]> git.uio.no Git - u/mrichter/AliRoot.git/blame - EMCAL/AliEMCALEMCGeometry.h
Version where the process for HLT and vdrift on DAQ are off(Raphaelle)
[u/mrichter/AliRoot.git] / EMCAL / AliEMCALEMCGeometry.h
CommitLineData
0c5b726e 1#ifndef ALIEMCALEMCGEOMETRY_H
2#define ALIEMCALEMCGEOMETRY_H
3/* Copyright(c) 1998-2004, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
6/* $Id: AliEMCALEMCGeometry.h 26174 2008-05-26 20:27:16Z jklay $ */
7
8//_________________________________________________________________________
9// Geometry class for EMCAL : singleton
10// EMCAL consists of a layers of scintillator, and lead.
11//
12//*-- Author: Sahal Yacoob (LBL / UCT)
13//*-- and : Yves Schutz (Subatech)
14//*-- and : Aleksei Pavlinov (WSU) - shashlyk staff
15//*-- and : Gustavo Conesa: Add TRU mapping. TRU parameters still not fixed.
16//*-- and : Magali Estienne (Subatech): class added for new library for EMCALGeoUtils.par file
8cc543cb 17//*-- and : Adapted for DCAL by M.L. Wang CCNU Wuhan & Subatech Oct-23-2009
0c5b726e 18
19// --- ROOT system ---
20#include <TMath.h>
21#include <TArrayD.h>
22#include <TNamed.h>
23class TString ;
24class TObjArray;
25class Riostream;
26
27// --- AliRoot header files ---
28class AliEMCALEMCGeometry;
29class AliEMCALShishKebabTrd1Module;
30
31class AliEMCALEMCGeometry : public TNamed {
32public:
8cc543cb 33 enum fEMCSMType { kEMCAL_Standard = 0, kEMCAL_Half = 1, kEMCAL_3rd = 2, kDCAL_Standard = 3, kDCAL_Ext= 4 }; // possible SM Type
0c5b726e 34 AliEMCALEMCGeometry(); // default ctor only for internal usage (singleton)
35 AliEMCALEMCGeometry(const AliEMCALEMCGeometry& geom);
36 // ctor only for internal usage (singleton)
126215a5 37 AliEMCALEMCGeometry(const Text_t* name, const Text_t* title,
38 const Text_t* mcname="", const Text_t* mctitle="");
0c5b726e 39
40 virtual ~AliEMCALEMCGeometry(void);
41
42 AliEMCALEMCGeometry & operator = (const AliEMCALEMCGeometry & /*rvalue*/) {
43 // assignement operator requested by coding convention but not needed
44 Fatal("operator =", "not implemented");
45 return *this;
46 };
47
48 //////////
49 // General
50 //
51 Bool_t IsInitialized(void) const { return fgInit ; }
52 static const Char_t* GetDefaultGeometryName() {return fgkDefaultGeometryName;}
3d841a9f 53 void PrintGeometry(); //*MENU*
0c5b726e 54
126215a5 55 void Init(const Text_t* mcname="", const Text_t* mctitle=""); // initializes the parameters of EMCAL
0c5b726e 56 void CheckAdditionalOptions(); //
8cc543cb 57 void DefineSamplingFraction(const Text_t* mcname="", const Text_t* mctitle="");
0c5b726e 58
59 //////////////////////////////////////
60 // Return EMCAL geometrical parameters
61 //
62
63 TString GetGeoName() const {return fGeoName;}
8cc543cb 64 Int_t * GetEMCSystem() const {return fEMCSMSystem;}
0c5b726e 65 const Char_t* GetNameOfEMCALEnvelope() const { const Char_t* env = "XEN1"; return env ;}
66 Float_t GetArm1PhiMin() const { return fArm1PhiMin ; }
67 Float_t GetArm1PhiMax() const { return fArm1PhiMax ; }
68 Float_t GetArm1EtaMin() const { return fArm1EtaMin;}
69 Float_t GetArm1EtaMax() const { return fArm1EtaMax;}
8cc543cb 70 Float_t GetIPDistance() const { return fIPDistance;}
71 Float_t GetEnvelop(Int_t index) const { return fEnvelop[index] ; }
0c5b726e 72 Float_t GetShellThickness() const { return fShellThickness ; }
8cc543cb 73 Float_t GetZLength() const { return fZLength ; }
74 Float_t GetDCALInnerEdge() const { return fDCALInnerEdge ; }
75 Float_t GetDCALPhiMin() const { return fDCALPhiMin ; }
76 Float_t GetDCALPhiMax() const { return fDCALPhiMax ; }
77 Float_t GetDCALInnerExtandedEta() const { return fDCALInnerExtandedEta ; }
78 Float_t GetEMCALPhiMax() const { return fEMCALPhiMax ; }
79 Float_t GetDCALStandardPhiMax() const { return fDCALStandardPhiMax ; }
0c5b726e 80 Int_t GetNECLayers() const {return fNECLayers ;}
81 Int_t GetNZ() const {return fNZ ;}
82 Int_t GetNEta() const {return fNZ ;}
83 Int_t GetNPhi() const {return fNPhi ;}
84 Float_t GetECPbRadThick()const {return fECPbRadThickness;}
85 Float_t GetECScintThick() const {return fECScintThick;}
8cc543cb 86 Float_t GetSampling() const {return fSampling ; }
0c5b726e 87 Int_t GetNumberOfSuperModules() const {return fNumberOfSuperModules;}
8cc543cb 88 Float_t GetPhiGapForSuperModules() const {return fPhiGapForSM;}
0c5b726e 89 Float_t GetPhiModuleSize() const {return fPhiModuleSize;}
90 Float_t GetEtaModuleSize() const {return fEtaModuleSize;}
91 Float_t GetFrontSteelStrip() const {return fFrontSteelStrip;}
92 Float_t GetLateralSteelStrip() const {return fLateralSteelStrip;}
93 Float_t GetPassiveScintThick() const {return fPassiveScintThick;}
94 Float_t GetPhiTileSize() const {return fPhiTileSize;}
95 Float_t GetEtaTileSize() const {return fEtaTileSize;}
8cc543cb 96 Float_t GetPhiSuperModule() const {return fPhiSuperModule;}
0c5b726e 97 Int_t GetNPhiSuperModule() const {return fNPhiSuperModule;}
98 Int_t GetNPHIdiv() const {return fNPHIdiv ;}
99 Int_t GetNETAdiv() const {return fNETAdiv ;}
100 Int_t GetNCells() const {return fNCells;}
101 Float_t GetLongModuleSize() const {return fLongModuleSize;}
102 Float_t GetTrd1Angle() const {return fTrd1Angle;}
103 Float_t Get2Trd1Dx2() const {return f2Trd1Dx2;}
104 Float_t GetEtaMaxOfTRD1() const {return fEtaMaxOfTRD1;}
3d841a9f 105 Float_t GetTrd1AlFrontThick() const { return fTrd1AlFrontThick;}
106 Float_t GetTrd1BondPaperThick() const {return fTrd1BondPaperThick;}
0c5b726e 107 // --
108 Int_t GetNCellsInSupMod() const {return fNCellsInSupMod;}
109 Int_t GetNCellsInModule() const {return fNCellsInModule; }
110 Int_t GetKey110DEG() const {return fKey110DEG;}
8cc543cb 111 Int_t GetnSupModInDCAL() const {return fnSupModInDCAL;}
0c5b726e 112 Int_t GetILOSS() const {return fILOSS;}
113 Int_t GetIHADR() const {return fIHADR;}
114 // For gamma(Jet) trigger simulations
115 Int_t GetNTRU() const {return fNTRUEta*fNTRUPhi ; }
116 Int_t GetNTRUEta() const {return fNTRUEta ; }
117 Int_t GetNTRUPhi() const {return fNTRUPhi ; }
118 Int_t GetNEtaSubOfTRU() const {return fNEtaSubOfTRU;}
8cc543cb 119 Int_t GetNTotalTRU() const {return fNTotalTRU ; }
0c5b726e 120 Int_t GetNModulesInTRU() const {return fNModulesInTRUEta*fNModulesInTRUPhi; }
121 Int_t GetNModulesInTRUEta() const {return fNModulesInTRUEta ; }
122 Int_t GetNModulesInTRUPhi() const {return fNModulesInTRUPhi ; }
123
124 // --
8cc543cb 125 Float_t GetDeltaEta() const {return (fArm1EtaMax-fArm1EtaMin)/ ((Float_t)fNZ);}
126 Float_t GetDeltaPhi() const {return (fArm1PhiMax-fArm1PhiMin)/ ((Float_t)fNPhi);}
127 Int_t GetNTowers() const {return fNPhi * fNZ ;}
0c5b726e 128 //
129 Double_t GetPhiCenterOfSM(Int_t nsupmod) const;
8cc543cb 130 Double_t GetPhiCenterOfSMSec(Int_t nsupmod) const;
131 Float_t GetSuperModulesPar(Int_t ipar) const {return fParSM[ipar];}
132 Int_t GetSMType(Int_t nSupMod) const { if( nSupMod > GetNumberOfSuperModules() ) return -1;
133 return fEMCSMSystem[nSupMod] ; }
0c5b726e 134 //
135 Bool_t GetPhiBoundariesOfSM (Int_t nSupMod, Double_t &phiMin, Double_t &phiMax) const;
136 Bool_t GetPhiBoundariesOfSMGap(Int_t nPhiSec, Double_t &phiMin, Double_t &phiMax) const;
137 //
138 // Local Coordinates of SM
139/* TArrayD GetCentersOfCellsEtaDir() const {return fCentersOfCellsEtaDir;} // size fNEta*fNETAdiv (for TRD1 only) (eta or z in SM, in cm) */
140/* TArrayD GetCentersOfCellsXDir() const {return fCentersOfCellsXDir;} // size fNEta*fNETAdiv (for TRD1 only) ( x in SM, in cm) */
141/* TArrayD GetCentersOfCellsPhiDir() const {return fCentersOfCellsPhiDir;} // size fNPhi*fNPHIdiv (for TRD1 only) (phi or y in SM, in cm) */
142/* // */
143/* TArrayD GetEtaCentersOfCells() const {return fEtaCentersOfCells;} // [fNEta*fNETAdiv*fNPhi*fNPHIdiv], positive direction (eta>0); eta depend from phi position; */
144/* TArrayD GetPhiCentersOfCells() const {return fPhiCentersOfCells;} // [fNPhi*fNPHIdiv] from center of SM (-10. < phi < +10.) */
145
bccc4a4f 146 static int ParseString(const TString &topt, TObjArray &Opt) ;
0c5b726e 147
148 ///////////////////////////////
149 //Geometry data member setters
150 //
151 void SetNZ(Int_t nz) { fNZ= nz;
152 printf("SetNZ: Number of modules in Z set to %d", fNZ) ; }
153 void SetNPhi(Int_t nphi) { fNPhi= nphi;
154 printf("SetNPhi: Number of modules in Phi set to %d", fNPhi) ; }
155 void SetNTRUEta(Int_t ntru) {fNTRUEta = ntru;
8cc543cb 156 printf("SetNTRU: Number of TRUs per SuperModule in Eta set to %d", fNTRUEta) ;}
0c5b726e 157 void SetNTRUPhi(Int_t ntru) {fNTRUPhi = ntru;
158 printf("SetNTRU: Number of TRUs per SuperModule in Phi set to %d", fNTRUPhi) ;}
159 void SetSampling(Float_t samp) { fSampling = samp;
160 printf("SetSampling: Sampling factor set to %f", fSampling) ; }
161
162 ///////////////////
163 // useful utilities
164 //
165 Float_t AngleFromEta(Float_t eta) const { // returns theta in radians for a given pseudorapidity
166 return 2.0*TMath::ATan(TMath::Exp(-eta));
167 }
168 Float_t ZFromEtaR(Float_t r,Float_t eta) const { // returns z in for a given
169 // pseudorapidity and r=sqrt(x*x+y*y).
170 return r/TMath::Tan(AngleFromEta(eta));
171 }
172
173 //////////////////////////////////////////////////
174 // Obsolete methods to be thrown out when feasible
0c5b726e 175 Float_t GetGap2Active() const {return fGap2Active ;}
176 Float_t GetSteelFrontThickness() const { return fSteelFrontThick;}
177 Float_t GetTrd2AngleY()const {return fTrd2AngleY;}
178 Float_t Get2Trd2Dy2() const {return f2Trd2Dy2;}
179 Float_t GetTubsR() const {return fTubsR;}
180 Float_t GetTubsTurnAngle() const {return fTubsTurnAngle;}
3d841a9f 181 // Float_t GetIP2ECASection() const { return ( GetIPDistance() + GetAlFrontThickness()
182 // + GetGap2Active() ) ; }
0c5b726e 183 //////////////////////////////////////////////////
0c5b726e 184 static const Char_t* fgkDefaultGeometryName; // Default name of geometry
bccc4a4f 185 static Bool_t fgInit; // Tells if geometry has been succesfully set up.
0c5b726e 186
187private:
188
189 // Member data
190
191 TString fGeoName; //geometry name
8cc543cb 192 Int_t *fEMCSMSystem; // geometry structure
0c5b726e 193
194 TObjArray *fArrayOpts; //! array of geometry options
195 const char *fkAdditionalOpts[6]; //! some additional options for the geometry type and name
196 int fNAdditionalOpts; //! size of additional options parameter
197
198 Float_t fECPbRadThickness; // cm, Thickness of the Pb radiators
199 Float_t fECScintThick; // cm, Thickness of the scintillators
200 Int_t fNECLayers; // number of scintillator layers
201
202 Float_t fArm1PhiMin; // Minimum angular position of EMCAL in Phi (degrees)
203 Float_t fArm1PhiMax; // Maximum angular position of EMCAL in Phi (degrees)
204 Float_t fArm1EtaMin; // Minimum pseudorapidity position of EMCAL in Eta
205 Float_t fArm1EtaMax; // Maximum pseudorapidity position of EMCAL in Eta
206
207 // Geometry Parameters
208 Float_t fEnvelop[3]; // the GEANT TUB for the detector
209 Float_t fIPDistance; // Radial Distance of the inner surface of the EMCAL
210 Float_t fShellThickness; // Total thickness in (x,y) direction
211 Float_t fZLength; // Total length in z direction
8cc543cb 212 Float_t fDCALInnerEdge; // Inner edge for DCAL
213 Float_t fDCALPhiMin; // Minimum angular position of DCAL in Phi (degrees)
214 Float_t fDCALPhiMax; // Maximum angular position of DCAL in Phi (degrees)
215 Float_t fEMCALPhiMax; // Maximum angular position of EMCAL in Phi (degrees)
216 Float_t fDCALStandardPhiMax; // special edge for the case that DCAL contian extension
217 Float_t fDCALInnerExtandedEta; // DCAL inner edge in Eta (with some extension)
0c5b726e 218 Int_t fNZ; // Number of Towers in the Z direction
219 Int_t fNPhi; // Number of Towers in the PHI direction
220 Float_t fSampling; // Sampling factor
221
222 // Shish-kebab option - 23-aug-04 by PAI; COMPACT, TWIST, TRD1 and TRD2
223 Int_t fNumberOfSuperModules; // default is 12 = 6 * 2
224 Float_t fFrontSteelStrip; // 13-may-05
225 Float_t fLateralSteelStrip; // 13-may-05
226 Float_t fPassiveScintThick; // 13-may-05
227 Float_t fPhiModuleSize; // Phi -> X
228 Float_t fEtaModuleSize; // Eta -> Y
229 Float_t fPhiTileSize; // Size of phi tile
230 Float_t fEtaTileSize; // Size of eta tile
231 Float_t fLongModuleSize; // Size of long module
8cc543cb 232 Float_t fPhiSuperModule; // Phi of normal supermodule (20, in degree)
233 Int_t fNPhiSuperModule; // 9 - number supermodule in phi direction
0c5b726e 234 Int_t fNPHIdiv; // number phi divizion of module
235 Int_t fNETAdiv; // number eta divizion of module
236 //
237 Int_t fNCells; // number of cells in calo
238 Int_t fNCellsInSupMod; // number cell in super module
239 Int_t fNCellsInModule; // number cell in module)
240 //TRU parameters
241 Int_t fNTRUEta ; // Number of TRUs per module in eta
242 Int_t fNTRUPhi ; // Number of TRUs per module in phi
243 Int_t fNModulesInTRUEta; // Number of modules per TRU in eta
244 Int_t fNModulesInTRUPhi; // Number of modules per TRU in phi
245 Int_t fNEtaSubOfTRU; // Number of eta (z) subregiohi
8cc543cb 246 Int_t fNTotalTRU; // Total Number of TRU (all SM)
0c5b726e 247
248 // TRD1 options - 30-sep-04
249 Float_t fTrd1Angle; // angle in x-z plane (in degree)
250 Float_t f2Trd1Dx2; // 2*dx2 for TRD1
251 Float_t fPhiGapForSM; // Gap betweeen supermodules in phi direction
252 Int_t fKey110DEG; // for calculation abs cell id; 19-oct-05
8cc543cb 253 Int_t fnSupModInDCAL; // for calculation abs cell id;
0c5b726e 254 TArrayD fPhiBoundariesOfSM; // phi boundaries of SM in rad; size is fNumberOfSuperModules;
8cc543cb 255 TArrayD fPhiCentersOfSM; // phi of centers of SM; size is fNumberOfSuperModules/2
256 TArrayD fPhiCentersOfSMSec; // phi of centers of section where SM lies; size is fNumberOfSuperModules/2
0c5b726e 257 Float_t fEtaMaxOfTRD1; // max eta in case of TRD1 geometry (see AliEMCALShishKebabTrd1Module)
3d841a9f 258 // Oct 26,2010
259 Float_t fTrd1AlFrontThick; // Thickness of the Al front plate
260 Float_t fTrd1BondPaperThick; // Thickness of the Bond Paper sheet
0c5b726e 261 // Local Coordinates of SM
262 TArrayD fCentersOfCellsEtaDir; // size fNEta*fNETAdiv (for TRD1 only) (eta or z in SM, in cm)
263 TArrayD fCentersOfCellsXDir; // size fNEta*fNETAdiv (for TRD1 only) ( x in SM, in cm)
264 TArrayD fCentersOfCellsPhiDir; // size fNPhi*fNPHIdiv (for TRD1 only) (phi or y in SM, in cm)
265 //
266 TArrayD fEtaCentersOfCells; // [fNEta*fNETAdiv*fNPhi*fNPHIdiv], positive direction (eta>0); eta depend from phi position;
267 TArrayD fPhiCentersOfCells; // [fNPhi*fNPHIdiv] from center of SM (-10. < phi < +10.)
268 // Move from AliEMCALv0 - Feb 19, 2006
269 TList *fShishKebabTrd1Modules; //! list of modules
270 // Local coordinates of SM for TRD1
271 Float_t fParSM[3]; // SM sizes as in GEANT (TRD1)
272
273 Int_t fILOSS; // Options for Geant (MIP business) - will call in AliEMCAL
274 Int_t fIHADR; // Options for Geant (MIP business) - will call in AliEMCAL
275
276 ////////////////////////////////////////////////////////////
277 //Obsolete member data that will be thrown out when feasible
278 //
0c5b726e 279 Float_t fGap2Active; // Gap between the envelop and the active material
280 Float_t fSteelFrontThick; // Thickness of the front stell face of the support box - 9-sep-04
281 // TRD2 options - 27-jan-07
282 Float_t fTrd2AngleY; // angle in y-z plane (in degree)
283 Float_t f2Trd2Dy2; // 2*dy2 for TRD2
284 Float_t fEmptySpace; // 2mm om fred drawing
285 // Super module as TUBS
286 Float_t fTubsR; // radius of tubs
287 Float_t fTubsTurnAngle; // turn angle of tubs in degree
288
289 ///////////////////////////////////////////////////////////
290
8cc543cb 291 ClassDef(AliEMCALEMCGeometry, 3) // EMCAL geometry class
0c5b726e 292};
293
294#endif // AliEMCALEMCGEOMETRY_H