Further fixes to the par file generation
[u/mrichter/AliRoot.git] / HMPID / AliHMPIDParam.cxx
CommitLineData
d3da6dc4 1// **************************************************************************
2// * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3// * *
4// * Author: The ALICE Off-line Project. *
5// * Contributors are mentioned in the code where appropriate. *
6// * *
7// * Permission to use, copy, modify and distribute this software and its *
8// * documentation strictly for non-commercial purposes is hereby granted *
9// * without fee, provided that the above copyright notice appears in all *
10// * copies and that both the copyright notice and this permission notice *
11// * appear in the supporting documentation. The authors make no claims *
12// * about the suitability of this software for any purpose. It is *
13// * provided "as is" without express or implied warranty. *
14// **************************************************************************
15#include "AliHMPIDParam.h" //class header
16#include "AliHMPIDDigit.h" //ctor
a8ff381e 17#include "AliLog.h" //general
18#include <AliRunLoader.h> //Stack()
19#include <AliStack.h> //Stack()
20#include <TLatex.h> //TestTrans()
21#include <TView.h> //TestTrans()
22#include <TPolyMarker3D.h> //TestTrans()
d3da6dc4 23#include <TRotation.h>
a8ff381e 24#include <TParticle.h> //Stack()
97eadc2b 25#include <TGeoPhysicalNode.h> //ctor
ae5a42aa 26#include <TGeoBBox.h>
d3da6dc4 27ClassImp(AliHMPIDParam)
28
ae5a42aa 29
c770ceb9 30// Mathieson constant definition
31const Double_t AliHMPIDParam::fgkD = 0.222500; // ANODE-CATHODE distance 0.445/2
32// K3 = 0.66 along the wires (anode-cathode/wire pitch=0.5625)
33const Double_t AliHMPIDParam::fgkSqrtK3x = TMath::Sqrt(0.66);
34const Double_t AliHMPIDParam::fgkK2x = TMath::PiOver2()*(1 - 0.5*fgkSqrtK3x);
35const Double_t AliHMPIDParam::fgkK1x = 0.25*fgkK2x*fgkSqrtK3x/TMath::ATan(fgkSqrtK3x);
36const Double_t AliHMPIDParam::fgkK4x = fgkK1x/(fgkK2x*fgkSqrtK3x);
37// K3 = 0.87 along the wires (anode-cathode/wire pitch=0.5625)
38const Double_t AliHMPIDParam::fgkSqrtK3y = TMath::Sqrt(0.87);
39const Double_t AliHMPIDParam::fgkK2y = TMath::PiOver2()*(1 - 0.5*fgkSqrtK3y);
40const Double_t AliHMPIDParam::fgkK1y = 0.25*fgkK2y*fgkSqrtK3y/TMath::ATan(fgkSqrtK3y);
41const Double_t AliHMPIDParam::fgkK4y = fgkK1y/(fgkK2y*fgkSqrtK3y);
42//
43
44
ae5a42aa 45Float_t AliHMPIDParam::fgkMinPcX[]={0.,0.,0.,0.,0.,0.};
46Float_t AliHMPIDParam::fgkMaxPcX[]={0.,0.,0.,0.,0.,0.};
47Float_t AliHMPIDParam::fgkMinPcY[]={0.,0.,0.,0.,0.,0.};
48Float_t AliHMPIDParam::fgkMaxPcY[]={0.,0.,0.,0.,0.,0.};
49
50Float_t AliHMPIDParam::fgCellX=0.;
51Float_t AliHMPIDParam::fgCellY=0.;
52
53Float_t AliHMPIDParam::fgPcX=0;
54Float_t AliHMPIDParam::fgPcY=0;
55
56Float_t AliHMPIDParam::fgAllX=0;
57Float_t AliHMPIDParam::fgAllY=0;
58
b87365d5 59Bool_t AliHMPIDParam::fgInstanceType=kTRUE;
ae5a42aa 60
d3da6dc4 61AliHMPIDParam* AliHMPIDParam::fgInstance=0x0; //singleton pointer
aa03cdbc 62
63Int_t AliHMPIDParam::fgSigmas=4;
64
d3da6dc4 65//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
c61a7285 66AliHMPIDParam::AliHMPIDParam(Bool_t noGeo=kFALSE):
67 TNamed("HmpidParam","default version"),
68 fX(0), fY(0), fRadNmean(0)
d3da6dc4 69{
70// Here all the intitializition is taken place when AliHMPIDParam::Instance() is invoked for the first time.
58fc9564 71// In particular, matrices to be used for LORS<->MARS trasnformations are initialized from TGeo structure.
d3da6dc4 72// Note that TGeoManager should be already initialized from geometry.root file
ae5a42aa 73
b38ac33a 74
a8ff381e 75 fRadNmean = MeanIdxRad(); //initialization of the running ref. index of freon
76
8e2a911a 77 Float_t dead=2.6;// cm of the dead zones between PCs-> See 2CRC2099P1
b87365d5 78
79
80 if(noGeo==kTRUE) fgInstanceType=kFALSE; //instance from ideal geometry, no actual geom is present
81
58fc9564 82 if(noGeo==kFALSE && !gGeoManager)
83 {
84 TGeoManager::Import("geometry.root");
85 if(!gGeoManager) AliFatal("!!!!!!No geometry loaded!!!!!!!");
86 }
87
8e2a911a 88 fgCellX=0.8;fgCellY=0.84;
58fc9564 89
8e2a911a 90 if(!noGeo==kTRUE){
91 TGeoVolume *pCellVol = gGeoManager->GetVolume("Hcel");
92 if(pCellVol) {
93 TGeoBBox *bcell = (TGeoBBox *)pCellVol->GetShape();
94 fgCellX=2.*bcell->GetDX(); fgCellY = 2.*bcell->GetDY(); // overwrite the values with the read ones
95 }
96 }
58fc9564 97 fgPcX=80.*fgCellX; fgPcY = 48.*fgCellY;
98 fgAllX=2.*fgPcX+dead;
99 fgAllY=3.*fgPcY+2.*dead;
ae5a42aa 100
58fc9564 101 fgkMinPcX[1]=fgPcX+dead; fgkMinPcX[3]=fgkMinPcX[1]; fgkMinPcX[5]=fgkMinPcX[3];
102 fgkMaxPcX[0]=fgPcX; fgkMaxPcX[2]=fgkMaxPcX[0]; fgkMaxPcX[4]=fgkMaxPcX[2];
103 fgkMaxPcX[1]=fgAllX; fgkMaxPcX[3]=fgkMaxPcX[1]; fgkMaxPcX[5]=fgkMaxPcX[3];
ae5a42aa 104
58fc9564 105 fgkMinPcY[2]=fgPcY+dead; fgkMinPcY[3]=fgkMinPcY[2];
106 fgkMinPcY[4]=2.*fgPcY+2.*dead; fgkMinPcY[5]=fgkMinPcY[4];
107 fgkMaxPcY[0]=fgPcY; fgkMaxPcY[1]=fgkMaxPcY[0];
108 fgkMaxPcY[2]=2.*fgPcY+dead; fgkMaxPcY[3]=fgkMaxPcY[2];
109 fgkMaxPcY[4]=fgAllY; fgkMaxPcY[5]=fgkMaxPcY[4];
ae5a42aa 110
111 fX=0.5*SizeAllX();
112 fY=0.5*SizeAllY();
58fc9564 113
ae5a42aa 114 for(Int_t i=kMinCh;i<=kMaxCh;i++)
97eadc2b 115 if(gGeoManager && gGeoManager->IsClosed()) {
2df6b16e 116 TGeoPNEntry* pne = gGeoManager->GetAlignableEntry(Form("/HMPID/Chamber%i",i));
97eadc2b 117 if (!pne) {
118 AliErrorClass(Form("The symbolic volume %s does not correspond to any physical entry!",Form("HMPID_%i",i)));
119 fM[i]=new TGeoHMatrix;
120 IdealPosition(i,fM[i]);
121 } else {
122 TGeoPhysicalNode *pnode = pne->GetPhysicalNode();
1d6047fb 123 if(pnode) fM[i]=new TGeoHMatrix(*(pnode->GetMatrix()));
f80e1da4 124 else {
125 fM[i]=new TGeoHMatrix;
126 IdealPosition(i,fM[i]);
127 }
97eadc2b 128 }
129 } else{
1d4857c5 130 fM[i]=new TGeoHMatrix;
131 IdealPosition(i,fM[i]);
132 }
d3da6dc4 133 fgInstance=this;
134}//ctor
135//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
136void AliHMPIDParam::Print(Option_t* opt) const
137{
138// print some usefull (hopefully) info on some internal guts of HMPID parametrisation
139
140 for(Int_t i=0;i<7;i++) fM[i]->Print(opt);
141}//Print()
142//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1d4857c5 143void AliHMPIDParam::IdealPosition(Int_t iCh, TGeoHMatrix *pMatrix)
144{
145// Construct ideal position matrix for a given chamber
146// Arguments: iCh- chamber ID; pMatrix- pointer to precreated unity matrix where to store the results
147// Returns: none
423554a3 148 const Double_t kAngHor=19.5; // horizontal angle between chambers 19.5 grad
149 const Double_t kAngVer=20; // vertical angle between chambers 20 grad
150 const Double_t kAngCom=30; // common HMPID rotation with respect to x axis 30 grad
151 const Double_t kTrans[3]={490,0,0}; // center of the chamber is on window-gap surface
152 pMatrix->RotateY(90); // rotate around y since initial position is in XY plane -> now in YZ plane
153 pMatrix->SetTranslation(kTrans); // now plane in YZ is shifted along x
1d4857c5 154 switch(iCh){
155 case 0: pMatrix->RotateY(kAngHor); pMatrix->RotateZ(-kAngVer); break; //right and down
156 case 1: pMatrix->RotateZ(-kAngVer); break; //down
157 case 2: pMatrix->RotateY(kAngHor); break; //right
158 case 3: break; //no rotation
159 case 4: pMatrix->RotateY(-kAngHor); break; //left
160 case 5: pMatrix->RotateZ(kAngVer); break; //up
161 case 6: pMatrix->RotateY(-kAngHor); pMatrix->RotateZ(kAngVer); break; //left and up
162 }
163 pMatrix->RotateZ(kAngCom); //apply common rotation in XY plane
164
165}
166//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
d3da6dc4 167Int_t AliHMPIDParam::Stack(Int_t evt,Int_t tid)
168{
d1bf51e1 169// Prints some useful info from stack
d3da6dc4 170// Arguments: evt - event number. if not -1 print info only for that event
171// tid - track id. if not -1 then print it and all it's mothers if any
172// Returns: mother tid of the given tid if any
173 AliRunLoader *pAL=AliRunLoader::Open();
174 if(pAL->LoadHeader()) return -1;
175 if(pAL->LoadKinematics()) return -1;
176
177 Int_t mtid=-1;
cf7e313e 178 Int_t iNevt=pAL->GetNumberOfEvents();
d3da6dc4 179
180 for(Int_t iEvt=0;iEvt<iNevt;iEvt++){//events loop
181 if(evt!=-1 && evt!=iEvt) continue; //in case one needs to print the requested event, ignore all others
182 pAL->GetEvent(iEvt);
183 AliStack *pStack=pAL->Stack();
184 if(tid==-1){ //print all tids for this event
185 for(Int_t i=0;i<pStack->GetNtrack();i++) pStack->Particle(i)->Print();
a8ff381e 186 Printf("totally %i tracks including %i primaries for event %i out of %i event(s)",
187 pStack->GetNtrack(),pStack->GetNprimary(),iEvt,iNevt);
d3da6dc4 188 }else{ //print only this tid and it;s mothers
189 if(tid<0 || tid>pStack->GetNtrack()) {Printf("Wrong tid, valid tid range for event %i is 0-%i",iEvt,pStack->GetNtrack());break;}
190 TParticle *pTrack=pStack->Particle(tid); mtid=pTrack->GetFirstMother();
191 TString str=pTrack->GetName();
192 while((tid=pTrack->GetFirstMother()) >= 0){
193 pTrack=pStack->Particle(tid);
194 str+=" from ";str+=pTrack->GetName();
195 }
d3da6dc4 196 }//if(tid==-1)
197 }//events loop
198 pAL->UnloadHeader(); pAL->UnloadKinematics();
199 return mtid;
200}
201//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
202Int_t AliHMPIDParam::StackCount(Int_t pid,Int_t evt)
203{
204// Counts total number of particles of given sort (including secondary) for a given event
205 AliRunLoader *pAL=AliRunLoader::Open();
206 pAL->GetEvent(evt);
207 if(pAL->LoadHeader()) return 0;
208 if(pAL->LoadKinematics()) return 0;
209 AliStack *pStack=pAL->Stack();
210
211 Int_t iCnt=0;
212 for(Int_t i=0;i<pStack->GetNtrack();i++) if(pStack->Particle(i)->GetPdgCode()==pid) iCnt++;
213
214 pAL->UnloadHeader(); pAL->UnloadKinematics();
215 return iCnt;
216}
217//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
3278403b 218Double_t AliHMPIDParam::Sigma2(Double_t trkTheta,Double_t trkPhi,Double_t ckovTh, Double_t ckovPh)
219{
220// Analithical calculation of total error (as a sum of localization, geometrical and chromatic errors) on Cerenkov angle for a given Cerenkov photon
221// created by a given MIP. Fromulae according to CERN-EP-2000-058
222// Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians]
223// dip and azimuthal angles for MIP taken at the entrance to radiator, [radians]
224// MIP beta
225// Returns: absolute error on Cerenkov angle, [radians]
226
227 TVector3 v(-999,-999,-999);
228 Double_t trkBeta = 1./(TMath::Cos(ckovTh)*GetRefIdx());
229
230 if(trkBeta > 1) trkBeta = 1; //protection against bad measured thetaCer
231 if(trkBeta < 0) trkBeta = 0.0001; //
232
233 v.SetX(SigLoc (trkTheta,trkPhi,ckovTh,ckovPh,trkBeta));
234 v.SetY(SigGeom(trkTheta,trkPhi,ckovTh,ckovPh,trkBeta));
235 v.SetZ(SigCrom(trkTheta,trkPhi,ckovTh,ckovPh,trkBeta));
236
237 return v.Mag2();
238}
239//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
240Double_t AliHMPIDParam::SigLoc(Double_t trkTheta,Double_t trkPhi,Double_t thetaC, Double_t phiC,Double_t betaM)
241{
242// Analitical calculation of localization error (due to finite segmentation of PC) on Cerenkov angle for a given Cerenkov photon
243// created by a given MIP. Fromulae according to CERN-EP-2000-058
244// Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians]
245// dip and azimuthal angles for MIP taken at the entrance to radiator, [radians]
246// MIP beta
247// Returns: absolute error on Cerenkov angle, [radians]
248
249 Double_t phiDelta = phiC - trkPhi;
250
251 Double_t sint = TMath::Sin(trkTheta);
252 Double_t cost = TMath::Cos(trkTheta);
253 Double_t sinf = TMath::Sin(trkPhi);
254 Double_t cosf = TMath::Cos(trkPhi);
255 Double_t sinfd = TMath::Sin(phiDelta);
256 Double_t cosfd = TMath::Cos(phiDelta);
257 Double_t tantheta = TMath::Tan(thetaC);
258
259 Double_t alpha =cost-tantheta*cosfd*sint; // formula (11)
260 Double_t k = 1.-GetRefIdx()*GetRefIdx()+alpha*alpha/(betaM*betaM); // formula (after 8 in the text)
261 if (k<0) return 1e10;
262 Double_t mu =sint*sinf+tantheta*(cost*cosfd*sinf+sinfd*cosf); // formula (10)
263 Double_t e =sint*cosf+tantheta*(cost*cosfd*cosf-sinfd*sinf); // formula (9)
264
265 Double_t kk = betaM*TMath::Sqrt(k)/(GapThick()*alpha); // formula (6) and (7)
266 Double_t dtdxc = kk*(k*(cosfd*cosf-cost*sinfd*sinf)-(alpha*mu/(betaM*betaM))*sint*sinfd); // formula (6)
267 Double_t dtdyc = kk*(k*(cosfd*sinf+cost*sinfd*cosf)+(alpha* e/(betaM*betaM))*sint*sinfd); // formula (7) pag.4
268
269 Double_t errX = 0.2,errY=0.25; //end of page 7
270 return TMath::Sqrt(errX*errX*dtdxc*dtdxc + errY*errY*dtdyc*dtdyc);
271}
272//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
273Double_t AliHMPIDParam::SigCrom(Double_t trkTheta,Double_t trkPhi,Double_t thetaC, Double_t phiC,Double_t betaM)
274{
275// Analitical calculation of chromatic error (due to lack of knowledge of Cerenkov photon energy) on Cerenkov angle for a given Cerenkov photon
276// created by a given MIP. Fromulae according to CERN-EP-2000-058
277// Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians]
278// dip and azimuthal angles for MIP taken at the entrance to radiator, [radians]
279// MIP beta
280// Returns: absolute error on Cerenkov angle, [radians]
281
282 Double_t phiDelta = phiC - trkPhi;
283
284 Double_t sint = TMath::Sin(trkTheta);
285 Double_t cost = TMath::Cos(trkTheta);
286 Double_t cosfd = TMath::Cos(phiDelta);
287 Double_t tantheta = TMath::Tan(thetaC);
288
289 Double_t alpha =cost-tantheta*cosfd*sint; // formula (11)
290 Double_t dtdn = cost*GetRefIdx()*betaM*betaM/(alpha*tantheta); // formula (12)
291
292// Double_t f = 0.00928*(7.75-5.635)/TMath::Sqrt(12.);
293 Double_t f = 0.0172*(7.75-5.635)/TMath::Sqrt(24.);
294
295 return f*dtdn;
296}//SigCrom()
297//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
298Double_t AliHMPIDParam::SigGeom(Double_t trkTheta,Double_t trkPhi,Double_t thetaC, Double_t phiC,Double_t betaM)
299{
300// Analitical calculation of geometric error (due to lack of knowledge of creation point in radiator) on Cerenkov angle for a given Cerenkov photon
301// created by a given MIP. Formulae according to CERN-EP-2000-058
302// Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians]
303// dip and azimuthal angles for MIP taken at the entrance to radiator, [radians]
304// MIP beta
305// Returns: absolute error on Cerenkov angle, [radians]
306
307 Double_t phiDelta = phiC - trkPhi;
308
309 Double_t sint = TMath::Sin(trkTheta);
310 Double_t cost = TMath::Cos(trkTheta);
311 Double_t sinf = TMath::Sin(trkPhi);
312 Double_t cosfd = TMath::Cos(phiDelta);
313 Double_t costheta = TMath::Cos(thetaC);
314 Double_t tantheta = TMath::Tan(thetaC);
315
316 Double_t alpha =cost-tantheta*cosfd*sint; // formula (11)
317
318 Double_t k = 1.-GetRefIdx()*GetRefIdx()+alpha*alpha/(betaM*betaM); // formula (after 8 in the text)
319 if (k<0) return 1e10;
320
321 Double_t eTr = 0.5*RadThick()*betaM*TMath::Sqrt(k)/(GapThick()*alpha); // formula (14)
322 Double_t lambda = 1.-sint*sint*sinf*sinf; // formula (15)
323
324 Double_t c1 = 1./(1.+ eTr*k/(alpha*alpha*costheta*costheta)); // formula (13.a)
325 Double_t c2 = betaM*TMath::Power(k,1.5)*tantheta*lambda/(GapThick()*alpha*alpha); // formula (13.b)
326 Double_t c3 = (1.+eTr*k*betaM*betaM)/((1+eTr)*alpha*alpha); // formula (13.c)
327 Double_t c4 = TMath::Sqrt(k)*tantheta*(1-lambda)/(GapThick()*betaM); // formula (13.d)
328 Double_t dtdT = c1 * (c2+c3*c4);
329 Double_t trErr = RadThick()/(TMath::Sqrt(12.)*cost);
330
331 return trErr*dtdT;
332}//SigGeom()
333//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++