This commit was generated by cvs2svn to compensate for changes in r15977,
[u/mrichter/AliRoot.git] / HMPID / AliHMPIDRecon.cxx
CommitLineData
d3da6dc4 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16//////////////////////////////////////////////////////////////////////////
17// //
18// AliHMPIDRecon //
19// //
20// HMPID class to perfom pattern recognition based on Hough transfrom //
21// for single chamber //
22//////////////////////////////////////////////////////////////////////////
23
24#include "AliHMPIDRecon.h" //class header
25#include "AliHMPIDCluster.h" //CkovAngle()
26#include <TRotation.h> //TracePhoton()
27#include <TH1D.h> //HoughResponse()
28#include <TClonesArray.h> //CkovAngle()
29
30#include <TTree.h> //Display()
31#include <TFile.h> //Display()
32#include <AliESD.h> //Display()
33#include <TPolyMarker.h> //Display()
34#include <TLatex.h> //Display()
35#include <TCanvas.h> //Display()
36
37
38const Double_t AliHMPIDRecon::fgkRadThick=1.5;
39const Double_t AliHMPIDRecon::fgkWinThick=0.5;
40const Double_t AliHMPIDRecon::fgkGapThick=8.0;
41const Double_t AliHMPIDRecon::fgkRadIdx =1.292;
42const Double_t AliHMPIDRecon::fgkWinIdx =1.5787;
43const Double_t AliHMPIDRecon::fgkGapIdx =1.0005;
44
45
46//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
47AliHMPIDRecon::AliHMPIDRecon():TTask("RichRec","RichPat"),
48 fPhotCnt(-1),
49 fCkovSigma2(0),
50 fIsWEIGHT(kFALSE),
51 fDTheta(0.001),
52 fWindowWidth(0.045),
53 fTrkDir(TVector3(0,0,1)),fTrkPos(TVector2(30,40))
54{
55// main ctor
56 for (Int_t i=0; i<3000; i++) {
57 fPhotFlag[i] = 0;
58 fPhotCkov[i] = -1;
59 fPhotPhi [i] = -1;
60 fPhotWei [i] = 0;
61 }
62}
63//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
64Double_t AliHMPIDRecon::CkovAngle(TClonesArray *pCluLst,Int_t &iNaccepted)
65{
66// Pattern recognition method based on Hough transform
67// Arguments: pCluLst - list of clusters for this chamber
68// Returns: - track ckov angle, [rad],
69
70 if(pCluLst->GetEntries()>200) fIsWEIGHT = kTRUE; // offset to take into account bkg in reconstruction
71 else fIsWEIGHT = kFALSE;
72
73 // Photon Flag: Flag = 0 initial set; Flag = 1 good candidate (charge compatible with photon); Flag = 2 photon used for the ring;
74
75 fPhotCnt=0;
76 for (Int_t iClu=0; iClu<pCluLst->GetEntriesFast();iClu++){//clusters loop
77 AliHMPIDCluster *pClu=(AliHMPIDCluster*)pCluLst->UncheckedAt(iClu); //get pointer to current cluster
78 if(pClu->Q()>100) continue; //avoid MIP clusters from bkg
79
80 fPhotCkov[fPhotCnt]=FindPhotCkov(pClu->X(),pClu->Y()); //find ckov angle for this photon candidate
81 fPhotCnt++; //increment counter of photon candidates
82 }//clusters loop
83
84 iNaccepted=FlagPhot(HoughResponse()); //flag photons according to individual theta ckov with respect to most probable track theta ckov
85 if(iNaccepted<1) return -11;
86 else return FindRingCkov(pCluLst->GetEntries()); //find best Theta ckov for ring i.e. track
87}//ThetaCerenkov()
88//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
89Double_t AliHMPIDRecon::FindPhotCkov(Double_t cluX,Double_t cluY)
90{
91// Finds Cerenkov angle for this photon candidate
92// Arguments: cluX,cluY - position of cadidate's cluster
93// Returns: Cerenkov angle
94
95 TVector2 pos(cluX,cluY); Double_t cluR=(pos-fTrkPos).Mod(); Double_t phi=FindPhotPhi(cluX,cluY);
96 Printf("new dist %f phi %f",cluR,phi);
97 Double_t ckov1=0,ckov2=0.75;
98 const Double_t kTol=0.05;
99 Int_t iIterCnt = 0;
100 while(1){
101 if(iIterCnt>=50) return -1;
102 Double_t ckov=0.5*(ckov1+ckov2);
103 Double_t dist=cluR-TracePhot(ckov,phi,pos); iIterCnt++; //get distance between trial point and cluster position
104 Printf("New: phi %f ckov %f dist %f",phi,ckov,dist);
105 if (dist> kTol) ckov1=ckov; //cluster @ larger ckov
106 else if(dist<-kTol) ckov2=ckov; //cluster @ smaller ckov
107 else return ckov; //precision achived
108 }
109}//FindPhotTheta()
110//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
111Double_t AliHMPIDRecon::FindPhotPhi(Double_t cluX,Double_t cluY)
112{
113// Finds phi angle og photon candidate by considering the cluster's position of this candudate w.r.t track position
114
115 Double_t emiss=0;
116 return fPhotPhi[fPhotCnt]=TMath::ATan2(cluY-fTrkPos.Y()-emiss*TMath::Tan(fTrkDir.Theta())*TMath::Sin(fTrkDir.Phi()),
117 cluX-fTrkPos.X()-emiss*TMath::Tan(fTrkDir.Theta())*TMath::Cos(fTrkDir.Phi()));
118}
119//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
120Double_t AliHMPIDRecon::FindRingArea(Double_t ckovAng)const
121{
122// Find area inside the cerenkov ring which lays inside PCs
123// Arguments: ckovThe - cernkov
124// Returns: area of the ring in cm^2 for given theta ckov
125
126
127 TVector2 pos1,pos2;
128
129 const Int_t kN=100;
130 Double_t area=0;
131 for(Int_t i=0;i<kN;i++){
132 TracePhot(ckovAng,Double_t(TMath::TwoPi()*i /kN),pos1);//trace this photon
133 TracePhot(ckovAng,Double_t(TMath::TwoPi()*(i+1)/kN),pos2);//trace this photon
134 area+=(pos1-fTrkPos)*(pos2-fTrkPos);
135
136 }
137 return area;
138}//FindRingArea()
139//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
140Double_t AliHMPIDRecon::FindRingCkov(Int_t)
141{
142// Loops on all Ckov candidates and estimates the best Theta Ckov for a ring formed by those candidates. Also estimates an error for that Theat Ckov
143// collecting errors for all single Ckov candidates thetas. (Assuming they are independent)
144// Arguments: iNclus- total number of clusters in chamber for background estimation
145// Return: best estimation of track Theta ckov
146
147 Double_t wei = 0.;
148 Double_t weightThetaCerenkov = 0.;
149
150 Double_t ckovMin=9999.,ckovMax=0.;
151 Double_t sigma2 = 0; //to collect error squared for this ring
152
153 for(Int_t i=0;i<fPhotCnt;i++){//candidates loop
154 if(fPhotFlag[i] == 2){
155 if(fPhotCkov[i]<ckovMin) ckovMin=fPhotCkov[i]; //find max and min Theta ckov from all candidates within probable window
156 if(fPhotCkov[i]>ckovMax) ckovMax=fPhotCkov[i];
157 weightThetaCerenkov += fPhotCkov[i]*fPhotWei[i]; wei += fPhotWei[i]; //collect weight as sum of all candidate weghts
158
159 //Double_t phiref=(GetPhiPoint()-GetTrackPhi());
160 if(fPhotCkov[i]<=0) continue;//?????????????????Flag photos = 2 may imply CkovEta = 0??????????????
161
162 sigma2 += 1./Sigma2(fPhotCkov[i],fPhotPhi[i]);
163 }
164 }//candidates loop
165
166 if(sigma2>0) fCkovSigma2=1./sigma2;
167 else fCkovSigma2=1e10;
168
169
170 if(wei != 0.) weightThetaCerenkov /= wei; else weightThetaCerenkov = 0.;
171 return weightThetaCerenkov;
172}//FindCkovRing()
173//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
174Int_t AliHMPIDRecon::FlagPhot(Double_t ckov)
175{
176// Flag photon candidates if their individual ckov angle is inside the window around ckov angle returned by HoughResponse()
177// Arguments: ckov- value of most probable ckov angle for track as returned by HoughResponse()
178// Returns: number of photon candidates happened to be inside the window
179
180
181 Int_t steps = (Int_t)((ckov )/ fDTheta); //how many times we need to have fDTheta to fill the distance between 0 and thetaCkovHough
182
183 Double_t tmin = (Double_t)(steps - 1)*fDTheta;
184 Double_t tmax = (Double_t)(steps)*fDTheta;
185 Double_t tavg = 0.5*(tmin+tmax);
186
187 tmin = tavg - 0.5*fWindowWidth; tmax = tavg + 0.5*fWindowWidth;
188
189 Int_t iInsideCnt = 0; //count photons which Theta ckov inside the window
190 for(Int_t i=0;i<fPhotCnt;i++){//photon candidates loop
191 if(fPhotCkov[i] >= tmin && fPhotCkov[i] <= tmax) {
192 fPhotFlag[i]=2;
193 iInsideCnt++;
194 }
195 }
196 return iInsideCnt;
197}//FlagPhot()
198//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
199Double_t AliHMPIDRecon::TracePhot(Double_t ckovThe,Double_t ckovPhi,TVector2 &pos)const
200{
201// Trace a single Ckov photon from emission point somewhere in radiator up to photocathode taking into account ref indexes of materials it travereses
202// Arguments: ckovThe,ckovPhi- photon ckov angles, [rad] (warning: not photon theta and phi)
203// Returns: distance between photon point on PC and track projection
204 TRotation mtheta; mtheta.RotateY(fTrkDir.Theta());
205 TRotation mphi; mphi.RotateZ(fTrkDir.Phi());
206 TRotation mrot=mphi*mtheta;
207
208 TVector3 posCkov(fTrkPos.X(),fTrkPos.Y(),-0.5*fgkRadThick-fgkWinThick-fgkGapThick); //RAD: photon position is track position @ middle of RAD
209 TVector3 dirCkov; dirCkov.SetMagThetaPhi(1,ckovThe,ckovPhi); //initially photon is directed according to requested ckov angle
210 dirCkov=mrot*dirCkov; //now we know photon direction in LORS
211 dirCkov.SetPhi(ckovPhi);
212 if(dirCkov.Theta() > TMath::ASin(1./fgkRadIdx)) return -999;//total refraction on WIN-GAP boundary
213
214 Propagate(dirCkov,posCkov,-fgkWinThick-fgkGapThick); //go to RAD-WIN boundary remeber that z=0 is PC plane
215 Refract (dirCkov, fgkRadIdx,fgkWinIdx ); //RAD-WIN refraction
216 Propagate(dirCkov,posCkov,-fgkGapThick ); //go to WIN-GAP boundary
217 Refract (dirCkov, fgkWinIdx,fgkGapIdx ); //WIN-GAP refraction
218 Propagate(dirCkov,posCkov,0 ); //go to PC
219
220 pos.Set(posCkov.X(),posCkov.Y());
221 return (pos-fTrkPos).Mod();
222}//TracePhoton()
223//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
224void AliHMPIDRecon::Propagate(const TVector3 &dir,TVector3 &pos,Double_t z)const
225{
226// Finds an intersection point between a line and XY plane shifted along Z.
227// Arguments: dir,pos - vector along the line and any point of the line
228// z - z coordinate of plain
229// Returns: none
230// On exit: pos is the position if this intesection if any
231 static TVector3 nrm(0,0,1);
232 TVector3 pnt(0,0,z);
233
234 TVector3 diff=pnt-pos;
235 Double_t sint=(nrm*diff)/(nrm*dir);
236 pos+=sint*dir;
237}//Propagate()
238//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
239void AliHMPIDRecon::Refract(TVector3 &dir,Double_t n1,Double_t n2)const
240{
241// Refract direction vector according to Snell law
242// Arguments:
243// n1 - ref idx of first substance
244// n2 - ref idx of second substance
245// Returns: none
246// On exit: dir is new direction
247 Double_t sinref=(n1/n2)*TMath::Sin(dir.Theta());
248 if(sinref>1.) dir.SetXYZ(-999,-999,-999);
249 else dir.SetTheta(TMath::ASin(sinref));
250}//Refract()
251//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
252Double_t AliHMPIDRecon::HoughResponse()
253{
254//
255//
256//
257 Double_t kThetaMax=0.75;
258 Int_t nChannels = (Int_t)(kThetaMax/fDTheta+0.5);
259 TH1D *phots = new TH1D("Rphot" ,"phots" ,nChannels,0,kThetaMax);
260 TH1D *photsw = new TH1D("RphotWeighted" ,"photsw" ,nChannels,0,kThetaMax);
261 TH1D *resultw = new TH1D("resultw","resultw" ,nChannels,0,kThetaMax);
262 Int_t nBin = (Int_t)(kThetaMax/fDTheta);
263 Int_t nCorrBand = (Int_t)(fWindowWidth/(2*fDTheta));
264
265 for (Int_t i=0; i< fPhotCnt; i++){//photon cadidates loop
266 Double_t angle = fPhotCkov[i]; if(angle<0||angle>kThetaMax) continue;
267 phots->Fill(angle);
268 Int_t bin = (Int_t)(0.5+angle/(fDTheta));
269 Double_t weight=1.;
270 if(fIsWEIGHT){
271 Double_t lowerlimit = ((Double_t)bin)*fDTheta - 0.5*fDTheta; Double_t upperlimit = ((Double_t)bin)*fDTheta + 0.5*fDTheta;
272 Double_t diffArea = FindRingArea(upperlimit)-FindRingArea(lowerlimit);
273 if(diffArea>0) weight = 1./diffArea;
274 }
275 photsw->Fill(angle,weight);
276 fPhotWei[i]=weight;
277 }//photon candidates loop
278
279 for (Int_t i=1; i<=nBin;i++){
280 Int_t bin1= i-nCorrBand;
281 Int_t bin2= i+nCorrBand;
282 if(bin1<1) bin1=1;
283 if(bin2>nBin)bin2=nBin;
284 Double_t sumPhots=phots->Integral(bin1,bin2);
285 if(sumPhots<3) continue; // if less then 3 photons don't trust to this ring
286 Double_t sumPhotsw=photsw->Integral(bin1,bin2);
287 resultw->Fill((Double_t)((i+0.5)*fDTheta),sumPhotsw);
288 }
289// evaluate the "BEST" theta ckov as the maximum value of histogramm
290 Double_t *pVec = resultw->GetArray();
291 Int_t locMax = TMath::LocMax(nBin,pVec);
292 phots->Delete();photsw->Delete();resultw->Delete(); // Reset and delete objects
293
294 return (Double_t)(locMax*fDTheta+0.5*fDTheta); //final most probable track theta ckov
295}//HoughResponse()
296//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
297Double_t AliHMPIDRecon::Sigma2(Double_t ckovTh, Double_t ckovPh)const
298{
299// Analithical calculation of total error (as a sum of localization, geometrical and chromatic errors) on Cerenkov angle for a given Cerenkov photon
300// created by a given MIP. Fromulae according to CERN-EP-2000-058
301// Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians]
302// dip and azimuthal angles for MIP taken at the entrance to radiator, [radians]
303// MIP beta
304// Returns: absolute error on Cerenkov angle, [radians]
305
306 TVector3 v(-999,-999,-999);
307 Double_t trkBeta = 1./(TMath::Cos(ckovTh)*fgkRadIdx);
308
309 v.SetX(SigLoc (ckovTh,ckovPh,trkBeta));
310 v.SetY(SigGeom(ckovTh,ckovPh,trkBeta));
311 v.SetZ(SigCrom(ckovTh,ckovPh,trkBeta));
312
313 return v.Mag2();
314}
315//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
316Double_t AliHMPIDRecon::SigLoc(Double_t thetaC, Double_t phiC,Double_t betaM)const
317{
318// Analithical calculation of localization error (due to finite segmentation of PC) on Cerenkov angle for a given Cerenkov photon
319// created by a given MIP. Fromulae according to CERN-EP-2000-058
320// Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians]
321// dip and azimuthal angles for MIP taken at the entrance to radiator, [radians]
322// MIP beta
323// Returns: absolute error on Cerenkov angle, [radians]
324 Double_t phiDelta = phiC - fTrkDir.Phi();
325
326 Double_t alpha =TMath::Cos(fTrkDir.Theta())-TMath::Tan(thetaC)*TMath::Cos(phiDelta)*TMath::Sin(fTrkDir.Theta());
327 Double_t k = 1.-fgkRadIdx*fgkRadIdx+alpha*alpha/(betaM*betaM);
328 if (k<0) return 1e10;
329
330 Double_t mu =TMath::Sin(fTrkDir.Theta())*TMath::Sin(fTrkDir.Phi())+TMath::Tan(thetaC)*(TMath::Cos(fTrkDir.Theta())*TMath::Cos(phiDelta)*TMath::Sin(fTrkDir.Phi())+TMath::Sin(phiDelta)*TMath::Cos(fTrkDir.Phi()));
331 Double_t e =TMath::Sin(fTrkDir.Theta())*TMath::Cos(fTrkDir.Phi())+TMath::Tan(thetaC)*(TMath::Cos(fTrkDir.Theta())*TMath::Cos(phiDelta)*TMath::Cos(fTrkDir.Phi())-TMath::Sin(phiDelta)*TMath::Sin(fTrkDir.Phi()));
332
333 Double_t kk = betaM*TMath::Sqrt(k)/(8*alpha);
334 Double_t dtdxc = kk*(k*(TMath::Cos(phiDelta)*TMath::Cos(fTrkDir.Phi())-TMath::Cos(fTrkDir.Theta())*TMath::Sin(phiDelta)*TMath::Sin(fTrkDir.Phi()))-(alpha*mu/(betaM*betaM))*TMath::Sin(fTrkDir.Theta())*TMath::Sin(phiDelta));
335 Double_t dtdyc = kk*(k*(TMath::Cos(phiDelta)*TMath::Sin(fTrkDir.Phi())+TMath::Cos(fTrkDir.Theta())*TMath::Sin(phiDelta)*TMath::Cos(fTrkDir.Phi()))+(alpha* e/(betaM*betaM))*TMath::Sin(fTrkDir.Theta())*TMath::Sin(phiDelta));
336
337 return TMath::Sqrt(0.2*0.2*dtdxc*dtdxc + 0.25*0.25*dtdyc*dtdyc);
338}
339//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
340Double_t AliHMPIDRecon::SigCrom(Double_t thetaC, Double_t phiC,Double_t betaM)const
341{
342// Analithical calculation of chromatic error (due to lack of knowledge of Cerenkov photon energy) on Cerenkov angle for a given Cerenkov photon
343// created by a given MIP. Fromulae according to CERN-EP-2000-058
344// Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians]
345// dip and azimuthal angles for MIP taken at the entrance to radiator, [radians]
346// MIP beta
347// Returns: absolute error on Cerenkov angle, [radians]
348 Double_t phiDelta = phiC - fTrkDir.Phi();
349 Double_t alpha =TMath::Cos(fTrkDir.Theta())-TMath::Tan(thetaC)*TMath::Cos(phiDelta)*TMath::Sin(fTrkDir.Theta());
350
351 Double_t dtdn = TMath::Cos(fTrkDir.Theta())*fgkRadIdx*betaM*betaM/(alpha*TMath::Tan(thetaC));
352
353 Double_t f = 0.00928*(7.75-5.635)/TMath::Sqrt(12.);
354
355 return f*dtdn;
356}//SigCrom()
357//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
358Double_t AliHMPIDRecon::SigGeom(Double_t thetaC, Double_t phiC,Double_t betaM)const
359{
360// Analithical calculation of geometric error (due to lack of knowledge of creation point in radiator) on Cerenkov angle for a given Cerenkov photon
361// created by a given MIP. Formulae according to CERN-EP-2000-058
362// Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians]
363// dip and azimuthal angles for MIP taken at the entrance to radiator, [radians]
364// MIP beta
365// Returns: absolute error on Cerenkov angle, [radians]
366
367 Double_t phiDelta = phiC - fTrkDir.Phi();
368 Double_t alpha =TMath::Cos(fTrkDir.Theta())-TMath::Tan(thetaC)*TMath::Cos(phiDelta)*TMath::Sin(fTrkDir.Theta());
369
370 Double_t k = 1.-fgkRadIdx*fgkRadIdx+alpha*alpha/(betaM*betaM);
371 if (k<0) return 1e10;
372
373 Double_t eTr = 0.5*1.5*betaM*TMath::Sqrt(k)/(8*alpha);
374 Double_t lambda = 1.-TMath::Sin(fTrkDir.Theta())*TMath::Sin(fTrkDir.Theta())*TMath::Sin(phiC)*TMath::Sin(phiC);
375
376 Double_t c = 1./(1.+ eTr*k/(alpha*alpha*TMath::Cos(thetaC)*TMath::Cos(thetaC)));
377 Double_t i = betaM*TMath::Tan(thetaC)*lambda*TMath::Power(k,1.5);
378 Double_t ii = 1.+eTr*betaM*i;
379
380 Double_t err = c * (i/(alpha*alpha*8) + ii*(1.-lambda) / ( alpha*alpha*8*betaM*(1.+eTr)) );
381 Double_t trErr = 1.5/(TMath::Sqrt(12.)*TMath::Cos(fTrkDir.Theta()));
382
383 return trErr*err;
384}//SigGeom()
385//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
386void AliHMPIDRecon::Display()
387{
388// Display digits, reconstructed tracks intersections and HMPID rings if available
389// Arguments: none
390// Returns: none
391 TFile *pEsdFl=TFile::Open("AliESDs.root"); if(!pEsdFl || !pEsdFl->IsOpen()) return;//open AliESDs.root
392 TTree *pEsdTr=(TTree*) pEsdFl->Get("esdTree"); if(!pEsdTr) return;//get ESD tree
393
394 AliESD *pEsd=new AliESD; pEsdTr->SetBranchAddress("ESD", &pEsd);
395
396 TPolyMarker *pDigMap[7]; //digits map
397 TPolyMarker *pTrkMap[7]; Int_t aTrkCnt[7]; //TRKxPC intersection map
398
399 for(Int_t i=0;i<7;i++){
400 pDigMap[i]=new TPolyMarker(); pDigMap[i]->SetMarkerStyle(25); pDigMap[i]->SetMarkerSize(0.5); pDigMap[i]->SetMarkerColor(kGreen);
401 aTrkCnt[i]=0; pTrkMap[i]=new TPolyMarker(); pTrkMap[i]->SetMarkerStyle(4); pTrkMap[i]->SetMarkerSize(0.5); pTrkMap[i]->SetMarkerColor(kRed);
402 }
403
404 AliHMPIDRecon rec;
405
406 TLatex t;
407 TCanvas *pC = new TCanvas("HMPIDDisplay","HMPID Display",0,0,1226,900); pC->Divide(3,3);
408
409 for(Int_t iEvt=0;iEvt<pEsdTr->GetEntries();iEvt++) { //events loop
410 pC->cd(3); t.DrawText(0.2,0.4,Form("Event %i",iEvt)); //print current event number
411 pEsdTr->GetEntry(iEvt); //get ESD for this event
412 for(Int_t iTrk=0;iTrk<pEsd->GetNumberOfTracks();iTrk++){//ESD tracks loop
413 AliESDtrack *pTrk = pEsd->GetTrack(iTrk); //
414 Float_t th,ph,x,y; pTrk->GetHMPIDtrk(x,y,th,ph); if(x<0) continue;
415 Int_t ch=pTrk->GetHMPIDcluIdx()/1000000; Printf("ch=%i",ch);
416 pTrkMap[ch]->SetPoint(aTrkCnt[ch]++,x,y);
417 }//ESD tracks loop
418
419// al->GetEvent(iEvt); rl->TreeD()->GetEntry(0); //get digits list
420 for(Int_t iCh=0;iCh<7;iCh++) {//chambers loop
421// for(Int_t iDig=0;iDig < r->DigLst(iCh)->GetEntries();iDig++) { //digits loop
422// AliHMPIDDigit *pDig = (AliHMPIDDigit*)r->DigLst(iCh)->At(iDig);
423// pDigMap[iCh]->SetPoint(iDig,pDig->LorsX(),pDig->LorsY());
424// } //digits loop
425//
426//
427 if(iCh==6) pC->cd(1); if(iCh==5) pC->cd(2);
428 if(iCh==4) pC->cd(4); if(iCh==3) pC->cd(5); if(iCh==2) pC->cd(6);
429 if(iCh==1) pC->cd(8); if(iCh==0) pC->cd(9);
430
431 AliHMPIDDigit::DrawPc(); pTrkMap[iCh]->Draw(); pDigMap[iCh]->Draw();
432 }//chambers loop
433// pC->Update();
434// pC->Modified();
435// if(iEvt<iEvtTo) {gPad->WaitPrimitive();pC->Clear();}
436
437
438
439 }//events loop
440 delete pEsd; pEsdFl->Close();//close AliESDs.root
441// rl->UnloadDigits();
442}//Display()