put back previous default value, although decission needs to be made to which one...
[u/mrichter/AliRoot.git] / EMCAL / AliEMCALRecoUtils.h
CommitLineData
d9b3567c 1#ifndef ALIEMCALRECOUTILS_H
2#define ALIEMCALRECOUTILS_H
3
40891fa2 4/* $Id: AliEMCALRecoUtils.h | Tue Jul 23 09:11:15 2013 +0000 | gconesab $ */
d9b3567c 5
6///////////////////////////////////////////////////////////////////////////////
7//
8// Class AliEMCALRecoUtils
9// Some utilities to recalculate the cluster position or energy linearity
10//
11//
12// Author: Gustavo Conesa (LPSC- Grenoble)
b540d03f 13// Track matching part: Rongrong Ma (Yale)
d9b3567c 14///////////////////////////////////////////////////////////////////////////////
15
16//Root includes
01d44f1f 17#include <TNamed.h>
18#include <TMath.h>
7cdec71f 19class TObjArray;
20class TArrayI;
21class TArrayF;
01d44f1f 22#include <TH2I.h>
7cdec71f 23class TH2F;
01d44f1f 24#include <TRandom3.h>
d9b3567c 25
26//AliRoot includes
27class AliVCluster;
28class AliVCaloCells;
bd8c7aef 29class AliVEvent;
88b96ad8 30#include "AliLog.h"
b540d03f 31
32// EMCAL includes
094786cc 33class AliEMCALGeometry;
83bfd77a 34class AliEMCALPIDUtils;
bd8c7aef 35class AliESDtrack;
bb6f5f0b 36class AliExternalTrackParam;
40891fa2 37class AliVTrack;
3b4a4334 38
d9b3567c 39class AliEMCALRecoUtils : public TNamed {
40
41public:
42
43 AliEMCALRecoUtils();
44 AliEMCALRecoUtils(const AliEMCALRecoUtils&);
45 AliEMCALRecoUtils& operator=(const AliEMCALRecoUtils&);
b540d03f 46 virtual ~AliEMCALRecoUtils() ;
88b96ad8 47
48 void InitParameters();
01d44f1f 49 void Print(const Option_t*) const;
b540d03f 50
51 //enums
d24a0a76 52 enum NonlinearityFunctions{kPi0MC=0,kPi0GammaGamma=1,kPi0GammaConversion=2,kNoCorrection=3,kBeamTest=4,kBeamTestCorrected=5,kPi0MCv2=6,kPi0MCv3=7,kBeamTestCorrectedv2=8,kSDMv5=9,kPi0MCv5=10};
01d44f1f 53 enum PositionAlgorithms{kUnchanged=-1,kPosTowerIndex=0, kPosTowerGlobal=1};
54 enum ParticleType{kPhoton=0, kElectron=1,kHadron =2, kUnknown=-1};
42ceff04 55 enum { kNCuts = 12 }; //track matching Marcel
56 enum TrackCutsType{kTPCOnlyCut=0, kGlobalCut=1, kLooseCut=2, kITSStandAlone=3}; //Marcel
b540d03f 57
58 //-----------------------------------------------------
d9b3567c 59 //Position recalculation
b540d03f 60 //-----------------------------------------------------
a520bcd0 61 void RecalculateClusterPosition (const AliEMCALGeometry *geom, AliVCaloCells* cells, AliVCluster* clu);
62 void RecalculateClusterPositionFromTowerIndex (const AliEMCALGeometry *geom, AliVCaloCells* cells, AliVCluster* clu);
63 void RecalculateClusterPositionFromTowerGlobal(const AliEMCALGeometry *geom, AliVCaloCells* cells, AliVCluster* clu);
fb8eab96 64 Float_t GetCellWeight(Float_t eCell, Float_t eCluster) const { if (eCell > 0 && eCluster > 0) return TMath::Max( 0., fW0 + TMath::Log( eCell / eCluster )) ;
c8fcffd3 65 else return 0. ; }
66 Float_t GetDepth(Float_t eCluster, Int_t iParticle, Int_t iSM) const;
88b96ad8 67 void GetMaxEnergyCell(const AliEMCALGeometry *geom, AliVCaloCells* cells, const AliVCluster* clu,
cb231979 68 Int_t & absId, Int_t& iSupMod, Int_t& ieta, Int_t& iphi, Bool_t &shared);
d9b3567c 69
fb8eab96 70 Float_t GetMisalTransShift(Int_t i) const { if(i < 15 ) { return fMisalTransShift[i] ; }
c8fcffd3 71 else { AliInfo(Form("Index %d larger than 15, do nothing\n",i)) ;
72 return 0. ; } }
73 Float_t* GetMisalTransShiftArray() { return fMisalTransShift ; }
74 void SetMisalTransShift(Int_t i, Float_t shift) { if(i < 15 ) { fMisalTransShift[i] = shift ; }
75 else { AliInfo(Form("Index %d larger than 15, do nothing\n",i)) ; } }
76 void SetMisalTransShiftArray(Float_t * misal) { for(Int_t i = 0; i < 15; i++) fMisalTransShift[i] = misal[i] ; }
77 Float_t GetMisalRotShift(Int_t i) const { if(i < 15 ) { return fMisalRotShift[i] ; }
78 else { AliInfo(Form("Index %d larger than 15, do nothing\n",i)) ;
79 return 0. ; } }
80 Float_t* GetMisalRotShiftArray() { return fMisalRotShift ; }
81 void SetMisalRotShift(Int_t i, Float_t shift) { if(i < 15 ) { fMisalRotShift[i] = shift ; }
82 else { AliInfo(Form("Index %d larger than 15, do nothing\n",i)) ; } }
83 void SetMisalRotShiftArray(Float_t * misal) { for(Int_t i = 0; i < 15; i++)fMisalRotShift[i] = misal[i] ; }
01d44f1f 84 Int_t GetParticleType() const { return fParticleType ; }
85 void SetParticleType(Int_t particle) { fParticleType = particle ; }
01d44f1f 86 Int_t GetPositionAlgorithm() const { return fPosAlgo ; }
87 void SetPositionAlgorithm(Int_t alg) { fPosAlgo = alg ; }
01d44f1f 88 Float_t GetW0() const { return fW0 ; }
89 void SetW0(Float_t w0) { fW0 = w0 ; }
094786cc 90
b540d03f 91 //-----------------------------------------------------
a7e5a381 92 // Non Linearity
b540d03f 93 //-----------------------------------------------------
01d44f1f 94 Float_t CorrectClusterEnergyLinearity(AliVCluster* clu) ;
fb8eab96 95 Float_t GetNonLinearityParam(Int_t i) const { if(i < 7 && i >=0 ){ return fNonLinearityParams[i] ; }
c8fcffd3 96 else { AliInfo(Form("Index %d larger than 6 or negative, do nothing\n",i)) ;
97 return 0. ; } }
98 void SetNonLinearityParam(Int_t i, Float_t param) { if(i < 7 && i >=0 ){ fNonLinearityParams[i] = param ; }
6aad3c6a 99 else { AliInfo(Form("Index %d larger than 6 or negative, do nothing\n",i)) ; } }
01d44f1f 100 void InitNonLinearityParam();
01d44f1f 101 Int_t GetNonLinearityFunction() const { return fNonLinearityFunction ; }
102 void SetNonLinearityFunction(Int_t fun) { fNonLinearityFunction = fun ; InitNonLinearityParam() ; }
01d44f1f 103 void SetNonLinearityThreshold(Int_t threshold) { fNonLinearThreshold = threshold ; } //only for Alexie's non linearity correction
104 Int_t GetNonLinearityThreshold() const { return fNonLinearThreshold ; }
c8fcffd3 105
01d44f1f 106 //-----------------------------------------------------
107 // MC clusters energy smearing
108 //-----------------------------------------------------
88b96ad8 109 Float_t SmearClusterEnergy(const AliVCluster* clu) ;
01d44f1f 110 void SwitchOnClusterEnergySmearing() { fSmearClusterEnergy = kTRUE ; }
111 void SwitchOffClusterEnergySmearing() { fSmearClusterEnergy = kFALSE ; }
112 Bool_t IsClusterEnergySmeared() const { return fSmearClusterEnergy ; }
113 void SetSmearingParameters(Int_t i, Float_t param) { if(i < 3){ fSmearClusterParam[i] = param ; }
114 else { AliInfo(Form("Index %d larger than 2, do nothing\n",i)) ; } }
b540d03f 115 //-----------------------------------------------------
a7e5a381 116 // Recalibration
b540d03f 117 //-----------------------------------------------------
fb8eab96 118 Bool_t AcceptCalibrateCell(Int_t absId, Int_t bc,
a7e5a381 119 Float_t & amp, Double_t & time, AliVCaloCells* cells) ; // Energy and Time
120 void RecalibrateCells(AliVCaloCells * cells, Int_t bc) ; // Energy and Time
fb8eab96 121 void RecalibrateClusterEnergy(const AliEMCALGeometry* geom, AliVCluster* cluster, AliVCaloCells * cells, Int_t bc=-1) ; // Energy and time
841dbf60 122 void ResetCellsCalibrated() { fCellsRecalibrated = kFALSE; }
094786cc 123
a7e5a381 124 // Energy recalibration
01d44f1f 125 Bool_t IsRecalibrationOn() const { return fRecalibration ; }
126 void SwitchOffRecalibration() { fRecalibration = kFALSE ; }
127 void SwitchOnRecalibration() { fRecalibration = kTRUE ;
128 if(!fEMCALRecalibrationFactors)InitEMCALRecalibrationFactors() ; }
129 void InitEMCALRecalibrationFactors() ;
50b7a951 130 TObjArray* GetEMCALRecalibrationFactorsArray() const { return fEMCALRecalibrationFactors ; }
3bfc4732 131 TH2F * GetEMCALChannelRecalibrationFactors(Int_t iSM) const { return (TH2F*)fEMCALRecalibrationFactors->At(iSM) ; }
132 void SetEMCALChannelRecalibrationFactors(TObjArray *map) { fEMCALRecalibrationFactors = map ; }
133 void SetEMCALChannelRecalibrationFactors(Int_t iSM , TH2F* h) { fEMCALRecalibrationFactors->AddAt(h,iSM) ; }
01d44f1f 134 Float_t GetEMCALChannelRecalibrationFactor(Int_t iSM , Int_t iCol, Int_t iRow) const {
3bfc4732 135 if(fEMCALRecalibrationFactors)
136 return (Float_t) ((TH2F*)fEMCALRecalibrationFactors->At(iSM))->GetBinContent(iCol,iRow);
137 else return 1 ; }
01d44f1f 138 void SetEMCALChannelRecalibrationFactor(Int_t iSM , Int_t iCol, Int_t iRow, Double_t c = 1) {
3bfc4732 139 if(!fEMCALRecalibrationFactors) InitEMCALRecalibrationFactors() ;
140 ((TH2F*)fEMCALRecalibrationFactors->At(iSM))->SetBinContent(iCol,iRow,c) ; }
141
142 //Recalibrate channels energy with run dependent corrections
7bf608c9 143 Bool_t IsRunDepRecalibrationOn() const { return fUseRunCorrectionFactors ; }
3bfc4732 144 void SwitchOffRunDepCorrection() { fUseRunCorrectionFactors = kFALSE ; }
145 void SwitchOnRunDepCorrection() { fUseRunCorrectionFactors = kTRUE ;
7bf608c9 146 SwitchOnRecalibration() ; }
a7e5a381 147 // Time Recalibration
fb8eab96 148 void RecalibrateCellTime(Int_t absId, Int_t bc, Double_t & time) const;
3bfc4732 149
150 Bool_t IsTimeRecalibrationOn() const { return fTimeRecalibration ; }
151 void SwitchOffTimeRecalibration() { fTimeRecalibration = kFALSE ; }
152 void SwitchOnTimeRecalibration() { fTimeRecalibration = kTRUE ;
c8fcffd3 153 if(!fEMCALTimeRecalibrationFactors)InitEMCALTimeRecalibrationFactors() ; }
3bfc4732 154 void InitEMCALTimeRecalibrationFactors() ;
50b7a951 155 TObjArray* GetEMCALTimeRecalibrationFactorsArray() const { return fEMCALTimeRecalibrationFactors ; }
156
fb8eab96 157 Float_t GetEMCALChannelTimeRecalibrationFactor(Int_t bc, Int_t absID) const {
3bfc4732 158 if(fEMCALTimeRecalibrationFactors)
159 return (Float_t) ((TH1F*)fEMCALTimeRecalibrationFactors->At(bc))->GetBinContent(absID);
a7e5a381 160 else return 0 ; }
fb8eab96 161 void SetEMCALChannelTimeRecalibrationFactor(Int_t bc, Int_t absID, Double_t c = 0) {
3bfc4732 162 if(!fEMCALTimeRecalibrationFactors) InitEMCALTimeRecalibrationFactors() ;
163 ((TH1F*)fEMCALTimeRecalibrationFactors->At(bc))->SetBinContent(absID,c) ; }
164
fb8eab96 165 TH1F * GetEMCALChannelTimeRecalibrationFactors(Int_t bc)const { return (TH1F*)fEMCALTimeRecalibrationFactors->At(bc) ; }
a7e5a381 166 void SetEMCALChannelTimeRecalibrationFactors(TObjArray *map) { fEMCALTimeRecalibrationFactors = map ; }
fb8eab96 167 void SetEMCALChannelTimeRecalibrationFactors(Int_t bc , TH1F* h) { fEMCALTimeRecalibrationFactors->AddAt(h,bc) ; }
094786cc 168
b540d03f 169 //-----------------------------------------------------
3bfc4732 170 // Modules fiducial region, remove clusters in borders
b540d03f 171 //-----------------------------------------------------
a520bcd0 172 Bool_t CheckCellFiducialRegion(const AliEMCALGeometry* geom,
173 const AliVCluster* cluster,
174 AliVCaloCells* cells) ;
fb8eab96 175 void SetNumberOfCellsFromEMCALBorder(Int_t n){ fNCellsFromEMCALBorder = n ; }
01d44f1f 176 Int_t GetNumberOfCellsFromEMCALBorder() const { return fNCellsFromEMCALBorder ; }
fd6df01c 177
01d44f1f 178 void SwitchOnNoFiducialBorderInEMCALEta0() { fNoEMCALBorderAtEta0 = kTRUE ; }
179 void SwitchOffNoFiducialBorderInEMCALEta0() { fNoEMCALBorderAtEta0 = kFALSE ; }
180 Bool_t IsEMCALNoBorderAtEta0() const { return fNoEMCALBorderAtEta0 ; }
fd6df01c 181
b540d03f 182 //-----------------------------------------------------
fd6df01c 183 // Bad channels
b540d03f 184 //-----------------------------------------------------
01d44f1f 185 Bool_t IsBadChannelsRemovalSwitchedOn() const { return fRemoveBadChannels ; }
186 void SwitchOffBadChannelsRemoval() { fRemoveBadChannels = kFALSE ; }
187 void SwitchOnBadChannelsRemoval () { fRemoveBadChannels = kTRUE ;
188 if(!fEMCALBadChannelMap)InitEMCALBadChannelStatusMap() ; }
01d44f1f 189 Bool_t IsDistanceToBadChannelRecalculated() const { return fRecalDistToBadChannels ; }
190 void SwitchOffDistToBadChannelRecalculation() { fRecalDistToBadChannels = kFALSE ; }
191 void SwitchOnDistToBadChannelRecalculation() { fRecalDistToBadChannels = kTRUE ;
192 if(!fEMCALBadChannelMap)InitEMCALBadChannelStatusMap() ; }
c8fcffd3 193 TObjArray* GetEMCALBadChannelStatusMapArray() const { return fEMCALBadChannelMap ; }
01d44f1f 194 void InitEMCALBadChannelStatusMap() ;
01d44f1f 195 Int_t GetEMCALChannelStatus(Int_t iSM , Int_t iCol, Int_t iRow) const {
fd6df01c 196 if(fEMCALBadChannelMap) return (Int_t) ((TH2I*)fEMCALBadChannelMap->At(iSM))->GetBinContent(iCol,iRow);
197 else return 0;}//Channel is ok by default
01d44f1f 198 void SetEMCALChannelStatus(Int_t iSM , Int_t iCol, Int_t iRow, Double_t c = 1) {
c8fcffd3 199 if(!fEMCALBadChannelMap)InitEMCALBadChannelStatusMap() ;
200 ((TH2I*)fEMCALBadChannelMap->At(iSM))->SetBinContent(iCol,iRow,c) ; }
01d44f1f 201 TH2I * GetEMCALChannelStatusMap(Int_t iSM) const { return (TH2I*)fEMCALBadChannelMap->At(iSM) ; }
202 void SetEMCALChannelStatusMap(TObjArray *map) { fEMCALBadChannelMap = map ; }
203 void SetEMCALChannelStatusMap(Int_t iSM , TH2I* h) { fEMCALBadChannelMap->AddAt(h,iSM) ; }
fb8eab96 204 Bool_t ClusterContainsBadChannel(const AliEMCALGeometry* geom, const UShort_t* cellList, Int_t nCells);
fd6df01c 205
b540d03f 206 //-----------------------------------------------------
207 // Recalculate other cluster parameters
208 //-----------------------------------------------------
a520bcd0 209 void RecalculateClusterDistanceToBadChannel (const AliEMCALGeometry * geom, AliVCaloCells* cells, AliVCluster * cluster);
210 void RecalculateClusterShowerShapeParameters(const AliEMCALGeometry * geom, AliVCaloCells* cells, AliVCluster * cluster);
f0e9e976 211 void RecalculateClusterShowerShapeParameters(const AliEMCALGeometry * geom, AliVCaloCells* cells, AliVCluster * cluster,
212 Float_t & l0, Float_t & l1,
213 Float_t & disp, Float_t & dEta, Float_t & dPhi,
214 Float_t & sEta, Float_t & sPhi, Float_t & sEtaPhi);
01d44f1f 215 void RecalculateClusterPID(AliVCluster * cluster);
83bfd77a 216 AliEMCALPIDUtils * GetPIDUtils() { return fPIDUtils;}
217
b540d03f 218 //----------------------------------------------------
219 // Track matching
220 //----------------------------------------------------
a520bcd0 221 void FindMatches(AliVEvent *event, TObjArray * clusterArr=0x0, const AliEMCALGeometry *geom=0x0);
222 Int_t FindMatchedClusterInEvent(const AliESDtrack *track, const AliVEvent *event,
223 const AliEMCALGeometry *geom, Float_t &dEta, Float_t &dPhi);
7f5392da 224 Int_t FindMatchedClusterInClusterArr(const AliExternalTrackParam *emcalParam,
225 AliExternalTrackParam *trkParam,
226 const TObjArray * clusterArr,
227 Float_t &dEta, Float_t &dPhi);
40891fa2 228 static Bool_t ExtrapolateTrackToEMCalSurface(AliVTrack *track, /*note, on success the call will change the track*/
6e0ae02d 229 Double_t emcalR=440, Double_t mass=0.1396, Double_t step=20, Double_t minpT=0.35);
a520bcd0 230 static Bool_t ExtrapolateTrackToEMCalSurface(AliExternalTrackParam *trkParam,
fb8eab96 231 Double_t emcalR, Double_t mass, Double_t step,
a29b2a8a 232 Float_t &eta, Float_t &phi, Float_t &pt);
88b96ad8 233 static Bool_t ExtrapolateTrackToPosition(AliExternalTrackParam *trkParam, const Float_t *clsPos,
fb8eab96 234 Double_t mass, Double_t step,
a520bcd0 235 Float_t &tmpEta, Float_t &tmpPhi);
7f5392da 236 static Bool_t ExtrapolateTrackToCluster (AliExternalTrackParam *trkParam, const AliVCluster *cluster,
fb8eab96 237 Double_t mass, Double_t step,
a520bcd0 238 Float_t &tmpEta, Float_t &tmpPhi);
7f5392da 239 Bool_t ExtrapolateTrackToCluster (AliExternalTrackParam *trkParam, const AliVCluster *cluster,
88b96ad8 240 Float_t &tmpEta, Float_t &tmpPhi);
fb8eab96 241 UInt_t FindMatchedPosForCluster(Int_t clsIndex) const;
242 UInt_t FindMatchedPosForTrack (Int_t trkIndex) const;
fb8eab96 243 void GetMatchedResiduals (Int_t clsIndex, Float_t &dEta, Float_t &dPhi);
244 void GetMatchedClusterResiduals(Int_t trkIndex, Float_t &dEta, Float_t &dPhi);
01d44f1f 245 Int_t GetMatchedTrackIndex(Int_t clsIndex);
246 Int_t GetMatchedClusterIndex(Int_t trkIndex);
fb8eab96 247 Bool_t IsClusterMatched(Int_t clsIndex) const;
248 Bool_t IsTrackMatched (Int_t trkIndex) const;
dda65b42 249 void SetClusterMatchedToTrack (const AliVEvent *event);
250 void SetTracksMatchedToCluster(const AliVEvent *event);
01d44f1f 251 void SwitchOnCutEtaPhiSum() { fCutEtaPhiSum = kTRUE ;
252 fCutEtaPhiSeparate = kFALSE ; }
253 void SwitchOnCutEtaPhiSeparate() { fCutEtaPhiSeparate = kTRUE ;
254 fCutEtaPhiSum = kFALSE ; }
01d44f1f 255 Float_t GetCutR() const { return fCutR ; }
256 Float_t GetCutEta() const { return fCutEta ; }
257 Float_t GetCutPhi() const { return fCutPhi ; }
8fc351e3 258 Double_t GetClusterWindow() const { return fClusterWindow ; }
01d44f1f 259 void SetCutR(Float_t cutR) { fCutR = cutR ; }
260 void SetCutEta(Float_t cutEta) { fCutEta = cutEta ; }
261 void SetCutPhi(Float_t cutPhi) { fCutPhi = cutPhi ; }
8fc351e3 262 void SetClusterWindow(Double_t window) { fClusterWindow = window ; }
01d44f1f 263 void SetCutZ(Float_t cutZ) { printf("Obsolete fucntion of cutZ=%1.1f\n",cutZ) ; } //Obsolete
a29b2a8a 264 void SetEMCalSurfaceDistance(Double_t d) { fEMCalSurfaceDistance = d ; }
01d44f1f 265 Double_t GetMass() const { return fMass ; }
8fc351e3 266 Double_t GetStep() const { return fStepCluster ; }
267 Double_t GetStepSurface() const { return fStepSurface ; }
01d44f1f 268 void SetMass(Double_t mass) { fMass = mass ; }
da34fafe 269 void SetStep(Double_t step) { fStepSurface = step ; }
270 void SetStepCluster(Double_t step) { fStepCluster = step ; }
42ceff04 271 void SetITSTrackSA(Bool_t isITS) { fITSTrackSA = isITS ; } //Special Handle of AliExternTrackParam
272
a7e5a381 273 // Exotic cells / clusters
fb8eab96 274 Bool_t IsExoticCell(Int_t absId, AliVCaloCells* cells, Int_t bc =-1) ;
a7e5a381 275 void SwitchOnRejectExoticCell() { fRejectExoticCells = kTRUE ; }
276 void SwitchOffRejectExoticCell() { fRejectExoticCells = kFALSE ; }
ba19aaf1 277 Bool_t IsRejectExoticCell() const { return fRejectExoticCells ; }
fb8eab96 278 Float_t GetECross(Int_t absID, Double_t tcell,
279 AliVCaloCells* cells, Int_t bc);
ba19aaf1 280 Float_t GetExoticCellFractionCut() const { return fExoticCellFraction ; }
281 Float_t GetExoticCellDiffTimeCut() const { return fExoticCellDiffTime ; }
282 Float_t GetExoticCellMinAmplitudeCut() const { return fExoticCellMinAmplitude ; }
a7e5a381 283 void SetExoticCellFractionCut(Float_t f) { fExoticCellFraction = f ; }
284 void SetExoticCellDiffTimeCut(Float_t dt) { fExoticCellDiffTime = dt ; }
285 void SetExoticCellMinAmplitudeCut(Float_t ma) { fExoticCellMinAmplitude = ma ; }
fb8eab96 286 Bool_t IsExoticCluster(const AliVCluster *cluster, AliVCaloCells* cells, Int_t bc=0) ;
a7e5a381 287 void SwitchOnRejectExoticCluster() { fRejectExoticCluster = kTRUE ;
288 fRejectExoticCells = kTRUE ; }
289 void SwitchOffRejectExoticCluster() { fRejectExoticCluster = kFALSE ; }
01d44f1f 290 Bool_t IsRejectExoticCluster() const { return fRejectExoticCluster ; }
c8fcffd3 291
a7e5a381 292 //Cluster cut
a520bcd0 293 Bool_t IsGoodCluster(AliVCluster *cluster, const AliEMCALGeometry *geom,
fb8eab96 294 AliVCaloCells* cells, Int_t bc =-1);
bd8c7aef 295
296 //Track Cuts
01d44f1f 297 Bool_t IsAccepted(AliESDtrack *track);
298 void InitTrackCuts();
299 void SetTrackCutsType(Int_t type) { fTrackCutsType = type ;
300 InitTrackCuts() ; }
301 Int_t GetTrackCutsType() const { return fTrackCutsType; }
bd8c7aef 302
a6a1e3ab 303 // Define AOD track type for matching
304 void SwitchOffAODHybridTracksMatch() { fAODHybridTracks = kFALSE ; }
305 void SwitchOffAODTPCOnlyTracksMatch() { fAODTPCOnlyTracks = kFALSE ; }
306 void SwitchOnAODHybridTracksMatch() { fAODHybridTracks = kTRUE ; SwitchOffAODTPCOnlyTracksMatch() ; }
307 void SwitchOnAODTPCOnlyTracksMatch() { fAODTPCOnlyTracks = kTRUE ; SwitchOffAODHybridTracksMatch() ; }
308 void SetAODTrackFilterMask( UInt_t mask) { fAODFilterMask = mask ;
309 SwitchOffAODTPCOnlyTracksMatch() ; SwitchOffAODHybridTracksMatch() ; }
c8fcffd3 310
a6a1e3ab 311 // track quality cut setters
01d44f1f 312 void SetMinTrackPt(Double_t pt=0) { fCutMinTrackPt = pt ; }
313 void SetMinNClustersTPC(Int_t min=-1) { fCutMinNClusterTPC = min ; }
314 void SetMinNClustersITS(Int_t min=-1) { fCutMinNClusterITS = min ; }
315 void SetMaxChi2PerClusterTPC(Float_t max=1e10) { fCutMaxChi2PerClusterTPC = max ; }
316 void SetMaxChi2PerClusterITS(Float_t max=1e10) { fCutMaxChi2PerClusterITS = max ; }
317 void SetRequireTPCRefit(Bool_t b=kFALSE) { fCutRequireTPCRefit = b ; }
318 void SetRequireITSRefit(Bool_t b=kFALSE) { fCutRequireITSRefit = b ; }
319 void SetAcceptKinkDaughters(Bool_t b=kTRUE) { fCutAcceptKinkDaughters = b ; }
320 void SetMaxDCAToVertexXY(Float_t dist=1e10) { fCutMaxDCAToVertexXY = dist ; }
321 void SetMaxDCAToVertexZ(Float_t dist=1e10) { fCutMaxDCAToVertexZ = dist ; }
322 void SetDCAToVertex2D(Bool_t b=kFALSE) { fCutDCAToVertex2D = b ; }
42ceff04 323 void SetRequireITSStandAlone(Bool_t b=kFALSE) {fCutRequireITSStandAlone = b;} //Marcel
324 void SetRequireITSPureStandAlone(Bool_t b=kFALSE){fCutRequireITSpureSA = b;}
a6a1e3ab 325
fa4287a2 326 // getters
01d44f1f 327 Double_t GetMinTrackPt() const { return fCutMinTrackPt ; }
328 Int_t GetMinNClusterTPC() const { return fCutMinNClusterTPC ; }
329 Int_t GetMinNClustersITS() const { return fCutMinNClusterITS ; }
330 Float_t GetMaxChi2PerClusterTPC() const { return fCutMaxChi2PerClusterTPC ; }
331 Float_t GetMaxChi2PerClusterITS() const { return fCutMaxChi2PerClusterITS ; }
332 Bool_t GetRequireTPCRefit() const { return fCutRequireTPCRefit ; }
333 Bool_t GetRequireITSRefit() const { return fCutRequireITSRefit ; }
334 Bool_t GetAcceptKinkDaughters() const { return fCutAcceptKinkDaughters ; }
335 Float_t GetMaxDCAToVertexXY() const { return fCutMaxDCAToVertexXY ; }
336 Float_t GetMaxDCAToVertexZ() const { return fCutMaxDCAToVertexZ ; }
337 Bool_t GetDCAToVertex2D() const { return fCutDCAToVertex2D ; }
42ceff04 338 Bool_t GetRequireITSStandAlone() const { return fCutRequireITSStandAlone ; } //Marcel
fd6df01c 339
8fc351e3 340private:
b540d03f 341 //Position recalculation
96957075 342 Float_t fMisalTransShift[15]; // Shift parameters
343 Float_t fMisalRotShift[15]; // Shift parameters
96957075 344 Int_t fParticleType; // Particle type for depth calculation
345 Int_t fPosAlgo; // Position recalculation algorithm
346 Float_t fW0; // Weight0
01d44f1f 347
348 // Non linearity
349 Int_t fNonLinearityFunction; // Non linearity function choice
350 Float_t fNonLinearityParams[7]; // Parameters for the non linearity function
7e0ecb89 351 Int_t fNonLinearThreshold; // Non linearity threshold value for kBeamTesh non linearity function
fd6df01c 352
01d44f1f 353 // Energy smearing for MC
354 Bool_t fSmearClusterEnergy; // Smear cluster energy, to be done only for simulated data to match real data
355 Float_t fSmearClusterParam[3]; // Smearing parameters
356 TRandom3 fRandom; // Random generator
357
3bfc4732 358 // Energy Recalibration
359 Bool_t fCellsRecalibrated; // Internal bool to check if cells (time/energy) where recalibrated and not recalibrate them when recalculating different things
fd6df01c 360 Bool_t fRecalibration; // Switch on or off the recalibration
361 TObjArray* fEMCALRecalibrationFactors; // Array of histograms with map of recalibration factors, EMCAL
01d44f1f 362
3bfc4732 363 // Time Recalibration
364 Bool_t fTimeRecalibration; // Switch on or off the time recalibration
365 TObjArray* fEMCALTimeRecalibrationFactors; // Array of histograms with map of time recalibration factors, EMCAL
366
367 // Recalibrate with run dependent corrections, energy
368 Bool_t fUseRunCorrectionFactors; // Use Run Dependent Correction
01d44f1f 369
b540d03f 370 // Bad Channels
fd6df01c 371 Bool_t fRemoveBadChannels; // Check the channel status provided and remove clusters with bad channels
78467229 372 Bool_t fRecalDistToBadChannels; // Calculate distance from highest energy tower of cluster to closes bad channel
fd6df01c 373 TObjArray* fEMCALBadChannelMap; // Array of histograms with map of bad channels, EMCAL
b540d03f 374
375 // Border cells
fd6df01c 376 Int_t fNCellsFromEMCALBorder; // Number of cells from EMCAL border the cell with maximum amplitude has to be.
377 Bool_t fNoEMCALBorderAtEta0; // Do fiducial cut in EMCAL region eta = 0?
b540d03f 378
a7e5a381 379 // Exotic cell / cluster
01d44f1f 380 Bool_t fRejectExoticCluster; // Switch on or off exotic cluster rejection
a7e5a381 381 Bool_t fRejectExoticCells; // Remove exotic cells
382 Float_t fExoticCellFraction; // Good cell if fraction < 1-ecross/ecell
383 Float_t fExoticCellDiffTime; // If time of candidate to exotic and close cell is too different (in ns), it must be noisy, set amp to 0
384 Float_t fExoticCellMinAmplitude; // Check for exotic only if amplitud is larger than this value
01d44f1f 385
386 // PID
387 AliEMCALPIDUtils * fPIDUtils; // Recalculate PID parameters
388
bb6f5f0b 389 //Track matching
390 UInt_t fAODFilterMask; // Filter mask to select AOD tracks. Refer to $ALICE_ROOT/ANALYSIS/macros/AddTaskESDFilter.C
1af378e6 391 Bool_t fAODHybridTracks; // Match with hybrid
a6a1e3ab 392 Bool_t fAODTPCOnlyTracks; // Match with TPC only tracks
1af378e6 393
b540d03f 394 TArrayI * fMatchedTrackIndex; // Array that stores indexes of matched tracks
96957075 395 TArrayI * fMatchedClusterIndex; // Array that stores indexes of matched clusters
fa4287a2 396 TArrayF * fResidualEta; // Array that stores the residual eta
397 TArrayF * fResidualPhi; // Array that stores the residual phi
398 Bool_t fCutEtaPhiSum; // Place cut on sqrt(dEta^2+dPhi^2)
399 Bool_t fCutEtaPhiSeparate; // Cut on dEta and dPhi separately
400 Float_t fCutR; // sqrt(dEta^2+dPhi^2) cut on matching
401 Float_t fCutEta; // dEta cut on matching
402 Float_t fCutPhi; // dPhi cut on matching
8fc351e3 403 Double_t fClusterWindow; // Select clusters in the window to be matched
bb6f5f0b 404 Double_t fMass; // Mass hypothesis of the track
8fc351e3 405 Double_t fStepSurface; // Length of step to extrapolate tracks to EMCal surface
406 Double_t fStepCluster; // Length of step to extrapolate tracks to clusters
42ceff04 407 Bool_t fITSTrackSA; // If track matching is to be done with ITS tracks standing alone
a29b2a8a 408 Double_t fEMCalSurfaceDistance; // EMCal surface distance (= 430 by default, the last 10 cm are propagated on a cluster-track pair basis)
42ceff04 409
9741c6a0 410 // Track cuts
5f7714ad 411 Int_t fTrackCutsType; // Esd track cuts type for matching
fa4287a2 412 Double_t fCutMinTrackPt; // Cut on track pT
96957075 413 Int_t fCutMinNClusterTPC; // Min number of tpc clusters
414 Int_t fCutMinNClusterITS; // Min number of its clusters
415 Float_t fCutMaxChi2PerClusterTPC; // Max tpc fit chi2 per tpc cluster
416 Float_t fCutMaxChi2PerClusterITS; // Max its fit chi2 per its cluster
417 Bool_t fCutRequireTPCRefit; // Require TPC refit
418 Bool_t fCutRequireITSRefit; // Require ITS refit
419 Bool_t fCutAcceptKinkDaughters; // Accepting kink daughters?
420 Float_t fCutMaxDCAToVertexXY; // Track-to-vertex cut in max absolute distance in xy-plane
421 Float_t fCutMaxDCAToVertexZ; // Track-to-vertex cut in max absolute distance in z-plane
8fc351e3 422 Bool_t fCutDCAToVertex2D; // If true a 2D DCA cut is made.
42ceff04 423 Bool_t fCutRequireITSStandAlone; // Require ITSStandAlone
424 Bool_t fCutRequireITSpureSA; // ITS pure standalone tracks
425
a29b2a8a 426 ClassDef(AliEMCALRecoUtils, 21)
d9b3567c 427};
d9b3567c 428#endif // ALIEMCALRECOUTILS_H
429
430