Zero misalignment
[u/mrichter/AliRoot.git] / EMCAL / AliEMCALGeometry.cxx
CommitLineData
e52475ed 1 /**************************************************************************
2012850d 2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$*/
17
18//_________________________________________________________________________
19// Geometry class for EMCAL : singleton
b13bbe81 20// EMCAL consists of layers of scintillator and lead
ffa6d63b 21// Places the the Barrel Geometry of The EMCAL at Midrapidity
d87bd045 22// between 80 and 180(or 190) degrees of Phi and
ffa6d63b 23// -0.7 to 0.7 in eta
24// Number of Modules and Layers may be controlled by
25// the name of the instance defined
b13bbe81 26//*-- Author: Sahal Yacoob (LBL / UCT)
27// and : Yves Schutz (SUBATECH)
28// and : Jennifer Klay (LBL)
1963b290 29// SHASHLYK : Aleksei Pavlinov (WSU)
c63c3c5d 30// SuperModules -> module(or tower) -> cell
2012850d 31
2012850d 32// --- AliRoot header files ---
1ceeec56 33#include <assert.h>
e52475ed 34#include "Riostream.h"
35
ca8f5bd0 36#include <TMath.h>
116cbefd 37#include <TVector3.h>
e52475ed 38#include <TArrayD.h>
c63c3c5d 39#include <TObjArray.h>
e52475ed 40#include <TGeoManager.h>
41#include <TGeoNode.h>
42#include <TGeoMatrix.h>
f0377b23 43#include <TMatrixD.h>
d434833b 44#include <TObjString.h>
f0377b23 45#include <TClonesArray.h>
173558f2 46
ca8f5bd0 47// -- ALICE Headers.
d64c959b 48//#include "AliConst.h"
173558f2 49
ca8f5bd0 50// --- EMCAL headers
51#include "AliEMCALGeometry.h"
e52475ed 52#include "AliEMCALShishKebabTrd1Module.h"
53//#include "AliRecPoint.h"
54#include "AliEMCALRecPoint.h"
f0377b23 55#include "AliEMCALDigit.h"
d434833b 56#include "AliEMCALHistoUtilities.h"
57#include "AliEMCALAlignData.h"
2012850d 58
925e6570 59ClassImp(AliEMCALGeometry)
2012850d 60
d434833b 61// these initialisations are needed for a singleton
62AliEMCALGeometry *AliEMCALGeometry::fgGeom = 0;
63Bool_t AliEMCALGeometry::fgInit = kFALSE;
64AliEMCALAlignData *AliEMCALGeometry::fgAlignData = 0;
65
1963b290 66TString name; // contains name of geometry
2012850d 67
c63c3c5d 68char *additionalOpts[]={"nl=", // number of sampling layers
69 "pbTh=", // cm, Thickness of the Pb
70 "scTh=" // cm, Thickness of the Sc
71};
72int nAdditionalOpts = sizeof(additionalOpts) / sizeof(char*);
73
b13bbe81 74//______________________________________________________________________
75AliEMCALGeometry::~AliEMCALGeometry(void){
76 // dtor
2012850d 77}
395c7ba2 78//______________________________________________________________________
79void AliEMCALGeometry::Init(void){
80 // Initializes the EMCAL parameters
fdebddeb 81 // naming convention : GUV_WX_N_ gives the composition of a tower
395c7ba2 82 // WX inform about the composition of the EM calorimeter section:
fdebddeb 83 // thickness in mm of Pb radiator (W) and of scintillator (X), and number of scintillator layers (N)
84 // New geometry: EMCAL_55_25
1963b290 85 // 24-aug-04 for shish-kebab
86 // SHISH_25 or SHISH_62
c63c3c5d 87 // 11-oct-05 - correction for pre final design
88 // Feb 06,2006 - decrease the weight of EMCAL
fdebddeb 89 fgInit = kFALSE; // Assume failed until proven otherwise.
1963b290 90 name = GetName();
d87bd045 91 name.ToUpper();
92 fKey110DEG = 0;
93 if(name.Contains("110DEG")) fKey110DEG = 1; // for GetAbsCellId
e52475ed 94 fShishKebabTrd1Modules = 0;
95 fTrd2AngleY = f2Trd2Dy2 = fEmptySpace = fTubsR = fTubsTurnAngle = 0;
1963b290 96
97 fNZ = 114; // granularity along Z (eta)
98 fNPhi = 168; // granularity in phi (azimuth)
99 fArm1PhiMin = 60.0; // degrees, Starting EMCAL Phi position
100 fArm1PhiMax = 180.0; // degrees, Ending EMCAL Phi position
101 fArm1EtaMin = -0.7; // pseudorapidity, Starting EMCAL Eta position
102 fArm1EtaMax = +0.7; // pseudorapidity, Ending EMCAL Eta position
103 fIPDistance = 454.0; // cm, Radial distance to inner surface of EMCAL
905263da 104 fPhiGapForSM = 0.; // cm, only for final TRD1 geometry
e52475ed 105 for(int i=0; i<12; i++) fMatrixOfSM[i] = 0;
1963b290 106
107 // geometry
c63c3c5d 108 if(name.Contains("SHISH")){ // Only shahslyk now
905263da 109 // 7-sep-05; integration issue
110 fArm1PhiMin = 80.0; // 60 -> 80
c01485dd 111 fArm1PhiMax = 180.0; // 180 -> 190
905263da 112
113 fNumberOfSuperModules = 10; // 12 = 6 * 2 (6 in phi, 2 in Z);
1963b290 114 fSteelFrontThick = 2.54; // 9-sep-04
115 fIPDistance = 460.0;
116 fFrontSteelStrip = fPassiveScintThick = 0.0; // 13-may-05
117 fLateralSteelStrip = 0.025; // before MAY 2005
118 fPhiModuleSize = fEtaModuleSize = 11.4;
119 fPhiTileSize = fEtaTileSize = 5.52; // (11.4-5.52*2)/2. = 0.18 cm (wall thickness)
120 fNPhi = 14;
121 fNZ = 30;
122 fAlFrontThick = fGap2Active = 0;
123 fNPHIdiv = fNETAdiv = 2;
124
125 fNECLayers = 62;
126 fECScintThick = fECPbRadThickness = 0.2;
127 fSampling = 1.; // 30-aug-04 - should be calculated
128 if(name.Contains("TWIST")) { // all about EMCAL module
129 fNZ = 27; // 16-sep-04
130 } else if(name.Contains("TRD")) {
131 fIPDistance = 428.0; // 11-may-05
132 fSteelFrontThick = 0.0; // 3.17 -> 0.0; 28-mar-05 : no stell plate
133 fNPhi = 12;
134 fSampling = 12.327;
135 fPhiModuleSize = fEtaModuleSize = 12.26;
136 fNZ = 26; // 11-oct-04
137 fTrd1Angle = 1.3; // in degree
138// 18-nov-04; 1./0.08112=12.327
139// http://pdsfweb01.nersc.gov/~pavlinov/ALICE/SHISHKEBAB/RES/linearityAndResolutionForTRD1.html
140 if(name.Contains("TRD1")) { // 30-jan-05
141 // for final design
905263da 142 fPhiGapForSM = 2.; // cm, only for final TRD1 geometry
143 if(name.Contains("MAY05") || name.Contains("WSUC") || name.Contains("FINAL")){
1963b290 144 fNumberOfSuperModules = 12; // 20-may-05
145 if(name.Contains("WSUC")) fNumberOfSuperModules = 1; // 27-may-05
146 fNECLayers = 77; // (13-may-05 from V.Petrov)
147 fPhiModuleSize = 12.5; // 20-may-05 - rectangular shape
148 fEtaModuleSize = 11.9;
149 fECScintThick = fECPbRadThickness = 0.16;// (13-may-05 from V.Petrov)
150 fFrontSteelStrip = 0.025;// 0.025cm = 0.25mm (13-may-05 from V.Petrov)
151 fLateralSteelStrip = 0.01; // 0.01cm = 0.1mm (13-may-05 from V.Petrov) - was 0.025
152 fPassiveScintThick = 0.8; // 0.8cm = 8mm (13-may-05 from V.Petrov)
153 fNZ = 24;
154 fTrd1Angle = 1.5; // 1.3 or 1.5
905263da 155
156 if(name.Contains("FINAL")) { // 9-sep-05
157 fNumberOfSuperModules = 10;
d87bd045 158 if(name.Contains("110DEG")) {
159 fNumberOfSuperModules = 12;// last two modules have size 10 degree in phi (180<phi<190)
160 fArm1PhiMax = 200.0; // for XEN1 and turn angle of super modules
161 }
905263da 162 fPhiModuleSize = 12.26 - fPhiGapForSM / Float_t(fNPhi); // first assumption
163 fEtaModuleSize = fPhiModuleSize;
c01485dd 164 if(name.Contains("HUGE")) fNECLayers *= 3; // 28-oct-05 for analysing leakage
905263da 165 }
1963b290 166 }
167 } else if(name.Contains("TRD2")) { // 30-jan-05
168 fSteelFrontThick = 0.0; // 11-mar-05
169 fIPDistance+= fSteelFrontThick; // 1-feb-05 - compensate absence of steel plate
170 fTrd1Angle = 1.64; // 1.3->1.64
171 fTrd2AngleY = fTrd1Angle; // symmetric case now
172 fEmptySpace = 0.2; // 2 mm
173 fTubsR = fIPDistance; // 31-jan-05 - as for Fred case
174
175 fPhiModuleSize = fTubsR*2.*TMath::Tan(fTrd2AngleY*TMath::DegToRad()/2.);
176 fPhiModuleSize -= fEmptySpace/2.; // 11-mar-05
177 fEtaModuleSize = fPhiModuleSize; // 20-may-05
178 fTubsTurnAngle = 3.;
179 }
180 fNPHIdiv = fNETAdiv = 2; // 13-oct-04 - division again
181 if(name.Contains("3X3")) { // 23-nov-04
182 fNPHIdiv = fNETAdiv = 3;
183 } else if(name.Contains("4X4")) {
184 fNPHIdiv = fNETAdiv = 4;
185 }
186 }
187 fPhiTileSize = fPhiModuleSize/2. - fLateralSteelStrip; // 13-may-05
188 fEtaTileSize = fEtaModuleSize/2. - fLateralSteelStrip; // 13-may-05
189
190 if(name.Contains("25")){
191 fNECLayers = 25;
192 fECScintThick = fECPbRadThickness = 0.5;
193 }
194 if(name.Contains("WSUC")){ // 18-may-05 - about common structure
195 fShellThickness = 30.; // should be change
196 fNPhi = fNZ = 4;
197 }
c63c3c5d 198
199 CheckAditionalOptions();
200
1963b290 201 // constant for transition absid <--> indexes
202 fNCellsInTower = fNPHIdiv*fNETAdiv;
203 fNCellsInSupMod = fNCellsInTower*fNPhi*fNZ;
204 fNCells = fNCellsInSupMod*fNumberOfSuperModules;
d87bd045 205 if(name.Contains("110DEG")) fNCells -= fNCellsInSupMod;
1963b290 206
207 fLongModuleSize = fNECLayers*(fECScintThick + fECPbRadThickness);
208 if(name.Contains("MAY05")) fLongModuleSize += (fFrontSteelStrip + fPassiveScintThick);
209
210 // 30-sep-04
211 if(name.Contains("TRD")) {
212 f2Trd1Dx2 = fEtaModuleSize + 2.*fLongModuleSize*TMath::Tan(fTrd1Angle*TMath::DegToRad()/2.);
213 if(name.Contains("TRD2")) { // 27-jan-05
214 f2Trd2Dy2 = fPhiModuleSize + 2.*fLongModuleSize*TMath::Tan(fTrd2AngleY*TMath::DegToRad()/2.);
215 }
216 }
c63c3c5d 217 } else Fatal("Init", "%s is an undefined geometry!", name.Data()) ;
fdebddeb 218
1963b290 219 fNPhiSuperModule = fNumberOfSuperModules/2;
220 if(fNPhiSuperModule<1) fNPhiSuperModule = 1;
fdebddeb 221 //There is always one more scintillator than radiator layer because of the first block of aluminium
222 fShellThickness = fAlFrontThick + fGap2Active + fNECLayers*GetECScintThick()+(fNECLayers-1)*GetECPbRadThick();
1963b290 223 if(name.Contains("SHISH")) {
224 fShellThickness = fSteelFrontThick + fLongModuleSize;
225 if(name.Contains("TWIST")) { // 13-sep-04
226 fShellThickness = TMath::Sqrt(fLongModuleSize*fLongModuleSize + fPhiModuleSize*fEtaModuleSize);
227 fShellThickness += fSteelFrontThick;
228 } else if(name.Contains("TRD")) { // 1-oct-04
229 fShellThickness = TMath::Sqrt(fLongModuleSize*fLongModuleSize + f2Trd1Dx2*f2Trd1Dx2);
230 fShellThickness += fSteelFrontThick;
e52475ed 231 // Local coordinates
232 fParSM[0] = GetShellThickness()/2.;
233 fParSM[1] = GetPhiModuleSize() * GetNPhi()/2.;
234 fParSM[2] = 350./2.;
1963b290 235 }
236 }
fdebddeb 237
395c7ba2 238 fZLength = 2.*ZFromEtaR(fIPDistance+fShellThickness,fArm1EtaMax); // Z coverage
239 fEnvelop[0] = fIPDistance; // mother volume inner radius
240 fEnvelop[1] = fIPDistance + fShellThickness; // mother volume outer r.
241 fEnvelop[2] = 1.00001*fZLength; // add some padding for mother volume.
242
d434833b 243 if(fgAlignData != NULL) {
244 // Number of modules is read from Alignment DB if exists
245 fNumberOfSuperModules = fgAlignData->GetNSuperModules();
246 }
247
395c7ba2 248 fgInit = kTRUE;
249
1963b290 250 if (kTRUE) {
251 printf("Init: geometry of EMCAL named %s is as follows:\n", name.Data());
e52475ed 252 printf( " ECAL : %d x (%f cm Pb, %f cm Sc) \n",
253 GetNECLayers(), GetECPbRadThick(), GetECScintThick() ) ;
254 printf(" fSampling %5.2f \n", fSampling );
1963b290 255 if(name.Contains("SHISH")){
256 printf(" fIPDistance %6.3f cm \n", fIPDistance);
257 if(fSteelFrontThick>0.)
258 printf(" fSteelFrontThick %6.3f cm \n", fSteelFrontThick);
259 printf(" fNPhi %i | fNZ %i \n", fNPhi, fNZ);
d87bd045 260 printf(" fNCellsInTower %i : fNCellsInSupMod %i : fNCells %i\n",fNCellsInTower, fNCellsInSupMod, fNCells);
1963b290 261 if(name.Contains("MAY05")){
262 printf(" fFrontSteelStrip %6.4f cm (thickness of front steel strip)\n",
263 fFrontSteelStrip);
264 printf(" fLateralSteelStrip %6.4f cm (thickness of lateral steel strip)\n",
265 fLateralSteelStrip);
266 printf(" fPassiveScintThick %6.4f cm (thickness of front passive Sc tile)\n",
267 fPassiveScintThick);
268 }
c63c3c5d 269 printf(" X:Y module size %6.3f , %6.3f cm \n", fPhiModuleSize, fEtaModuleSize);
270 printf(" X:Y tile size %6.3f , %6.3f cm \n", fPhiTileSize, fEtaTileSize);
271 printf(" #of sampling layers %i(fNECLayers) \n", fNECLayers);
272 printf(" fLongModuleSize %6.3f cm \n", fLongModuleSize);
1963b290 273 printf(" #supermodule in phi direction %i \n", fNPhiSuperModule );
274 }
275 if(name.Contains("TRD")) {
276 printf(" fTrd1Angle %7.4f\n", fTrd1Angle);
277 printf(" f2Trd1Dx2 %7.4f\n", f2Trd1Dx2);
278 if(name.Contains("TRD2")) {
279 printf(" fTrd2AngleY %7.4f\n", fTrd2AngleY);
280 printf(" f2Trd2Dy2 %7.4f\n", f2Trd2Dy2);
905263da 281 printf(" fTubsR %7.2f cm\n", fTubsR);
1963b290 282 printf(" fTubsTurnAngle %7.4f\n", fTubsTurnAngle);
905263da 283 printf(" fEmptySpace %7.4f cm\n", fEmptySpace);
284 } else if(name.Contains("TRD1") && name.Contains("FINAL")){
e52475ed 285 printf("SM dimensions(TRD1) : dx %7.2f dy %7.2f dz %7.2f (SMOD, BOX)\n",
286 fParSM[0],fParSM[1],fParSM[2]);
905263da 287 printf(" fPhiGapForSM %7.4f cm \n", fPhiGapForSM);
d87bd045 288 if(name.Contains("110DEG"))printf(" Last two modules have size 10 degree in phi (180<phi<190)\n");
1963b290 289 }
290 }
88cb7938 291 printf("Granularity: %d in eta and %d in phi\n", GetNZ(), GetNPhi()) ;
1963b290 292 printf("Layout: phi = (%7.1f, %7.1f), eta = (%5.2f, %5.2f), IP = %7.2f\n",
293 GetArm1PhiMin(), GetArm1PhiMax(),GetArm1EtaMin(), GetArm1EtaMax(), GetIPDistance() );
88cb7938 294 }
f0377b23 295 //TRU parameters. These parameters values are not the final ones.
296 fNTRU = 3 ;
297 fNTRUEta = 3 ;
298 fNTRUPhi = 1 ;
2012850d 299}
173558f2 300
c63c3c5d 301//______________________________________________________________________
302
303void AliEMCALGeometry::CheckAditionalOptions()
304{ // Feb 06,2006
305 fArrayOpts = new TObjArray;
d434833b 306 Int_t nopt = AliEMCALHistoUtilities::ParseString(name, *fArrayOpts);
c63c3c5d 307 if(nopt==1) { // no aditional option(s)
308 fArrayOpts->Delete();
309 delete fArrayOpts;
310 fArrayOpts = 0;
311 return;
312 }
313 for(Int_t i=1; i<nopt; i++){
314 TObjString *o = (TObjString*)fArrayOpts->At(i);
315
316 TString addOpt = o->String();
317 Int_t indj=-1;
318 for(Int_t j=0; j<nAdditionalOpts; j++) {
319 TString opt = additionalOpts[j];
320 if(addOpt.Contains(opt,TString::kIgnoreCase)) {
321 indj = j;
322 break;
323 }
324 }
325 if(indj<0) {
326 printf("<E> option |%s| unavailable : ** look to the file AliEMCALGeometry.h **\n",
327 addOpt.Data());
328 assert(0);
329 } else {
330 printf("<I> option |%s| is valid : number %i : |%s|\n",
331 addOpt.Data(), indj, additionalOpts[indj]);
332 if (addOpt.Contains("NL=",TString::kIgnoreCase)) {// number of sampling layers
333 sscanf(addOpt.Data(),"NL=%i", &fNECLayers);
334 printf(" fNECLayers %i (new) \n", fNECLayers);
335 } else if(addOpt.Contains("PBTH=",TString::kIgnoreCase)) {//Thickness of the Pb
336 sscanf(addOpt.Data(),"PBTH=%f", &fECPbRadThickness);
337 } else if(addOpt.Contains("SCTH=",TString::kIgnoreCase)) {//Thickness of the Sc
338 sscanf(addOpt.Data(),"SCTH=%f", &fECScintThick);
339 }
340 }
341 }
342}
343
f0377b23 344//____________________________________________________________________________
356fd0a9 345void AliEMCALGeometry::FillTRU(const TClonesArray * digits, TClonesArray * ampmatrix, TClonesArray * timeRmatrix) {
f0377b23 346
347
356fd0a9 348// Orders digits ampitudes list in fNTRU TRUs (384 cells) per supermodule.
349// Each TRU is a TMatrixD, and they are kept in TClonesArrays. The number of
350// TRU in phi is fNTRUPhi, and the number of TRU in eta is fNTRUEta.
351// Last 2 modules are half size in Phi, I considered that the number of TRU
352// is maintained for the last modules but decision not taken. If different,
353// then this must be changed.
354
f0377b23 355
356 //Check data members
357
358 if(fNTRUEta*fNTRUPhi != fNTRU)
359 Error("FillTRU"," Wrong number of TRUS per Eta or Phi");
360
356fd0a9 361 //Initilize and declare variables
f0377b23 362 //List of TRU matrices initialized to 0.
356fd0a9 363 Int_t nCellsPhi = fNPhi*2/fNTRUPhi;
364 Int_t nCellsPhi2 = fNPhi/fNTRUPhi; //HalfSize modules
365 Int_t nCellsEta = fNZ*2/fNTRUEta;
f0377b23 366 Int_t id = -1;
367 Float_t amp = -1;
356fd0a9 368 Float_t timeR = -1;
f0377b23 369 Int_t iSupMod = -1;
370 Int_t nTower = -1;
371 Int_t nIphi = -1;
372 Int_t nIeta = -1;
373 Int_t iphi = -1;
374 Int_t ieta = -1;
356fd0a9 375
376 //List of TRU matrices initialized to 0.
377 for(Int_t k = 0; k < fNTRU*fNumberOfSuperModules; k++){
378 TMatrixD * amptrus = new TMatrixD(nCellsPhi,nCellsEta) ;
379 TMatrixD * timeRtrus = new TMatrixD(nCellsPhi,nCellsEta) ;
380 for(Int_t i = 0; i < nCellsPhi; i++){
381 for(Int_t j = 0; j < nCellsEta; j++){
382 (*amptrus)(i,j) = 0.0;
383 (*timeRtrus)(i,j) = 0.0;
384 }
385 }
386 new((*ampmatrix)[k]) TMatrixD(*amptrus) ;
387 new((*timeRmatrix)[k]) TMatrixD(*timeRtrus) ;
388 }
389
390 AliEMCALDigit * dig ;
f0377b23 391
392 //Digits loop to fill TRU matrices with amplitudes.
f0377b23 393 for(Int_t idig = 0 ; idig < digits->GetEntriesFast() ; idig++){
394
395 dig = dynamic_cast<AliEMCALDigit *>(digits->At(idig)) ;
356fd0a9 396 amp = dig->GetAmp() ; // Energy of the digit (arbitrary units)
397 id = dig->GetId() ; // Id label of the cell
398 timeR = dig->GetTimeR() ; // Earliest time of the digit
f0377b23 399
400 //Get eta and phi cell position in supermodule
401 Bool_t bCell = GetCellIndex(id, iSupMod, nTower, nIphi, nIeta) ;
402 if(!bCell)
403 Error("FillTRU","Wrong cell id number") ;
404
405 GetCellPhiEtaIndexInSModule(iSupMod,nTower,nIphi, nIeta,iphi,ieta);
406
407 //Check to which TRU in the supermodule belongs the cell.
408 //Supermodules are divided in a TRU matrix of dimension
409 //(fNTRUPhi,fNTRUEta).
410 //Each TRU is a cell matrix of dimension (nCellsPhi,nCellsEta)
411
412 //First calculate the row and column in the supermodule
413 //of the TRU to which the cell belongs.
f0377b23 414 Int_t col = (ieta-1)/nCellsEta+1;
415 Int_t row = (iphi-1)/nCellsPhi+1;
356fd0a9 416 if(iSupMod > 10)
417 row = (iphi-1)/nCellsPhi2+1;
418 //Calculate label number of the TRU
419 Int_t itru = (row-1) + (col-1)*fNTRUPhi + (iSupMod-1)*fNTRU ;
f0377b23 420
421 //Fill TRU matrix with cell values
356fd0a9 422 TMatrixD * amptrus = dynamic_cast<TMatrixD *>(ampmatrix->At(itru)) ;
423 TMatrixD * timeRtrus = dynamic_cast<TMatrixD *>(timeRmatrix->At(itru)) ;
f0377b23 424
356fd0a9 425 //Calculate row and column of the cell inside the TRU with number itru
426 Int_t irow = (iphi-1) - (row-1) * nCellsPhi;
427 if(iSupMod > 10)
428 irow = (iphi-1) - (row-1) * nCellsPhi2;
f0377b23 429 Int_t icol = (ieta-1) - (col-1) * nCellsEta;
430
356fd0a9 431 (*amptrus)(irow,icol) = amp ;
432 (*timeRtrus)(irow,icol) = timeR ;
f0377b23 433
434 }
f0377b23 435}
436
356fd0a9 437//______________________________________________________________________
438void AliEMCALGeometry::GetCellPhiEtaIndexInSModuleFromTRUIndex(const Int_t itru, const Int_t iphitru, const Int_t ietatru, Int_t &iphiSM, Int_t &ietaSM) const
439{
440
441 // This method transforms the (eta,phi) index of a cells in a
442 // TRU matrix into Super Module (eta,phi) index.
443
444 // Calculate in which row and column in which the TRU are
445 // ordered in the SM
446
447 Int_t col = itru/ fNTRUPhi + 1;
448 Int_t row = itru - (col-1)*fNTRUPhi + 1;
449
450 //Calculate the (eta,phi) index in SM
451 Int_t nCellsPhi = fNPhi*2/fNTRUPhi;
452 Int_t nCellsEta = fNZ*2/fNTRUEta;
453
454 iphiSM = nCellsPhi*(row-1) + iphitru + 1 ;
455 ietaSM = nCellsEta*(col-1) + ietatru + 1 ;
456}
f0377b23 457
b13bbe81 458//______________________________________________________________________
459AliEMCALGeometry * AliEMCALGeometry::GetInstance(){
05a92d59 460 // Returns the pointer of the unique instance
461
e52475ed 462 AliEMCALGeometry * rv = static_cast<AliEMCALGeometry *>( fgGeom );
463 return rv;
2012850d 464}
173558f2 465
b13bbe81 466//______________________________________________________________________
467AliEMCALGeometry* AliEMCALGeometry::GetInstance(const Text_t* name,
468 const Text_t* title){
469 // Returns the pointer of the unique instance
470
471 AliEMCALGeometry * rv = 0;
472 if ( fgGeom == 0 ) {
473 if ( strcmp(name,"") == 0 ) rv = 0;
474 else {
475 fgGeom = new AliEMCALGeometry(name, title);
476 if ( fgInit ) rv = (AliEMCALGeometry * ) fgGeom;
477 else {
478 rv = 0;
479 delete fgGeom;
480 fgGeom = 0;
481 } // end if fgInit
482 } // end if strcmp(name,"")
483 }else{
484 if ( strcmp(fgGeom->GetName(), name) != 0 ) {
fdebddeb 485 printf("\ncurrent geometry is ") ;
486 printf(fgGeom->GetName());
487 printf("\n you cannot call ");
488 printf(name);
b13bbe81 489 }else{
9859bfc0 490 rv = (AliEMCALGeometry *) fgGeom;
e52475ed 491 } // end
b13bbe81 492 } // end if fgGeom
493 return rv;
2012850d 494}
173558f2 495
c63c3c5d 496// These methods are obsolete but use in AliEMCALRecPoint - keep it now
ca8f5bd0 497//______________________________________________________________________
395c7ba2 498Int_t AliEMCALGeometry::TowerIndex(Int_t ieta,Int_t iphi) const {
499 // Returns the tower index number from the based on the Z and Phi
fdebddeb 500 // index numbers.
395c7ba2 501 // Inputs:
fdebddeb 502 // Int_t ieta // index along z axis [1-fNZ]
503 // Int_t iphi // index along phi axis [1-fNPhi]
395c7ba2 504 // Outputs:
505 // none.
506 // Returned
507 // Int_t index // Tower index number
508
509 if ( (ieta <= 0 || ieta>GetNEta()) ||
f1da4a27 510 (iphi <= 0 || iphi>GetNPhi())) {
511 Error("TowerIndex", "Unexpected parameters eta = %d phi = %d!", ieta, iphi) ;
512 return -1;
513 }
395c7ba2 514 return ( (iphi - 1)*GetNEta() + ieta );
ca8f5bd0 515}
173558f2 516
ca8f5bd0 517//______________________________________________________________________
fdebddeb 518void AliEMCALGeometry::TowerIndexes(Int_t index,Int_t &ieta,Int_t &iphi) const {
395c7ba2 519 // Inputs:
fdebddeb 520 // Int_t index // Tower index number [1-fNZ*fNPhi]
395c7ba2 521 // Outputs:
522 // Int_t ieta // index allong z axis [1-fNZ]
523 // Int_t iphi // index allong phi axis [1-fNPhi]
395c7ba2 524 // Returned
525 // none.
395c7ba2 526
fdebddeb 527 Int_t nindex = 0;
395c7ba2 528
fdebddeb 529 if ( IsInECA(index) ) { // ECAL index
395c7ba2 530 nindex = index ;
395c7ba2 531 }
f1da4a27 532 else {
533 Error("TowerIndexes", "Unexpected Id number!") ;
534 ieta = -1;
535 iphi = -1;
536 return;
537 }
538
395c7ba2 539 if (nindex%GetNZ())
540 iphi = nindex / GetNZ() + 1 ;
541 else
542 iphi = nindex / GetNZ() ;
543 ieta = nindex - (iphi - 1) * GetNZ() ;
544
545 if (gDebug==2)
fdebddeb 546 printf("TowerIndexes: index=%d,%d, ieta=%d, iphi = %d", index, nindex,ieta, iphi) ;
395c7ba2 547 return;
548
ca8f5bd0 549}
173558f2 550
ca8f5bd0 551//______________________________________________________________________
a34b7b9f 552void AliEMCALGeometry::EtaPhiFromIndex(Int_t index,Float_t &eta,Float_t &phi) const {
ca8f5bd0 553 // given the tower index number it returns the based on the eta and phi
554 // of the tower.
555 // Inputs:
fdebddeb 556 // Int_t index // Tower index number [1-fNZ*fNPhi]
ca8f5bd0 557 // Outputs:
558 // Float_t eta // eta of center of tower in pseudorapidity
559 // Float_t phi // phi of center of tower in degrees
560 // Returned
561 // none.
fdebddeb 562 Int_t ieta, iphi;
395c7ba2 563 Float_t deta, dphi ;
ca8f5bd0 564
fdebddeb 565 TowerIndexes(index,ieta,iphi);
395c7ba2 566
567 if (gDebug == 2)
fdebddeb 568 printf("EtaPhiFromIndex: index = %d, ieta = %d, iphi = %d", index, ieta, iphi) ;
395c7ba2 569
570 deta = (GetArm1EtaMax()-GetArm1EtaMin())/(static_cast<Float_t>(GetNEta()));
571 eta = GetArm1EtaMin() + ((static_cast<Float_t>(ieta) - 0.5 ))*deta;
572
573 dphi = (GetArm1PhiMax() - GetArm1PhiMin())/(static_cast<Float_t>(GetNPhi())); // in degrees.
574 phi = GetArm1PhiMin() + dphi*(static_cast<Float_t>(iphi) - 0.5);//iphi range [1-fNphi].
ca8f5bd0 575}
173558f2 576
ca8f5bd0 577//______________________________________________________________________
a34b7b9f 578Int_t AliEMCALGeometry::TowerIndexFromEtaPhi(Float_t eta,Float_t phi) const {
ca8f5bd0 579 // returns the tower index number based on the eta and phi of the tower.
580 // Inputs:
581 // Float_t eta // eta of center of tower in pseudorapidity
582 // Float_t phi // phi of center of tower in degrees
583 // Outputs:
584 // none.
585 // Returned
586 // Int_t index // Tower index number [1-fNZ*fNPhi]
395c7ba2 587
e908f07f 588 Int_t ieta,iphi;
ca8f5bd0 589
395c7ba2 590 ieta = static_cast<Int_t> ( 1 + (static_cast<Float_t>(GetNEta()) * (eta - GetArm1EtaMin()) / (GetArm1EtaMax() - GetArm1EtaMin())) ) ;
591
592 if( ieta <= 0 || ieta > GetNEta() ) {
593 Error("TowerIndexFromEtaPhi", "Unexpected (eta, phi) = (%f, %f) value, outside of EMCAL!", eta, phi) ;
594 return -1 ;
595 }
596
597 iphi = static_cast<Int_t> ( 1 + (static_cast<Float_t>(GetNPhi()) * (phi - GetArm1PhiMin()) / (GetArm1PhiMax() - GetArm1PhiMin())) ) ;
598
599 if( iphi <= 0 || iphi > GetNPhi() ) {
600 Error("TowerIndexFromEtaPhi", "Unexpected (eta, phi) = (%f, %f) value, outside of EMCAL!", eta, phi) ;
601 return -1 ;
602 }
603
604 return TowerIndex(ieta,iphi);
ca8f5bd0 605}
173558f2 606
ca8f5bd0 607//______________________________________________________________________
a34b7b9f 608Bool_t AliEMCALGeometry::AbsToRelNumbering(Int_t AbsId, Int_t *relid) const {
ca8f5bd0 609 // Converts the absolute numbering into the following array/
2608a1fc 610 // relid[0] = Row number inside EMCAL
611 // relid[1] = Column number inside EMCAL
ca8f5bd0 612 // Input:
613 // Int_t AbsId // Tower index number [1-2*fNZ*fNPhi]
614 // Outputs:
2608a1fc 615 // Int_t *relid // array of 2. Described above.
ca8f5bd0 616 Bool_t rv = kTRUE ;
fdebddeb 617 Int_t ieta=0,iphi=0,index=AbsId;
ca8f5bd0 618
fdebddeb 619 TowerIndexes(index,ieta,iphi);
2608a1fc 620 relid[0] = ieta;
621 relid[1] = iphi;
ca8f5bd0 622
623 return rv;
624}
173558f2 625
ca8f5bd0 626//______________________________________________________________________
395c7ba2 627void AliEMCALGeometry::PosInAlice(const Int_t *relid, Float_t &theta, Float_t &phi) const
628{
629 // Converts the relative numbering into the local EMCAL-module (x, z)
630 // coordinates
2608a1fc 631 Int_t ieta = relid[0]; // offset along x axis
632 Int_t iphi = relid[1]; // offset along z axis
395c7ba2 633 Int_t index;
634 Float_t eta;
635
636 index = TowerIndex(ieta,iphi);
637 EtaPhiFromIndex(index,eta,phi);
fdebddeb 638 //theta = 180.*(2.0*TMath::ATan(TMath::Exp(-eta)))/TMath::Pi();
639 theta = 2.0*TMath::ATan(TMath::Exp(-eta));
395c7ba2 640
fdebddeb 641 // correct for distance to IP
642 Float_t d = GetIP2ECASection() - GetIPDistance() ;
395c7ba2 643
644 Float_t correction = 1 + d/GetIPDistance() ;
645 Float_t tantheta = TMath::Tan(theta) * correction ;
646 theta = TMath::ATan(tantheta) * TMath::RadToDeg() ;
647 if (theta < 0 )
648 theta += 180. ;
649
650 return;
651}
ca8f5bd0 652
395c7ba2 653//______________________________________________________________________
09884213 654void AliEMCALGeometry::PosInAlice(Int_t absid, Float_t &theta, Float_t &phi) const
395c7ba2 655{
656 // Converts the relative numbering into the local EMCAL-module (x, z)
657 // coordinates
2608a1fc 658 Int_t relid[2] ;
395c7ba2 659 AbsToRelNumbering(absid, relid) ;
2608a1fc 660 Int_t ieta = relid[0]; // offset along x axis
661 Int_t iphi = relid[1]; // offset along z axis
395c7ba2 662 Int_t index;
663 Float_t eta;
664
665 index = TowerIndex(ieta,iphi);
666 EtaPhiFromIndex(index,eta,phi);
667 theta = 2.0*TMath::ATan(TMath::Exp(-eta)) ;
668
fdebddeb 669 // correct for distance to IP
395c7ba2 670 Float_t d = 0. ;
fdebddeb 671 if (IsInECA(absid))
88cb7938 672 d = GetIP2ECASection() - GetIPDistance() ;
f1da4a27 673 else {
674 Error("PosInAlice", "Unexpected id # %d!", absid) ;
675 return;
676 }
395c7ba2 677
678 Float_t correction = 1 + d/GetIPDistance() ;
679 Float_t tantheta = TMath::Tan(theta) * correction ;
680 theta = TMath::ATan(tantheta) * TMath::RadToDeg() ;
681 if (theta < 0 )
682 theta += 180. ;
683
684 return;
ca8f5bd0 685}
6119e5db 686
687//______________________________________________________________________
688void AliEMCALGeometry::XYZFromIndex(const Int_t *relid,Float_t &x,Float_t &y, Float_t &z) const {
689 // given the tower relative number it returns the X, Y and Z
690 // of the tower.
691
692 // Outputs:
693 // Float_t x // x of center of tower in cm
694 // Float_t y // y of center of tower in cm
695 // Float_t z // z of centre of tower in cm
696 // Returned
697 // none.
698
fdebddeb 699 Float_t eta,theta, phi,cylradius=0. ;
6119e5db 700
2608a1fc 701 Int_t ieta = relid[0]; // offset along x axis
702 Int_t iphi = relid[1]; // offset along z axis.
6119e5db 703 Int_t index;
704
395c7ba2 705 index = TowerIndex(ieta,iphi);
6119e5db 706 EtaPhiFromIndex(index,eta,phi);
707 theta = 180.*(2.0*TMath::ATan(TMath::Exp(-eta)))/TMath::Pi();
6119e5db 708
fdebddeb 709 cylradius = GetIP2ECASection() ;
a97849a9 710
395c7ba2 711 Double_t kDeg2Rad = TMath::DegToRad() ;
fdebddeb 712 x = cylradius * TMath::Cos(phi * kDeg2Rad ) ;
713 y = cylradius * TMath::Sin(phi * kDeg2Rad ) ;
714 z = cylradius / TMath::Tan(theta * kDeg2Rad ) ;
6119e5db 715
716 return;
717}
718
395c7ba2 719//______________________________________________________________________
09884213 720void AliEMCALGeometry::XYZFromIndex(Int_t absid, TVector3 &v) const {
395c7ba2 721 // given the tower relative number it returns the X, Y and Z
722 // of the tower.
723
724 // Outputs:
725 // Float_t x // x of center of tower in cm
726 // Float_t y // y of center of tower in cm
727 // Float_t z // z of centre of tower in cm
728 // Returned
729 // none.
730
fdebddeb 731 Float_t theta, phi,cylradius=0. ;
395c7ba2 732
733 PosInAlice(absid, theta, phi) ;
734
88cb7938 735 if ( IsInECA(absid) )
fdebddeb 736 cylradius = GetIP2ECASection() ;
f1da4a27 737 else {
738 Error("XYZFromIndex", "Unexpected Tower section") ;
739 return;
740 }
395c7ba2 741
742 Double_t kDeg2Rad = TMath::DegToRad() ;
fdebddeb 743 v.SetX(cylradius * TMath::Cos(phi * kDeg2Rad ) );
744 v.SetY(cylradius * TMath::Sin(phi * kDeg2Rad ) );
745 v.SetZ(cylradius / TMath::Tan(theta * kDeg2Rad ) ) ;
395c7ba2 746
747 return;
748}
ab37d09c 749
750Bool_t AliEMCALGeometry::IsInEMCAL(Double_t x, Double_t y, Double_t z) const {
751 // Checks whether point is inside the EMCal volume
752 //
753 // Code uses cylindrical approximation made of inner radius (for speed)
754 //
755 // Points behind EMCAl, i.e. R > outer radius, but eta, phi in acceptance
756 // are considered to inside
757
758 Double_t r=sqrt(x*x+y*y);
759
760 if ( r > fEnvelop[0] ) {
761 Double_t theta;
762 theta = TMath::ATan2(r,z);
763 Double_t eta;
764 if(theta == 0)
765 eta = 9999;
766 else
767 eta = -TMath::Log(TMath::Tan(theta/2.));
768 if (eta < fArm1EtaMin || eta > fArm1EtaMax)
769 return 0;
770
771 Double_t phi = TMath::ATan2(y,x) * 180./TMath::Pi();
772 if (phi > fArm1PhiMin && phi < fArm1PhiMax)
773 return 1;
774 }
775 return 0;
776}
c63c3c5d 777// ==
1963b290 778
779//
780// == Shish-kebab cases ==
781//
e52475ed 782Int_t AliEMCALGeometry::GetAbsCellId(Int_t nSupMod, Int_t nTower, Int_t nIphi, Int_t nIeta) const
d87bd045 783{ // 27-aug-04;
784 // corr. 21-sep-04;
785 // 13-oct-05; 110 degree case
786 // 1 <= nSupMod <= fNumberOfSuperModules
787 // 1 <= nTower <= fNPHI * fNZ ( fNPHI * fNZ/2 for fKey110DEG=1)
788 // 1 <= nIphi <= fNPHIdiv
789 // 1 <= nIeta <= fNETAdiv
790 // 1 <= absid <= fNCells
791 static Int_t id=0; // have to change from 1 to fNCells
792 if(fKey110DEG == 1 && nSupMod > 10) { // 110 degree case; last two supermodules
793 id = fNCellsInSupMod*10 + (fNCellsInSupMod/2)*(nSupMod-11);
794 } else {
795 id = fNCellsInSupMod*(nSupMod-1);
796 }
1963b290 797 id += fNCellsInTower *(nTower-1);
798 id += fNPHIdiv *(nIphi-1);
799 id += nIeta;
800 if(id<=0 || id > fNCells) {
500aeccc 801// printf(" wrong numerations !!\n");
802// printf(" id %6i(will be force to -1)\n", id);
803// printf(" fNCells %6i\n", fNCells);
804// printf(" nSupMod %6i\n", nSupMod);
805// printf(" nTower %6i\n", nTower);
806// printf(" nIphi %6i\n", nIphi);
807// printf(" nIeta %6i\n", nIeta);
d87bd045 808 id = -TMath::Abs(id);
1963b290 809 }
810 return id;
811}
812
e52475ed 813Bool_t AliEMCALGeometry::CheckAbsCellId(Int_t ind) const
1963b290 814{ // 17-niv-04 - analog of IsInECA
815 if(name.Contains("TRD")) {
816 if(ind<=0 || ind > fNCells) return kFALSE;
817 else return kTRUE;
818 } else return IsInECA(ind);
819}
820
e52475ed 821Bool_t AliEMCALGeometry::GetCellIndex(Int_t absId,Int_t &nSupMod,Int_t &nTower,Int_t &nIphi,Int_t &nIeta) const
1963b290 822{ // 21-sep-04
d87bd045 823 // 19-oct-05;
824 static Int_t tmp=0, sm10=0;
1963b290 825 if(absId<=0 || absId>fNCells) {
500aeccc 826// Info("GetCellIndex"," wrong abs Id %i !! \n", absId);
1963b290 827 return kFALSE;
828 }
d87bd045 829 sm10 = fNCellsInSupMod*10;
830 if(fKey110DEG == 1 && absId > sm10) { // 110 degree case; last two supermodules
831 nSupMod = (absId-1-sm10) / (fNCellsInSupMod/2) + 11;
832 tmp = (absId-1-sm10) % (fNCellsInSupMod/2);
833 } else {
834 nSupMod = (absId-1) / fNCellsInSupMod + 1;
835 tmp = (absId-1) % fNCellsInSupMod;
836 }
1963b290 837
838 nTower = tmp / fNCellsInTower + 1;
839 tmp = tmp % fNCellsInTower;
d87bd045 840 nIphi = tmp / fNPHIdiv + 1;
841 nIeta = tmp % fNPHIdiv + 1;
1963b290 842
843 return kTRUE;
844}
845
e52475ed 846void AliEMCALGeometry::GetTowerPhiEtaIndexInSModule(Int_t nSupMod, Int_t nTower, int &iphit, int &ietat) const
d87bd045 847{ // added nSupMod; have to check - 19-oct-05 !
848 static Int_t nphi;
849
850 if(fKey110DEG == 1 && nSupMod>=11) nphi = fNPhi/2;
851 else nphi = fNPhi;
852
853 ietat = (nTower-1)/nphi + 1; // have to change from 1 to fNZ
d87bd045 854 iphit = (nTower-1)%nphi + 1; // have to change from 1 to fNPhi
855}
856
eb0b1051 857void AliEMCALGeometry::GetCellPhiEtaIndexInSModule(Int_t nSupMod, Int_t nTower, Int_t nIphi, Int_t nIeta,
e52475ed 858int &iphi, int &ieta) const
c01485dd 859{ // added nSupMod; Nov 25, 05
860 static Int_t iphit, ietat;
861
862 GetTowerPhiEtaIndexInSModule(nSupMod,nTower, iphit, ietat);
863 // have to change from 1 to fNZ*fNETAdiv
864 ieta = (ietat-1)*fNETAdiv + (3-nIeta); // x(module) = -z(SM)
865 // iphi - have to change from 1 to fNPhi*fNPHIdiv
866 iphi = (iphit-1)*fNPHIdiv + nIphi; // y(module) = y(SM)
1963b290 867}
e52475ed 868
869Int_t AliEMCALGeometry::GetSuperModuleNumber(Int_t absId) const
870{
871 static Int_t nSupMod, nTower, nIphi, nIeta;
872 GetCellIndex(absId, nSupMod, nTower, nIphi, nIeta);
873 return nSupMod;
874}
875
876// Methods for AliEMCALRecPoint - Feb 19, 2006
877Bool_t AliEMCALGeometry::RelPosCellInSModule(Int_t absId, Double_t &xr, Double_t &yr, Double_t &zr)
878{
879 static Int_t nSupMod, nTower, nIphi, nIeta, iphi, ieta;
880 if(!CheckAbsCellId(absId)) return kFALSE;
881
882 GetCellIndex(absId, nSupMod, nTower, nIphi, nIeta);
883 GetCellPhiEtaIndexInSModule(nSupMod,nTower,nIphi,nIeta, iphi, ieta);
884
885 xr = fXCentersOfCells->At(ieta-1);
886 zr = fEtaCentersOfCells->At(ieta-1);
887
888 yr = fPhiCentersOfCells->At(iphi-1);
889
890 // cout<<" absId "<<absId<<" iphi "<<iphi<<"ieta"<<ieta;
891 // cout<< " xr " << xr << " yr " << yr << " zr " << zr <<endl;
892 return kTRUE;
893}
894
895void AliEMCALGeometry::CreateListOfTrd1Modules()
896{
897 cout<< endl<< " AliEMCALGeometry::CreateListOfTrd1Modules() started " << endl;
898 AliEMCALShishKebabTrd1Module *mod=0, *mTmp=0; // current module
899 if(fShishKebabTrd1Modules == 0) {
900 fShishKebabTrd1Modules = new TList;
901 for(int iz=0; iz< GetNZ(); iz++) {
902 if(iz==0) {
903 mod = new AliEMCALShishKebabTrd1Module(TMath::Pi()/2.,this);
904 } else {
905 mTmp = new AliEMCALShishKebabTrd1Module(*mod);
906 mod = mTmp;
907 }
908 fShishKebabTrd1Modules->Add(mod);
909 }
910 } else {
911 cout<<" Already exits : ";
912 }
913 cout<<" fShishKebabTrd1Modules "<< fShishKebabTrd1Modules << " has "
914 << fShishKebabTrd1Modules->GetSize() << " modules" <<endl << endl;
915 // Feb 20,2006;
916 // define grid for cells in eta(z) and x directions in local coordinates system of SM
917 fEtaCentersOfCells = new TArrayD(fNZ *fNETAdiv);
918 fXCentersOfCells = new TArrayD(fNZ *fNETAdiv);
919 printf(" Cells grid in eta directions : size %i\n", fEtaCentersOfCells->GetSize());
920 Int_t iphi=0, ieta=0, nTower=0;
921 Double_t xr, zr;
922 for(Int_t it=0; it<fNZ; it++) { // array index
923 AliEMCALShishKebabTrd1Module *trd1 = GetShishKebabModule(it);
924 nTower = fNPhi*it + 1;
925 for(Int_t ic=0; ic<fNETAdiv; ic++) { // array index
926 trd1->GetCenterOfCellInLocalCoordinateofSM(ic+1, xr, zr);
927 GetCellPhiEtaIndexInSModule(1, nTower, 1, ic+1, iphi, ieta); // don't depend from phi
928 fXCentersOfCells->AddAt(float(xr) - fParSM[0],ieta-1);
929 fEtaCentersOfCells->AddAt(float(zr) - fParSM[2],ieta-1);
930 }
931 }
932 for(Int_t i=0; i<fEtaCentersOfCells->GetSize(); i++) {
933 printf(" ind %2.2i : z %8.3f : x %8.3f", i+1, fEtaCentersOfCells->At(i),fXCentersOfCells->At(i));
934 if(i%2 != 0) printf("\n");
935 }
936 printf("\n");
937 // define grid for cells in phi(y) direction in local coordinates system of SM
938 fPhiCentersOfCells = new TArrayD(fNPhi*fNPHIdiv);
939 printf(" Cells grid in phi directions : size %i\n", fPhiCentersOfCells->GetSize());
940 Int_t ind=0;
941 for(Int_t it=0; it<fNPhi; it++) { // array index
942 Float_t ytLeftCenterModule = -fParSM[1] + fPhiModuleSize*(2*it+1)/2; // module
943 for(Int_t ic=0; ic<fNPHIdiv; ic++) { // array index
944 Float_t ytLeftCenterCell = ytLeftCenterModule + fPhiTileSize *(2*ic-1)/2.; // tower(cell)
945 fPhiCentersOfCells->AddAt(ytLeftCenterCell,ind);
a5890048 946 printf(" ind %2.2i : y %8.3f ", ind, fPhiCentersOfCells->At(ind)); ind++;
e52475ed 947 if(ic == fNPHIdiv-1) printf("\n");
948 }
949 }
950 printf("\n");
951}
952
953void AliEMCALGeometry::GetTransformationForSM()
954{
955 static Bool_t transInit=kFALSE;
956 if(transInit) return;
957
958 int i=0;
959 if(gGeoManager == 0) {
960 Info("CreateTransformationForSM() "," Load geometry : TGeoManager::Import()");
961 assert(0);
962 }
963 TGeoNode *tn = gGeoManager->GetTopNode();
964 TGeoNode *node=0, *XEN1 = 0;
965 for(i=0; i<tn->GetNdaughters(); i++) {
966 node = tn->GetDaughter(i);
967 TString ns(node->GetName());
968 if(ns.Contains(GetNameOfEMCALEnvelope())) {
969 XEN1 = node;
970 break;
971 }
972 }
973 if(!XEN1) {
974 Info("CreateTransformationForSM() "," geometry has not EMCAL envelope with name %s",
975 GetNameOfEMCALEnvelope());
976 assert(0);
977 }
978 printf(" i %i : EMCAL Envelope is %s : #SM %i \n", i, XEN1->GetName(), XEN1->GetNdaughters());
979 for(i=0; i<XEN1->GetNdaughters(); i++) {
980 TGeoNodeMatrix *sm = (TGeoNodeMatrix*)XEN1->GetDaughter(i);
981 fMatrixOfSM[i] = sm->GetMatrix();
64942713 982 //Compiler doesn't like this syntax...
983 // printf(" %i : matrix %x \n", i, fMatrixOfSM[i]);
e52475ed 984 }
985 transInit = kTRUE;
986}
987
988void AliEMCALGeometry::GetGlobal(const Double_t *loc, Double_t *glob, int nsm) const
989{
990 // if(fMatrixOfSM[0] == 0) GetTransformationForSM();
991 static int ind;
992 ind = nsm-1;
993 if(ind>=0 && ind < GetNumberOfSuperModules()) {
994 fMatrixOfSM[ind]->LocalToMaster(loc, glob);
995 }
996}
997
21cf2b24 998void AliEMCALGeometry::GetGlobal(Int_t /* absId */, TVector3 & /* vglob */) const
e52475ed 999{ // have to be defined
1000}
1001
1002void AliEMCALGeometry::GetGlobal(const TVector3 &vloc, TVector3 &vglob, int nsm) const
1003{
1004 static Double_t tglob[3], tloc[3];
1005 vloc.GetXYZ(tloc);
1006 GetGlobal(tloc, tglob, nsm);
1007 vglob.SetXYZ(tglob[0], tglob[1], tglob[2]);
1008}
1009
1010void AliEMCALGeometry::GetGlobal(const AliRecPoint *rp, TVector3 &vglob) const
1011{
1012 static TVector3 vloc;
1013 static Int_t nSupMod, nTower, nIphi, nIeta;
1014
1015 AliRecPoint *rpTmp = (AliRecPoint*)rp; // const_cast ??
1016 if(!rpTmp) return;
1017 AliEMCALRecPoint *rpEmc = (AliEMCALRecPoint*)rpTmp;
1018
1019 GetCellIndex(rpEmc->GetAbsId(0), nSupMod, nTower, nIphi, nIeta);
1020 rpTmp->GetLocalPosition(vloc);
1021 GetGlobal(vloc, vglob, nSupMod);
1022}
1023