]> git.uio.no Git - u/mrichter/AliRoot.git/blame - EMCAL/AliEMCALGeometry.h
added a method to tell if the digit is in pre shower
[u/mrichter/AliRoot.git] / EMCAL / AliEMCALGeometry.h
CommitLineData
2012850d 1#ifndef ALIEMCALGEOMETRY_H
2#define ALIEMCALGEOMETRY_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
6/* $Id$ */
7
8//_________________________________________________________________________
9// Geometry class for EMCAL : singleton
b13bbe81 10// EMCAL consists of a layers of scintillator, and lead.
2012850d 11//
b13bbe81 12//*-- Author: Sahal Yacoob (LBL / UCT)
13//*-- and : Yves Schutz (Subatech)
ca8f5bd0 14
2012850d 15#include <assert.h>
16
17// --- ROOT system ---
395c7ba2 18 class TString ;
19class TObjArray ;
20class TVector3 ;
cad18b88 21class TParticle ;
2012850d 22
2012850d 23// --- AliRoot header files ---
24
25#include "AliGeometry.h"
26
2012850d 27class AliEMCALGeometry : public AliGeometry {
a97849a9 28public:
29 AliEMCALGeometry() {
30 // default ctor, must be kept public for root persistency purposes,
31 // but should never be called by the outside world
32 };
33 AliEMCALGeometry(const AliEMCALGeometry & geom) {
34 // cpy ctor requested by Coding Convention but not yet needed
35 assert(0==1);
36 };
37 virtual ~AliEMCALGeometry(void) ;
38 static AliEMCALGeometry * GetInstance(const Text_t* name,
39 const Text_t* title="") ;
40 static AliEMCALGeometry * GetInstance() ;
41 AliEMCALGeometry & operator = (const AliEMCALGeometry & rvalue) const {
42 // assignement operator requested by coding convention but not needed
43 assert(0==1) ;
44 return *(GetInstance()) ;
45 };
395c7ba2 46
47 const Bool_t AreInSameTower(Int_t id1, Int_t id2) const ;
a97849a9 48 virtual void GetGlobal(const AliRecPoint *, TVector3 &, TMatrix &) const {}
49 virtual void GetGlobal(const AliRecPoint *, TVector3 &) const {}
50 virtual Bool_t Impact(const TParticle * particle) const {return kTRUE;}
51 // General
52 Bool_t IsInitialized(void) const { return fgInit ; }
53 // Return EMCA geometrical parameters
54 // geometry
55 const Float_t GetAlFrontThickness() const { return fAlFrontThick;}
56 const Float_t GetArm1PhiMin() const { return fArm1PhiMin ; }
57 const Float_t GetArm1PhiMax() const { return fArm1PhiMax ; }
58 const Float_t GetArm1EtaMin() const { return fArm1EtaMin;}
59 const Float_t GetArm1EtaMax() const { return fArm1EtaMax;}
60 const Float_t GetIPDistance() const { return fIPDistance ; }
395c7ba2 61 const Float_t GetIP2PRESection() const { return (GetIPDistance() + GetAlFrontThickness() + GetGap2Active() ) ;}
62 const Float_t GetIP2ECALSection() const { return ( GetIP2PRESection() + GetNPRLayers() * ( GetPRScintThick() + GetPRPbRadThick() ) ) ; }
63 const Float_t GetIP2HCALSection() const { return ( GetIP2ECALSection() + GetNECLayers() * ( GetECScintThick() + GetECPbRadThick() ) ) ; }
a97849a9 64 const Float_t GetEnvelop(Int_t index) const { return fEnvelop[index] ; }
65 const Float_t GetShellThickness() const { return fShellThickness ; }
66 const Float_t GetZLength() const { return fZLength ; }
67 const Float_t GetGap2Active() const {return fGap2Active ; }
68 const Float_t GetDeltaEta() const {return (fArm1EtaMax-fArm1EtaMin)/
69 ((Float_t)fNZ);}
70 const Float_t GetDeltaPhi() const {return (fArm1PhiMax-fArm1PhiMin)/
71 ((Float_t)fNPhi);}
a63e0d5e 72 const Int_t GetNECLayers() const {return fNECLayers ;}
73 const Int_t GetNHCLayers() const {return fNHCLayers ;}
74 const Int_t GetNPRLayers() const {return fNPRLayers;}
a97849a9 75 const Int_t GetNZ() const {return fNZ ;}
76 const Int_t GetNEta() const {return fNZ ;}
77 const Int_t GetNPhi() const {return fNPhi ;}
78 const Int_t GetNTowers() const {return fNPhi * fNZ ;}
395c7ba2 79 const Float_t GetPRPbRadThick()const {return fPRPbRadThickness;}
80 const Float_t GetECPbRadThick()const {return fECPbRadThickness;}
81 const Float_t GetHCCuRadThick()const {return fHCCuRadThickness;}
82 const Float_t GetPRScintThick() const {return fPRScintThick;}
83 const Float_t GetECScintThick() const {return fECScintThick;}
84 const Float_t GetHCScintThick() const {return fECScintThick;}
85 const Float_t GetSampling() const {return fSampling ; }
86 const Float_t GetSummationFraction() const {return fSummationFraction ; }
87
88 const Bool_t IsInPRE(Int_t index) const { if ( (index > (GetNZ() * GetNPhi()) && (index <= 2 * (GetNZ() * GetNPhi())))) return kTRUE; else return kFALSE ;}
89 const Bool_t IsInECAL(Int_t index) const { if ( (index > 0 && (index <= GetNZ() * GetNPhi()))) return kTRUE; else return kFALSE ;}
90 const Bool_t IsInHCAL(Int_t index) const { if ( (index > 2*(GetNZ() * GetNPhi()) && (index <= 3 * (GetNZ() * GetNPhi())))) return kTRUE; else return kFALSE ;} ;
91
a97849a9 92 Float_t AngleFromEta(Float_t eta){ // returns angle in radians for a given
93 // pseudorapidity.
94 return 2.0*TMath::ATan(TMath::Exp(-eta));
95 }
96 Float_t ZFromEtaR(Float_t r,Float_t eta){ // returns z in for a given
97 // pseudorapidity and r=sqrt(x*x+y*y).
98 return r/TMath::Tan(AngleFromEta(eta));
99 }
395c7ba2 100 Int_t TowerIndex(Int_t iz,Int_t iphi) const; // returns tower index
a97849a9 101 // returns tower indexs iz, iphi.
102 void TowerIndexes(Int_t index,Int_t &iz,Int_t &iphi,Int_t &ipre) const;
103 // for a given tower index it returns eta and phi of center of that tower.
104 void EtaPhiFromIndex(Int_t index,Float_t &eta,Float_t &phi) const;
105 // returns x, y, and z (cm) on the inner surface of a given EMCAL Cell specified by relid.
106 void XYZFromIndex(const Int_t *relid,Float_t &x,Float_t &y, Float_t &z) const;
395c7ba2 107 void XYZFromIndex(const Int_t absid, TVector3 &v) const;
a97849a9 108 // for a given eta and phi in the EMCAL it returns the tower index.
109 Int_t TowerIndexFromEtaPhi(Float_t eta,Float_t phi) const;
110 // for a given eta and phi in the EMCAL it returns the pretower index.
111 Int_t PreTowerIndexFromEtaPhi(Float_t eta,Float_t phi) const;
395c7ba2 112 // Returns theta and phi (degree) for a given EMCAL cell indicated by relid or absid
113 void PosInAlice(const Int_t *relid, Float_t &theta, Float_t &phi) const ;
114 void PosInAlice(const Int_t absid, Float_t &theta, Float_t &phi) const ;
a97849a9 115 Bool_t AbsToRelNumbering(Int_t AbsId, Int_t *relid) const;
116 /*
117 // Returns kTRUE if the two indexs are neighboring towers or preshowers.
118 Boot_t AliEMCALGeometry::AreNeighbours(Int_t index1,Int_t index2) const;
119 */
120
121 void SetNZ(Int_t nz) { fNZ= nz ; Info("SetNZ", "Number of modules in Z set to %d", fNZ) ; }
122 void SetNPhi(Int_t nphi) { fNPhi= nphi ; Info("SetNPhi", "Number of modules in Phi set to %d", fNPhi) ; }
395c7ba2 123 void SetSampling(Float_t samp) { fSampling = samp; Info("SetSampling", "Sampling factor set to %f", fSampling) ; }
124
a97849a9 125protected:
126 AliEMCALGeometry(const Text_t* name, const Text_t* title="") :
127 AliGeometry(name, title) {// ctor only for internal usage (singleton)
128 Init();
129 };
130 void Init(void) ; // initializes the parameters of EMCAL
131
132private:
133 static AliEMCALGeometry * fgGeom ; // pointer to the unique instance
134 // of the singleton
135 static Bool_t fgInit;// Tells if geometry has been succesfully set up.
136 Float_t fAlFrontThick; // Thickness of the front Al face of the support box
395c7ba2 137
138 Float_t fPRPbRadThickness ; // cm, Thickness of the Pb radiators for the preshower section
139 Float_t fPRScintThick ; // cm, Thickness of the sintilator for the preshower section of the tower
140 Int_t fNPRLayers ; // number of scintillator layers in the preshower section
141
142 Float_t fECPbRadThickness ; // cm, Thickness of the Pb radiators for the EM calorimeter section
143 Float_t fECScintThick ; // cm, Thickness of the sintilator for the EM alorimeter section of the tower
144 Int_t fNECLayers ; // number of scintillator layers in the EM calorimeter section
145
146 Float_t fHCCuRadThickness ; // cm, Thickness of the Cu radiators.
147 Float_t fHCScintThick ; // cm, Thickness of the sintilator for the hadronic alorimeter section of the tower
148 Int_t fNHCLayers ; // number of scintillator layers in the hadronic calorimeter section
149
a97849a9 150 Float_t fArm1PhiMin; // Minimum angular position of EMCAL in Phi (degrees)
151 Float_t fArm1PhiMax; // Maximum angular position of EMCAL in Phi (degrees)
152 Float_t fArm1EtaMin; // Minimum pseudorapidity position of EMCAL in Eta
153 Float_t fArm1EtaMax; // Maximum pseudorapidity position of EMCAL in Eta
154
155 // It is assumed that Arm1 and Arm2 have the same following parameters
395c7ba2 156 Float_t fEnvelop[3]; // the GEANT TUB for the detector
157 Float_t fIPDistance; // Radial Distance of the inner surface of the EMCAL
158 Float_t fShellThickness; // Total thickness in (x,y) direction
159 Float_t fZLength; // Total length in z direction
160 Float_t fGap2Active; // Gap between the envelop and the active material
a97849a9 161 Int_t fNZ; // Number of Towers in the Z direction
a63e0d5e 162 Int_t fNPhi; // Number of Towers in the Phi Direction
395c7ba2 163 Float_t fSampling; // Sampling factor
164 Float_t fSummationFraction; // Fraction of the energy collected in the PRE section to be added to the EC section
a97849a9 165
a63e0d5e 166 ClassDef(AliEMCALGeometry,5) // EMCAL geometry class
a97849a9 167
ca8f5bd0 168 };
2012850d 169
170#endif // AliEMCALGEOMETRY_H