reference distribution for kRAW kCalib case
[u/mrichter/AliRoot.git] / FMD / AliFMDReconstructor.h
CommitLineData
8f1cfb0c 1#ifndef ALIFMDRECONSTRUCTOR_H
2#define ALIFMDRECONSTRUCTOR_H
4347b38f 3//
4// Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights
5// reserved.
6//
121a60bd 7// See cxx source for full Copyright notice
4347b38f 8//
121a60bd 9// AliFMDReconstructor.h
4347b38f 10// Task Class for making TreeR for FMD
11//
121a60bd 12//-- Authors: Evgeny Karpechev (INR) and Alla Maevskaia (INR)
4347b38f 13// Latest changes by Christian Holm Christensen <cholm@nbi.dk>
121a60bd 14/* $Id$ */
c2fc1258 15/** @file AliFMDReconstructor.h
16 @author Christian Holm Christensen <cholm@nbi.dk>
17 @date Mon Mar 27 12:47:09 2006
18 @brief FMD reconstruction
19*/
8f1cfb0c 20
42403906 21//____________________________________________________________________
0d0e6995 22// Header guards in the header files speeds up the compilation
23// considerably. Please leave them in.
24#ifndef ALIRECONSTRUCTOR_H
25# include <AliReconstructor.h>
26#endif
d76c31f4 27#include "AliLog.h"
28
4347b38f 29//____________________________________________________________________
1a1fdef7 30class TTree;
4347b38f 31class TClonesArray;
4347b38f 32class AliFMDDigit;
33class AliRawReader;
af885e0f 34class AliESDEvent;
8f6ee336 35class AliESDFMD;
818fff8d 36class AliFMDRecoParam;
9684be2f 37class TH1;
38
e802be3e 39
9f662337 40/** @defgroup FMD_rec Reconstruction */
4347b38f 41//____________________________________________________________________
50b9d194 42/**
43 * @brief This is a class that reconstructs AliFMDRecPoint objects
44 * from of Digits.
45 *
46 * This class reads either digits from a TClonesArray or raw data
47 * from a DDL file (or similar), and applies calibrations to get
48 * psuedo-inclusive multiplicities per strip.
49 *
50 * @ingroup FMD_rec
9f662337 51 */
121a60bd 52class AliFMDReconstructor: public AliReconstructor
53{
4347b38f 54public:
50b9d194 55 /**
56 * CTOR
57 */
4347b38f 58 AliFMDReconstructor();
50b9d194 59 /**
60 * DTOR
61 */
56b1929b 62 virtual ~AliFMDReconstructor();
4347b38f 63
50b9d194 64 /**
65 * Initialize the reconstructor. Here, we initialize the geometry
66 * manager, and finds the local to global transformations from the
67 * geometry. The calibration parameter manager is also
68 * initialized (meaning that the calibration parameters is read
69 * from CDB).
70 */
d76c31f4 71 virtual void Init();
50b9d194 72 /**
73 * Flag that we can convert raw data into digits.
74 *
75 * @return always @c true
76 */
1a1fdef7 77 virtual Bool_t HasDigitConversion() const { return kTRUE; }
50b9d194 78 /**
79 * Convert raw data read from the AliRawReader @a reader into
80 * digits. This is done using AliFMDRawReader and
81 * AliFMDAltroReader. The digits are put in the passed TTree @a
82 * digitsTree.
83 *
84 * @param reader Raw reader.
85 * @param digitsTree Tree to store read digits in.
86 */
1a1fdef7 87 virtual void ConvertDigits(AliRawReader* reader, TTree* digitsTree) const;
50b9d194 88 /**
89 * Reconstruct one event from the digits passed in @a digitsTree.
90 * The member function creates AliFMDRecPoint objects and stores
91 * them on the output tree @a clusterTree. An FMD ESD object is
92 * created in parallel.
93 *
94 * @param digitsTree Tree holding the digits of this event
95 * @param clusterTree Tree to store AliFMDRecPoint objects in.
96 */
1a1fdef7 97 virtual void Reconstruct(TTree* digitsTree, TTree* clusterTree) const;
50b9d194 98 /**
99 * Not used
100 * @todo Implement this, such that we'll reconstruct directly from
101 * the read ADC values rather than going via an intermedant
102 * TClonesArray of AliFMDDigits
103 */
ddaa8027 104 virtual void Reconstruct(AliRawReader *, TTree*) const;
50b9d194 105 /**
106 * Put in the ESD data, the FMD ESD data. The object created by
107 * the Reconstruct member function is copied to the ESD object.
108 *
109 * @param digitsTree Tree of digits for this event - not used
110 * @param clusterTree Tree of reconstructed points for this event -
111 * not used.
112 * @param esd ESD object to store data in.
113 */
1a1fdef7 114 virtual void FillESD(TTree* digitsTree, TTree* clusterTree,
af885e0f 115 AliESDEvent* esd) const;
50b9d194 116 /**
117 * Forwards to above member function
118 */
ddaa8027 119 virtual void FillESD(AliRawReader*, TTree* clusterTree,
120 AliESDEvent* esd) const;
faf80567 121
122 /**
123 * Create SDigits from raw data
124 *
125 * @param reader The raw reader
126 * @param sdigits Array to fill with AliFMDSDigit objects.
127 */
128 virtual void Digitize(AliRawReader* reader,
129 TClonesArray* sdigits) const;
130
50b9d194 131 /**
132 * Not used
133 */
af885e0f 134 virtual void SetESD(AliESDEvent* esd) { fESD = esd; }
50b9d194 135 /**
136 * Set the noise factor
137 *
138 * @param f Factor to use
139 */
a9579262 140 virtual void SetNoiseFactor(Float_t f=3) { fNoiseFactor = f; }
50b9d194 141 /**
142 * Set whether we should do angle correction or nor
143 *
144 * @param use If true, do angle correction
145 */
a9579262 146 virtual void SetAngleCorrect(Bool_t use=kTRUE) { fAngleCorrect = use; }
50b9d194 147 /**
148 * Set whether we want to do diagnostics. If this is enabled, a
149 * file named @c FMD.Diag.root will be made. It contains a set of
150 * histograms for each event, filed in separate directories in the
151 * file. The histograms are
152 * @verbatim
153 * diagStep1 Read ADC vs. Noise surpressed ADC
154 * diagStep2 Noise surpressed ADC vs. calculated Energy dep.
155 * diagStep3 Energy deposition vs. angle corrected Energy dep.
156 * diagStep4 Energy deposition vs. calculated multiplicity
157 * diagAll Read ADC vs. calculated multiplicity
158 * @endverbatim
159 *
160 * @param use If true, make the diagnostics file
161 */
9684be2f 162 void SetDiagnose(Bool_t use=kTRUE) { fDiagnostics = use; }
4347b38f 163protected:
50b9d194 164 /**
165 * Copy CTOR
166 *
167 * @param other Object to copy from.
168 */
0e73cae6 169 AliFMDReconstructor(const AliFMDReconstructor& other);
50b9d194 170 /**
171 * Assignment operator
172 *
173 * @param other Object to assign from
174 *
175 * @return reference to this object
176 */
0e73cae6 177 AliFMDReconstructor& operator=(const AliFMDReconstructor& other);
50b9d194 178 /**
179 * Try to get the vertex from either ESD or generator header. Sets
180 * @c fCurrentVertex to the found Z posistion of the vertex (if
181 * found), and sets the flag @c fVertexType accordingly
8983e5ae 182 *
183 * @param esd ESD structure to get Vz from
50b9d194 184 */
8983e5ae 185 virtual void GetVertex(AliESDEvent* esd) const;
50b9d194 186 /**
187 * Process AliFMDDigit objects in @a digits. For each digit, find
188 * the psuedo-rapidity @f$ \eta@f$, azimuthal angle @f$ \varphi@f$,
189 * energy deposited @f$ E@f$, and psuedo-inclusive multiplicity @f$
190 * M@f$.
191 *
192 * @param digits Array of digits.
193 */
e802be3e 194 virtual void ProcessDigits(TClonesArray* digits) const;
50b9d194 195 /**
196 * Process a single digit
197 *
198 * @param digit Digiti to process
199 */
200 virtual void ProcessDigit(AliFMDDigit* digit) const;
201 /**
202 * Process the signal from a single strip.
203 *
204 * @param det Detector number
205 * @param rng Ring identifier
206 * @param sec Sector number
207 * @param str Strip number
208 * @param adc Number of ADC counts for this strip
209 */
210 virtual void ProcessSignal(UShort_t det,
211 Char_t rng,
212 UShort_t sec,
213 UShort_t str,
214 Short_t adc) const;
faf80567 215 /**
216 * Process the signal from a single strip.
217 *
218 * @param sdigits Array to fill
219 * @param det Detector number
220 * @param rng Ring identifier
221 * @param sec Sector number
222 * @param str Strip number
223 * @param sam Sample number
224 * @param adc Number of ADC counts for this strip
225 */
226 virtual void DigitizeSignal(TClonesArray* sdigits,
227 UShort_t det,
228 Char_t rng,
229 UShort_t sec,
230 UShort_t str,
231 UShort_t sam,
232 Short_t adc) const;
233 /**
234 * Subtract the pedestal off the ADC counts.
235 *
236 * @param det Detector number
237 * @param rng Ring identifier
238 * @param sec Sector number
239 * @param str Strip number
240 * @param adc ADC counts
241 * @param noiseFactor If pedestal substracted pedestal is less then
242 * this times the noise, then consider this to be 0.
243 * @param zsEnabled Whether zero-suppression is on.
244 * @param zsNoiseFactor Noise factor used in on-line pedestal
245 * subtraction.
246 *
247 * @return The pedestal subtracted ADC counts (possibly 0), or @c
248 * USHRT_MAX in case of problems.
249 */
250 virtual UShort_t SubtractPedestal(UShort_t det,
251 Char_t rng,
252 UShort_t sec,
253 UShort_t str,
254 UShort_t adc,
255 Float_t noiseFactor,
256 Bool_t zsEnabled,
257 UShort_t zsNoiseFactor) const;
50b9d194 258 /**
259 * Substract pedestals from raw ADC in @a digit
260 *
261 * @param det Detector number
262 * @param rng Ring identifier
263 * @param sec Sector number
264 * @param str Strip number
265 * @param adc Number of ADC counts
266 *
267 * @return Pedestal subtracted ADC count.
268 */
269 virtual UShort_t SubtractPedestal(UShort_t det,
270 Char_t rng,
271 UShort_t sec,
272 UShort_t str,
273 Short_t adc) const;
274 /**
275 * Converts number of ADC counts to energy deposited. This is
276 * done by
277 * @f[
278 * E_i = A_i g_i
279 * @f]
280 * where @f$ A_i@f$ is the pedestal subtracted ADC counts, and @f$
281 * g_i@f$ is the gain for the @f$ i^{\mbox{th}}@f$ strip.
282 *
283 * @param det Detector number
284 * @param rng Ring identifier
285 * @param sec Sector number
286 * @param str Strip number
287 * @param eta Psuedo-rapidity of digit.
288 * @param count Pedestal subtracted ADC counts
289 *
290 * @return Energy deposited @f$ E_i@f$
291 */
faf80567 292 virtual Float_t Adc2Energy(UShort_t det,
293 Char_t rng,
294 UShort_t sec,
295 UShort_t str,
296 UShort_t count) const;
297 /**
298 * Converts number of ADC counts to energy deposited. This is
299 * done by
300 * @f[
301 * E_i = A_i g_i
302 * @f]
303 * where @f$ A_i@f$ is the pedestal subtracted ADC counts, and @f$
304 * g_i@f$ is the gain for the @f$ i^{\mbox{th}}@f$ strip.
305 *
306 * @param det Detector number
307 * @param rng Ring identifier
308 * @param sec Sector number
309 * @param str Strip number
310 * @param eta Psuedo-rapidity of digit.
311 * @param count Pedestal subtracted ADC counts
312 *
313 * @return Energy deposited @f$ E_i@f$
314 */
50b9d194 315 virtual Float_t Adc2Energy(UShort_t det,
316 Char_t rng,
317 UShort_t sec,
318 UShort_t str,
319 Float_t eta,
8f6ee336 320 UShort_t count) const;
50b9d194 321 /**
322 * Converts an energy signal to number of particles. In this
323 * implementation, it's done by
324 * @f[
325 * M_i = E_i / E_{\mbox{MIP}}
326 * @f]
327 * where @f$ E_i@f$ is the energy deposited, and
328 * @f$ E_{\mbox{MIP}}@f$ is the average energy deposited by a
329 * minimum ionizing particle
330 *
331 * @param det Detector number
332 * @param rng Ring identifier
333 * @param sec Sector number
334 * @param str Strip number
335 * @param eta On return, psuedo-rapidity @f$ \eta@f$
336 * @param phi On return, azimuthal angle @f$ \varphi@f$
337 * @param edep Energy deposited @f$ E_i@f$
338 *
339 * @return Psuedo-inclusive multiplicity @f$ M@f$
340 */
341 virtual Float_t Energy2Multiplicity(UShort_t det,
342 Char_t rng,
343 UShort_t sec,
344 UShort_t str,
345 Float_t edep) const;
346 /**
347 * Calculate the physical coordinates psuedo-rapidity @f$ \eta@f$,
348 * azimuthal angle @f$ \varphi@f$ of the strip corresponding to
349 * the digit @a digit. This is done by using the information
350 * obtained, and previously cached by AliFMDGeometry, from the
351 * TGeoManager.
352 *
353 * @param det Detector number
354 * @param rng Ring identifier
355 * @param sec Sector number
356 * @param str Strip number
357 * @param eta On return, psuedo-rapidity @f$ \eta@f$
358 * @param phi On return, azimuthal angle @f$ \varphi@f$
359 */
360 virtual void PhysicalCoordinates(UShort_t det,
361 Char_t rng,
362 UShort_t sec,
363 UShort_t str,
364 Float_t& eta,
8f6ee336 365 Float_t& phi) const;
818fff8d 366 /**
367 * Set-up reconstructor to use values from reconstruction
368 * parameters, if present, for this event. If the argument @a set
369 * is @c false, then restore preset values.
370 *
371 * @param set
372 */
373 virtual void UseRecoParam(Bool_t set=kTRUE) const;
374 /**
375 * Utility member function to get the reconstruction parameters for
376 * this event
377 *
378 * @return Pointer to AliFMDRecoParam object or null if not
379 * available.
380 */
381 const AliFMDRecoParam* GetParameters() const;
382 /**
383 * Get the numeric identifier of this detector
384 *
385 * @return Should be 12
386 */
387 Int_t GetIdentifier() const;
9684be2f 388 enum Vertex_t {
389 kNoVertex, // Got no vertex
390 kGenVertex, // Got generator vertex
391 kESDVertex // Got ESD vertex
392 };
8f6ee336 393 mutable TClonesArray* fMult; // Cache of RecPoints
394 mutable Int_t fNMult; // Number of entries in fMult
395 mutable TTree* fTreeR; // Output tree
e802be3e 396 mutable Float_t fCurrentVertex; // Z-coordinate of primary vertex
8f6ee336 397 mutable AliESDFMD* fESDObj; // ESD output object
818fff8d 398 mutable Float_t fNoiseFactor; // Factor of noise to check
399 mutable Bool_t fAngleCorrect; // Whether to angle correct
9684be2f 400 mutable Vertex_t fVertexType; // What kind of vertex we got
af885e0f 401 AliESDEvent* fESD; // ESD object(?)
9684be2f 402 Bool_t fDiagnostics; // Wheter to do diagnostics
403 TH1* fDiagStep1; // Diagnostics histogram
404 TH1* fDiagStep2; // Diagnostics histogram
405 TH1* fDiagStep3; // Diagnostics histogram
406 TH1* fDiagStep4; // Diagnostics histogram
407 TH1* fDiagAll; // Diagnostics histogram
5cf05dbb 408 mutable Bool_t fZS[3]; // Zero-suppredded?
409 mutable UShort_t fZSFactor[3]; // Noise factor for Zero-suppression
02a27b50 410private:
d76c31f4 411
412 ClassDef(AliFMDReconstructor, 3) // class for the FMD reconstruction
121a60bd 413};
414#endif
4347b38f 415//____________________________________________________________________
416//
0d0e6995 417// Local Variables:
418// mode: C++
419// End:
420//
4347b38f 421// EOF
422//