d3da6dc4 |
1 | #ifndef AliHMPIDParam_h |
2 | #define AliHMPIDParam_h |
3010c308 |
3 | /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * |
4 | * See cxx source for full Copyright notice */ |
d3da6dc4 |
5 | |
3010c308 |
6 | /* $Id$ */ |
7 | |
8 | #include <TMath.h> |
d3da6dc4 |
9 | #include <TNamed.h> //base class |
10 | #include <TGeoManager.h> //Instance() |
11 | #include <TVector3.h> //Lors2Mars() Mars2Lors() |
12 | |
d3da6dc4 |
13 | // Class providing all the needed parametrised information |
14 | // to construct the geometry, to define segmentation and to provide response model |
15 | // In future will also provide all the staff needed for alignment and calibration |
16 | |
17 | class AliHMPIDParam :public TNamed |
18 | { |
19 | public: |
20 | //ctor&dtor |
21 | virtual ~AliHMPIDParam() {for(Int_t i=0;i<7;i++) delete fM[i]; delete fgInstance; fgInstance=0;} |
22 | void Print(Option_t *opt="") const; //print current parametrization |
23 | static inline AliHMPIDParam* Instance(); //pointer to AliHMPIDParam singleton |
58fc9564 |
24 | static inline AliHMPIDParam* InstanceNoGeo(); //pointer to AliHMPIDParam singleton without geometry.root for MOOD, displays, ... |
ae5a42aa |
25 | //geo info |
26 | enum EChamberData{kMinCh=0,kMaxCh=6,kMinPc=0,kMaxPc=5}; //Segmenation |
27 | enum EPadxData{kPadPcX=80,kMinPx=0,kMaxPx=79,kMaxPcx=159}; //Segmentation structure along x |
28 | enum EPadyData{kPadPcY=48,kMinPy=0,kMaxPy=47,kMaxPcy=143}; //Segmentation structure along y |
29 | |
30 | static Float_t SizePadX ( ) {return fgCellX; /*return 0.804;*/} //pad size x, [cm] |
31 | static Float_t SizePadY ( ) {return fgCellY; /*0.84*/} //pad size y, [cm] |
32 | |
33 | static Float_t SizePcX ( ) {return fgPcX;} // PC size x |
34 | static Float_t SizePcY ( ) {return fgPcY;} // PC size y |
35 | static Float_t MaxPcX (Int_t iPc ) {return fgkMaxPcX[iPc];} // PC limits |
36 | static Float_t MaxPcY (Int_t iPc ) {return fgkMaxPcY[iPc];} // PC limits |
37 | static Float_t MinPcX (Int_t iPc ) {return fgkMinPcX[iPc];} // PC limits |
38 | static Float_t MinPcY (Int_t iPc ) {return fgkMinPcY[iPc];} // PC limits |
39 | static Int_t Nsig ( ) {return fgSigmas;} //Getter n. sigmas for noise |
40 | static Float_t SizeAllX ( ) {return fgAllX/*fgkMaxPcX[5]*/;} //all PCs size x, [cm] |
41 | static Float_t SizeAllY ( ) {return fgAllY/*fgkMaxPcY[5]*/;} //all PCs size y, [cm] |
42 | |
43 | static Float_t LorsX (Int_t pc,Int_t padx ) {return (padx +0.5)*SizePadX()+fgkMinPcX[pc]; } //center of the pad x, [cm] |
44 | |
45 | static Float_t LorsY (Int_t pc,Int_t pady ) {return (pady +0.5)*SizePadY()+fgkMinPcY[pc]; } //center of the pad y, [cm] |
46 | |
47 | inline static void Lors2Pad(Float_t x,Float_t y,Int_t &pc,Int_t &px,Int_t &py); //(x,y)->(pc,px,py) |
48 | |
49 | static Int_t Abs (Int_t ch,Int_t pc,Int_t x,Int_t y) {return ch*100000000+pc*1000000+x*1000+y; } //(ch,pc,padx,pady)-> abs pad |
50 | static Int_t A2C (Int_t pad ) {return pad/100000000; } //abs pad -> chamber |
51 | static Int_t A2P (Int_t pad ) {return pad%100000000/1000000; } //abs pad -> pc |
52 | static Int_t A2X (Int_t pad ) {return pad%1000000/1000; } //abs pad -> pad X |
53 | static Int_t A2Y (Int_t pad ) {return pad%1000; } //abs pad -> pad Y |
54 | |
55 | static Bool_t IsOverTh (Float_t q ) {return q >= fgSigmas; } //is digit over threshold? |
56 | |
57 | inline static Bool_t IsInDead(Float_t x,Float_t y ); //is point in dead area? |
58 | static Bool_t IsInside (Float_t x,Float_t y,Float_t d=0) {return x>-d&&y>-d&&x<fgkMaxPcX[kMaxPc]+d&&y<fgkMaxPcY[kMaxPc]+d; } //is point inside chamber boundary? |
59 | |
60 | |
61 | Double_t MeanIdxRad ()const {return 1.29204;} //<--TEMPORAR--> to be removed in future Mean ref index C6F14 |
62 | Double_t MeanIdxWin ()const {return 1.57819;} //<--TEMPORAR--> to be removed in future. Mean ref index quartz |
63 | Float_t DistCut ()const {return 1.0;} //<--TEMPORAR--> to be removed in future. Cut for MIP-TRACK residual |
64 | Float_t QCut ()const {return 100;} //<--TEMPORAR--> to be removed in future. Separation PHOTON-MIP charge |
65 | Float_t MultCut ()const {return 200;} //<--TEMPORAR--> to be removed in future. Multiplicity cut to activate WEIGHT procedure |
66 | |
67 | |
68 | |
d3da6dc4 |
69 | static Int_t Stack(Int_t evt=-1,Int_t tid=-1); //Print stack info for event and tid |
70 | static Int_t StackCount(Int_t pid,Int_t evt); //Counts stack particles of given sort in given event |
1d4857c5 |
71 | static void IdealPosition(Int_t iCh,TGeoHMatrix *m); //ideal position of given chamber |
72 | //trasformation methodes |
d3da6dc4 |
73 | void Lors2Mars (Int_t c,Float_t x,Float_t y,Double_t *m,Int_t pl=kPc)const{Double_t z=0; switch(pl){case kPc:z=8.0;break; case kAnod:z=7.806;break; case kRad:z=-1.25; break;} Double_t l[3]={x-fX,y-fY,z}; fM[c]->LocalToMaster(l,m); } |
74 | TVector3 Lors2Mars (Int_t c,Float_t x,Float_t y, Int_t pl=kPc)const{Double_t m[3];Lors2Mars(c,x,y,m,pl); return TVector3(m); }//MRS->LRS |
59d9d4b3 |
75 | void Mars2Lors (Int_t c,Double_t *m,Float_t &x ,Float_t &y )const{Double_t l[3];fM[c]->MasterToLocal(m,l);x=l[0]+fX;y=l[1]+fY;}//MRS->LRS |
86568433 |
76 | void Mars2LorsVec(Int_t c,Double_t *m,Float_t &th,Float_t &ph )const{Double_t l[3]; fM[c]->MasterToLocalVect(m,l); |
77 | Float_t pt=TMath::Sqrt(l[0]*l[0]+l[1]*l[1]); |
78 | th=TMath::ATan(pt/l[2]); |
79 | ph=TMath::ATan2(l[1],l[0]);} |
d3da6dc4 |
80 | TVector3 Norm (Int_t c )const{Double_t n[3]; Norm(c,n); return TVector3(n); }//norm |
81 | void Norm (Int_t c,Double_t *n )const{Double_t l[3]={0,0,1};fM[c]->LocalToMasterVect(l,n); }//norm |
59d9d4b3 |
82 | void Point (Int_t c,Double_t *p,Int_t plane )const{Lors2Mars(c,0,0,p,plane);} //point of given chamber plane |
58fc9564 |
83 | |
d3da6dc4 |
84 | enum EPlaneId {kPc,kRad,kAnod}; //3 planes in chamber |
ae5a42aa |
85 | |
86 | static Int_t fgSigmas; //sigma Cut |
87 | |
58fc9564 |
88 | |
d3da6dc4 |
89 | protected: |
ae5a42aa |
90 | static /*const*/ Float_t fgkMinPcX[6]; //limits PC |
91 | static /*const*/ Float_t fgkMinPcY[6]; //limits PC |
92 | static /*const*/ Float_t fgkMaxPcX[6]; //limits PC |
93 | static /*const*/ Float_t fgkMaxPcY[6]; |
94 | |
95 | static Float_t fgCellX, fgCellY, fgPcX, fgPcY, fgAllX, fgAllY; |
58fc9564 |
96 | AliHMPIDParam(Bool_t noGeo); //default ctor is protected to enforce it to be singleton |
ae5a42aa |
97 | |
d3da6dc4 |
98 | static AliHMPIDParam *fgInstance; //static pointer to instance of AliHMPIDParam singleton |
ae5a42aa |
99 | |
423554a3 |
100 | TGeoHMatrix *fM[7]; //pointers to matrices defining HMPID chambers rotations-translations |
101 | Float_t fX; //x shift of LORS with respect to rotated MARS |
102 | Float_t fY; //y shift of LORS with respect to rotated MARS |
ae5a42aa |
103 | |
58fc9564 |
104 | |
105 | |
d3da6dc4 |
106 | ClassDef(AliHMPIDParam,0) //HMPID main parameters class |
107 | }; |
cf7e313e |
108 | |
d3da6dc4 |
109 | //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
110 | AliHMPIDParam* AliHMPIDParam::Instance() |
111 | { |
112 | // Return pointer to the AliHMPIDParam singleton. |
113 | // Arguments: none |
114 | // Returns: pointer to the instance of AliHMPIDParam or 0 if no geometry |
58fc9564 |
115 | if(!fgInstance) new AliHMPIDParam(kFALSE); //default setting for reconstruction, if no geometry.root -> AliFatal |
116 | return fgInstance; |
117 | }//Instance() |
118 | //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
119 | AliHMPIDParam* AliHMPIDParam::InstanceNoGeo() |
120 | { |
121 | // Return pointer to the AliHMPIDParam singleton without the geometry.root. |
122 | // Arguments: none |
123 | // Returns: pointer to the instance of AliHMPIDParam or 0 if no geometry |
124 | if(!fgInstance) new AliHMPIDParam(kTRUE); //to avoid AliFatal, for MOOD and displays, use ideal geometry parameters |
d3da6dc4 |
125 | return fgInstance; |
126 | }//Instance() |
127 | //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
ae5a42aa |
128 | Bool_t AliHMPIDParam::IsInDead(Float_t x,Float_t y) |
129 | { |
130 | // Check is the current point is outside of sensitive area or in dead zones |
131 | // Arguments: x,y -position |
132 | // Returns: 1 if not in sensitive zone |
133 | for(Int_t iPc=0;iPc<6;iPc++) |
134 | if(x>=fgkMinPcX[iPc] && x<=fgkMaxPcX[iPc] && y>=fgkMinPcY[iPc] && y<=fgkMaxPcY [iPc]) return kFALSE; //in current pc |
135 | |
136 | return kTRUE; |
137 | } |
138 | //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
139 | void AliHMPIDParam::Lors2Pad(Float_t x,Float_t y,Int_t &pc,Int_t &px,Int_t &py) |
140 | { |
141 | // Check the pad of given position |
142 | // Arguments: x,y- position [cm] in LORS; pc,px,py- pad where to store the result |
143 | // Returns: none |
144 | pc=px=py=-1; |
145 | if (x>fgkMinPcX[0] && x<fgkMaxPcX[0]) {pc=0; px=Int_t( x / SizePadX());}//PC 0 or 2 or 4 |
146 | else if(x>fgkMinPcX[1] && x<fgkMaxPcX[1]) {pc=1; px=Int_t((x-fgkMinPcX[1]) / SizePadX());}//PC 1 or 3 or 5 |
147 | else return; |
148 | if (y>fgkMinPcY[0] && y<fgkMaxPcY[0]) { py=Int_t( y / SizePadY());}//PC 0 or 1 |
149 | else if(y>fgkMinPcY[2] && y<fgkMaxPcY[2]) {pc+=2;py=Int_t((y-fgkMinPcY[2]) / SizePadY());}//PC 2 or 3 |
150 | else if(y>fgkMinPcY[4] && y<fgkMaxPcY[4]) {pc+=4;py=Int_t((y-fgkMinPcY[4]) / SizePadY());}//PC 4 or 5 |
151 | else return; |
152 | } |
d3da6dc4 |
153 | #endif |