new non linearity function and parameters for latest simulations with better agreemen...
[u/mrichter/AliRoot.git] / EMCAL / AliEMCALRecoUtils.h
CommitLineData
d9b3567c 1#ifndef ALIEMCALRECOUTILS_H
2#define ALIEMCALRECOUTILS_H
3
4/* $Id: AliEMCALRecoUtils.h 33808 2009-07-15 09:48:08Z gconesab $ */
5
6///////////////////////////////////////////////////////////////////////////////
7//
8// Class AliEMCALRecoUtils
9// Some utilities to recalculate the cluster position or energy linearity
10//
11//
12// Author: Gustavo Conesa (LPSC- Grenoble)
b540d03f 13// Track matching part: Rongrong Ma (Yale)
d9b3567c 14///////////////////////////////////////////////////////////////////////////////
15
16//Root includes
01d44f1f 17#include <TNamed.h>
18#include <TMath.h>
7cdec71f 19class TObjArray;
20class TArrayI;
21class TArrayF;
01d44f1f 22#include <TH2I.h>
7cdec71f 23class TH2F;
01d44f1f 24#include <TRandom3.h>
d9b3567c 25
26//AliRoot includes
27class AliVCluster;
28class AliVCaloCells;
bd8c7aef 29class AliVEvent;
88b96ad8 30#include "AliLog.h"
b540d03f 31
32// EMCAL includes
094786cc 33class AliEMCALGeometry;
83bfd77a 34class AliEMCALPIDUtils;
bd8c7aef 35class AliESDtrack;
bb6f5f0b 36class AliExternalTrackParam;
d9b3567c 37
38class AliEMCALRecoUtils : public TNamed {
39
40public:
41
42 AliEMCALRecoUtils();
43 AliEMCALRecoUtils(const AliEMCALRecoUtils&);
44 AliEMCALRecoUtils& operator=(const AliEMCALRecoUtils&);
b540d03f 45 virtual ~AliEMCALRecoUtils() ;
88b96ad8 46
47 void InitParameters();
48
01d44f1f 49 void Print(const Option_t*) const;
b540d03f 50
51 //enums
e33e0c4a 52 enum NonlinearityFunctions{kPi0MC=0,kPi0GammaGamma=1,kPi0GammaConversion=2,kNoCorrection=3,kBeamTest=4,kBeamTestCorrected=5,kPi0MCv2=6,kPi0MCv3=7};
01d44f1f 53 enum PositionAlgorithms{kUnchanged=-1,kPosTowerIndex=0, kPosTowerGlobal=1};
54 enum ParticleType{kPhoton=0, kElectron=1,kHadron =2, kUnknown=-1};
55 enum { kNCuts = 11 }; //track matching
0e7de35b 56 enum TrackCutsType{kTPCOnlyCut=0, kGlobalCut=1, kLooseCut=2};
b540d03f 57
58 //-----------------------------------------------------
d9b3567c 59 //Position recalculation
b540d03f 60 //-----------------------------------------------------
61
a520bcd0 62 void RecalculateClusterPosition (const AliEMCALGeometry *geom, AliVCaloCells* cells, AliVCluster* clu);
63 void RecalculateClusterPositionFromTowerIndex (const AliEMCALGeometry *geom, AliVCaloCells* cells, AliVCluster* clu);
64 void RecalculateClusterPositionFromTowerGlobal(const AliEMCALGeometry *geom, AliVCaloCells* cells, AliVCluster* clu);
094786cc 65
01d44f1f 66 Float_t GetCellWeight(const Float_t eCell, const Float_t eCluster) const { return TMath::Max( 0., fW0 + TMath::Log( eCell / eCluster )) ; }
094786cc 67
68 Float_t GetDepth(const Float_t eCluster, const Int_t iParticle, const Int_t iSM) const ;
69
88b96ad8 70 void GetMaxEnergyCell(const AliEMCALGeometry *geom, AliVCaloCells* cells, const AliVCluster* clu,
cb231979 71 Int_t & absId, Int_t& iSupMod, Int_t& ieta, Int_t& iphi, Bool_t &shared);
d9b3567c 72
01d44f1f 73 Float_t GetMisalTransShift(const Int_t i) const { if(i < 15 ) { return fMisalTransShift[i] ; }
74 else { AliInfo(Form("Index %d larger than 15, do nothing\n",i)) ;
75 return 0. ; } }
76 Float_t* GetMisalTransShiftArray() { return fMisalTransShift ; }
d9b3567c 77
2a71e873 78 void SetMisalTransShift(const Int_t i, const Float_t shift) {
01d44f1f 79 if(i < 15 ) { fMisalTransShift[i] = shift ; }
80 else { AliInfo(Form("Index %d larger than 15, do nothing\n",i)) ; } }
81 void SetMisalTransShiftArray(Float_t * misal) { for(Int_t i = 0; i < 15; i++) fMisalTransShift[i] = misal[i] ; }
82
83 Float_t GetMisalRotShift(const Int_t i) const { if(i < 15 ) { return fMisalRotShift[i] ; }
84 else { AliInfo(Form("Index %d larger than 15, do nothing\n",i)) ;
85 return 0. ; } }
86
87 Float_t* GetMisalRotShiftArray() { return fMisalRotShift ; }
2a71e873 88
89 void SetMisalRotShift(const Int_t i, const Float_t shift) {
01d44f1f 90 if(i < 15 ) { fMisalRotShift[i] = shift ; }
91 else { AliInfo(Form("Index %d larger than 15, do nothing\n",i)) ; } }
92
93 void SetMisalRotShiftArray(Float_t * misal) { for(Int_t i = 0; i < 15; i++)fMisalRotShift[i] = misal[i] ; }
2a71e873 94
01d44f1f 95 Int_t GetParticleType() const { return fParticleType ; }
96 void SetParticleType(Int_t particle) { fParticleType = particle ; }
2a71e873 97
01d44f1f 98 Int_t GetPositionAlgorithm() const { return fPosAlgo ; }
99 void SetPositionAlgorithm(Int_t alg) { fPosAlgo = alg ; }
2a71e873 100
01d44f1f 101 Float_t GetW0() const { return fW0 ; }
102 void SetW0(Float_t w0) { fW0 = w0 ; }
094786cc 103
b540d03f 104 //-----------------------------------------------------
a7e5a381 105 // Non Linearity
b540d03f 106 //-----------------------------------------------------
107
01d44f1f 108 Float_t CorrectClusterEnergyLinearity(AliVCluster* clu) ;
d9b3567c 109
01d44f1f 110 Float_t GetNonLinearityParam(const Int_t i) const { if(i < 7 ){ return fNonLinearityParams[i] ; }
111 else { AliInfo(Form("Index %d larger than 7, do nothing\n",i)) ;
112 return 0. ; } }
d9b3567c 113 void SetNonLinearityParam(const Int_t i, const Float_t param) {
01d44f1f 114 if(i < 7 ){fNonLinearityParams[i] = param ; }
115 else { AliInfo(Form("Index %d larger than 7, do nothing\n",i)) ; } }
116 void InitNonLinearityParam();
7e0ecb89 117
01d44f1f 118 Int_t GetNonLinearityFunction() const { return fNonLinearityFunction ; }
119 void SetNonLinearityFunction(Int_t fun) { fNonLinearityFunction = fun ; InitNonLinearityParam() ; }
7e0ecb89 120
01d44f1f 121 void SetNonLinearityThreshold(Int_t threshold) { fNonLinearThreshold = threshold ; } //only for Alexie's non linearity correction
122 Int_t GetNonLinearityThreshold() const { return fNonLinearThreshold ; }
123//
124 //-----------------------------------------------------
125 // MC clusters energy smearing
126 //-----------------------------------------------------
127
88b96ad8 128 Float_t SmearClusterEnergy(const AliVCluster* clu) ;
01d44f1f 129 void SwitchOnClusterEnergySmearing() { fSmearClusterEnergy = kTRUE ; }
130 void SwitchOffClusterEnergySmearing() { fSmearClusterEnergy = kFALSE ; }
131 Bool_t IsClusterEnergySmeared() const { return fSmearClusterEnergy ; }
132 void SetSmearingParameters(Int_t i, Float_t param) { if(i < 3){ fSmearClusterParam[i] = param ; }
133 else { AliInfo(Form("Index %d larger than 2, do nothing\n",i)) ; } }
b540d03f 134 //-----------------------------------------------------
a7e5a381 135 // Recalibration
b540d03f 136 //-----------------------------------------------------
a7e5a381 137 Bool_t AcceptCalibrateCell(const Int_t absId, const Int_t bc,
138 Float_t & amp, Double_t & time, AliVCaloCells* cells) ; // Energy and Time
139 void RecalibrateCells(AliVCaloCells * cells, Int_t bc) ; // Energy and Time
88b96ad8 140 void RecalibrateClusterEnergy(const AliEMCALGeometry* geom, AliVCluster* cluster, AliVCaloCells * cells, const Int_t bc=-1) ; // Energy and time
841dbf60 141 void ResetCellsCalibrated() { fCellsRecalibrated = kFALSE; }
094786cc 142
a7e5a381 143 // Energy recalibration
01d44f1f 144 Bool_t IsRecalibrationOn() const { return fRecalibration ; }
145 void SwitchOffRecalibration() { fRecalibration = kFALSE ; }
146 void SwitchOnRecalibration() { fRecalibration = kTRUE ;
147 if(!fEMCALRecalibrationFactors)InitEMCALRecalibrationFactors() ; }
148 void InitEMCALRecalibrationFactors() ;
50b7a951 149 TObjArray* GetEMCALRecalibrationFactorsArray() const { return fEMCALRecalibrationFactors ; }
96957075 150
3bfc4732 151 TH2F * GetEMCALChannelRecalibrationFactors(Int_t iSM) const { return (TH2F*)fEMCALRecalibrationFactors->At(iSM) ; }
152 void SetEMCALChannelRecalibrationFactors(TObjArray *map) { fEMCALRecalibrationFactors = map ; }
153 void SetEMCALChannelRecalibrationFactors(Int_t iSM , TH2F* h) { fEMCALRecalibrationFactors->AddAt(h,iSM) ; }
154
01d44f1f 155 Float_t GetEMCALChannelRecalibrationFactor(Int_t iSM , Int_t iCol, Int_t iRow) const {
3bfc4732 156 if(fEMCALRecalibrationFactors)
157 return (Float_t) ((TH2F*)fEMCALRecalibrationFactors->At(iSM))->GetBinContent(iCol,iRow);
158 else return 1 ; }
094786cc 159
01d44f1f 160 void SetEMCALChannelRecalibrationFactor(Int_t iSM , Int_t iCol, Int_t iRow, Double_t c = 1) {
3bfc4732 161 if(!fEMCALRecalibrationFactors) InitEMCALRecalibrationFactors() ;
162 ((TH2F*)fEMCALRecalibrationFactors->At(iSM))->SetBinContent(iCol,iRow,c) ; }
163
164 //Recalibrate channels energy with run dependent corrections
7bf608c9 165 Bool_t IsRunDepRecalibrationOn() const { return fUseRunCorrectionFactors ; }
166
3bfc4732 167 void SwitchOffRunDepCorrection() { fUseRunCorrectionFactors = kFALSE ; }
168 void SwitchOnRunDepCorrection() { fUseRunCorrectionFactors = kTRUE ;
7bf608c9 169 SwitchOnRecalibration() ; }
a7e5a381 170 // Time Recalibration
88b96ad8 171 void RecalibrateCellTime(const Int_t absId, const Int_t bc, Double_t & time) const;
3bfc4732 172
173 Bool_t IsTimeRecalibrationOn() const { return fTimeRecalibration ; }
174 void SwitchOffTimeRecalibration() { fTimeRecalibration = kFALSE ; }
175 void SwitchOnTimeRecalibration() { fTimeRecalibration = kTRUE ;
176 if(!fEMCALTimeRecalibrationFactors)InitEMCALTimeRecalibrationFactors() ; }
177 void InitEMCALTimeRecalibrationFactors() ;
50b7a951 178 TObjArray* GetEMCALTimeRecalibrationFactorsArray() const { return fEMCALTimeRecalibrationFactors ; }
179
a7e5a381 180 Float_t GetEMCALChannelTimeRecalibrationFactor(const Int_t bc, const Int_t absID) const {
3bfc4732 181 if(fEMCALTimeRecalibrationFactors)
182 return (Float_t) ((TH1F*)fEMCALTimeRecalibrationFactors->At(bc))->GetBinContent(absID);
a7e5a381 183 else return 0 ; }
3bfc4732 184
a7e5a381 185 void SetEMCALChannelTimeRecalibrationFactor(const Int_t bc, const Int_t absID, Double_t c = 0) {
3bfc4732 186 if(!fEMCALTimeRecalibrationFactors) InitEMCALTimeRecalibrationFactors() ;
187 ((TH1F*)fEMCALTimeRecalibrationFactors->At(bc))->SetBinContent(absID,c) ; }
188
a7e5a381 189 TH1F * GetEMCALChannelTimeRecalibrationFactors(const Int_t bc)const { return (TH1F*)fEMCALTimeRecalibrationFactors->At(bc) ; }
190 void SetEMCALChannelTimeRecalibrationFactors(TObjArray *map) { fEMCALTimeRecalibrationFactors = map ; }
191 void SetEMCALChannelTimeRecalibrationFactors(const Int_t bc , TH1F* h) { fEMCALTimeRecalibrationFactors->AddAt(h,bc) ; }
094786cc 192
b540d03f 193 //-----------------------------------------------------
3bfc4732 194 // Modules fiducial region, remove clusters in borders
b540d03f 195 //-----------------------------------------------------
196
a520bcd0 197 Bool_t CheckCellFiducialRegion(const AliEMCALGeometry* geom,
198 const AliVCluster* cluster,
199 AliVCaloCells* cells) ;
a7e5a381 200 void SetNumberOfCellsFromEMCALBorder(const Int_t n){ fNCellsFromEMCALBorder = n ; }
01d44f1f 201 Int_t GetNumberOfCellsFromEMCALBorder() const { return fNCellsFromEMCALBorder ; }
fd6df01c 202
01d44f1f 203 void SwitchOnNoFiducialBorderInEMCALEta0() { fNoEMCALBorderAtEta0 = kTRUE ; }
204 void SwitchOffNoFiducialBorderInEMCALEta0() { fNoEMCALBorderAtEta0 = kFALSE ; }
205 Bool_t IsEMCALNoBorderAtEta0() const { return fNoEMCALBorderAtEta0 ; }
fd6df01c 206
b540d03f 207 //-----------------------------------------------------
fd6df01c 208 // Bad channels
b540d03f 209 //-----------------------------------------------------
210
01d44f1f 211 Bool_t IsBadChannelsRemovalSwitchedOn() const { return fRemoveBadChannels ; }
212 void SwitchOffBadChannelsRemoval() { fRemoveBadChannels = kFALSE ; }
213 void SwitchOnBadChannelsRemoval () { fRemoveBadChannels = kTRUE ;
214 if(!fEMCALBadChannelMap)InitEMCALBadChannelStatusMap() ; }
fd6df01c 215
01d44f1f 216 Bool_t IsDistanceToBadChannelRecalculated() const { return fRecalDistToBadChannels ; }
217 void SwitchOffDistToBadChannelRecalculation() { fRecalDistToBadChannels = kFALSE ; }
218 void SwitchOnDistToBadChannelRecalculation() { fRecalDistToBadChannels = kTRUE ;
219 if(!fEMCALBadChannelMap)InitEMCALBadChannelStatusMap() ; }
78467229 220
50b7a951 221 TObjArray* GetEMCALBadChannelStatusMapArray() const { return fEMCALBadChannelMap ; }
01d44f1f 222 void InitEMCALBadChannelStatusMap() ;
fd6df01c 223
01d44f1f 224 Int_t GetEMCALChannelStatus(Int_t iSM , Int_t iCol, Int_t iRow) const {
fd6df01c 225 if(fEMCALBadChannelMap) return (Int_t) ((TH2I*)fEMCALBadChannelMap->At(iSM))->GetBinContent(iCol,iRow);
226 else return 0;}//Channel is ok by default
227
01d44f1f 228 void SetEMCALChannelStatus(Int_t iSM , Int_t iCol, Int_t iRow, Double_t c = 1) {
229 if(!fEMCALBadChannelMap)InitEMCALBadChannelStatusMap() ;
230 ((TH2I*)fEMCALBadChannelMap->At(iSM))->SetBinContent(iCol,iRow,c) ; }
fd6df01c 231
01d44f1f 232 TH2I * GetEMCALChannelStatusMap(Int_t iSM) const { return (TH2I*)fEMCALBadChannelMap->At(iSM) ; }
233 void SetEMCALChannelStatusMap(TObjArray *map) { fEMCALBadChannelMap = map ; }
234 void SetEMCALChannelStatusMap(Int_t iSM , TH2I* h) { fEMCALBadChannelMap->AddAt(h,iSM) ; }
6fe0e6d0 235
88b96ad8 236 Bool_t ClusterContainsBadChannel(const AliEMCALGeometry* geom, const UShort_t* cellList, const Int_t nCells);
fd6df01c 237
b540d03f 238 //-----------------------------------------------------
239 // Recalculate other cluster parameters
240 //-----------------------------------------------------
241
a520bcd0 242 void RecalculateClusterDistanceToBadChannel (const AliEMCALGeometry * geom, AliVCaloCells* cells, AliVCluster * cluster);
243 void RecalculateClusterShowerShapeParameters(const AliEMCALGeometry * geom, AliVCaloCells* cells, AliVCluster * cluster);
f0e9e976 244 void RecalculateClusterShowerShapeParameters(const AliEMCALGeometry * geom, AliVCaloCells* cells, AliVCluster * cluster,
245 Float_t & l0, Float_t & l1,
246 Float_t & disp, Float_t & dEta, Float_t & dPhi,
247 Float_t & sEta, Float_t & sPhi, Float_t & sEtaPhi);
248
01d44f1f 249 void RecalculateClusterPID(AliVCluster * cluster);
cb231979 250
83bfd77a 251 AliEMCALPIDUtils * GetPIDUtils() { return fPIDUtils;}
252
83bfd77a 253
b540d03f 254 //----------------------------------------------------
255 // Track matching
256 //----------------------------------------------------
bd8c7aef 257
a520bcd0 258 void FindMatches(AliVEvent *event, TObjArray * clusterArr=0x0, const AliEMCALGeometry *geom=0x0);
259 Int_t FindMatchedClusterInEvent(const AliESDtrack *track, const AliVEvent *event,
260 const AliEMCALGeometry *geom, Float_t &dEta, Float_t &dPhi);
7f5392da 261 Int_t FindMatchedClusterInClusterArr(const AliExternalTrackParam *emcalParam,
262 AliExternalTrackParam *trkParam,
263 const TObjArray * clusterArr,
264 Float_t &dEta, Float_t &dPhi);
ee602376 265
a520bcd0 266 static Bool_t ExtrapolateTrackToEMCalSurface(AliExternalTrackParam *trkParam,
267 const Double_t emcalR, const Double_t mass, const Double_t step,
268 Float_t &eta, Float_t &phi);
88b96ad8 269 static Bool_t ExtrapolateTrackToPosition(AliExternalTrackParam *trkParam, const Float_t *clsPos,
a520bcd0 270 const Double_t mass, const Double_t step,
271 Float_t &tmpEta, Float_t &tmpPhi);
7f5392da 272 static Bool_t ExtrapolateTrackToCluster (AliExternalTrackParam *trkParam, const AliVCluster *cluster,
a520bcd0 273 const Double_t mass, const Double_t step,
274 Float_t &tmpEta, Float_t &tmpPhi);
7f5392da 275 Bool_t ExtrapolateTrackToCluster (AliExternalTrackParam *trkParam, const AliVCluster *cluster,
88b96ad8 276 Float_t &tmpEta, Float_t &tmpPhi);
8fc351e3 277
a520bcd0 278 UInt_t FindMatchedPosForCluster(const Int_t clsIndex) const;
279 UInt_t FindMatchedPosForTrack (const Int_t trkIndex) const;
01d44f1f 280
a520bcd0 281 void GetMatchedResiduals (const Int_t clsIndex, Float_t &dEta, Float_t &dPhi);
282 void GetMatchedClusterResiduals(const Int_t trkIndex, Float_t &dEta, Float_t &dPhi);
01d44f1f 283 Int_t GetMatchedTrackIndex(Int_t clsIndex);
284 Int_t GetMatchedClusterIndex(Int_t trkIndex);
285
a520bcd0 286 Bool_t IsClusterMatched(const Int_t clsIndex) const;
287 Bool_t IsTrackMatched (const Int_t trkIndex) const;
01d44f1f 288
dda65b42 289 void SetClusterMatchedToTrack (const AliVEvent *event);
290 void SetTracksMatchedToCluster(const AliVEvent *event);
01d44f1f 291
292 void SwitchOnCutEtaPhiSum() { fCutEtaPhiSum = kTRUE ;
293 fCutEtaPhiSeparate = kFALSE ; }
294 void SwitchOnCutEtaPhiSeparate() { fCutEtaPhiSeparate = kTRUE ;
295 fCutEtaPhiSum = kFALSE ; }
296
297 Float_t GetCutR() const { return fCutR ; }
298 Float_t GetCutEta() const { return fCutEta ; }
299 Float_t GetCutPhi() const { return fCutPhi ; }
8fc351e3 300 Double_t GetClusterWindow() const { return fClusterWindow ; }
01d44f1f 301 void SetCutR(Float_t cutR) { fCutR = cutR ; }
302 void SetCutEta(Float_t cutEta) { fCutEta = cutEta ; }
303 void SetCutPhi(Float_t cutPhi) { fCutPhi = cutPhi ; }
8fc351e3 304 void SetClusterWindow(Double_t window) { fClusterWindow = window ; }
01d44f1f 305 void SetCutZ(Float_t cutZ) { printf("Obsolete fucntion of cutZ=%1.1f\n",cutZ) ; } //Obsolete
306
307 Double_t GetMass() const { return fMass ; }
8fc351e3 308 Double_t GetStep() const { return fStepCluster ; }
309 Double_t GetStepSurface() const { return fStepSurface ; }
01d44f1f 310 void SetMass(Double_t mass) { fMass = mass ; }
da34fafe 311 void SetStep(Double_t step) { fStepSurface = step ; }
312 void SetStepCluster(Double_t step) { fStepCluster = step ; }
bb6f5f0b 313
a7e5a381 314 // Exotic cells / clusters
315
316 Bool_t IsExoticCell(const Int_t absId, AliVCaloCells* cells, const Int_t bc =-1) ;
317 void SwitchOnRejectExoticCell() { fRejectExoticCells = kTRUE ; }
318 void SwitchOffRejectExoticCell() { fRejectExoticCells = kFALSE ; }
ba19aaf1 319 Bool_t IsRejectExoticCell() const { return fRejectExoticCells ; }
a7e5a381 320
ba19aaf1 321 Float_t GetECross(const Int_t absID, const Double_t tcell,
322 AliVCaloCells* cells, const Int_t bc);
323
324 Float_t GetExoticCellFractionCut() const { return fExoticCellFraction ; }
325 Float_t GetExoticCellDiffTimeCut() const { return fExoticCellDiffTime ; }
326 Float_t GetExoticCellMinAmplitudeCut() const { return fExoticCellMinAmplitude ; }
327
a7e5a381 328 void SetExoticCellFractionCut(Float_t f) { fExoticCellFraction = f ; }
329 void SetExoticCellDiffTimeCut(Float_t dt) { fExoticCellDiffTime = dt ; }
330 void SetExoticCellMinAmplitudeCut(Float_t ma) { fExoticCellMinAmplitude = ma ; }
331
a520bcd0 332 Bool_t IsExoticCluster(const AliVCluster *cluster, AliVCaloCells* cells, const Int_t bc=0) ;
a7e5a381 333 void SwitchOnRejectExoticCluster() { fRejectExoticCluster = kTRUE ;
334 fRejectExoticCells = kTRUE ; }
335 void SwitchOffRejectExoticCluster() { fRejectExoticCluster = kFALSE ; }
01d44f1f 336 Bool_t IsRejectExoticCluster() const { return fRejectExoticCluster ; }
a7e5a381 337
338 //Cluster cut
a520bcd0 339 Bool_t IsGoodCluster(AliVCluster *cluster, const AliEMCALGeometry *geom,
340 AliVCaloCells* cells, const Int_t bc =-1);
bd8c7aef 341
342 //Track Cuts
01d44f1f 343 Bool_t IsAccepted(AliESDtrack *track);
344 void InitTrackCuts();
345 void SetTrackCutsType(Int_t type) { fTrackCutsType = type ;
346 InitTrackCuts() ; }
347 Int_t GetTrackCutsType() const { return fTrackCutsType; }
bd8c7aef 348
349 // track quality cut setters
01d44f1f 350 void SetMinTrackPt(Double_t pt=0) { fCutMinTrackPt = pt ; }
351 void SetMinNClustersTPC(Int_t min=-1) { fCutMinNClusterTPC = min ; }
352 void SetMinNClustersITS(Int_t min=-1) { fCutMinNClusterITS = min ; }
353 void SetMaxChi2PerClusterTPC(Float_t max=1e10) { fCutMaxChi2PerClusterTPC = max ; }
354 void SetMaxChi2PerClusterITS(Float_t max=1e10) { fCutMaxChi2PerClusterITS = max ; }
355 void SetRequireTPCRefit(Bool_t b=kFALSE) { fCutRequireTPCRefit = b ; }
356 void SetRequireITSRefit(Bool_t b=kFALSE) { fCutRequireITSRefit = b ; }
357 void SetAcceptKinkDaughters(Bool_t b=kTRUE) { fCutAcceptKinkDaughters = b ; }
358 void SetMaxDCAToVertexXY(Float_t dist=1e10) { fCutMaxDCAToVertexXY = dist ; }
359 void SetMaxDCAToVertexZ(Float_t dist=1e10) { fCutMaxDCAToVertexZ = dist ; }
360 void SetDCAToVertex2D(Bool_t b=kFALSE) { fCutDCAToVertex2D = b ; }
bd8c7aef 361
fa4287a2 362 // getters
01d44f1f 363 Double_t GetMinTrackPt() const { return fCutMinTrackPt ; }
364 Int_t GetMinNClusterTPC() const { return fCutMinNClusterTPC ; }
365 Int_t GetMinNClustersITS() const { return fCutMinNClusterITS ; }
366 Float_t GetMaxChi2PerClusterTPC() const { return fCutMaxChi2PerClusterTPC ; }
367 Float_t GetMaxChi2PerClusterITS() const { return fCutMaxChi2PerClusterITS ; }
368 Bool_t GetRequireTPCRefit() const { return fCutRequireTPCRefit ; }
369 Bool_t GetRequireITSRefit() const { return fCutRequireITSRefit ; }
370 Bool_t GetAcceptKinkDaughters() const { return fCutAcceptKinkDaughters ; }
371 Float_t GetMaxDCAToVertexXY() const { return fCutMaxDCAToVertexXY ; }
372 Float_t GetMaxDCAToVertexZ() const { return fCutMaxDCAToVertexZ ; }
373 Bool_t GetDCAToVertex2D() const { return fCutDCAToVertex2D ; }
bd8c7aef 374
fd6df01c 375
8fc351e3 376private:
b540d03f 377 //Position recalculation
96957075 378 Float_t fMisalTransShift[15]; // Shift parameters
379 Float_t fMisalRotShift[15]; // Shift parameters
96957075 380 Int_t fParticleType; // Particle type for depth calculation
381 Int_t fPosAlgo; // Position recalculation algorithm
382 Float_t fW0; // Weight0
01d44f1f 383
384 // Non linearity
385 Int_t fNonLinearityFunction; // Non linearity function choice
386 Float_t fNonLinearityParams[7]; // Parameters for the non linearity function
7e0ecb89 387 Int_t fNonLinearThreshold; // Non linearity threshold value for kBeamTesh non linearity function
fd6df01c 388
01d44f1f 389 // Energy smearing for MC
390 Bool_t fSmearClusterEnergy; // Smear cluster energy, to be done only for simulated data to match real data
391 Float_t fSmearClusterParam[3]; // Smearing parameters
392 TRandom3 fRandom; // Random generator
393
3bfc4732 394 // Energy Recalibration
395 Bool_t fCellsRecalibrated; // Internal bool to check if cells (time/energy) where recalibrated and not recalibrate them when recalculating different things
fd6df01c 396 Bool_t fRecalibration; // Switch on or off the recalibration
397 TObjArray* fEMCALRecalibrationFactors; // Array of histograms with map of recalibration factors, EMCAL
01d44f1f 398
3bfc4732 399 // Time Recalibration
400 Bool_t fTimeRecalibration; // Switch on or off the time recalibration
401 TObjArray* fEMCALTimeRecalibrationFactors; // Array of histograms with map of time recalibration factors, EMCAL
402
403 // Recalibrate with run dependent corrections, energy
404 Bool_t fUseRunCorrectionFactors; // Use Run Dependent Correction
01d44f1f 405
b540d03f 406 // Bad Channels
fd6df01c 407 Bool_t fRemoveBadChannels; // Check the channel status provided and remove clusters with bad channels
78467229 408 Bool_t fRecalDistToBadChannels; // Calculate distance from highest energy tower of cluster to closes bad channel
fd6df01c 409 TObjArray* fEMCALBadChannelMap; // Array of histograms with map of bad channels, EMCAL
b540d03f 410
411 // Border cells
fd6df01c 412 Int_t fNCellsFromEMCALBorder; // Number of cells from EMCAL border the cell with maximum amplitude has to be.
413 Bool_t fNoEMCALBorderAtEta0; // Do fiducial cut in EMCAL region eta = 0?
b540d03f 414
a7e5a381 415 // Exotic cell / cluster
01d44f1f 416 Bool_t fRejectExoticCluster; // Switch on or off exotic cluster rejection
a7e5a381 417 Bool_t fRejectExoticCells; // Remove exotic cells
418 Float_t fExoticCellFraction; // Good cell if fraction < 1-ecross/ecell
419 Float_t fExoticCellDiffTime; // If time of candidate to exotic and close cell is too different (in ns), it must be noisy, set amp to 0
420 Float_t fExoticCellMinAmplitude; // Check for exotic only if amplitud is larger than this value
01d44f1f 421
422 // PID
423 AliEMCALPIDUtils * fPIDUtils; // Recalculate PID parameters
424
bb6f5f0b 425 //Track matching
426 UInt_t fAODFilterMask; // Filter mask to select AOD tracks. Refer to $ALICE_ROOT/ANALYSIS/macros/AddTaskESDFilter.C
b540d03f 427 TArrayI * fMatchedTrackIndex; // Array that stores indexes of matched tracks
96957075 428 TArrayI * fMatchedClusterIndex; // Array that stores indexes of matched clusters
fa4287a2 429 TArrayF * fResidualEta; // Array that stores the residual eta
430 TArrayF * fResidualPhi; // Array that stores the residual phi
431 Bool_t fCutEtaPhiSum; // Place cut on sqrt(dEta^2+dPhi^2)
432 Bool_t fCutEtaPhiSeparate; // Cut on dEta and dPhi separately
433 Float_t fCutR; // sqrt(dEta^2+dPhi^2) cut on matching
434 Float_t fCutEta; // dEta cut on matching
435 Float_t fCutPhi; // dPhi cut on matching
8fc351e3 436 Double_t fClusterWindow; // Select clusters in the window to be matched
bb6f5f0b 437 Double_t fMass; // Mass hypothesis of the track
8fc351e3 438 Double_t fStepSurface; // Length of step to extrapolate tracks to EMCal surface
439 Double_t fStepCluster; // Length of step to extrapolate tracks to clusters
9741c6a0 440
9741c6a0 441 // Track cuts
5f7714ad 442 Int_t fTrackCutsType; // Esd track cuts type for matching
fa4287a2 443 Double_t fCutMinTrackPt; // Cut on track pT
96957075 444 Int_t fCutMinNClusterTPC; // Min number of tpc clusters
445 Int_t fCutMinNClusterITS; // Min number of its clusters
446 Float_t fCutMaxChi2PerClusterTPC; // Max tpc fit chi2 per tpc cluster
447 Float_t fCutMaxChi2PerClusterITS; // Max its fit chi2 per its cluster
448 Bool_t fCutRequireTPCRefit; // Require TPC refit
449 Bool_t fCutRequireITSRefit; // Require ITS refit
450 Bool_t fCutAcceptKinkDaughters; // Accepting kink daughters?
451 Float_t fCutMaxDCAToVertexXY; // Track-to-vertex cut in max absolute distance in xy-plane
452 Float_t fCutMaxDCAToVertexZ; // Track-to-vertex cut in max absolute distance in z-plane
8fc351e3 453 Bool_t fCutDCAToVertex2D; // If true a 2D DCA cut is made.
83bfd77a 454
50b7a951 455 ClassDef(AliEMCALRecoUtils, 18)
d9b3567c 456
457};
458
459#endif // ALIEMCALRECOUTILS_H
460
461