX", idtmed[1123], tbox, 3);
6e9adb00 439 gMC->Gspos("CM11", 1, "ALIC", -1250.-tbox[0], 4420.-tbox[1], 555.+tbox[2], 0, "MANY");
440
fb7a1f55 441
778e67bd 442}
443
444//_____________________________________________________________________________
445void AliCRTv0::CreateShafts()
446{
447 //
448 //
449 //
450 Int_t idrotm[2499]; // The rotation matrix.
fb7a1f55 451
778e67bd 452 Int_t * idtmed = fIdtmed->GetArray() - 1099 ;
fb7a1f55 453
778e67bd 454 // HAll ceiling
455 Float_t ptubs[5];
456 ptubs[0] = 1070.;
457 ptubs[1] = 1170.;
458 ptubs[2] = 1900.;
459 ptubs[3] = 0.;
460 ptubs[4] = 180.;
461 gMC->Gsvolu("CHC1", "TUBS", idtmed[1116], ptubs, 5);
462 gMC->Gspos("CHC1", 1, "ALIC", 0., 500., 0., 0, "ONLY");
fb7a1f55 463
464
465 //
778e67bd 466 // Acces shafts
fb7a1f55 467 //
778e67bd 468 AliMatrix(idrotm[2001], 0., 0., 90., 0., 90., 90.);
469
470 // PX24
471 ptubs[0] = 1150.;
472 ptubs[1] = 1250.;
473 ptubs[2] = 1300.;
474 ptubs[3] = kRaddeg*TMath::ASin(1070./ptubs[0]);
475 ptubs[4] = 360 - ptubs[3];
476 gMC->Gsvolu("CSF1", "TUBS", idtmed[1116], ptubs, 5);
477 gMC->Gspos("CSF1", 1, "ALIC", 0., 404., -2300., idrotm[2001], "MANY");
478
479 Float_t ptube[3];
480 ptube[0] = ptubs[0];
481 ptube[1] = ptubs[1];
482 ptube[2] = 2575. - ptubs[2] + 95.;
483 gMC->Gsvolu("CSF2", "TUBE", idtmed[1116], ptube, 3);
484 gMC->Gspos("CSF2", 1, "ALIC", 0., 404.+ptubs[2]+ptube[2], -2300., idrotm[2001], "MANY");
485
486 // Concrete walls along the shaft
487 Float_t pbox[3];
488 pbox[0] = 585./2.;
489 pbox[1] = 2575. + 95.;
490 pbox[2] = 20.;
491 gMC->Gsvolu("CSW1", "BOX", idtmed[1116], pbox, 3);
492 gMC->Gspos("CSW1", 1, "ALIC", -290-pbox[0], 404.-1300.+pbox[1], -3450.+210.*2, 0, "MANY");
493
fb7a1f55 494 //
778e67bd 495 pbox[0] = 750./2.;
496 pbox[1] = 2575. + 95.;
497 pbox[2] = 20.;
498 gMC->Gsvolu("CSW3", "BOX", idtmed[1116], pbox, 3);
499 gMC->Gspos("CSW3", 1, "ALIC", 420.-290.+pbox[0], 404.-1300.+pbox[1], -3450.+210.*2, 0, "MANY");
500
fb7a1f55 501 //
778e67bd 502 pbox[0] = 60.;
503 pbox[1] = 2575. + 95.;
504 pbox[2] = 210.;
505 gMC->Gsvolu("CSW2", "BOX", idtmed[1116], pbox, 3);
506 gMC->Gspos("CSW2", 1, "ALIC", -290-pbox[0], 404.-1300.+pbox[1], -3450.+pbox[2], 0, "MANY");
507 gMC->Gspos("CSW2", 2, "ALIC", 420.-290.+pbox[0], 404.-1300.+pbox[1], -3450.+pbox[2], 0, "MANY");
508
509
510 //
511 pbox[0] = 1000.;
512 pbox[1] = 80.;
513 pbox[2] = 200.;
514 gMC->Gsvolu("CSP1", "BOX", idtmed[1116], pbox, 3);
515 gMC->Gspos("CSP1", 1, "ALIC", 0., 2600.-700., -1150-pbox[2], 0, "MANY");
516
fb7a1f55 517 //
778e67bd 518 pbox[0] = 340.8;
519 pbox[1] = 300./2.;
520 pbox[2] = 460./2.;
521 gMC->Gsvolu("CSP2", "BOX", idtmed[1116], pbox, 3);
522 gMC->Gspos("CSP2", 1, "ALIC", 0., 2950.-700., -3450+pbox[2], 0, "MANY");
523
fb7a1f55 524 //
778e67bd 525 pbox[0] = 600.;
526 pbox[1] = 150.;
527 pbox[2] = 75.;
528 gMC->Gsvolu("CSP3", "BOX", idtmed[1116], pbox, 3);
529 gMC->Gspos("CSP3", 1, "ALIC", 0., 2950.-700., -1150.-210.-pbox[2], 0, "MANY");
530
531 //
532 pbox[0] = 600.;
533 pbox[1] = 250.;
534 pbox[2] = 38.;
535 gMC->Gsvolu("CSP4", "BOX", idtmed[1116], pbox, 3);
536 gMC->Gspos("CSP4", 1, "ALIC", 0., 2950.-700.+155.+pbox[1], -1150.-210.-pbox[2], 0, "MANY");
537
538
539 // Shielding plug
540 pbox[0] = 850.;
541 pbox[1] = 90.;
542 pbox[2] = 720.;
543 gMC->Gsvolu("CSP5", "BOX", idtmed[1116], pbox, 3);
544 gMC->Gspos("CSP5", 1, "ALIC", 0., 2950.-700., -3450.+460.+pbox[2], 0, "MANY");
545
546 //
547 pbox[0] = 80.;
548 pbox[1] = 150.;
549 pbox[2] = 720.;
550 gMC->Gsvolu("CSP6", "BOX", idtmed[1116], pbox, 3);
551 gMC->Gspos("CSP6", 1, "ALIC", 1150.-600., 2950.-700., -3450.+460.+pbox[2], 0, "MANY");
552 gMC->Gspos("CSP6", 2, "ALIC", -1150.+600., 2950.-700., -3450.+460.+pbox[2], 0, "MANY");
553
554
555 //
556 pbox[0] = 130.;
557 pbox[1] = 60.;
558 pbox[2] = 750.;
559 gMC->Gsvolu("CSP7", "BOX", idtmed[1116], pbox, 3);
560 gMC->Gspos("CSP7", 1, "ALIC", 850.+pbox[0], 2950.-700.+100., -3450.+460.+pbox[2], 0, "MANY");
561 gMC->Gspos("CSP7", 2, "ALIC", -850.-pbox[0], 2950.-700.+100., -3450.+460.+pbox[2], 0, "MANY");
562
563
564 // PM25 Acces Shaft
565 ptube[0] = 910./2.;
566 ptube[1] = ptube[0] + 100.;
567 ptube[2] = (5150. - 1166.)/2.;
568 gMC->Gsvolu("CSF3", "TUBE", idtmed[1116], ptube, 3);
569 gMC->Gspos("CSF3", 1, "ALIC", -2100., AliCRTConstants::fgDepth-ptube[2], 0., idrotm[2001], "MANY");
570
571 // PGC2 Access Shaft
572 ptube[0] = 1100./2.;
573 ptube[1] = ptube[0] + 100.;
574 ptube[2] = (5150. - 690.)/2.;
575 gMC->Gsvolu("CSF4", "TUBE", idtmed[1116], ptube, 3);
576 gMC->Gspos("CSF4", 1, "ALIC", 375., AliCRTConstants::fgDepth-ptube[2], 1900.+2987.7, idrotm[2001], "MANY");
fb7a1f55 577
578}
579
fb7a1f55 580//_____________________________________________________________________________
778e67bd 581
fb7a1f55 582void AliCRTv0::CreateMaterials()
583{
fb7a1f55 584 // Use the standard materials.
778e67bd 585 AliCRT::CreateMaterials();
fb7a1f55 586}
587
588
589//_____________________________________________________________________________
590void AliCRTv0::DrawDetector()
fb7a1f55 591{
592 //
593 // Draw a shaded view of the L3 magnet
594 //
595 cout << "AliCRTv0::DrawModule() : Drawing the module" << endl;
596
597 gMC->Gsatt("*", "seen", -1);
598 gMC->Gsatt("alic", "seen", 0);
599
6e9adb00 600 gMC->Gsatt("ALIC","seen",0);
fb7a1f55 601 gMC->Gsatt("L3MO","seen",1); // L3 Magnet
6e9adb00 602 gMC->Gsatt("CRT1","seen",1); // Scintillators
603
604 // Draw the molasse volumes
605 gMC->Gsatt("CMO1","seen",0); // Exactly above the HALL
606 gMC->Gsatt("CMO2","seen",0); // Molasse, along the PM25
607 gMC->Gsatt("CMO3","seen",0); // molasse along the PGC2
608 gMC->Gsatt("CMO4","seen",0); // Molasse, behind the PX24 upper part
609 gMC->Gsatt("CMO5","seen",0); // molasse behind px24, lower part
610 gMC->Gsatt("CMO6","seen",0); // behind the PX24
611 gMC->Gsatt("CMO7","seen",0); // behind the PGC2
612 gMC->Gsatt("CMO8","seen",0); // on the right side.
613 gMC->Gsatt("CMO9","seen",0); // on the left side.
614 gMC->Gsatt("CM10","seen",0); // betwen PX24 & PM25.
615 gMC->Gsatt("CM11","seen",0); // betwen PGC2 & PM25.
616 gMC->Gsatt("CM12","seen",0); // box above the hall.
fb7a1f55 617
618 gMC->Gdopt("hide", "on");
619 gMC->Gdopt("edge","off");
620 gMC->Gdopt("shad", "on");
621 gMC->Gsatt("*", "fill", 7);
622 gMC->SetClipBox("ALIC", 0, 3000, -3000, 3000, -6000, 6000);
623 gMC->DefaultRange();
624 gMC->Gdraw("alic", 40, 30, 0, 10, 9.5, .009, .009);
625 gMC->Gdhead(1111, "View of CRT(ACORDE)");
626 gMC->Gdman(18, 4, "MAN");
627
628
629}
630
631//_____________________________________________________________________________
632void AliCRTv0::Init()
633{
634 //
635 // Initialise L3 magnet after it has been built
636 Int_t i;
637 //
638 if(fDebug) {
639 printf("\n%s: ",ClassName());
640 for(i=0;i<35;i++) printf("*");
641 printf(" CRTv0_INIT ");
642 for(i=0;i<35;i++) printf("*");
643 printf("\n%s: ",ClassName());
644 //
645 // Here the CRTv0 initialisation code (if any!)
646 for(i=0;i<80;i++) printf("*");
647 printf("\n");
648 }
649
650}
651
652//_____________________________________________________________________________
653void AliCRTv0::StepManager()
654{
655 //
67721dc4 656 // Called for every step in the Cosmic Ray Trigger
fb7a1f55 657 //
67721dc4 658 static Int_t vol[5];
778e67bd 659 Int_t copy;
67721dc4 660 Int_t ipart;
661 TLorentzVector pos;
662 TLorentzVector mom;
663
e760b04a 664 static Float_t hits[14];
778e67bd 665 Int_t tracknumber = gAlice->CurrentTrack();
67721dc4 666
778e67bd 667 static Float_t eloss;
668 static Float_t tlength;
669 Float_t theta;
670 Float_t phi;
67721dc4 671
778e67bd 672 if ( !gMC->IsTrackAlive() ) return;
bd1047f8 673
778e67bd 674 if (gMC->IsNewTrack()) {
675 // Reset the deposited energy
676 eloss = 0.;
677 }
678
679 eloss += gMC->Edep(); // Store the energy loss along the trajectory.
680 tlength += gMC->TrackStep();
bd1047f8 681
778e67bd 682 if (gMC->IsTrackEntering() && (strcmp(gMC->CurrentVolName(),"CM12") == 0) ) {
67721dc4 683
778e67bd 684 // Get current particle id (ipart), track position (pos) and momentum (mom)
685 gMC->TrackPosition(pos);
686 gMC->TrackMomentum(mom);
687 ipart = gMC->TrackPid();
688
689 Double_t tc = mom[0]*mom[0]+mom[1]*mom[1];
690 Double_t pt = TMath::Sqrt(tc);
691 theta = Float_t(TMath::ATan2(pt,Double_t(mom[2])))*kRaddeg;
692 phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg;
693
694
695 vol[0] = gMC->CurrentVolOffID(1, vol[1]);
696 vol[2] = gMC->CurrentVolID(copy);
697 vol[3] = copy;
698
67721dc4 699 hits[0] = 0.f; // (fnmou)
700 hits[1] = (Float_t)ipart; // (fId)
701
702 hits[2] = pos[0]; // X coordinate (fX)
703 hits[3] = pos[1]; // Y coordinate (fY)
704 hits[4] = pos[2]; // Z coordinate (fZ)
705 hits[5] = mom[0]; // Px (fpxug)
706 hits[6] = mom[1]; // Py (fpyug)
707 hits[7] = mom[2]; // Pz (fpzug)
708
709 hits[8] = gMC->GetMedium();//layer(flay)
778e67bd 710 hits[9] = theta; // arrival angle
711 hits[10] = phi; //
712 hits[11] = eloss; // Energy loss
713 hits[12] = tlength; // Trajectory lenght
714 hits[13] = (Float_t)tracknumber;
67721dc4 715
716 AddHit(gAlice->CurrentTrack(),vol, hits);
778e67bd 717
67721dc4 718 }
719
720}
778e67bd 721